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Summary

In this note I will study the relationship between the conditional sum of squares (CSS)
estimator of moving averages and the maximum likelihood (ML) estimator. I will show that
the CSS estimator can be converted into the ML estimator via the use of the EM algorithm.
A by-product of the EM algorithm is an expression for the likelihood function and the score.
This argument generalizes to autoregressive moving average (ARMA) models.
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1. INTRODUCTION

1.·1 Motivation

In this note I will study the relationship between the conditional sum of squares (CSS) estimator

(see Box & Jenkins (1976, p. 237) or, for example, Harvey (1993, pp.60-62)) of moving averages

and the maximum likelihood (ML) estimator. I will show that the CSS estimator can be conver-

ted into the ML estimator via the use of the EM algorithm. A by-product of the EM algorithm

is a simple expression for the likelihood function and the score. This argument generalizes to

autoregressive moving average (ARMA) models.

1.·2 First order moving average

To focus ideas consider the first order moving average for a time series yt, t = 1, ..., n, where

yt = εt + θεt−1. Here εt is Gaussian, zero mean, white noise with a variance of σ2 which, for

simplicity of exposition, I will assume is known. The likelihood function can be computed in a

number of ways, the most common being the Kalman filter (see, for example, Harvey (1993, Ch.

4)) while the score is available through the use of the Kalman filter and smoother. See de Jong

(1989) for a discussion of the Kalman filter smoother and Koopman & Shephard (1992) for its

use in deriving the score for models which can be put in state space form. A special case of this

is the score for ARMA models. Here we give much simpler expressions for the likelihood and

score based on the CSS estimator.
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The CSS estimator works off the conditional likelihood function, writing y = (y1, ..., yn)′,

log f(y|ε0 = 0; θ) = −n

2
log 2πσ2 − 1

2σ2

n∑
t=1

ε∗2t ,

where the ε∗1, ..., ε∗n are computed recursively using

ε∗t = yt − θε∗t−1, t = 1, ..., n, with ε∗0 = 0. (1)

Notice that the ε∗t are not the true εt unless the true ε0 happened to be exactly zero. The

conditional likelihood is very attractive as the corresponding conditional score can be computed

as
∂ log f(y|ε0 = 0; θ)

∂θ
= − 1

σ2

n∑
t=1

∂ε∗t
∂θ

ε∗t ,

where the derivatives, ∂ε∗t /∂θ, can be computed in parallel with (1) as

∂ε∗t
∂θ

= −ε∗t−1 − θ
∂ε∗t−1

∂θ
, t = 1, ..., n, with

∂ε∗0
∂θ

= 0. (2)

Likewise the observed conditional information is

∂2 log f(y|ε0 = 0; θ)
∂θ∂θ′

= − 1
σ2

n∑
t=1

∂ε∗t
∂θ

∂ε∗t
∂θ′

− 1
σ2

n∑
t=1

ε∗t
∂2ε∗t
∂θ∂θ′

.

The second term in this sum is usually ignored as its expectation, conditional on ε0 = 0, is zero.

This suggests numerically computing the CSS estimator θ̃ by the recursion

θ(i) = θ(i−1) −
(

n∑
t=1

∂ε∗t
∂θ

∂ε∗t
∂θ′

)−1 n∑
t=1

∂ε∗t
∂θ

ε∗t . (3)

1.·3 Profile likelihood

Instead of conditioning on ε0 = 0 I could have run the CSS recursion (1) starting with any initial

ε0. The result would have been a sequence of errors ε+
1 , ..., ε+

n which depended on the particular

choice of ε0. As the moving average process is a linear model

ε+
t = ε∗t + ε0rt, t = 1, ..., n,

where

rt =
∂ε+

t

∂ε0

∣∣∣∣∣
ε0=0

.

The r1, ..., rn, can be recursively computed in parallel with ε∗t as

(ε∗t , rt) = (yt, 0) − θ
(
ε∗t−1, rt−1

)
, t = 1, ..., n, ε∗0 = 0, r0 = 1. (4)

Thus the more general conditional likelihood is

log f(y|ε0; θ) = −n

2
log 2πσ2− 1

2σ2

n∑
t=1

ε+2
t = −n

2
log 2πσ2− 1

2σ2

(
n∑

t=1

ε∗2t + 2ε0

n∑
t=1

ε∗t rt + ε2
0

n∑
t=1

r2
t

)
,

(5)
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which explicitly relates the initial condition to the conditional likelihood. If we were to treat ε0

as an unknown parameter and then used ML methods to estimate it in addition to θ, then the

ML estimator of ε0 is the regression of ε∗t on −rt, yielding

ε̂0 = −
∑n

t=1 ε∗t rt∑n
t=1 r2

t

.

