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Abstract

This paper is concerned with the estimation of stochastic differential equations when only
discrete observations are available. It primarily focuses on deriving a closed form solution for
the one-step ahead conditional transition density using the Milstein scheme. This higher or-
der Taylor approximation enables us to obtain an order of improvement in accuracy in estim-
ating the parameters in a non-linear diffusion, as compared to use of the Euler-Maruyama
discretization scheme. Examples using simulated data are presented. The method can eas-
ily be extended to the situation where auxiliary points are introduced between the observed
values. The Milstein scheme can be used to obtain the approximate transition density as
in a Pedersen (1995) type of simulated likelihood method or within an MCMC method as
proposed in Elerian, Chib, and Shephard (1998).

Keywords: Bayes estimation, nonlinear diffusion, Euler-Maruyama approximation, Maximum

Likelihood, Markov chain Monte Carlo, Metropolis Hastings algorithm, Milstein scheme, Sim-

ulation, Stochastic Differential Equation.
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1 Introduction

Stochastic differential equations (SDE’s) are used extensively in economics to model many

types of data; see, for example, Dixit (1993) , Dixit and Pindyck (1994) and Merton (1990).

The SDE, (which is assumed to satisfy certain regularity conditions, formalized in Section 2.1)

takes the form

dy(t) = a{y(t), t; θ}dt + b{y(t), t; θ}dW (t)

where a(·) is the drift function, b2(·) is the volatility function, W (t) is the Wiener process

and y(t) are the observations indexed by time. The parameter θ is the quantity that we are

interested in estimating. Assuming that the assumptions under which the diffusion y(t) exists

are satisfied (see Øksendal, 1995, pg. 64), we will assume that one has measurements yt = y(τt)

at times τ1, . . . , τT , where ∆†
t = τt+1 − τt, for t = 1, . . . , T .

Using discrete observations when the underlying model is assumed to be continuous can

lead to considerable bias in the estimation of the parameters. In some cases, exact maximum

likelihood estimation is possible as the stochastic differential equation has a strong solution

and hence the true transition density, g(yt+1|yt) is of known closed form. However, in general

this method is unfeasible. One can therefore approximate the SDE by using a discretization

which implies the approximate transition density f(yt+1|yt).

The aim is to estimate the parameters θ of the process, given the discrete measurements Y =

(y1, . . . , yT )′. There has been a growing interest in methods for estimating SDE’s on the basis of

discrete measurements. Important developments include the indirect inference method (Smith

1993, Broze et al. 1998 and Gourieroux et al. 1993), the efficient method of moments estimator

(Gallant and Tauchen 1996 and Gallant and Long 1997 ), the non-parametric approaches of

Aı̈t-Sahalia ( 1996a, 1996b) and Jiang and Knight (1997) and the likelihood based method of

Pedersen (1995), Elerian, Chib, and Shephard (1998) and Eraker (1998). Aı̈t-Sahalia (1998)

tries to circumvent the discrete time approximation to obtain an expression for the likelihood.

Discretely observed diffusions have also been fitted using estimating functions (see Bibby and

Sørensen 1995, Kessler and Sørensen 1995, Basawa et al. 1997, Dacunha-Castelle and Florens-

Zmirou 1986, Florens-Zmirou 1989, Genon-Catalot and Jacod 1993, Kessler 1997 and Hansen

and Scheinkman 1995).
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Methods based on approximating the diffusion with a stochastic Taylor scheme use the

Euler-Maruyama approximation in obtaining an expression for the one-step ahead transition

density, due to its analytical tractibilty. The discretization implied by the Euler scheme is,

yt+1 = yt + a(yt, t; θ)∆† + b(yt, t; θ)(Wt+1 −Wt).

Taking the increments of Wt to be normal with mean zero and variance ∆† implies a normal

transition density for f(yt+1|yt; θ). This paper makes use of the approximation proposed by

Milstein (1978), which takes the form

yt+1 = yt + a(yt, t; θ)∆† + b(yt, t; θ)(Wt+1 −Wt) +
1
2
b(yt, t; θ)

db(yt, t; θ)
dyt

{(Wt+1 −Wt)2 −∆†},

the Euler plus an additional term. This implies a non-central chi-squared distribution for the

approximate transition density. The one step ahead conditional transition density will be shown

to have an analytical form. Use of the Milstein in this paper provides an order of improvement

on earlier results obtained when maximizing the likelihood using the Euler scheme.

