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ABSTRACT:

Usually cointegration models involve a dynamic, stochastic component as well
as deterministic components. This paper identifies relevant cointegration
models in terms of interpretability and similarity with respect to parameters
of deterministic components. Similarity implies that inference on cointegra-
tion rank or common trends can be separated from inference on parameters of
deterministic components. The idea is that the functional form and thereby
the interpretation of deterministic components is not questioned in connec-
tion with the rank test, but it can be tested subsequently. The paper focuses
on likelihood based inference in vector autoregressive models.

1. INTRODUCTION

Cointegration analysis in vector autoregressive models is viewed as address-
ing two separate questions. The first concerns the number of cointegrating
relations in vector time series or equivalently the number of common trends.
The second is related to analysis of coefficients such as those of the cointe-
grating vector and of deterministic components. In terms of inference, deter-
mination of the number of cointegrating relations is based on non-standard
asymptotic distributions, while remaining inference is based on standard y2-
distributions.



One way to separate the analysis of these questions is to find similar tests.
Although cointegration analysis is rather complicated it is indeed possible to
find some similarity properties. This paper demonstrates that some of the
likelihood based tests suggested in the literature are more convenient in this
sense than others. As it happens, ”similar” tests also allow for more attrac-
tive interpretations. The idea is to test for cointegration rank in a model
where for instance deterministic components of the process are not affected
by the cointegration rank. Then the test for cointegration rank is asymp-
totically similar with respect to the parameters of deterministic components.
Thereby at least a partial separation of the two questions is obtained.

Cointegration tests are based on asymptotic approximations of the test
distribution. It is well-known that such approximations are often very poor.
Similarity seems to be an important issue in stabilising the likelihood ratio
test. As an example the test for no cointegration in a first order model is
similar and the distribution approximation to the likelihood ratio test is
unusually good (Nielsen, 1997,1998). However, in the general models which
are used in applications the cointegration tests are not similar: there are
problems with the possible number of unit roots and with deterministic trend
parameters. The considerations of this paper eliminates the latter problem.

Consider in general statistical models with a multivariate parameter 6 =
(1, A\, 7) where it is of interest to test the hypothesis ¢ = 0. If the rejection
frequency for the critical region, C' R, does not depend on A, 7, that is

PA,T (CR) =«

then the test is said to be similar (Cox and Hinkley, 1974, p. 134). If
the rejection probability depends on A but not 7 we say the test is similar
with respect to 7. Finally, if the rejection probability depends on the sample
length, but

PI_(CR) — ay for T — o0

we say the test is asymptotically similar with respect to 7 as opposed to
exactly similar as above. Asymptotic similarity is of course not as attractive
as exact similarity. However, in reasonably specified models, where parameter
estimates are not too extreme, asymptotic similarity seems sufficient for the
desired separation of questions of interest.

Among many types of cointegration analysis this paper focuses on the
maximum likelihood based analysis of cointegration rank in vector autore-
gressive models suggested by Johansen (1988,1995a). The test for cointegra-
tion rank is based on the canonical correlation analysis given by Hotelling
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(1936) and Bartlett (1938), see also Anderson (1984, Chapter 12). It turns
out that similarity properties of cointegration are closely linked with invari-
ance properties of canonical analysis which will be discussed in Section 2.

In Section 3 similarity properties are discussed for cointegration rank tests
in full system I(1) analysis. The test for no cointegration in a first order au-
toregressive model is similar. For more general models asymptotic similarity
is found with respect to deterministic trend parameters. This holds subject
to certain conditions on the cointegration rank and the I(1) properties of
the process. Note, that asymptotic similarity could be improved to an exact
property if relevant initial variables are given stationary distributions. How-
ever, the statistical analysis is conditional on these variables and we therefore
consider the usage of stationary initial distributions as an asymptotic approx-
imation as well.

The similarity mentioned above is contingent on I(1) properties of the
system. This assumption is relaxed in I(2) analysis which is discussed in
Section 4. The techniques which are used in the full system analyses are
also useful in partial systems where certain stochastic regressors are intro-
duced. A brief overview is given in Section 5. Finally, Section 6 summarises
recommendations for a general approach to cointegration analysis in practice.

