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Abstract
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To describe behaviour in this model, we exhibit a set of indices that capture
the privately estimated social value of every action. The optimal decision
rule is simply: Choose the action with the highest index. While they have
the flavour of Gittins indices, they also incorporate the potential to signal to
successors. We then apply these indices to establish a key comparative static,
that the set of stationary ‘cascade’ beliefs strictly shrinks as the planner grows
more patient. We also show how these indices yield a set of history-dependent
transfer payments that decentralize the constrained social optimum.
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1. INTRODUCTION

The last few years has seen a flood of research on informational herding. We ourselves

have actively participated in this research herd (Smith and Sørensen (1997a), or SS) that

was sparked independently by Banerjee (1992) and BHW: Bikhchandani, Hirshleifer, and

Welch (1992). The context is seductively simple: An infinite sequence of individuals must

decide on an action choice from a finite menu. Everyone has identical preferences and

menus, and each may condition his decision both on his endowed private signal about the

state of the world, and on all predecessors’ decisions (but cannot see their private signals).

In this context, SS showed that beliefs converge upon a cascade — i.e. where only one

action is taken with probability one.1 BHW and Banerjee showed that a ‘herd’ eventually

arises — namely, after some point, all decision-makers (DMs) make the identical choice,

possibly unwise. Clarifying their next result, SS also showed that this herd is ex post

incorrect with positive probability iff the DMs’ private signals are uniformly bounded in

strength. This simple pathological outcome has understandably attracted much fanfare.

The main thrust of this paper is an analysis of the herding externality with forward-

looking behavior. Contrary to the popular impression of incorrect herds as a market

failure, we show that herding is constrained-efficient: Even when DMs internalize the

herding externality by placing very low weight on their private gain, incorrect herds obtain

whenever private signals are boundedly powerful; however, they occur with a vanishing

chance as the discount factor tends to one. The DMs’ lack of concern for successors affects

just the extent of incomplete learning, and not its existence.

Social information is poorly aggregated by action observation,2 as individuals may

choose actions that reveal almost none of their information. But suppose that early DMs

either wished to help latecomers, or were so induced, by taking more revealing actions that

better signalled their private information. Exactly what instructions should a planner give

to the DM’s to maximize social welfare? We provide a compact description of optimal

behaviour in this constrained efficient herding model. We produce a set of indices that

capture the privately estimated social value of every action. The optimal decision rule is

simply to choose the action with the highest index. While they have the flavour of Gittins’

(1979) multi-armed bandit indices, they also must incorporate the potential to signal to

successors. So unlike Gittins’ perfect information context, an action’s index is not simply

its present social value. Rather, individuals’ signals are hidden from view, and therefore

social rewards must be translated into private incentives using the marginal social value.

1As convergence may take infinite time (see SS), we have a limit cascade, as opposed to BHW’s cascade.
2Dow (1991) and Meyer (1991) have also studied the nature of such a coarse information process for

different contexts: search theory and organizational design.
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We apply these indices to establish a key comparative static, that the cascade belief set

strictly shrinks when DMs grow more patient.

Our second application of the indices is to the equivalent problem of the informationally-

constrained social planner, whose goal is to maximize the present discounted value of all

DMs’ welfare. For the altruistic herding fiction is only worthy of study if it can be de-

centralized. A social planner must encourage early DMs to sacrifice for the informational

benefit of posterity. Such an outcome can be decentralized as a constrained social optimum

by means of a simple set of history-dependent balanced-budget transfers. These transfers

are given by our indices, and have a rather intuitive economic meaning.

This paper was originally sparked by a simple question about informational herding:

Haven’t we seen this before? We were piqued by its similarity to the familiar failure of

complete learning in an optimal experimentation problem. Rothschild’s (1974) analysis of

the two-armed bandit is a classic example: An impatient monopolist optimally experiments

with two possible prices each period, with fixed but uncertain purchase chances for each

price. Rothschild showed that the monopolist (i) eventually settles down on one of the

two prices, and (ii) selects the less profitable price with positive probability. To us, this

had the clear ring of: (i) an action herd occurs, and (ii) with positive chance is misguided.

This paper also formally justifies this intuitive link. We prove that informational

herding is not a new phenomenon, but a camouflaged context for an old one: myopic single

person experimentation, with possible incomplete learning. Our proof respects the herding

paradigm quintessence that predecessors’ signals be hidden from view. In a nutshell, we

replace all DMs by agent machines that automatically map any realized private signals

into action choices; the true experimenter then must furnish these automata with optimal

history-contingent ‘decision rules’. We therefore reinterpret actions in the herding model as

the experimenter’s stochastic signals, and the DMs’ decision rules as his allowed actions.

We perform this formal embedding for a very general observational learning context.3

The organization of this paper is as follows. As we must first solve the experimentation

problem anyway, it makes more sense to proceed backwards, ending with the economics.

So section 2 describes a general infinite player observational learning model, and then

re-interprets it as an optimal single-person experimentation model. Focusing on the finite-

action informational herding model, section 3 characterizes the experimenter’s limiting

beliefs. The altruistic herding model is introduced in section 4, and optimal strategies are

described using index rules; these are then applied for our key comparative static, as well

as a description in section 5 of the optimal transfers for the equivalent planner’s problem.

A conclusion affords a broader perspective on our findings. Some proofs are appendicized.

3Such an embedding is well-known and obvious for rational expectations pricing models (eg. Scheinkman
and Schechtman (1983)), since the price is publicly observed, and an inverse mapping is not required.
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2. TWO EQUIVALENT LEARNING MODELS

In this section, we first set up a rather general observational learning model, that sub-

sumes SS, and thus BHW and Banerjee (1992). All models in this class are then formally

embedded in the experimentation framework. Afterwards, we specialize our findings.

2.1 Observational Learning

Information. An infinite sequence of decision-makers (DMs) n = 1, 2, . . . takes

actions in that exogenous order. There is uncertainty about the payoffs from these actions.

The elements of the parameter space (Ω,F) are referred to as states of the world. There

is a given common prior belief, the probability measure ν over Ω.

The nth DM observes a partially informative private random signal σn ∈ Σ about the

state of the world. As shown in SS (Lemma 1), we may assume WLOG that the private

signal received by a DM is actually his private belief, i.e. we let σ be the measure over

Ω which results from Bayesian updating given the prior ν and observation of the private

signal. Signals thus belong to Σ, the space of probability measures over (Ω,F), and G is

the associated sigma-algebra. Conditional on the state, the signals are assumed to be i.i.d.

across DMs, drawn according to the probability measure µω in state ω ∈ Ω. To avoid

trivialities, assume that not all µω are (a.s.) identical, so that some signals are informative.

Each distribution may contain atoms, but to ensure that no signal will perfectly reveal the

state of the world, we insist that all µω be mutually absolutely continuous (a.c.), for ω ∈ Ω.

Bayesian Decision-Making. Everyone chooses from a fixed action set A, equipped

with the sigma-algebra A. Action a earns a nonstochastic payoff u(a, ω) in state ω ∈ Ω,

the same for all DMs, where u : A×Ω 7→ R is measurable. It is common knowledge that

everyone is rational, i.e. seeks to maximize his expected payoff. Before deciding upon an

action, everyone first observes his private signal/belief and the entire action history h.

Each DM’s Bayes-optimal decision uses the observed action history and his own pri-

vate belief. As in SS, we simply assume that a DM can compute the behaviour of all

predecessors, and can use the common prior to calculate the ex ante (time-0) probability

distribution over action profiles h in either state. Knowing these probabilities, Bayes’ rule

implies a unique public belief π = π(h) ∈ Σ for any history h. A final application of Bayes’

rule given the private belief σ yields the posterior belief ρ ∈ Σ.

Given the posterior belief ρ, the nth DM picks the action a ∈ A which maximizes his

expected payoff ūa(ρ) =
∫

Ω
u(a, ω)dρ(ω). We assume that such an optimal action a = a(ρ)

exists.4 The solution defines an optimal decision rule x from Σ to ∆(A), the space of

4Absent a unique solution, we must take a measurable selection from the solution correspondence.
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probability measures over (A,A). Let X be the space of such maps x : Σ 7→ ∆(A). A rule

x produces an implied distribution over actions simultaneously for all private beliefs σ.