These can naturally be extended to the case when auxiliary points are placed between the

observations. This involves introducing, say Mt = M auxiliary points between each pair of

observations so that we have

y∗t,j+1 = y∗t,j + a(y∗t,j, t; θ)∆† + b(y∗t,j, t; θ)(Wt,j+1 −Wt,j)

+
1
2
b(y∗t,j, t; θ)

db(y∗t,j , t; θ)
dy∗t,j

{(Wt,j+1 −Wt,j)2 −∆†},

where y∗t,j represent the auxiliary points introduced between the observations yt,0 = yt and

yt,M+1 = yt+1. Introduction of the auxiliary points can reduce bias considerably. One can then

define the one step ahead transition density as

fM(yt+1|yt; θ) =
∫

f(yt+1|y∗t , yt; θ)f(y∗t |yt; θ)dy∗t

where we use the notation y∗t = {y∗t,1, . . . , y∗t,M}. The Milstein densities are thus integrated

out with repect to the auxiliary points. We can therefore perform approximate likelihood

inference based upon fM (yt+1|yt; θ), either by using maximum likelihood principles or Bayesian

methods. In the former case, the likelihood will be estimated by simulation; the logarithm of

the result is then maximized with respect to θ. This type of method is usually called a maximum

simulated likelihood technique. The Bayesian method will be based on Markov chain Monte

Carlo (MCMC) methods, simulating from augmentation and the parameters as in Elerian,
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Chib, and Shephard (1998). Though both schemes currently reduce the bias in parameter

estimates, as compared to methods that do not introduce auxiliary points, they rely on the

Euler approximation. Use of the Milstein scheme in this context, therefore provides a better

approximation to the true transition density and hence the parameter estimates.

The outline of the paper is as follows; Section 2 describes the Milstein approximation giving

a closed form expression for the density. Order of convergence is discussed and compared to

the Euler approximation. Section 3.1 presents the likelihood based on the Milstein density

and discusses the bias and inconsistency in the log-likelihood inherent in its use without the

introduction of auxiliary points. Section 3.2 analyses use of the Milstein density using the

approach of Pedersen (1995). This is followed by an outline of the Bayesian approach to

diffusions in Section 3.3. An example using simulated data comparing the Euler and Milstein

schemes is presented in Section 3.4. The paper concludes with Section 4.

2 The Milstein density

Definitions and the conditions under which a SDE exists are first presented. Two schemes

which can be used to approximate a generally unknown true transition density are the Euler

and the Milstein approximations. Convergence rates of these two schemes are discussed and

transition densities implied by the approximations are shown. The Euler approximation is

known to have a closed form and this next Section will show that the Milstein scheme also has

an analytic expression for the transition densities.

2.1 Estimation of stochastic differential equations from discrete observa-

tions

Suppose (Ω,F , P ) is a probability space and {Ft, t ≥ 0} is a non-decreasing family of σ-algebras

contained in F . An Itô process can be defined as a stochastic process that satisfies a stochastic

differential equation (SDE) of the form

dy(t) = a{y(t), t; θ}dt + b{y(t), t; θ}dW (t), (2.1)
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where the drift function a(·, ·; θ) : [0,∞] × R × R
p 7→ R and the volatility function b(·, ·; θ) :

[0,∞]×R×R
p 7→ R, depend on the observations y(t), time t, and an unknown parameter vector

θ ∈ Θ ⊆ R
p. They are assumed to be twice continuously differentiable with respect to the states

y(t). The process W (t) is a homogeneous Lévy process, that is, a process with independent

increments which is continuous in probability, (see Barndorff-Nielsen et al. 1996). A special

case of this is where W (t) is a Wiener process, which we consider throughout this paper. The

univariate case is presented although it can easily be generalized. So W = {W (t),F , P} is the

standard Wiener process, a continuous square integrable martingale. We also define y(t) with

respect to F(t) to be a continuous random process defined on (Ω,F , P ) with values in R, thus

admitting the SDE in equation (2.1). The Itô process is an Itô diffusion when they coincide

in law and hence are probabilistically equivalent. We assume that the conditions under which

the SDE exists and is unique are satisfied, (see Øksendal 1995, page 64).