It is important to note that there are many other types of cointegration
analysis beside those considered in this paper. As an example analysis based
on regression rather than canonical correlations is given in Phillips (1991).
Similarity with respect to deterministic trend parameters can often be ob-
tained using detrending strategies as discussed by for instance Dickey and
Fuller (1979), Kiviet and Phillips (1992), Liitkepohl and Saikkonen (1997)
and Oya and Toda (1998). The point of this paper is to make the concept
of similarity precise in a likelihood based analysis of vector autoregressive
models.

In the mathematical notation details about for instance dimensions are
usually omitted. The symbol |I +II| < 1 means that the eigenvalues of the
matrix [ + II are smaller than one in absolute value. Further, o, denotes
the orthogonal complement to a matrix a and @ = o (¢/a) .

2. SOME INVARIANCE PROPERTIES OF CANONICAL CORRELATIONS
Cointegration is analysed using regression and canonical correlation tech-
niques. Some of the properties of canonical correlation analysis are inherited

in cointegration analysis and will be discussed briefly.
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The sample canonical correlations of two sets of random vector, X, ..., Xr
and Y7, ..., Y are found as solutions of the eigenvalue problem

PQSXX — SXYS;%/SYX‘ =0,

where for instance the product moment matrix Sxy = Zthl X.Y/. A conve-
nient notation for these solutions is CanCor(Xy, ;). The eigenvalue problem
is invariant with respect to non-singular linear transformations of the two
blocks of data so that

CanCor (X}, Y;) = CanCor (AX,, BY;) (1)

for non-singular, square matrices A, B.
If the vector Y; has two components V;, W; it follows from (1) that

CanCor {Xt, < ;[/; )} = CanCor {Xt, < VtV’VVVt >}
t t

where the least squares correction of V; for W, is obtained using

(T —SywSpw
ao () “Ssin ),

Often cointegration analysis involves the canonical correlations of two vari-
ables X; and Y; which are both corrected for a third variable Z; by least
squares, denoted by

CanCor (X4, Y| Z;) .

3. FuLL SYSTEM I(1) ANALYSIS

The similarity properties of I(1) models depend on the cointegration rank of
interest as well as the lag length. Initially, the test of non-stationarity against
stationarity in a first order model is discussed for various specifications of
trend and some exact similarity properties are found. Next, the more general
test of reduced cointegration rank and the inclusion of lags is considered. In
these situations only asymptotic similarity is found.



3.1. A simple hypothesis in a first order model

The first order vector autoregressive model is given by the equation
AXt:HXt,1+€t fort:1,...,T,

where X is fixed, the innovations are independently, identically normal dis-
tributed with zero mean and variance €2 and, finally, the parameters II and
Q vary freely.

A process of this model is a random walk with level X if II = 0,

t
Xt = Z&i + Xo. (2)

i=1

For |I +1I| < 1 the process can be interpreted as stable with a zero level
since by simple recursion,

X, = S (I +T0) gy + (I +1D)" X, (3)

i=0

and X, can be a given an initial distribution so that X; is stationary with
expectation zero. In order to distinguish these properties the hypothesis
IT = 0 is considered.

The maximum likelihood test is based on the canonical correlations

CanCor (A Xy, Xy 1) .

Under the hypothesis the process in (2) depends only on the initial value X
and the scaling matrix Q'/2. By the invariance property (1) it follows that the
distribution of the canonical correlations and therefore of the test statistic
itself only depends on Q and X, through Q 1/2X,. The test is therefore
similar if it is assumed that X, = 0. This corresponds to the interpretation
that the level of the process is zero under the alternative but non-zero under
the hypothesis unless Xy = 0. For general X, the test is asymptotically
similar, see Johansen (1995a, Theorem 6.1).



3.2. A model with a constant level

Consider the model given by the equation

X

AX, = (I, 11,) ( ‘

>+€t fOI'tzl,...,T.