The Stochastic Process of Beliefs. Since the optimal x depends on π, and

the probability measure of signals σ depends on the state ω, the implied distribution over

actions a depends on both ω and the optimal decision rule x. The density is ψ(a|ω, x) ≡∫
x(σ)(a)µω(dσ), and unconditional on the state, it is ψ(a|π, x) ≡ ∫

Ω
ψ(a|ω, x)π(dω). This

in turn yields a distribution over next period public beliefs πn+1. Thus, 〈πn〉 follows a

discrete-time Markov process with state-dependent transition chances.

2.2 Informational Herding as Experimentation Déjà Vu

And out of old bookes, in good faithe,

Cometh al this new science that men lere.

— Geoffrey Chaucer5

Our immediate goal is to recast the observational problem outcome as a single person

optimization. A first stab brings us to the forgetful experimenter, who each period receives

a new informative signal, takes an optimal action, and then promptly forgets his signal;

the next period, he can reflect only on his action choice. But this is not a model of Bayes-

optimal experimentation, since it assumes and in fact requires irrational behaviour. How

then can an experimenter not observe the private signals, and yet take informative actions?

To give proper context to our resolution, it helps to consider McLennan (1984). This

nice sequel to Rothschild’s work permitted the monopolist to charge one of a continuum of

prices, but assumed only two possible linear purchase chance ‘demand curves’. McLennan

found that the resulting uninformative price when the demand curves crossed may well

eventually be chosen by an optimizing monopolist.

Rothschild’s and McLennan’s models give examples of potentially confounding actions,

as introduced in EK: Easley and Kiefer (1988). In brief, such actions are optimal for

unfocused beliefs for which they are invariants (i.e. taking the action leaves the beliefs

unchanged). Of particular significance is the proof in EK (on page 1059) that with finite

state and action spaces, potentially confounding actions generically do not exist, and

thus complete learning must arise.6 Rothschild and McLennan might be seen as separate

anticipations of EK’s general insight. Rothschild escapes it by means of a continuous

state space, whereas McLennan resorts to a continuous action space. Yet there appears no

escape for the herding paradigm, where both flavours of incomplete learning, limit cascades

5See The Assembly of Fowles. Line 22.
6Eg: payoffs in a one-armed bandit, with a potentially confounding safe arm, are not generic in R

2.
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Observational Learning Model Impatient Experimenter Model

State: ω ∈ Ω State: ω ∈ Ω
Public Belief after nth DM: πn Belief after n observations: πn

Optimal decision rule: x ∈ X Optimal action: x ∈ X
Private signal of nth DM: σn Randomness in the nth experiment: σn

Action taken by each DM: a ∈ A Observable signals: a ∈ A
Density over actions: ψ(a|ω, x) Density over observables: ψ(a|ω, x)
Payoffs: private information Payoffs: unobserved

Table 1: Embedding. This table displays how our single-type observational learning
model fits into the impatient single person experimentation model.

and confounded learning (see SS), generically arise with two actions and two states. This

puzzle suggests the inverse mapping that we now consider.

In recasting our general observational learning model as a single person experimentation

problem, we must focus on the myopic experimenter with discount factor 0 (ruling out

active experimentation). Steering away from a forgetful experimenter, we shall regard

the observational learning story from a new perspective. Consider the nth DM, who uses

both the public belief πn and his private signal σn in forming and acting upon his posterior

beliefs ρn. We may separate these two steps by the conditional independence of πn and σn.

Regard Mr. n as: (i) observing πn, but not his private signal; (ii) optimally determining

the rule x ∈ X, and submitting it to an agent ‘choice’ machine; and (iii) letting that

machine observe his private signal and take his action a ∈ A for him. The payoff u(a, ω)

is unobserved, lest that provide an additional signal of the state of the world. If private

beliefs σ have distribution µω in state ω, then the experimenter chooses the same optimal

decision rule x described in section 2, resulting in action a ∈ A with chance ψ(a|ω, x).
Thus, the observational learning model corresponds to a single-person experimentation

model where: The state space is Ω. In period n, the experimenter EX chooses an action

(the rule) x ∈ X. Given this choice, a random observable statistic a ∈ A is realized with

chance ψ(a|ω, x) in state ω. Finally, EX updates beliefs using this information alone.7

Table 1 summarizes the embedding.

Notice how this addresses both lead puzzles. First, the experimenter never knows the

private beliefs σ, and thus does not forget them. Second, incomplete learning (bad herds)

are entirely consistent with EK’s generic finding of complete learning for models with finite

7This model doesn’t strictly fit into the EK mold, where stage payoffs depend only on the action and
the observed signal, but (unlike here) not on the parameter ω ∈ Ω. This is the structure of Aghion, Bolton,
Harris, and Jullien (1991) (ABHJ), who admit unobserved payoffs. Alternatively, we could posit that EX
has fair insurance, and only sees/earns his expected payoff each period and not his random realized payoff.
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action and state spaces. Simply put, actions do not map to actions but to signals when one

rewrites the observational learning model as an experimentation model. The true action

space for EX is the infinite space X of decision rules.

SS considered two major modifications of the informational herding paradigm. One

was to add i.i.d. noise (‘crazy’ preference types) to the DM’s decision problem. Noise is

easily incorporated here by adding an exogenous chance of a noisy signal (random action).

SS also allowed for T different types of preferences, with DMs randomly drawn from one

or the other type population. Multiple types can be addressed here by simply imagining

that EX chooses a T -vector of optimal decision rules from XT with (only) the choice

machine observing the task and private belief, and choosing the action a as before.

3. THE PATIENT EXPERIMENTER

3.1 The Reformulated Model

From now on, we restrict ourselves to the more focused herding analytic framework —

a two state, finite action setting, as in SS. More states complicates but does not enrich.

We assume a state space Ω = {H,L}, with both states equilikely ex ante, i.e. having

prior ν(L) = ν(H) = 1/2. Private belief σ is the chance of state H , so that Σ = [0, 1].

Let supp(µ) be the common support of each probability measure µω over private beliefs

(i.e. noise for EX ’s problem). If supp(µ) ⊆ (0, 1), then private beliefs are bounded ; they

are unbounded if co(supp(µ)) = [0, 1] — i.e. if arbitrarily strong private beliefs exist. The

half-bounded, half-unbounded case is a direct sum of these separate analyses.

We make the standard herding assumption of a finite action space A = {a1, . . . , aM}.
We assume that no action is dominated, yielding the standard interval structure that action

am is optimal exactly when the posterior ρ is in some sub-interval of [0, 1]. WLOG, we can

then order the actions such that am is myopically optimal for posteriors ρ ∈ [r̄m−1, r̄m],

where 0 = r̄0 < r̄1 < . . . < r̄M = 1.

A strategy sn for period n is a map from Σ to X. It prescribes the rule xn ∈ X which

must be used, given belief πn. The planner chooses a strategy profile s = (s1, s2, . . .),

which in turn determines the stochastic evolution of the model — i.e. a distribution over

the sequences of realized actions, payoffs, and beliefs.

The Value Function. Our analysis here follows ABHJ and sections 9.1–2 of

Stokey and Lucas (1989). The value function v(·, δ) : Σ 7→ R for the planning problem

with discount factor δ is v(π, δ) = supsE[(1− δ) ∑∞
n=1 δ

n−1un|π], where the expectation is

over the payoff sequences implied by s. Recall that ūm(π) = πu(am, H) + (1− π)u(am, L)

denotes the expected payoff from am at belief π. Since ūm is affine, the Bellman equation
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is

v(π, δ) = sup
x∈X

{ ∑
am∈A

ψ(am|π, x) [(1− δ)ūm(q(π, x, am)) + δv(q(π, x, am), δ)]

}
(1)

where q(π, x, a) is the Bayes-updated belief from π when a is observed and rule x is applied.

A (Markov) policy for EX is a map ξ : [0, 1] → X (so the rule given belief π is ξ(π)).

The optimum in a Markovian decision problem with discount factor δ exists (eg. ABHJ,

Theorem 4.1), and is achieved by some such policy, generically written ξδ. In summary:

Lemma 1 For any discount factor δ < 1, EX has an optimal policy ξδ : [0, 1] → X.

Interval Structure. SS shows that the myopic experimenter maps higher beliefs

into higher actions: There are thresholds 0 = θ0 ≤ θ1 ≤ . . . ≤ θM = 1 depending on

π alone, such that action am is strictly optimal when σ ∈ (θm−1, θm), and indifference

between between am and am+1 prevails at the knife-edge σ = θm. This is also true with

patience, as Lemma 2 proves. Intuitively, not only does the interval structure respect the

action order to yield high immediate payoffs, but it also ensures the greatest information

value, by producing the riskiest posterior belief distribution.8

Lemma 2 For the belief π of EX . Any optimal rule x ∈ X is almost surely described by

thresholds 0 = θ0 ≤ θ1 ≤ · · · ≤ θM = 1 such that action am is taken when σ ∈ (θm−1, θm),

and EX randomizes between am and am+1 when σ = θm.