It is assumed that the Itô process under consideration in general satisfies the stochastic

differential equation,

y(t) = y(0) +
∫ t

0
a{y(s), s; θ}ds +

∫ t

0
b{y(s), s; θ}dW (s)

in Itô form, for t ∈ [0, T ].

Suppose we are presented with a set of observations from some financial time series, yt =

{y(τt)} for t = 1, . . . , T . As these are only observed at discrete intervals ∆†
t = τt+1 − τt, it

is in general not possible to determine the analytical form of the density for the observations

g(yt+1|yt; θ), unless the SDE has a strong solution. W (t) is the standard Wiener process with

increment variance ∆†. Earlier work has focused on estimating the discretized version of the

SDE using a time-discrete approximation. We will focus on the implied approximate transition

densities, f(yt+1|yt; θ). In the analysis presented below, dependence on θ will be suppressed

and it will be assumed that ∆†
t = ∆† for all t.

Suppose we have the form for the SDE as specified by (2.1). The simplest strong approx-

imation is the Euler-Maruyama approximation, also know as the Euler scheme. Suppose for

notational convenience that we define a = a(yt, t; θ), b = b(yt, t; θ) and b′ = ∂b(yt, t; θ)/∂y.

Using the Euler approximation on equation (2.1), (see Kloeden and Platen 1992, Section 10.2),

we obtain

yt+1 = yt + a∆† + b(Wt+1 −Wt). (2.2)
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The Milstein approximation, see Milstein (1978) and Kloeden and Platen (1992, Section

10.3), gives us

yt+1 = yt + a∆† + b(Wt+1 −Wt) +
1
2
bb′{(Wt+1 −Wt)2 −∆†}. (2.3)

where (Wt+1 −Wt) has mean zero and variance ∆†.

2.2 Orders of Convergence

We shall use a stochastic Taylor expansion to derive a time discrete approximation with respect

to the strong convergence criterion, subsequently defined. A time discrete approximation xδ

with maximum step size converges strongly with order γ > 0 (in absolute error) at time T if

there exists a positive constant C, which does not depend on γ, and a δ0 > 0 such that

ε(δ) = E(|yT − xγ(T )|) ≤ Cδγ

for each δ ∈ (0, δ0), where the expectation is taken with respect to the random variable yT , (for

details, see Kloeden and Platen 1992, Section 9.6). The assumptions are presented in Appendix

A.1. The Euler scheme converges strongly with order γ = 0.5.

The addition of one more term to the Euler scheme yields the Milstein scheme which is an

order 1.0 strong Taylor scheme. Hence the strong convergence order is increased from γ = 0.5

to γ = 1. Suppose we impose the assumptions (A. 2), (A. 3), (A. 9), (A. 12) and (A. 14). Then

for the Milstein approximation xδ, the estimate

E{|yT − xδ|} ≤ K5δ

where the constant K5 does not depend on δ. A proof can again be found in Kloeden and

Platen (1992, Section 10.3 and 10.6).

2.3 Approximate transition densities

Both the Euler and the Milstein schemes can trivially be used to simulate diffusions. Fur-

thermore, both imply an approximate transition density f(yt+1|yt) which can be used for

estimation.
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For the Euler approximation, we can express conditional distribution of yt+1 given yt as

yt+1|yt ∼ N{yt + a(yt, t; θ)∆†, b2(yt, t; θ)∆†}. (2.4)

Unfortunately, for estimation of the unknown parameters, methods based on discrete obser-

vations when the underlying process is motivated for continuous observations, it is well-known

that estimators are strongly biased unless the interval between the observations, ∆† tends to

zero. Use of a higher order scheme reduces this inherent discretization bias. The Milstein

approximation is an alternative that can be used and as far as we know, the density has not

appeared in the literature before.

The transition density implied by the Milstein is given by the next theorem.