The implication is that the profile, or concentrated, likelihood is then

log f(y|ε̂0; θ) = −n

2
log 2πσ2 − 1

2σ2

n∑
t=1

ε∗2t +
1

2σ2
ε̂0

2
n∑

t=1

r2
t . (6)

1.·4 Exact likelihood

Instead of constructing a profile likelihood function we could just integrate out ε0 in order to

construct the exact likelihood function. Thus

f(y; θ) =
∫

f(y|s; θ)fε0;σ2(s)ds, where fε0;σ2(s) = N(0, σ2).

An easy way of carrying this out is via the equality

log f(y; θ) = log f(y|ε0 = ϕ; θ) + log fε0;σ2(ϕ) − log fε0|y;θ(ϕ).

It is convenient to use the special case of where ϕ = 0. The only term which is non-trivial

is the posterior density of ε0|y; θ. But keeping θ fixed, (5) is the corresponding likelihood for

this posterior, while the prior is ε0 ∼ N(0, σ2). Therefore straightforward use of Bayes theorem

yields

ε0|y; θ ∼ N(µp, σ
2
p), σ2

p =
σ2

1 +
∑n

t=1 r2
t

, µp = −
∑n

t=1 ε∗t rt

1 +
∑n

t=1 r2
t

.

That is µp is a Bayesian regression mean of ε∗t on −rt with a measurement variance of σ2 and a

prior ε0 ∼ N(0, σ2).

This gives

log f(y; θ) = −n + 1
2

log 2πσ2 − 1
2σ2

n∑
t=1

ε∗2t +
1
2

log 2πσ2
p +

µ2
p

2σ2
p

= −n

2
log 2πσ2 − 1

2σ2

n∑
t=1

ε∗2t +
1
2

log

(
1 +

n∑
t=1

r2
t

)
+

1
2σ2

µ2
p

(
1 +

n∑
t=1

r2
t

)
.

Hence the likelihood is a simple correction of the CSS. It is also algebraically very similar to the

profile likelihood function (6).

1.·5 Score

Likewise the score can be computed using a result due to Louis (1982), which puts the problem

in an EM algorithm framework suggested by Dempster et al. (1977). Define

Q(θ, θ1) = E log f(y|ε0; θ),
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where the expectation is with respect to ε0|y1, ..., yn; θ1. Then

Q(θ, θ1) = −n

2
log 2πσ2 − 1

2σ2

{
n∑

t=1

ε∗2t + 2µp

n∑
t=1

ε∗t rt + E(ε2
0)

n∑
t=1

r2
t

}
. (7)

This is helpful as

∂ log f(y; θ)
∂θ

∣∣∣∣
θ=θ1

=
∂Q(θ, θ1)

∂θ

∣∣∣∣
θ=θ1

= − 1
σ2

n∑
t=1

[{
∂ε∗t
∂θ

+
∂rt

∂θ
µp

}
ε∗t +

{
∂rt

∂θ
E(ε2

0) +
∂ε∗t
∂θ

µp

}
rt

]
.

The required derivatives can be computed using the recursion(
∂ε∗t
∂θ

,
∂rt

∂θ

)
= − (ε∗t , rt)− θ

(
∂ε∗t−1

∂θ
,
∂rt−1

∂θ

)
,

∂ε∗0
∂θ

= 0,
∂r0

∂θ
= 0.

The score can be used in a quasi-Newton algorithm or the likelihood could be maximized via

an EM algorithm using (7). The second of these is particularly attractive in this context as the

second derivative could be approximated by

− 1
σ2

n∑
t=1

{(
∂ε∗t
∂θ

+
∂rt

∂θ
µp

)(
∂ε∗t
∂θ

+
∂rt

∂θ
µp

)′
+ σ2

p

∂rt

∂θ

∂rt

∂θ′

}
.

Then, writing θ(0) as some initial value of a numerical optimization routine, the M-step could

be performed via

θ(i) = θ(i−1) −
{

n∑
t=1

(
∂ε∗t
∂θ

+
∂rt

∂θ
µp

)(
∂ε∗t
∂θ

+
∂rt

∂θ
µp

)′
+ σ2

p

∂rt

∂θ

∂rt

∂θ′

}−1

(8)

n∑
t=1

{(
∂ε∗t
∂θ

+
∂rt

∂θ
µp

)
(ε∗t + µprt) +

(
∂rt

∂θ
σp

)
rtσp

}
.

This generalizes (3).

In general there is no need to iterate this numerical optimization until convergence for each

EM step. As Dempster et al. (1977) noted to maximize the likelihood function the M-step only

needs to find a value of θ such that Q(θ, θ1) > Q(θ1, θ1), where θ1 is value of the parameter

use in the E-step. Dempster et al. (1977) called such a procedure the generalized EM (GEM)

algorithm and it is particularly convenient here for there seems little to be gained by iterating

(8) until precise convergence in the first couple of GEM iterations.