As above the process is a random walk with level X if (II,II.) = 0. By

including the constant II. in the innovations of the representation (3) it

follows that the process is stable around a level proportional to I1, if |1 4 II| <

1. Consequently, the deterministic component of the process is the same in

these two cases of rather different behaviour of the stochastic component.
The hypothesis (II,II.) = 0 is analysed in terms of

CanCor {AX,:, ( th_l )} .

Under the hypothesis the distribution of these correlations initially seems to
depend on Q and X, through Q~!Xj as argued above. However, using (1) it
follows that the canonical correlations equal

T
CanCor {AXt, < X 23:1 Xi1/T )}

and therefore do not depend on Q 1X,. Hence the likelihood ratio test for
the hypothesis is similar. This is not the case, not even asymptotically, in
the related analysis where the hypothesis of interest is that II is restricted,
but II. is left unrestricted, see Johansen (1995a, Theorem 6.1)

3.3. A model with a linear trend

Consider the model given by the equation

AXt:(H,Hl)<X;_1>—|—/L—I—€t fort=1,...,T. (4)

This is related to the case of a non-zero level. If (II,II;) = 0 the process is
a random walk around a linear trend with slope p and if |/ +1II| < 1 the
process is stable around a linear trend with a slope proportional to I1;. Again
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the test of the hypothesis (II,II;) = 0 is exactly similar, that is, under the
hypothesis the distribution of

CanCor{AXt, ( X;_l )‘ 1} = CanCor{AXt, ( Xt;1|t )‘ 1}

does not depend on €2, u, Xy. Note, that the statistical analysis is based on
demeaning of the first differences and detrending of the levels of the time
series.

3.4. Determination of rank

In the model given by (4) cointegration is analysed using a reduced rank
hypothesis of the type rank(II, IT;) < r, where r is smaller than the dimension
of the time series. Such a hypothesis can be parametrised as

(ILIL) = a (8, 8)

where a,(3; are (dimX X r)-matrices, 3; is an r-vector and all parameters vary
freely.

Representation and corresponding interpretations for processes of this
model is given by Granger’s representation theorem in Johansen (1995a,
Chapter 4). Under the hypothesis o/, X; is a random walk around a lin-
ear trend with slope u. If, in addition, §'a, or equivalently o/, 3, , has full
rank then 3'X; is stable around a linear trend with slope proportional to II,.

The likelihood ratio test of the hypothesis is given by the (dimX — )
smallest canonical correlations,

CanCor {AX,:, ( th_l )} .

If rank(IT, IT;) = r and 3'« # 0 these can be rewritten as

B X BX, 1
CanCor ¢ AXy, | o Xy 1 [|1} =CanCor{ AX;, | o Xy ]t ||1
t t

Therefore it can be argued as above that the distribution of these correlations
do not depend on the parameters for trend, level and innovation variance for
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the component o/, X;. The test is therefore similar with respect to these para-
meters, given by o/, i, o/| Xy, o/, Qo . Further, as a consequence of Johansen
(1995a, Theorem 6.2) the test is asymptotically similar with respect to the re-
maining parameters for trend, level and innovation variance. In combination
these results imply asymptotic similarity with respect to 3;, u, Xo, €2.

Unfortunately the distribution of the test depends drastically on «, 8. If
the actual rank of (II,II;) is smaller than the one, r, which is tested for,
new asymptotic distributions arise just as in standard canonical correlation
analysis. Further, if rank(IT,II;) = r, but '« has reduced rank then the
process is said to be integrated of higher order and a different asymptotic
distribution is obtained. This is discussed in Section 4 below.