Proof: We prove that any rule x without an interval structure can be strictly improved

upon. For m1 < m2, let Σi (i = 1, 2) be those beliefs in Σ mapped with positive probability

into ami
. Assume to the contrary that the sets are not almost surely ordered as Σ1 ≤ Σ2.

If posteriors are perversely-ordered as q(π, x, am1) > q(π, x, am2), then given our action

ordering, payoffs are strictly improved with no loss of information by remapping beliefs

leading to am1 into am2 , and vice versa. That is, the myopic payoff is strictly improved,

since ūm1 − ūm2 is a decreasing function, while the continuation value is unchanged.

Next, assume that q(π, x, am1) ≤ q(π, x, am2). For any θ ∈ (0, 1), define Σ̃1(θ) ≡
(Σ1 ∪ Σ2) ∩ [0, θ] and Σ̃2(θ) ≡ (Σ1 ∪ Σ2) ∩ [θ, 1]. Consider then the modified rule x̃ which

equals x, except that ami
is taken for beliefs in Σi(θ), and where θ satisfies ψ(ami

|π, x) =

ψ(ami
|π, x̃). (It may be necessary for x̃ to randomize over the two actions at belief θ

to accomplish that.) Since beliefs more in favour of state L are mapped into am1 under

x̃, we find q(π, x̃, am1) ≤ q(π, x, am1), and similarly q(π, x̃, am2) ≥ q(π, x, am2), with at

least one inequality strict. Thus, x̃ yields a mean preserving spread of the updated belief

versus x, and since the continuation value function is weakly convex, its expectation is

weakly improved. But as we have just argued, the myopic payoff is strictly improved. 2

8This problem is not without history. Sobel (1953) investigated an interval structure in a simple
statistical decision problem, and more recently, Dow (1991) in a two period search model.
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Our earlier assumption that no action is dominated is no longer so innocent, and

may in fact have some bite for very patient EX . For the information value alone, taking

dominated actions in principle provides additional signalling power. Essentially, it leaves

each DM with a larger finite alphabet with which to signal his continuous private belief.

But including such actions would invalidate the above proof, and thus perhaps the interval

structure. We leave this stone unturned, acknowledging the possible loss of generality.

3.2 Long Run Behavior

As is generally the case with Bayesian learning, convergence is deduced by application

of the martingale convergence theorem to the belief process. Not only must beliefs settle

down, but also EX is never dead wrong about the state. A proof is found in SS.

Lemma 3 The belief process 〈πn〉 is a martingale unconditional on the state, converging

a.s. to some limiting random variable π∞. The limit π∞ is concentrated on (0, 1] in state H.

The next result is an expression of EK’s Theorem 5 that the limit belief π∞ precludes

further learning. In the informational herding model, this is only possible during a cascade,

when one action chosen is chosen almost surely, and thus is uninformative. The next

characterization of the stationary points of the stochastic process of beliefs 〈πn〉 directly

generalizes the analysis for δ = 0 in SS. See figure 1 for an illustration of how the cascade

sets are reflected in the shape of the optimal value function.

Proposition 1 (Cascade Sets) There exist M (possibly empty) subintervals of [0, 1],

J1(δ) < · · · < JM(δ), such that EX optimally chooses x a.s. inducing am ∈ A iff π ∈ Jm(δ).

(a) For all δ ∈ [0, 1), the limit belief π∞ is concentrated on the sets J1(δ) ∪ · · · ∪ JM(δ).

(b) With unbounded private beliefs, the extreme cascade sets are nonempty with J1(δ) = {0}
and JM(δ) = {1}, and all other Jm(δ) are empty.

(c) If the private beliefs are bounded, then J1(δ) = [0, π(δ)] and JM(δ) = [π̄(δ), 1], where

0 < π(δ) < π̄(δ) < 1. For large enough δ, all cascade sets disappear except for J1 and JM ,

while limδ→1 J1(δ) = {0} and limδ→1 JM(δ) = {1}.

Proof: All but the initial limit belief result are established in the appendix. To see why

that one is true — that a limit cascade must occur, as SS call it — observe that for

any belief π̂ not in any cascade set, at least two signals in A are realized with positive

probability. By the interval structure, the highest such signal is more likely in state H , and

the lowest more likely in state L. So the next period’s belief differs from π̂ with positive

probability. Intuitively, or by the characterization result for Markov-martingale processes

in appendix B of SS, π̂ cannot lie in the support of π∞. 2
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Figure 1: Typical value function. Stylized graph of v(π, δ), δ ≥ 0, with three actions.
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The proof of this result also shows that the larger is δ, the weakly smaller are all cascade

sets: Indeed, this drops out rather easily from the monotonicity of the value function

in δ. We defer asserting this result for now, and in fact Proposition 5 leverages weak

monotonicity, and the index rules that we introduce later on, to deduce strict monotonicity.

Proposition 2 (Convergence of Beliefs) Consider a solution of EX ’s problem.

(a) For unbounded private beliefs, π∞ is concentrated on the truth for any δ ∈ [0, 1).

(b) With bounded private beliefs, learning is incomplete for any δ ∈ [0, 1): Unless π0 ∈
JM(δ), there is positive probability in state H that π∞ is not in JM(δ).

(c) The chance of incomplete learning with bounded private beliefs vanishes as δ ↑ 1.

Proof: Part (a) follows from Lemma 3 and Proposition 1-a,b, and part (b) just as in

Theorem 1 of SS. We now extend that proof to establish the limiting result for δ ↑ 1 in

part (c). First, Proposition 1 assures us that for δ close enough to 1, π∞ places all weight

in J1(δ) and JM(δ). The the likelihood ratio `n ≡ (1− πn)/πn is a martingale conditional

on state H . Because likelihood ratio (1 − σ)/σ bounded above by some ¯̀ < ∞ for all

private beliefs σ, the sequence 〈`n〉 is bounded above by ¯̀(1 − π(δ))/π(δ), and the mean

of `∞ must equal its prior mean (1 − π0)/π0. Since limδ→1 π(δ) = 0, the weight that π∞
places on J1(δ) in state H must vanish as δ → 1. 2

Observe how incomplete learning besets even an extremely patient EX . So this prob-

lem does not fall under the rubric of EK’s Theorem 9, where it is shown that if the optimal

value function v is strictly convex in beliefs π, learning is complete for δ near 1. For here,

EX optimally behaves myopically for very extreme beliefs: v(π) = ū1(π) for π near 0, and

v(π) = ūM(π) for π near 1, both affine functions. This points to the source of the incom-

plete learning: lumpy signals (actions) rather than impatience. It is simply individuals’

inability to properly signal their private information that frustrates the learning process.
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4. ALTRUISTIC HERDING AND INDEX RULES

4.1 The Welfare Theorem

We now shift focus from the problem facing EX to the informational herding context

with a sequence of DM’s. For organizational simplicity, we simply first suppose that every

DM is altruistic, but subject to the usual informational herding constraints (observable

actions, unobservable signals). Define an altruistic herding equilibrium (AHE) as a Bayes-

Nash equilibrium of the game where every DM n = 1, 2, . . . seeks to maximize the present

discounted welfare of all posterity, themselves included: E[(1− δ)
∑∞

k=n δ
k−nuk|π]. Define

the expected reward of the payoff function f as E[f |π] ≡ ∑
ω∈Ω π(ω)f(ω).

The next result is quite natural, but is proved for clarity.

Proposition 3 For any discount factor δ < 1, any optimal policy ξδ for EX is an AHE.

Consequently, an AHE exists.

Proof: Fix a given DM and a public belief π. Assume that ξδ is the behaviour strategy

of all successors in an AHE, but that the DM has some rule x̂ that is a better reply than

is ξδ(π). Then EX can improve his value at π by fully mimicking this deviation, i.e. by

(i) taking x̂ in the first period and thereafter (ii) continuing with ξδ as if the first period

history had been generated by ξδ(π). This contradicts the optimality of EX ’s policy. 2

4.2 Choosing the Best Action

Recall the classical problem of the multi-armed bandit:9 A given patient experimenter

each period must choose one of n actions, each having an uncertain independent reward

distribution. The experimenter must therefore carefully trade-off the informational and

myopic payoffs ssociated with each action. Gittins (1979) showed that optimal behavior

in this model can be described by simple index rules: Attach to each action the value of

the problem with just that action and the largest possible lump sum retirement reward

yielding indifference. Finally, each period, just choose the action with the highest index.