Theorem 2.1 Given the SDE specified by (2.1), if the usual conditions under which the SDE

exists and is unique are satisfied and further, that assumptions (A. 2), (A. 3) and (A. 9)–(A.

14) hold then for the approximate one-step ahead transition density implied by (2.3), can be

expressed as

f(yt+1|yt) =
exp(−λ/2)
|A|√2π

z
−1/2
t+1 exp(−zt+1

2
) cosh(

√
λzt+1) (2.5)

where

zt+1 =
yt+1 −B

A

λ =
1

∆†(b′)2

A =
bb′∆†

2

B = − b

2b′
+ yt + a∆† − bb′∆†

2
.

The density is defined for zt+1 ∈ R
+ and b′ 6= 0.

Proof 2.1 Denote yt+1 by w, given a fixed value of yt. From (2.3) it follows that

w = yt + a∆† + b
√

∆†U +
1
2
bb′∆†(U2 − 1)

= A(U + δ)2 + B

= Az + B
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where U ∼ N(0, 1), δ = 1/(b′
√

∆†) and z = (U + δ)2. Thus z follows a noncentral chi-squared

distribution with ν = 1 degrees of freedom and non-centrality parameter δ2. (For a more

extensive coverage see Johnson, Kotz, and Balakrishnan, 1995, chapter 29). Letting λ = δ2,

the density of z is given by

fz(z) =
1
2

exp
{
−(λ + z)

2

}( z

λ

)−1/4
I− 1

2
(
√

λz)

(see Fisher 1928) where

I− 1
2
(x) =

√
2
x

∞∑
j=0

(x/2)2j

j! Γ(j + 1
2 )

=

√
2

πx
cosh(x)

is a modified Bessel function of the first kind of order −1
2 , (see Abramowitz and Stegun, 1970

Ch. 10; the expression in terms of cosh is given in equation 10.2.14 ). A justification of why

this follows naturally is provided in Appendix A.2. So the density of w is given by

f(w) =
1
|A|fz(

w −B

A
)

=
1

2|A| exp
{
−(Aλ + w −B)

2A

}(
w −B

λA

)− 1
4

√
2
π

{
λ(w −B)

A

}− 1
4

cosh

{√
λ(w −B)

A

}

=
1
|A|

1√
2π

(
w −B

A

)− 1
2

exp
{
−(Aλ + w −B)

2A

}
cosh

{√
λ(w −B)

A

}

This concludes the proof.

The mean and variance of z are given by E(z) = v + λ and var(z) = 2(v + λ) which give

E(yt+1|yt) = yt+a∆† and var(yt+1|yt) = b2∆†+(bb′∆†)2/2. These results can easily be verified

from (2.3). This density is non-symmetric, unlike the Euler case. It is also worth noting that

the Milstein collapses to the Euler when b′ is close to zero, see Appendix A.3. For numerical

reasons, it is often easier to work with the exponential function when evaluating the hyperbolic

cosine function and so we use cosh(x) = (1/2){exp(x) + exp(−x)}.

3 Estimation

One can approximate the likelihood using some discrete scheme. This is achieved using either

the Euler or the Milstein scheme which are outlined below. Essentially, this involves maxim-

izing the likelihood, based on the approximate transition density. We will also motivate the
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extensions of applying the Milstein density. These involve introducing missing paths between

the observed values, integrating these auxiliary (latent) points out of the joint density and

then computing the implied conditional transition density. Hence one could follow a simu-

lated likelihood method, see for example, Pedersen (1995), or a Bayesian Markov Chain Monte

Carlo (MCMC) method, conditioning on both neighboring observations, see Elerian, Chib, and

Shephard (1998).

3.1 The likelihood based on the Milstein density

When the transition densities are known, the log-likelihood for the data, lT (θ) in terms of the

conditional distributions of yt+1 given yt is given by

lT (θ) =
T−1∏
t=0

log g(yt+1|yt; θ) + log g(y1; θ)

where g(yt+1|yt; θ) is used to denote the true transition densities. In general, g(y1; θ) is intract-

able and so we will typically omit it and work with the conditional likelihood to estimate θ.