3.5. Inclusion of lags

In applications models usually include further lagged variables to allow for a
better description of the short term dynamics of the data. Consider,

X, k-1
AXt:(H,Hl)< ;1>+ZF3AXt]+,U+5t fort:1,...,T. (5)
j=1
The results are nearly as above.
Under the hypothesis rank(IT, II;) < r and certain conditions the process

can be given the representation

t
X;=C) e+ Yi+7.+7it

i=1

where Y; is stationary linear process, correlated with the random walk com-
ponent and with exponentially decreasing coefficients. The common trends
parameter C' and the level and trend parameters, 7, 71 are given in terms of
the matrix ¥ =1 — Zf;ll I'; as

¢ = B, (al‘l’ﬂﬁil oy,
Bre = @ (VC—I)p+ (@VCT — I -TTB) 3,
Note, that ' 7. depends on the initial values, Xy, ..., X;_, and is not iden-

tified, see Johansen (1995a, Section 5.7) and Rahbek (1997). The relevant
assumptions to the process are



1. rank(IL IL;) = r
2. the I(1) condition, that the matrix o/, U3, has full rank.

3. the processes 3'X; and AX; can be given stationary initial distri-
butions.

The likelihood ratio test for the hypothesis rank(II, IT;) < r is based on

CanCor { AX,, ( X;_l )‘ 1, (Ath)jzl,...,kl}

and as above it is asymptotically similar with respect to the parameters
Q, B;, » and initial values Xj,..., X; ; under the assumptions listed. Note,
that the third assumption might be redundant for this result to hold. This
is at least the case for a univariate second order model and a bivariate first
order model (Nielsen, 1998).

The results in Section 3.1, 3.2 concerning models without linear trends
can be generalised correspondingly. Note, that also in the model with a
constant level the level of the common trends, 3’ 7. is not identified.

4. FULL SYSTEM I(2) ANALYSIS

The I(1) condition that the matrix o/, W3, has full rank is necessary for the
interpretation and to ensure that only one asymptotic distribution is involved
in rank testing. If the condition is not satisfied the process could be 1(2) and
a different asymptotic distribution applies. In applications the parameters
are often so that the I(1) condition nearly is violated in the sense that some
characteristic roots are close to be unit roots. Then the interpretation of the
results and the asymptotic distribution approximation are likely to fail. An
I(2) analysis imposes additional unit roots. This is likely to reduce similarity
problems and therefore finite sample problems as well as new interpretations
of the data may arise.

The I(2) analysis can be formulated as a sub-model of the I(1) model (5)
with two reduced rank problems. It can be formulated so that the similarity
with respect to the parameters for the deterministic trend is preserved. The
first reduced rank problem is as before

(ILIL) = o (B, B) -
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A reformulation of the model gives that this corresponds to a reduced rank
relation between the second differences A?X; and the vector (X] ;,t). The
second reduced rank problem addresses o/, U3, and arise in relation to the
pair o/, A2X; and (AX/_,,1). It is parametrised in terms of &, 7,7, as

al\PﬁL = 577/
—aip = &n+a\ VEG

This formulation allows for a linear trend in all linear combinations of the
process. The multi-cointegrating relation has a trend with slope proportional
to 3, and the cointegrating, but not multi-cointegrating, relation has slope
proportional to 7,. The slope of the pure I(2) component is not identified just
as the level of the common trends is not identified in the 1(1) model. A full
analysis is given in Rahbek, Kongsted and Jgrgensen (1998) based on the
two stage procedure of Johansen (1995b).

In correspondence, an I(2) model with a constant level of the cointegration
vector is treated in Paroulo (1996).

5. ANALYSIS WITH STOCHASTIC REGRESSORS

Inclusion of stochastic regressors in the cointegration analysis may be viewed
as an analysis of some of the variables, denoted ”endogenous“, conditional on
the remaining weakly exogeneous variables in the vector autoregressive model
given by (5). This is referred to as partial or conditional analysis. A different
approach is to include additional explanatory regressors in the analysis of (5)
and discuss cointegration subject to specification of the explanatory variables.
Both approaches have asymptotic similarity properties which resemble the
previous results.

5.1. Partial Analysis

For partial analysis divide the process as X; = (Y}, Z})". The hypothesis of
reduced cointegration rank, rank(II,II;) < r, in the I(1) model (5) could
be analysed in a partial analysis of Y; given Z; in terms of the canonical
correlations,

AXy

CanCor { AY;, ( .