In this setup of the EM algorithm, ε0 is used as the artificial missing data. Given the CSS

is known to be close to the ML estimator, the information in this missing data must be small

and so the EM algorithm should converge quickly.
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1.·6 Numerical example

To illustrate the steps of the EM algorithm I simulated a moving average with n = 20, θ = −0.7,

σ2 = 1. Throughout I assumed σ2 is known. The ML estimator of θ is -0.74271, while I used

an initial value, for the optimisation, of 0.5. The results are displayed in Table 1. It shows

small changes in the parameters as the procedure is iterated with the likelihood increasing with

each iteration.

Iteration θ(0) log L(θ(0)) score
0 -0.73686 -112.40 -0.34519
Iteration, i θ(i) log L(θ(i))/L(θ(i−1)) score
1 -0.74186 0.00099079 -0.050280
2 -0.74258 2.0821e-005 -0.0073666
3 -0.74269 4.4631e-007 -0.0010802
4 -0.74270 9.5941e-009 -0.00015841
5 -0.74271 2.0634e-010 -2.3231e-005
6 -0.74271 4.4054e-012 -3.4070e-006
7 -0.74271 1.1369e-013 -4.9981e-007
8 -0.74271 0.00000 -7.3367e-008

Table 1: Iteration of the EM algorithm. For the first iteration I set µp = 0 and σp = 0, so it
gives the CSS estimator. The first figure of the third column is the likelihood at θ(i). For other
iterations I display the likelihood improvement over the previous iteration.

2. GENERALIZATION

2.·1 The model

This analysis generalizes to more complicated pure moving averages in a straightforward way.

Here I look at the problem of dealing with autoregressive moving average (ARMA) models of

order p, q where

yt = φ1yt−1 + ... + φpyt−p + εt + λ1εt−1 + ... + λqεt−q,

where stationarity and invertibility is imposed on the model. Throughout I will write θ to denote

the vector of parameters. It will be convenient to write this model in companion form

yt = (1, 0, ..., 0) αt = zαt, m = max(p + 1, q),

with

αt+1 =


yt

φ2yt−1 + ... + φpyt−p+1 + λ1εt + ... + λm−1εt−m+2

φ3yt−1 + ... + φpyt−p+2 + λ2εt + ... + λm−1εt−m+3
...
φmyt−1 + λm−1εt


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=


φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

...
...

. . .
...

φm−1 0 0 · · · 1
φm 0 0 0

αt +


1
λ1
...
λm−2

λm−1

 εt = Tαt + hεt.

This representation is often used when placing a model into state space form in order to compute

the likelihood function of ARMA models (see, for example, Harvey (1993, p. 96)). Now under

the assumption that yt is stationary, α0 has a mean of zero with a covariance of σ2Σα, while

writing G = (I − T ⊗ T )−1, then vec {Σα} = Gvec(hh′) = G (h ⊗ h).

The likelihood can be computed in a number of ways, including the Kalman filter. A recent

paper which references the literature on evaluating the likelihood of ARMA models is Mauricio

(1995) who focuses on the multivariate case.

2.·2 Conditional sum of squares

Now

log f(y|α0 = 0) = −n

2
log 2πσ2 − 1

2σ2

n∑
t=1

ε∗2t ,

where

ε∗t = yt − zat|t−1, and at|t−1 = Tat−1|t−2 + kε∗t−1. (9)

Here

k = Th, and a1|0 = 0.

This is a special case of the Kalman filter exploiting the fact that there is need to carry out the

Riccati equation as αt is a linear combination of α0, y1, ..., yt.

Clearly, ∂ε∗t /∂θi = −z∂at|t−1/∂θi, where

∂at|t−1

∂θi
=

∂T

∂θi
at−1|t−2 + T

∂at−1|t−2

∂θi
+

∂k

∂θi
ε∗t−1 + k

∂ε∗t−1

∂θi
. (10)

Here ∂a1|0/∂θi = 0. Then the score is

∂ log f(y|α0 = 0; θ)
∂θ

= − 1
σ2

n∑
t=1

∂ε∗t
∂θ

ε∗t ,

while it is straightforward to compute an approximation to the observed information as

− 1
σ2

n∑
t=1

∂ε∗t
∂θ

∂ε∗t
∂θ′

.
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2.·3 Likelihood

Define ε+
t = ε∗t + α′

0Vt and v′t = (ε∗t , V ′
t ). Then vt is calculated via

v′t =
(
yt, 0̃

)
− zBt|t−1, t = 1, ..., n (11)

Bt|t−1 = TBt−1|t−2 + kv′t−1, t = 2, ..., n,

where B1|0 = (T, 0). We record only(
sεn s′n
sn Sn

)
=

n∑
t=1

vtv
′
t.