The impact of the initial distribution is one term relative to the T − 1 conditional likelihoods

and so it can be argued that though g(y1; θ) contains information on θ, the effect of omitting

the term is small. This can be easily formalized if yt is stationary or mixing. Hence we work

with
T−1∑
t=1

log g(yt+1|yt; θ) (3.6)

which is maximized. If the strong solution of the underlying process is available, g(yt+1|yt; θ)

will be known, and so the maximum likelihood estimator will be consistent. In general, no such

strong solution exists and so we approximate (3.6) using the conditional transition densities

f(yt+1|yt; theta) implied by the Euler or the Milstein schemes.

For discretely observed diffusions, the MLE has, under relatively weak conditions, the usual

properties of consistency, asymptotic normality and efficiency, see for example Billingsley (1961)

and Dacunha-Castelle and Florens-Zmirou (1986).

Considering the SDE defined by equation (2), where the log-likelihood takes the form

l̂T (θ) =
T−1∑
t=1

log{f(yt+1|yt; θ)}
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where the transition densities f(·) of Y are known; T includes all the observed points. In this

set-up, a necessary condition for the existence of a consistent estimator of θ is that T∆ →∞,

that is, θ̂T → θ as T →∞.

Dacunha-Castelle and Florens-Zmirou (1986) give quantities for the loss in precision due to

discretization when the volatility coefficient is known and unknown. The approximation based

on discrete observations without the introduction of auxiliary points is biased and inconsistent,

see Florens-Zmirou (1993); implying that the MLE will be inconsistent under both the Euler

and Milstein schemes when the true transition density is unknown. An example of this is

shown in table 1. The approximate log-likelihood is computed for two simulated data sets,

corresponding to the cases ∆† = 2 and ∆† = 5 for the CIR process, Cox, Ingersoll, and Ross

(1985) which will be defined in Section 3.4.1. The results show that the bias and MSE are

lower under the Milstein scheme for the drift parameters. For the volatility coefficient, there

was negligible difference between the two schemes.

3.2 A Pedersen type approach to diffusions using the Milstein scheme

Pedersen (1995) treats the values on a trajectory connecting two discrete observations as missing

and so introduces auxiliary points and discretizes the process using the Euler scheme. Given yt,

he simulates forwards obtaining y∗t = (y∗t,1, . . . , y∗t,Mt
), for t = 1, . . . , T , where Mt is the number

of points introduced between the observations yt and yt+1. This method can be extended to

the case when the Milstein scheme is used to discretize the process.

By definition, the approximate likelihood can be expressed in terms of the transition dens-

ities

fM(yt+1|yt, θ) =
∫

f(yt+1|y∗t , yt, θ)f(y∗t |yt, θ)dy∗t = E{f(yt+1|yt,Mt ; θ)|yt}, (3.7)

where the expectations is taken with respect to the density

f(yt,Mt|yt) =
∫

f(y∗t |yt) dy∗t,1, . . . , dy∗t,Mt−1

=
∫

f(y∗t,Mt
|y∗t,Mt−1)f(y∗t,Mt−1|y∗t,Mt−2 . . . f(y∗t,1|yt) dy∗t,1, . . . , dy∗t,Mt−1, (3.8)

1Data was obtained using ∆ = ∆†/R, where R is typically taken as 10,000. T = 500 data points are simulated

using the Milstein scheme and recorded every R iterations. The Monte Carlo results of a small simulation study

are shown in table 1.
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Monte Carlo Results (CIR process), ∆† = 2

true value mean bias s.d. MSE

Euler

α 0.5 0.25976 -0.24024 0.01358 0.05790
β 0.2 0.10449 -0.09551 0.00592 0.00916

σ2 0.05 0.03700 -0.01300 0.00219 0.00017

Milstein

α 0.5 0.34381 -0.15619 0.033150 0.025495

β 0.2 0.13845 -0.06155 0.01319 0.00396
σ2 0.05 0.03600 -0.01400 0.00207 0.00020

Monte Carlo Results (CIR process), ∆† = 5

true value mean bias s.d. MSE

Euler
α 0.5 0.17871 -0.32129 0.00835 0.10329

β 0.2 0.07271 -0.12729 0.00340 0.01621

σ2 0.05 0.02499 -0.02501 0.00173 0.00063

Milstein

α 0.5 0.26631 -0.23369 0.01324 0.05478
β 0.2 0.10834 -0.09166 0.00535 0.00843

σ2 0.05 0.02292 -0.02708 0.00126 0.00074

Table 1: The results from a small simulation study for the parameters of the CIR process
are shown using the Euler and Milstein scheme. One hundred sets of data with T = 500,
R = 10, 000, ∆† = 2 and ∆† = 5 were generated and used to evaluate the approximate log-
likelihoods using a numerical optimization scheme. The true parameter value, mean, bias,
standard deviation and mean square errors are shown.