We now argue that the optimal policy employed by the decision makers in an AHE has

a similarly appealing form: For a given public belief π and private belief p, DM chooses

the action am with the largest index wδ
m(π, p). This measure will incorporate the social

payoff, as did the Gittins index, but as privately estimated by the DM.

Before stating the next major result, recall that ∂g(y) denotes the subdifferential of

the convex function g at y — namely, the set of all λ that obey g(x) ≥ g(y) + λ · (x− y)

for all x. Moreover, ∂g(y) is (strictly) increasing in y (strict) convexity.

9An excellent, if brief, treatment is found in §6.5 of Bertsekas (1987).
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Proposition 4 (Index Rules) Fix any AHE strategy ξδ. For m = 1, 2 . . . ,M , there

exist λm ∈ ∂v(q(π, ξδ(π), am), δ) such that the average expected present discounted value of

action am to the decision maker faced with public beliefs π and private belief p is

wδ
m(π, p) = (1−δ)ūm(ρ(π, p))+δ

{
v(q(π, ξδ(π), am), δ)+λm

[
ρ(π, p)−q(π, ξδ(π), am)

]}
(2)

where ρ(π, p)=πp/[πp+(1−π)(1−p)] is the posterior of π given p. So the optimal decision

rule is to take action am when wδ
m(π, p) = maxk w

δ
k(π, p).

Proof: Fix a given decision maker DM facing public belief π.

We now calculate the payoffs from each of the M available actions a1, . . . , aM . Action

am of the DM induces the public posterior belief qm ≡ q(π, ξδ(π), am), and a corresponding

state-contingent average expected discounted future payoffs of his successors, say v̄L
m and

v̄H
m . Clearly, the DM’s expected value of any such vNM payoff stream is affine in his

posterior belief ρ, i.e. of the form hm(ρ) ≡ E[vω
m|π] = ρv̄H

m + (1− ρ)v̄L
m. To evaluate these

payoff streams, it suffices to employ the EX ’s reckoning, since the DM and EX entertain

the same future payoff objectives. Because the affine function hm presumes the behaviour

which is optimal starting at belief qm, we have hm(qm) = v(qm). Next, by employing the

same strategy starting at an arbitrary public belief r as at qm, EX can achieve the value

hm(r); therefore, hm(r) ≤ v(r). Thus, the slope of this affine function necessarily lies in

the subdifferential ∂v(qm). The present value expression (2) follows. 2

That EX can always ensure himself a payoff function tangent to the value function

simply not adjusting his policy essentially was critical to this proof. This simple idea also

implies convexity of the value function (eg. Lemma 2 of Fusselman and Mirman (1993)).

4.3 Strict Inclusion of Cascade Sets

We next use our index rule characterization to prove a key comparative static of our

forward-looking informational herding model: As individuals grow more patient, the set

of cascade beliefs which foreclose on learning strictly shrinks.

Before proceeding, we need two preliminary lemmata.

Lemma 4 (Strict Value Monotonicity) The value function increases strictly with δ

outside the cascade sets: for δ2 > δ1, v(π, δ2) > v(π, δ1) for all π 6∈ J1(δ2) ∪ · · · ∪ JM(δ2).

The detailed proof of this result is appendicized, but the idea is quite straightforward.

Provided EX ’s strategy in some future eventuality strictly prefers a non-myopic action,

his continuation value must strictly exceed his myopic value. We then show that this holds

for any continuation public belief outside both cascade sets Jm(δ1) ⊇ Jm(δ2). So a more

patient player, who more highly weights the continuation value, will enjoy a higher value.
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We also exploit the fact that we can characaterize differentiability of the value function

at the edge of cascade sets.10 For context, it is in general very hard to identify primitive

assumptions which guarantee the differentiability of our value function. Call rules x and y

equivalent if they can be represented by the same thresholds (with associated mixing).

Lemma 5 (Differentiability) Let π̂ 6= 0, 1 be an endpoint of cascade set Jm(δ). Assume

that all rules optimal at π̂ are equivalent. Then v(·, δ) is differentiable in the belief at π̂.

Write the Bellman equation (1) as v = Tδv, and call Tδ the Bellman operator. As

usual, v ≥ v′ implies Tδv ≥ Tδv
′. Also, Tδ is a contraction, and v(·, δ) is its unique fixed

point in the space of bounded, continuous, weakly convex functions.

We can finally establish the major comparative static of this paper, that if EX is

indifferent about foreclosing on further learning at some belief (i.e. barely in a cascade),

then he strictly prefers to learn if he is slightly more patient.

Proposition 5 (Strict Inclusion) Assume bounded beliefs. All non-empty cascade sets

shrink strictly when δ rises: ∀am ∈ A, if δ2 > δ1 and Jm(δ1) 6= ∅, then Jm(δ2) ⊂ Jm(δ1).

Proof: Let r = inf Jm(δ1), the left edge of the cascade set. As Step 4 of the proof of

Proposition 1 asserts Jm(δ2)⊆Jm(δ1), and Jm(δ1) = {π|v(π, δ1)− ūm(π) = 0} is closed by

continuity of v(π, δ1)− ūm(π) in π, we need only prove r /∈Jm(δ2). There are two cases.

Case 1. Assume that at public belief r and with discount factor δ1, some optimal

rule x̂ does not almost surely take action am. Instead, with positive probability, x̂ takes

some action ak producing a posterior belief q(π, x, ak) not in any δ1-cascade set. [For since

am is myopically optimal at r ∈ Jm(δ1) ⊆ Jm(0), the optimal rule x̂ cannot almost surely

induce any other myopically suboptimal action aj (j 6= m) at a stationary belief.] So from

Lemma 4, v(q(π, x̂, ak), δ2) > v(q(π, x̂, ak), δ1) ≥ ūk(q(π, x̂, ak)), and since we can always

employ the rule x̂ with the discount factor δ2, we must have

v(r, δ2) ≥
∑
aj∈A

ψ(aj |r, x̂) [(1− δ2)ūj(q(r, x̂, aj)) + δ2v(q(r, x̂, aj), δ2)]

>
∑
aj∈A

ψ(aj |r, x̂) [(1− δ1)ūj(q(r, x̂, aj)) + δ1v(q(r, x̂, aj), δ1)] = v(r, δ1)

Consequently, we have v(r, δ2) > v(r, δ1) = ūm(r) and so r /∈ Jm(δ2).

Case 2. Next suppose that the optimal rule at public belief r with discount factor

δ1 is unique. Then the partial derivative v1(r, δ1) exists by Lemma 5. By the convexity

of the value function, any selection from the subdifferential ∂v(π) converges to v1(r, δ1)

10We thank Rabah Amir, David Easley, Andrew McLennan, Paul Milgrom, Len Mirman, and Yaw
Nyarko for private discussions about the differentiability of the value function in experimentation problems.
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as π increases to r. Since the optimal rule correspondence is upper hemicontinuous by

the Maximum Theorem, and uniquely valued at r, the posterior belief q(π, ξδ1(π), ak) is

continuous in π at r for any rule optimal selection ξδ1 and any action ak.

Let b = inf supp(µ) be the lower endpoint of the private belief distribution. As the

optimal rule at r almost surely prescribes action am, we let q(r, ξδ1(r), am) = r and

q(r, ξδ1(r), am−1) = ρ(r, b). By their definition, wδ1
m(π, p) and wδ1

m−1(π, p) are then jointly

continuous in (π, p) at (r, b). [In the expression for wδ1
m−1, λm−1 lies between the slopes

of ū1 and ūM , and is multiplied by a function that is continuous and vanishing at (r, b),

given q(r, ξδ1(r), am−1) = ρ(r, b).] Also, wδ1
m(r, b) ≥ wδ1

m−1(r, b) since r lies in the cascade

set Jm(δ1), while wδ1
m(π, b) < wδ1

m−1(π, b) for π < r, since r is the endpoint of Jm(δ1). So

wδ1
m(r, b) = wδ1

m−1(r, b) by continuity. This equality can be rewritten in a very useful form:

ūm(ρ(r, b))− ūm−1(ρ(r, b)) (3)

= δ1
[
ūm(ρ(r, b))− ūm−1(ρ(r, b)) + v(ρ(r, b), δ1)− v(r, δ1)− λδ1

m(ρ(r, b)− r)
]

Moreover, from the previous proof of Proposition 4, λδ1
m is the slope of ūm, because the

function hm(ρ) = v(r, δ1) + λδ1
m(ρ− r) evaluates the prospect of taking action am forever.