This implies the conditional likelihood function is

log f(y|α0; θ) = −n

2
log 2πσ2 − 1

2σ2

n∑
t=1

ε+2
t

= −n

2
log 2πσ2 − 1

2σ2

(
n∑

t=1

ε∗2t + 2α′
0

n∑
t=1

ε∗t Vt + α′
0

n∑
t=1

VtV
′
t α0

)

= −n

2
log 2πσ2 − 1

2σ2

(
sεn + 2α′

0sn + α′
0Snα0

)
.

Straightforwardly, if we regard α0 as an unknown parameter then the ML estimator of α0 is the

regression of ε∗t on −Vt, which is α̂0 = −S−1
n sn. The resulting profile likelihood function is

log f(y|α̂0; θ) = −n

2
log 2πσ2 − 1

2σ2
sεn +

1
2σ2

s′nS−1
n sn.

The exact likelihood function can be computed by using a Bayesian regression

α0|y ∼ N(µα|y, σ2Σα|y), Σα|y =
(
Σ−1

α + Sn

)−1
, µα|y = −Σα|ysn, Θα|y = Σα|y + µα|yµ′

α|y.

Then as the likelihood is f(y) = f(y|α0 = ϕ)fα0(ϕ)/fα0|y(ϕ) for any value of ϕ, we can set

ϕ = 0. This gives the expression

log f(y; θ) = −n

2
log 2πσ2 − 1

2σ2
sεn − 1

2
log |σ2Σα|+ 1

2σ2
s′nΣα|ysn +

1
2

log |σ2Σα|y|

= −n

2
log 2πσ2 − 1

2σ2
sεn − 1

2
log |Σα|+ 1

2σ2
s′nΣα|ysn +

1
2

log |Σα|y|.

2.·4 Score

The evaluation of the score requires the computation of

∂

(
sεn s′n
sn Sn

)
/∂θi =

n∑
t=1

(
∂vt

∂θi
v′t + vt

∂v′t
∂θi

)
,

where ∂v′t/∂θi = −z∂Bt|t−1/∂θi. Then starting with ∂B1|0/∂θi = 0, ∂T/∂θi

B∗
t|t−1 =

(
∂Bt|t−1

∂θ1
, ...,

∂Bt|t−1

∂θp

)
= T ∗Bt−1|t−2 + TB∗

t−1|t−2 + k∗v′t−1 + kv∗′t−1, ,
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where

T ∗ =
(

∂T

∂θ1
, ...,

∂T

∂θw

)
, k∗ =

(
∂k

∂θ1
, ...,

∂k

∂θw

)
, v∗′t−1 =

(
∂v′t−1

∂θ1
, ...,

∂v′t−1

∂θw

)
.

Here w is the dimension of θ. Notice in pure moving average models T ∗ = 0, while for autore-

gressions k∗ = T ∗g. In all cases, T ∗ and T will be very sparse matrices.

The score, ∂ log f/∂θi, can be expressed analytically as

− 1
2σ2

 ∂sεn
∂θi

− 2s′nΣα|y ∂sn
∂θi

+ s′nΣα|y
(

∂Σ−1
α

∂θi
+ ∂Sn

∂θi

)
Σα|ysn + ∂ log |Σα|

∂θi

+tr
{
Σα|y

(
∂Σ−1

α
∂θi

+ ∂Sn
∂θi

)}  (12)

= − 1
2σ2

 ∂sεn
∂θi

+ 2µ′
α|y

∂sn
∂θi

+ µ′
α|y
(

∂Σ−1
α

∂θi
+ ∂Sn

∂θi

)
µα|y + ∂ log |Σα|

∂θi

+tr
{
Σα|y

(
∂Σ−1

α
∂θi

+ ∂Sn
∂θi

)}  .

The derivatives of Σ−1
α and log |Σα| can be derived through

∂vec {V ar(α0)}
∂θi

= −G
∂ (I − T ⊗ T )

∂θi
Gvec(hh′) + G

∂h ⊗ h

∂θi

= G

(
∂T

∂θi
⊗ T + T ⊗ ∂T

∂θi

)
Σα + G

(
∂h

∂θi
⊗ h + h⊗ ∂h

∂θi

)
as (see, for example, Magnus & Neudecker (1988))

∂Σ−1
α

∂θi
= −Σα

∂Σα

∂θi
Σα, and

∂|Σα|
∂θi

= tr

{
Σ−1

α

∂Σα

∂θi

}
.
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