where dependence on θ has been suppressed. Monte Carlo integration is used to estimate

equation (3.7) and equation (3.8) is used to generate the values of y∗t,Mt
, where we set Mt = M

for all t. As each y∗t,j is drawn from f(y∗t,j|y∗t,j−1; θ), the resulting y∗t,M will be a variate drawn

from f(y∗t,M |yt; θ). A sequence of N by M standard normal random variates, U
(k)
i are generated

for k = 1, . . . ,N and i = 1, . . . ,M . Each point y
(k)∗
t,i+1 is simulated forwards where y

(k)∗
t,i+1|y(k∗)

t,i is

normal given the Euler approximation

y
∗(k)
t,i+1 = y

∗(k)
t,i + a{y∗(k)

t,i ; θ}∆ + b{y∗(k)
t,i ; θ}

√
∆U

(k)
i+1 (3.9)

where ∆ = ∆†
M+1 , for i = 0, . . . ,M − 1. An estimate of fM(yt+1|yt; θ) is then given by

f̂M(yt+1|yt; θ) =
1
N

N∑
k=1

f(yt+1|y∗(k)
t,M ; θ) (3.10)
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where the density is given by equation (3.9) and the estimated log-likelihood is given by

l̂
(M)
T (θ) =

T−1∑
t=1

log f̂M (yt+1|yt; θ). (3.11)

Note that f̂M is unbiased for fM , but the log is biased.

Estimates of the θ are obtained by maximizing the approximate log-likelihood with respect

to θ. The same procedure can be carried out using the Milstein.

3.3 Bayesian approach to diffusions using Milstein densities

We propose to estimate the parameters within a Bayesian context to conduct finite sample

inference and calculate posterior distributions. The algorithm relies on MCMC methods, see

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953), Hastings (1970), Geman and

Geman (1984) for early work, and subsequently Tanner and Wong (1987), Gelfand and Smith

(1990), Gilks, Richardson, and Spiegelhalter (1996) and Tanner, (ch. 6, 1996). An excellent

exposition of the above is provided by Chib and Greenberg (1996). Essentially, MCMC meth-

ods concentrate on producing variates from a given multivariate distribution, (the posterior),

by repeatedly sampling a Markov chain whose invariant distribution is the target density of

interest. We sample the conditional densities using an MH algorithm, see, Chib and Greenberg

(1995) and proceed to sample the states in blocks. One should note that as these typically

form a high dimensional correlated sample from the target density of interest, it is important

to monitor the correlograms and the inefficiency factors (the variance of the sample mean of

the MCMC sampling scheme divided by the variance of the sample mean from a hypothetical

sampler drawing independent and identically distributed random variables from the posterior),

to gauge how long one should run the sampler for and how accurate the degree of the posterior

estimates. Emphasis has been on constructing a proposal that is easy to sample from and an

algorithm that has good mixing properties.

Our approach is to generate M values of y∗t = (yt,1, . . . , yt,M ) between each pair of success-

ive observed values yt and yt+1. We will then generate the parameters from their posterior

distributions, given the data Y and Y ∗ = (y∗′1 , . . . , y∗′T−1)
′, which for these models will often be

relatively easy to sample from. An outline of the method using the Euler scheme is presented

in Elerian, Chib, and Shephard (1998).
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The aim is to sample Y ∗ from f(Y ∗|Y ; θ), where we will make use of the conditional

independence of y∗t given the observations yt and yt+1. Suppose we focus on a pair of obser-

vations yt and yt+1; we wish to simulate y∗t from f(y∗t |yt, yt+1) ∝ ΠM
k=0f(y∗t,k+1|y∗t,k). Each

of these conditional distributions is given by the Milstein approximation defined in equation

(2.3). Parameters are then estimated in a Bayesian framework. An application outlining the

workings of the algorithm and comparison with Pedersen’s method will be reported elsewhere.