We shall prove that wδ2
m(r, b) < wδ2

m−1(r, b), and therefore conclude that r /∈ Jm(δ2). By

way of contradiction, assume that wδ2
m(r, b) ≥ wδ2

m−1(r, b), i.e. r = inf Jm(δ2). Subtracting

wδ1
m(r, b) ≥ wδ1

m−1(r, b), we then have the following contradiction:

0 ≥ [wδ2
m(r, b)− wδ2

m−1(r, b)]− [wδ1
m(r, b)− wδ1

m−1(r, b)]

= (δ2 − δ1) [ūm(ρ(r, b))− ūm−1(ρ(r, b))− v(r, δ1)]

+δ2v(ρ(r, b), δ2)− δ1v(ρ(r, b), δ1)− δ2λ
δ2
m(ρ(r, b)− r) + δ1λ

δ1
m(ρ(r, b)− r)

> (δ2 − δ1) [ūm(ρ(r, b))− ūm−1(ρ(r, b))− v(r, δ1)]

+δ2v(ρ(r, b), δ1)− δ1v(ρ(r, b), δ1)− δ2λ
δ1
m(ρ(r, b)− r) + δ1λ

δ1
m(ρ(r, b)− r)

= (δ2 − δ1)
[
ūm(ρ(r, b))− ūm−1(ρ(r, b))− v(r, δ1) + v(ρ(r, b), δ1)− λδ1

m(ρ(r, b)− r)
]

= (δ2 − δ1) [ūm(ρ(r, b))− ūm−1(ρ(r, b))] /δ1 ≥ 0

Here’s a detailed justification. Under the assumption that r ∈ Jm(δ1), one optimal policy ξδ
1

induces am almost surely at belief r, so that q(r, ξδ1(r), am−1) = q(r, ξδ2(r), am−1) = ρ(r, b).

The first equality then follows substituting (2) for each index, and using v(r, δ2) = v(r, δ1)

when r ∈ Jm(δ1) ∩ Jm(δ2). The second equality is simple algebra, while the final equality

applies (3). The second inequality exploits λδ1
m = λδ2

m (true as both are the slope of ūm),

and v(ρ(r, b), δ2) > v(ρ(r, b), δ1), as given by Lemma 4. The final inequality follows since

r ∈ Jm(δ1) ⊆ Jm(0), so that am is myopically optimal at ρ(r, b). 2
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5. CONSTRAINED EFFICIENT HERDING

Let us turn full circle, and consider once more the informational herding paradigm as

played by selfish individuals. Let the realized payoff sequence be 〈uk〉. Reinterpret EX ’s

problem as that of an informationally constrained social planner SP trying to maximize

the expected discounted average welfare E[(1−δ) ∑∞
n=1 δ

n−1un|π] of the individuals in the

herding model. Observe how SP ’s and EX ’s objectives are perfectly aligned. To respect

that key herding informational assumption that actions but not signals are observed, we

further assume that the SP neither knows the state nor can observe the individuals’ private

signals, but can both observe and tax or subsidize any actions taken.

How does SP steer the choices away from the myopic solution to EX ’s problem? Given

the current public belief π, if an individual takes action a ∈ A, he then receives the

(possibly negative) transfer τ(a|π). A constrained herding equilibrium (CHE) is a Bayes-

Nash equilibrium of the repeated game where every DM n = 1, 2, . . . seeks to maximize

his expected one-shot myopic payoff u(a, π) plus incurred transfers τ(a|π). Faced with

such incentives, our proof in Lemma 2 that individuals optimally choose private belief

threshold rules is still valid, for any transfers.

Since the SP ’s policy is measurable in the same observed action history as was EX ’s

program, the best SP can do is to coax each DM to implement EX ’s optimal rule x∗.

A constrained-efficient herding equilibrium (CEHE) is a CHE where the transfers achieve

this constrained first best outcome. Existence follows at once from Lemma 1.

Lemma 6 For any discount factor δ < 1, the optimal policy ξδ for EX is a CEHE.

Since the private belief σ maps into the posterior ρ(π, σ) = πσ/[πσ+(1−π)(1−σ)], the

selfish herder’s threshold θm must solve the indifference equation ūm(ρ(π, θm))+τ(am|π) =

ūm+1(ρ(π, θm)) + τ(am+1|π). So the transfer difference τ(am−1|π)− τ(am|π) alone matters

for how individuals trade-off between the two actions, and the SP can ensure that the

threshold belief is optimally chosen (θm = θ∗m) by suitably adjusting this net premium for

taking action am−1 rather than am.

We want to provide some characterization of these transfers. Clearly, SP will not tax

or subsidize actions if her desired one will be chosen anyway, i.e. for π ∈ Jm(δ) ⊆ Jm.

Conversely, when π 6∈ Jm(δ), SP perforce wishes to encourage nonmyopic actions, and

some transfers intuitively will differ from zero. Indeed, π ∈ Jm(δ) ⊂ Jm is a strict inclusion

for all δ > 0 by Proposition 5, and thus transfers are not identically zero for a patient SP .

Our action indices shed some more light on the optimal transfers, beyond the mere fact

that ‘experimentation’ (making non-myopic choices) is rewarded. Clearly, the sum of his

transfer and myopic payoffs in a CEHE must leave every individual who should be on the
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knife-edge between two neighbouring optimal actions perfectly indifferent. In other words,

we need τ(am|π) + ūm(ρ(π, θm)) = wδ
m(π, θm)/(1− δ). In fact, this condition is sufficient

too, because the interval structure is optimal by Lemmata 2 and 6, and myopic incentives

alone will lead inframarginal DM’s to make the correct decisions.

Proposition 6 (Optimal Transfers) For any belief π, there exist λ1 < · · · < λM , with

λm ∈ ∂v(q(π, ξδ(π), am), δ), so that the following are efficient transfers τ(am|π):

τ(am|π) = δv(q(π, ξδ(π), am)) + δλm[ρ(π, θm)− q(π, ξδ(π), am)]/(1− δ)

= wδ
m(π, θm)/(1− δ)− ūm(ρ(π, θm))

Observe that incentives are unchanged if a constant is added to all M transfers. Con-

sequently, SP may also achieve expected budget balance each period: i.e. the expected

contribution from everyone is zero, or 0 =
∑M

m=1 ψ(am|π, ξδ(π))τ(am|π). There is obvi-

ously a unique set of efficient transfers that satisfies budget balance.

5.1 Herding is Constrained Efficient

We are now positioned to reformulate the learning results of the last section at the level

of actions. First a clarifying definition: We say that a herd arises on action am at stage

N if all individuals n = N,N + 1, N + 2, . . . choose action am. Observe that this differs

from the definition of a cascade; certainly, a cascade will imply a herd, but the converse

is false. To show that herds arise, we can generalize the Overturning Principle of SS to

this case: Claim 4 (statement and proof appendicized) establishes that for π near Jm(δ),

actions other than am will push the updated public belief far from its current value. Thus,

convergence of beliefs implies convergence of actions — or, a limit cascade implies a herd.

The following is thus a corollary to Proposition 2.

Proposition 7 (Convergence of Actions) In any CEHE for discount factor δ:

(a) An ex post optimal herd eventually starts for δ ∈ [0, 1) and unbounded private beliefs.

(b) With bounded private beliefs, a herd on an action eventually starts. Unless π0 ∈ JM(δ),

a herd arises on an action other than aM with positive chance in state H for any δ ∈ [0, 1).

(c) The chance of an incorrect herd with bounded private beliefs vanishes as δ ↑ 1.

It is no surprise that SP ends up with full learning with unbounded beliefs, for even selfish

individuals will. More interesting is that SP optimally incurs the risk of an ever-lasting

incorrect herd. Herding is truly a robust property of the observational learning paradigm.
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6. CONCLUSION

This paper has shown that informational herding in models of observational learning is

not such an adverse phenomenon after all: Rather, it is a constrained efficient outcome of

the social planner’s problem, and is robust to changing the planner’s discount factor. To

understand this decentralized outcome, we have then derived an expression for the social

present value of each action. This formulation differs from the Gittins index because of the

agency problem: Since private signals are privately observed, aligning private and social

incentives entails a translation using the marginal social value. Finally, we have used this

expression to prove a strict comparative static that eludes dynamic programming methods:

Namely, cascade sets strictly shink as the planner grows more patient.