) ‘ AZt) 17 (AXt])]:lvvkl} :
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There are two important points in connection with this kind of analysis.
First, if the conditioning process is weakly exogeneous for the cointegrating
vector then the conditional likelihood analysis for cointegration is equiva-
lent to the full likelihood system analysis. The weak exogeneity property is
satisfied if

(0, IdimZ) (H, Hl) =0. (6)

Second, the asymptotic distribution depends on the joint distribution of Y;

and Z;. Harbo, Johansen, Nielsen and Rahbek (1998) analyse the situation

where the full system is I(1) and (6) holds, and find that this analysis is

asymptotically similar with respect to the parameters of the deterministic
trend and the regressor AZ;.

In the partial I(2) analysis weak exogeneity is contingent on the additional

restriction
(07 IdimZ)l\I] =0

since the 1(2) model involves two reduced rank problems, see Paruolo and
Rahbek (1996).

5.2. Ezplanatory Regressors

In general, it is of interest to extend the model (5) with a stochastic regressor
V; without modelling the full system of X; and V;. A discussion of this issue
based on the ideas concerning similarity is given by Mosconi and Rahbek
(1998).

If V} is a linear process which cumulates to an 1(0) process, cointegrating
properties of X; can be tested using

CanCor { AX;, < X;;—l ) ‘ Vi, 1, (Ath)j:L”’kl} ) (7)

The asymptotic distribution of the test is the same as in the full system I(1)
analysis. It does therefore not depend on the coefficient of the deterministic
trend and the regressor V.

On the other hand, if V; cumulates to an I(1) process then the analysis
based on (7) involves the coefficient of V; as a nuisance parameter. This is
avoided in an analysis based on

X
CanCor ¢ AX;, t Vi, 1, (AX ) j=1, k1
SV
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Such a test has the same asymptotic distribution as that of the partial system
discussed above and in fact this kind of analysis may be viewed as a special
case of the partial analysis above under certain conditions. However, it is
only if there is no feed-back from the endogenous process in the exogeneous
process, that the I(1) regularity conditions can be formulated in terms of the
partial system alone.

6. CONCLUSION

In this paper classes of models have been presented in which it is possible
to give some separation of the questions related to cointegration rank and
specific coefficients, both in terms of interpretation and similarity properties.
Cointegration can then be analysed in two steps: first the cointegration rank
is determined using one of the presented models and next restrictions on the
coefficients can be tested using x? inference.

The rank tests gives bounds for ranks and estimates for the rank can
therefore be found using these tests sequentially. More specifically, for the
I(1) models the idea is to test the hypotheses

rank = 0, rank < 1, rank < 2, ...

against a general alternative and estimate the rank from the first accepted
hypothesis. Consistency properties of this procedure can be formulated as in
Johansen (1995a, Section 12.1). Note, that it is not necessary to consider the
more complicated procedures given in Johansen (1995a, Section 12.2,3). Cor-
respondingly, for I(2) models the procedure given in Rahbek et al. (1997) is
consistent. The relevant asymptotic distributions for rank tests are tabulated
in the literature:

I(1) model with linear trend ~ Johansen (1995a),Table 15.4
I(1) model with constant level Johansen (1995a),Table 15.2
I(1) model with zero level Johansen (1995a),Table 15.1
I(2) model with linear trend ~ Rahbek et al. (1998)

I(2) model with constant level Paroulo (1996), Table 5
partial I(1) model Harbo et al. (1998)

Slightly more accurate tables for most of the models are given by Doornik
(1997)

12



Given the rank is known, restrictions of the coefficients can be tested
using the y2-distribution. In a model with a linear trend in all components
of the process it could for instance be relevant to test that the cointegrating
relation does not have a linear trend using the restriction 3, = 0.

A vast amount of applications of cointegration procedures exists in the
literature. An application based on the central I(1) model with a linear
trend is for instance described in the monograph Hendry (1995, Chapter 16).
Procedures are implemented in various computer programs such as PcFiml
by Doornik and Hendry (1997) and CATS by Hansen and Juselius (1995)
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