3.4 Example

3.4.1 The Cox, Ingersoll and Ross model

The CIR model, also known as the square-root process, was developed by Cox et al. (1985) for

term structure modelling. It can be expressed as

dyt = (α− βyt)dt + σ
√

ytdWt

where yt is, for example, the short-term interest rate. The presence of the square-root in the

diffusion coefficient means that the diffusion only takes positive values, though it can reach

zero. For our purposes, we are interested in finding the Milstein approximation and taking

a second order Taylor expansion of the log- likelihood. Suppose we take the transformation

xt = log yt, due to the restriction that yt > 0.2 Then on applying Itô’s lemma (see for example

Øksendal 1995), we obtain

dxt =
{

α

exp(xt)
− β − σ2

2 exp(xt)

}
dt +

σ√
exp(xt)

dWt.

Considering the Milstein scheme in equation (2.3), we obtain, for xt,k+1, the following

specification

xt,k+1 = xt,k +
{

α

exp(xt,k)
− β − σ2

2 exp(xt,k)
+

σ2

4 exp(2xt,k)

}
∆ +

σ

exp xt,k

2

εt,k+1

− σ2

4 exp(2xt,k)
ε2
t,k+1

2Although the CIR is always positive, when we do Euler or Milstein, this is not necessarily true, so one needs

to impose this restriction by transforming the process.
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where ε ∼ N(0,∆). Hence the conditional mean and variance are given by

E(xt,k+1|xt,k) = xt,k +
{

α

exp(xt,k)
− β − σ2

2 exp(xt,k)

}
∆

var(xt,k+1|xt,k) =
σ2∆

exp(xt,k)
+

σ2∆2

8 exp(4xt,k)
.

Hence the Milstein density for f(yt+1|yt) is given by (2.5), with

a =
α

exp(xt,k)
− β − σ2

2 exp(xt,k)
+

σ2

4 exp(2xt,k)

b =
σ

exp xt,k

2

b′ = − σ

2 exp xt,k

2

4 Conclusion

A closed form solution for the one-step ahead conditional transition density using the Milstein

scheme has been shown to exist. This higher order Taylor approximation enables us to obtain

an order of improvement in accuracy in estimating the parameters in a non-linear diffusion, as

compared to the use of the Euler-Maruyama discretization scheme. The method can easily be

extended to estimate the parameters using either the method proposed by Pedersen (1995), or

a using MCMC scheme as proposed in Elerian, Chib, and Shephard (1998). Both of these will

be considered elsewhere.
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A Appendix

A.1 Assumptions under the Euler and Milstein schemes

We will assume the following conditions in Section 2.2 under the Euler scheme, using y0 and

x0 as starting points:

E(|y0|2) < ∞ (A. 1)

E(|y0 − xδ
0|2)

1
2 ≤ K1δ

1
2 (A. 2)

|a(t, y) − a(t, x)|+ |b(t, y)− b(t, x)| ≤ K2|y − x| (A. 3)

|a(t, y)|+ |b(t, y)| ≤ K3(1 + |y|) (A. 4)

|a(s, y)− a(t, y)|+ |b(s, y)− b(s, x)| ≤ K4(|1 + |y|))|s − t| 12 (A. 5)

where the constants K1, . . . ,K4 do not depend on δ, s, t ∈ [0, T ] and y, x ∈ R
d then for the

Euler approximation xδ, we obtain

E{|yT − xδ(T )|} ≤ K5δ
1
2

where the constant K5 does not depend on δ. Given conditions A. 4 and A. 5, the result follows

from applying Doob’s inequality and the Gronwall inequality. A proof of this assertion can be

found in Kloeden and Platen (Section 10.2, 1992).