This paper has also discovered and explored the fact that informational herding is

simply incomplete learning by a single experimenter, suitably concealed. Our mapping,

recasting everything in rule space, has led us to an equivalent social planner’s problem.

While the revelation principle in mechanism design also uses such a ‘rule machine’, the

exercise is harder for multi-period, multi-person models with uncertainty, since the planner

must respect the agents’ belief filtrations. While this is trivially achieved in rational

expectation price settings, one must exploit the martingale property of public beliefs with

observational learning, and largely invert the model. This also works for more general social

learning models without action observation — provided an entire history of posterior belief

signals is observed. Absent this assumption, the public belief process (howsoever defined)

ceases to be a martingale, and expression as an experimentation model with perfect recall

is no longer possible. This explains why our model of social learning with random sampling

Smith and Sørensen (1997b) must employ entirely different techniques (Polya urns).

Of course, once informational herding is correctly understood as single-person Bayesian

experimentation, it no longer seems so implausible that incorrect herds may be constrained

efficient. For incomplete learning is if anything the hallmark of optimal experimentation

models, even with forward-looking behaviour. This link also offers hope for reverse in-

sights into the experimentation literature: As in EK, incomplete learning at the very least

requires an optimal action x for which unfocused beliefs are invariant, i.e. the distribution

ψ(a|ω, x) of signals a is the same for all states ω. For such an invariance is clearly easier to

satisfy with fewer available signals, and not surprisingly herding and all published failures

of complete learning that we have seen assume a finite (vs. continuous) signal space. For

instance, Rothschild (1974), McLennan (1984), and ABHJ’s example are all binary signal

models. More precisely, the unbounded beliefs assumption in an experimentation context

corresponds to an ability to run experiments with an arbitrarily small marginal cost (eg.

shifting the threshold θk slightly up only incurs myopic costs o(dθk)).
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A. APPENDIX

Let the Bellman operator Tδ be given by Tδv equals the RHS of (1). Note that for

v ≥ v′ we have Tδv ≥ Tδv
′. As is standard, Tδ is a contraction, and v(·, δ) is its unique

fixed point in the space of bounded, continuous, weakly convex functions.

A.1 Proof of Proposition 1

The proposition is established in a series of steps. First, define the myopic expected

utility frontier function v0 by v0(π) = maxm ūm(π).11

Step 1 (Interval Cascade Sets) For each am ∈ A, a possibly empty interval Jm(δ)

exists, such that when π ∈ Jm(δ), SP optimally chooses x with supp(µ) ⊆ [θm−1, θm], i.e.

am occurs a.s. (learning stops). For any δ ∈ [0, 1), 0 ∈ J1(δ) and 1 ∈ JM(δ).

Proof: For the first half, we really need only prove that Jm(δ) must be an interval. If

π ∈ Jm(δ), then am is the optimal choice, and the value is v(π, δ) = v0(π) = ūm(π).

Conversely, if v(π, δ) = v0(π) = ūm(π) then π ∈ Jm(δ) and am is the optimal choice. As

ūm(π) is an affine function of π, and v(·, δ) is weakly convex, Jm(δ) must be an interval.

For the second half, a1 is myopically strictly optimal for the focused belief πn = 0, and

since it updates to πn+1 = π a.s. no matter which rule is applied, it is also dynamically

optimal for any discount factor δ ∈ [0, 1). A similar argument holds when πn = 1. 2

Step 2 (Iterates and Limit) The sequence {T n
δ v0} consists of weakly convex functions

that are pointwise increasing, and converge to v(·, δ). The value v(·, δ) weakly exceeds v0,

and strictly so outside the cascade sets: v(π, δ) > v0(π) ∀δ ∈ [0, 1) and ∀π 6∈ ∪M
m=1Jm(δ).

Proof: To maximize
∑

am∈A ψ(am|π, x) [(1− δ)ūm(q(π, x, am)) + δv0(q(π, x, am))] over x

for given π, one rule x̂ almost surely chooses the myopically optimal action. Then

q(π, x̂, x̂(σ)) = π a.s., resulting in value v0(π). Optimizing over all x ∈ X, Tδv0(π) ≥ v0(π)

for all π. By induction, T n
δ v0 ≥ T n−1

δ v0, yielding (as usual) a pointwise increasing sequence

converging to the fixed point v(·, δ) ≥ v0. Finally, when π is outside the cascade sets, by

definition it is not optimal to almost surely induce one action. So, v(π, δ) > v0(π). 2

The following either is or ought to be a folk result for optimal experimentation, but we

have not found a published or cited proof of it.12 At any rate, it is here for completeness.

Step 3 (Weak Value Monotonicity) The value function is weakly increasing in δ:

Namely, for δ1 > δ2, v(π, δ1) ≥ v(π, δ2) for all π.

11Observe how this differs from v(π, 0) ≡ supx

∑
m ψ(am|π, x)ūm(q(π, x, am)). In other words, v(π, 0)

allows the myopic individual to observe one signal σ before obtaining the ex post value v0(ρ(π, σ)).
12But ABHJ do assert without proof (p. 625) that the patient value function exceeds the myopic one.
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Proof: Clearly,
∑

am∈A ψ(am|π, x)ūm(q(π, x, am)) ≤ ∑
am∈A ψ(am|π, x)v(q(π, x, am)) for

any x and any function v ≥ v0. If δ1 > δ2, then Tδ1v0 ≥ Tδ2v0, since more weight is placed

on the larger component of the RHS of (1). Because one possible policy under δ1 is to

choose the ξ optimal under δ2, we have T n
δ1
v0 ≥ T n

δ2
v0. Let n→∞ and apply step 2. 2

Step 4 (Weak Inclusion) All cascade sets weakly shrink when δ increases: In other

words, ∀am ∈ A, if 1 > δ1 > δ2 ≥ 0, then Jm(δ1) ⊆ Jm(δ2).

Proof: As seen in steps 3 and 2, v(π, δ1) ≥ v(π, δ2) ≥ v0(π) ≥ ūm(π) for all π, when

δ1 > δ2. For π ∈ Jm(δ1), we know v(π, δ1) = ūm(π) and thus v(π, δ2) = ūm(π). The

optimal value can thus be obtained by inducing am a.s., so that π ∈ Jm(δ2). 2

Step 5 (Unbounded Beliefs) With unbounded private beliefs, only cascade sets for the

extreme actions are empty, with J1(δ) = {0} and JM(δ) = {1}; all other Jm(δ) are empty.

Proof: SS establish for the myopic model that all Jm(0) are empty, except for J1(0) = {0}
and JM(0) = {1}. Now apply steps 1 and 4. 2

Step 6 (Bounded Beliefs) If the private beliefs are bounded, then J1(δ) = [0, π(δ)] and

JM(δ) = [π̄(δ), 1], where 0 < π(δ) < π̄(δ) < 1.

Proof: We prove that for sufficiently low beliefs it is optimal to choose a rule x that

almost surely induces a1; the argument for large beliefs is very similar. Since action a1

is optimal at belief π = 0, and is not weakly dominated, it must be the optimal choice

for beliefs π ≤ π̃, for some π̃ > 0. Thus, ū1(π) = v0(π) on [0, π̃]. Since each ūm is affine,

ū1(π) > ūm(π)+u for all m 6= 1 for some u > 0, and for all beliefs π in the interval [0, π̃/2].

No observation a ∈ A can produce a stronger signal than any σ ∈ supp(µ) ⊆ [σ, σ̄] ⊂
(0, 1). So any initial belief π is updated to at most q̄(π) = πσ̄/[πσ̄+(1−π)(1− σ̄)]. For π

small enough, q̄(π) ∈ [0, π̃/2] and q̄(π)−π is arbitrarily small, and so is v(q̄(π), δ)−v(π, δ)
small by continuity of v — in particular, less than u(1− δ)/δ for small enough π. By the

Bellman equation (1), any action a 6= a1 is strictly suboptimal for such small beliefs. 2

Step 7 (Limiting Patience) For large enough δ, all cascade sets disappear except for

J1(δ) and JM(δ), while limδ→1 J1(δ) = {0} and limδ→1 JM(δ) = {1}.
Proof: Fix δ ∈ [0, 1), and an action index m (1 < m < M) for which Jm(δ) = [π1, π2],

for some 0 < π1 ≤ π2 < 1. Since there are informative private beliefs, ∃θ∗ ∈ (1/2, 1) with

1 > µH([θ∗, 1]) > µL([θ∗, 1]) > 0. We shall consider the alternative rule x, with interval

boundaries θm−1 = 0, θm = θ∗, θm+1 = 1 (see Lemma 2).

Updating the prior π with the event {σ ∈ [θ∗, 1]} results in the posterior belief q(π) =

πµH([θ∗, 1])/[πµH([θ∗, 1]) + (1 − π)µL([θ∗, 1])] in state H . For any compact subinterval
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I ⊂ (0, 1), in particular one with I ⊇ Jm(δ), there exists ε ≡ ε(I) > 0 with q(π)− π ≥ ε

for all π ∈ I. By definition of ε, q maps the interval [π2− ε/2, π2] into (but not necessarily

onto) [π2 + ε/2, 1]. Choose ū > 0 so large that ūm(π) < ūm+1(π) + ū for all π ∈ [0, 1].

Since v(π, δ) > ūm(π) outside Jm(δ) = [π1, π2], and both are continuous in π, we may also

choose u > 0 so small that v(π, δ) > ūm(π)+u for all π ∈ [π2 + ε/2, 1]. By step 3, we thus

have v(π, δ′) > ūm(π) + u for all δ′ > δ. If δ′ > δ is so large that (1 − δ′)ū < δ′u, then

the Bellman equation (1) reveals that our suggested rule x beats inducing am a.s. when

π ∈ [π2− ε/2, π2]. By iterating this procedure a finite number of times, each time excising

length ε/2 from interval Jm(δ), we see that Jm(δ) evaporates for large enough δ.

If m = 1 or M , apply this procedure repeatedly: Jm(δ) ∩ I vanishes for δ near 1. 2

A.2 Proof of Lemma 4

We first consider a stronger version of step 3. Call the private signal distribution TS

(Two Signals) if its support contains only two isolated points (as is the case in BHW).

Claim 1 (Unreachable Cascade Sets) Fix δ ≥ 0. If TS fails, then for any π not in

any δ-cascade set (F): an action am is taken with positive chance inducing a posterior

belief q(π, x, am) not in any δ-cascade set. If TS holds, then (F) obtains for all non-cascade

beliefs π except possibly at most M − 1 points, each the unique belief between any pair of

nonempty cascade sets Jm−1(0) and Jm(0) from which both cascade sets can be reached.

Proof: At a non-cascade belief π, at least two actions are taken with positive chance, and

by the interval structure, some action shifts the public belief upwards while another shifts

it downwards. With unbounded beliefs, q(π, x, am) never lies in a cascade set; therefore, as-

sume bounded beliefs. Let co(supp(F )) = [b, b̄]. Assume that π lies between the nonempty

cascade sets Jm′(0) and Jm(0), with m′ < m, and let π = sup Jm′(0) and π̄ = inf Jm(0).

By definition of these cascade sets, ρ(π, b̄) ≤ ρ(π̄, b). If all possible actions at π led into a

cascade set, then ρ(π, b) ≤ π and ρ(π, b̄) ≥ π̄. But these inequalities can only hold with

equality:

ρ(ρ(π, b̄), b) ≥ ρ(π̄, b) ≥ ρ(π, b̄) ≥ ρ(ρ(π, b), b̄) = ρ(ρ(π, b), b̄)

and because the outer terms coincide, as Bayes-updating commutes. So, between Jm′(0)

and Jm(0) there exists at most one point π̂ which can satisfy both equations; moreover,

such a point exists iff m′ = m− 1 and TS holds. Indeed, given TS, we may simply choose

π̂ to solve ρ(π̂, b̄) = π̄, while if TS fails, then with positive chance, a nonextreme signal is

realized, and the posterior q is not in a cascade set. With δ > 0 we have weakly smaller

cascade sets by Step 4 of the Proposition 1 proof, so a π̂ failing (F) is even less likely to exist

— in fact it would further require sup Jm−1(δ) = sup Jm−1(0) and inf Jm(δ) = inf Jm(0).
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Finally, assume TS. Consider any π̂ with reachable cascade sets Jm−1(δ) and Jm(δ).

Then the rule x̂ mapping b into am−1 (low signal to π) and b̄ into am (high signal to π̄) is

indeed optimal. By convexity, v(π, δ) is at most the average of v(π̄, δ) and v(π, δ) (weights

given by transition chances), and x̂ achieves this average. So v(·, δ) is affine on (π̄, π). 2

We now finish proving Lemma 4. From step 2 of Proposition 1’s proof, v(π, δ1) > v0(π)

for π outside the δ1-cascade sets. Fix π outside the δ2-cascade sets. If π lies in a δ1-cascade

set we’re done, as v(π, δ1) = v0(π) < v(π, δ2). Suppose π lies outside the δ1-cascade sets.

Assume first that π satisfies (F) of Claim 1 for δ1 (and thus also for δ2). Then at

least one action am is taken with positive chance inducing a belief q(π, ξδ1(π), am) not in

a δ1-cascade set. Thus, v(q(π, ξδ1(π), am), δ1) > v0(q(π, ξ
δ1(π), am)). Since δ2 > δ1,

v(π, δ1) = (Tδ1v(·, δ1))(π) < (Tδ2v(·, δ1))(π) ≤ (Tδ2v(·, δ2))(π) = v(π, δ2) (4)

Next assume that some π̂ between Jm−1(δ1) and Jm(δ1) fails (F) for δ1. If (4) holds

at π̂, we are done. Assume not. Claim 1 noted that between consecutive cascade sets

such π̂ must be unique, and that it implied TS. In that case, (4) holds in a punctured

neighbourhood (π, π)∪ (π, π̄) of π̂, where π = sup Jm−1(δ1) and π̄ = inf Jm(δ1). Also, from

the last paragraph of Claim 1’s proof, v(·, δ1) was everywhere an affine function on [π, π̄],

which in turn, is a supporting tangent line to the convex function v(·, δ2) at π̂ (see Step 3).

As it touches v(·, δ2) at π̂ only, v(π, δ2) > v(π, δ1) and v(π̄, δ2) > v(π̄, δ1).

To find a lower bound to v(π̂, δ2), apply rule x̂ from Claim 1’s proof at the belief π̂.

Since x̂ maps b into π ∈ Jm−1(δ1) and b̄ into π̄ ∈ Jm(δ1), it yields myopic first-period values

ūm−1(π) = v(π, δ1) and ūm(π̄) = v(π̄, δ1), and continuation values v(π, δ2) and v(π̄, δ2).

From the right hand side of (1), this mixture is worth strictly more than v(π̂, δ1):

v(π̂, δ1) = ψ(am−1|π̂, x̂)v(π, δ1) + ψ(am|π̂, x̂)v(π̄, δ1)
< ψ(am−1|π̂, x̂) [(1−δ2)v(π, δ1)+δ2v(π, δ2)] + ψ(am|π̂, x̂) [(1−δ2)v(π̄, δ1)+δ2v(π̄, δ2)]

which is clearly at most v(π̂, δ2). Given this contradiction, (4) must hold at π̂. 2

A.3 Differentiability

Continuity. In light of the interval structure of Lemma 2, SP simply must determine

the chances ψ(am|π) with which to choose each action (i.e., what fraction of the signal

space maps into each action). Thus, the choice set is WLOG the compact M-simplex ∆(A)

— that is, the same strategy space as in our earlier general observational learning model.

Since the objective function in the Bellman equation (1) is continuous in this choice vector
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and in π, it follows from the Theorem of the Maximum (e.g. Theorem I.B.3 of Hildenbrand

(1974)) that the non-empty optimal rule correspondence is upper hemi-continuous in π.

Proof of Lemma 5. Assume that v is not differentiable at π̂, and that all optimal

rules at π̂ are equivalent. We show this leads to a contradiction. In other words, if all

optimal rules at π̂ are equivalent, then v is differentiable at π̂, as asserted.

Claim 2 ∀ε > 0 ∃δ > 0 such that when |π− π̂| < δ, any optimal rule at π induces action

am with probability at least 1− ε in both states H,L.

Proof: Since π̂ ∈ Jm(δ), one optimal rule at π̂ induces am with probability one. This

property is shared by all rules optimal at π̂. Next, if ψ(am|π) = πψ(am|H)+(1−π)ψ(am|L)

is near 1, so are both ψ(am|H) and ψ(am|L). The claim then follows from the upper

hemicontinuity of the optimal rule correspondence. 2

Claim 3 ∀N ∈ N ∀ε > 0 ∃δ > 0 such that if |π− π̂| < δ then under any optimal strategy

started from π, action am is taken for the first N periods with probability at least 1− ε in

both states H,L.