Under the Milstein scheme we make the following additional assumptions:

|a∗(t, y)− a∗(t, x)| ≤ K2|y − x| (A. 6)

|b(t, y) − b(t, x)| ≤ K2|y − x| (A. 7)

|Lb(t, y)− Lb(t, x)| ≤ K2|y − x| (A. 8)

|a∗(t, y)| + |La(t, y)| ≤ K3(1 + |y|) (A. 9)

|b(t, y)| + |Lb(t, y)| ≤ K3(1 + |y|) (A. 10)

|L2b(t, y)| ≤ K3(1 + |y|) (A. 11)

|a∗(s, y)− a∗(t, y)| ≤ K4(1 + |y|)|s − t| 12 (A. 12)

|b(s, y)− b(t, y)| ≤ K4(1 + |y|)|s − t| 12 (A. 13)

|Lb(s, y)− Lb(t, y)| ≤ K4(1 + |y|)|s − t| 12 (A. 14)
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for all s, t ∈ [0, T ], y, x ∈ R
d where

a∗ = a− 1
2
bb′

L = b
∂

∂y
,

and the constants K2, . . . ,K4 do not depend on δ.

A.2 Proof of Milstein density

The modified Bessel function follows naturally by first defining the double factorial notation

and expressing (2j)!! = (2j)(2j−2) . . . (4)(2) and (2j−1)! = (2j−1)(2j−3) . . . (3)(1) which is

the j’th moment of a chi-squared random variable with one degree of freedom. Hence (2j)! =

(2j)!!(2j − 1)!! and 2j(j!) = (2j)!! implying that

2j Γ(j +
1
2
) = 2j(j − 1

2
)(j − 3

2
) . . . (

1
2
)Γ(

1
2
) = (2j − 1)!! Γ(

1
2
),

so that

4j j! Γ(j +
1
2
) = 2j j! (2j − 1)!! Γ(

1
2
) = (2j)! Γ(

1
2
).

Hence, going back to the infinite sum,

∞∑
j=0




(
x2

4

)j

j! Γ(j + 1
2 )


 =

1
Γ(1

2)

∞∑
j=0

x2j

(2j)!
=

1√
π

cosh(x),

using F− 1
2
(x) =

√
2

πx cos x; see Gradshteyn and Ryzhik 1965, Section 8.464. Here, F is the real

argument component of Iν(x) = exp
(−π

2ν i
) Fν

{
exp

(
π
2i

)
x
}
. For an additional reference, see

Watson 1944.

In general, Bessel functions with ‘half’ parameters (I 1
2
+ν , F 1

2
+ν for ν ∈ Z) can be written in

terms of trigonometric functions. Other Bessel functions cannot be expressed in such explicit

forms.
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A.3 Milstein reduces to Euler for small b′

Suppose we denote x = yt+1 − yt − a∆. Then for the Milstein scheme:

yt+1 −B = x +
b

2b′
+

bb′∆
2

zt+1 =
yt+1 −B

A
=

x + b
2b′ + bb′∆

2
bb′∆

2

= 1 +
2x

bb′∆
+

1
(b′)2∆

.

For small b′:

√
z =

√
1 +

2x
bb′∆

+
1

(b′)2∆
=

√
1

(b′)2∆

{
1 +

2xb′

b
+ (b′)2∆

}

≈ 1
b′
√

∆

[
1 +

1
2

{
2xb′

b
+ (b′)2∆

}
+

1
8

{
2xb′

b
+ (b′)2∆

}2

. . .

]

≈ 1
b′
√

∆

{
1 +

xb′

b
+

(b′)2∆
2

− x2(b′)2

2b2
+ . . .

}

so that

√
zλ ≈ 1

(b′)2∆

{
1 +

xb′

b
+

(b′)2∆
2

− x2(b′)2

2b2
+ . . .

}

cosh
√

zλ ≈ 1
2

exp(
√

zλ).

This implies that

2 exp
(
−λ + z

2

)
cosh

√
zλ ≈ exp

(
−1

2
− x

bb′∆
− 1

(b′)2∆

)
exp

{
1

(b′)2∆
+

x

bb′∆
+

1
2

+
x2

2b2

}

= exp
(−x2

2b2

)
.

So, assuming b > 0,

2|A|√z → b
√

∆

proving that for small b′, the Milstein density reduces to that of the Euler.
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