Proof: Fix η < 1/2. By Claim 2, for πn close enough to π̂, action am occurs with chance

at least 1− η in each state starting from πn. If am occurs, then the posterior πn+1 satisfies

|πn+1 − πn| ≤ 4π̂(1 − π̂)η, by Bayes rule. So |πn+1 − πn| can be chosen arbitrarily small

when am occurs, provided πn is close enough to π̂.

Choose the initial π so close to π̂ that if am occurs for the next N consecutive periods,

the posterior belief stays close enough to π̂ that am occurs with conditional chance at least

(1 − ε)1/N each period. In particular, we proceed as follows. Let ρ1 6= π̂ be so close to π̂

that ρ1(1 − ρ1) ≤ 3π̂(1 − π̂)/2 and at any π within |ρ1 − π̂| of π̂, all optimal rules take

am with chance at least (1 − ε)1/N in each state. Let η1 = |ρ1 − π̂| and choose ρ2 6= π̂

within η1/[8π̂(1− π̂)] of π̂ and so close to π̂ that am occurs with chance at least 1− η1 in

each state from any π within |ρ2 − π̂| of π̂. Apply this construction iteratively to choose

η2 = |ρ2 − π̂| and then ρ3 likewise, and then ρ4, . . . , ρN . If the initial belief π lies within

|ρN − π̂| of π̂, then it stays within |ρ1 − π̂| of π̂ in the next N periods provided am occurs

in each period. 2

We employ the machinery from the proof of Proposition 4. Any optimal strategy

started at belief π will yield some state-contingent values v̄L and v̄H . The affine function

h(ρ) which has h(0) = v̄L and h(1) = v̄H is then a tangent to the value function at π.

Since it is optimal to take am forever at π̂, one tangent to v at π̂ is the affine function

h which intersects u(am, L) at π = 0 and u(am, H) at π = 1. Consider the left and right

derivatives of v at π̂, with corresponding tangent lines h1(ρ) and h2(ρ) at belief ρ. One

of those tangents — say, h1 — must differ from h (when h1 differs, necessarily m > 1).
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Define vL
1 = h1(0) > h(0) = u(am, L) and vH

1 = h1(1) < h(1) = u(am, H). Since u(a1, L) ≥
vL

1 > u(am, L), a unique λ > 0 exists satisfying vL
1 = λu(a1, L) + (1− λ)u(am, L).

As v is convex, it is differentiable almost everywhere. So let πk ↑ π̂ be a sequence of

beliefs converging up to π̂, with the value function differentiable at each πk. The tangent

function is then uniquely determined for each πk, and its intercepts at ρ = 0, 1 are the

state-dependent payoffs of any optimal strategy started at πk, namely vL(πk) ≥ vL
1 and

vH(πk) ≤ vH
1 . The inequalities of course follow by convexity of v and πk < π̂.

Now choose N so large and ε so small that λ/2 ≥ 1 − (1 − δN)(1 − ε). Note that

action a1 is strictly the best action in state L. Then by Claim 3, for all large enough k,

the expected value vL(πk) in state L of the optimal strategy starting at πk is at most

vL(πk) ≤ (1− δN)(1− ε)u(am, L) + [1− (1− δN)(1− ε)]u(a1, L)

≤ (1− λ/2)u(am, L) + (λ/2)u(a1, L)

< (1− λ)u(am, L) + λu(a1, L) = vL
1 ≤ vL(πk)

since u(a1, L) > u(am, L), as noted above. Contradiction. 2

A.4 Proof of Proposition 7

Near Jm(δ) we should expect to observe action am. The next lemma states that when

other actions are observed they lead to a drastic revision of beliefs, or there was a non-

negligible probability of observing some other action which would overturn the beliefs.

Claim 4 (Overturning Principle) For any δ ∈ [0, 1), optimal ξδ, and Jm(δ) 6= ∅,
there exists ε > 0 and an ε-neighbourhood K ⊃ Jm(δ), such that ∀π ∈ K ∩ (0, 1), either:

(a) ψ(am|π, ξδ(π)) ≥ 1− ε, and |q(π, ξδ(π), ak)− π|>ε for all ak 6= am that occur; or

(b) ψ(am|π, ξδ(π)) < 1−ε, and for some a ∈ A : ψ(a|π, ξδ(π))≥ε/M , |q(π, ξδ(π), a)−π|>ε.
Proof: First, assume bounded private beliefs. By Step 6 of the proof of Proposition 1,

for π close enough to 0 or 1, the only optimal rule is to stop learning. Thus, we need

only consider π in some closed subinterval I of (0, 1). For any small enough η > 0 and

π sufficiently close to Jm(δ), we have for any k 6= m : ψ(ak|π, ξδ(π)) < 1− η. Otherwise,

since the optimal rule correspondence is u.h.c., almost surely taking action ak is optimal at

some π̂ ∈ Jm(δ) ⊂ Jm. This is impossible, as ak incurs a strict myopic loss, and captures

no information gain. Let co(supp(F )) = [b, b̄]. By the existence of informative beliefs,

b < 1/2 < b̄. Let ε > 0 be the minimum of η, µH([b, (2b+ 1)/4]) and µL([(2b̄+ 1)/4, b̄]).

Assume ψ(am|π, ξδ(π)) ≥ 1 − ε for some π ∈ I. Then any action ak 6= am is a.s. only

taken for beliefs within either [b, (2b+1)/4] or [(2b̄+1)/4, b̄]. Any such ak implies the stated

overturning (selecting, if necessary, ε even smaller). If instead ψ(am|π, ξδ(π)) < 1−ε, then
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each action is taken with chance less than 1− ε, and so different actions are taken at the

extreme private beliefs (by the threshold structure of the optimal rule). At least one of

the M actions then occurs with chance at least ε/M and overturns the beliefs, as claimed.

Next consider unbounded private beliefs. Assume that π is near the cascade sets {0} or

{1} — say π near 0. Let the optimal policy induce with positive chance an action ak 6= a1

with q(π, ξδ(π), ak) near π. Consider the altered policy that redirects private beliefs from

ak into a1 instead. When π and q(π, ξδ(π), ak) are near 0, this yields a boundedly positive

first-period payoff gain and an arbitrarily small loss in future value (for v is continuous in

q, which shift very little, as ak was nearly uninformative). So the altered policy is a strict

improvement: contradiction. Consequently, any action ak 6= a1 taken with positive chance

has |q(π, ξδ(π), ak)− π| > ε for some ε > 0. 2

For the proof of Proposition 7, we first cite the extended (conditional) Second Borel-

Cantelli Lemma in Corollary 5.29 of Breiman (1968): Let Y1, Y2, . . . be any stochastic

process, and An ∈ F(Y1, . . . , Yn), the induced sigma-field. Then almost surely

{ω|ω ∈ An infinitely often (i.o.)} = {ω|
∞∑
1

P (An+1|Yn, . . . , Y1) = ∞}

Fix an optimal policy ξδ. Choose ε > 0 to satisfy Claim 4 for all actions a1, a2, . . . , aM .

For fixed m, define events En = {πn is ε-close to Jm(δ)}, Fn = {ψ(am|πn, ξ
δ(πn)) < 1−ε},

and Gn+1 = {|πn+1 − πn| > ε}. If En ∩ Fn is true, then Claim 4 scenario (b) must obtain,

and therefore P (Gn+1|πn) ≥ ε/M . So
∑∞

n=1 P (Gn+1|π1, . . . , πn) = ∞ on the event where

En ∩ Fn occurs i.o. By the above Borel-Cantelli Lemma, Gn obtains i.o. on that event

almost surely. But since 〈πn〉 almost surely converges by Lemma 3, Gn occurs i.o. with

probability zero. By implication, En ∩ Fn occurs i.o. with probability zero.

Restrict attention to the event H that 〈πn〉 converges to a limit in Jm(δ) and En ∩ Fn

occurs only finitely many times. Then En ∩Gc
n+1 is eventually true on H , and thus so is

En∩F c
n. But given En∩F c

n, all actions ak 6= am imply Gn+1, by the first point in Claim 4.

Perforce, action am is eventually taken on event En ∩ F c
n ∩Gc

n+1. Finally, sum over all m

to get an event of probability mass one, by Lemma 3 and Proposition 1. 2
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