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Abstract

In this note we show how the stochastic volatility model of Barndorff-Nielsen
and Shephard (1998a) can be generalised to allow for the leverage effect. That is
where a negative return sequence is associated with increases in volatility. This is
important in empirical work on stock returns. This form of model allows a great
deal of analytic tractability — inheriting from our original model formulation many
attractive features.

∗MaPhySto is funded by the Danish National Research Council

1



Contents

1 Introduction 3

2 Incorporating leverage 3
2.1 Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Volatility and the BDLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Moments of returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Simulation 8
3.1 Simulating return sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Simulating forecast volatilities and leverage effects . . . . . . . . . . . . . . 8

3.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Control variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Integrals with respect to the price 10

5 Conclusion 13

6 Appendix: Some derivations 13

2



1 Introduction

A class of stochastic volatility models, discussed in Barndorff-Nielsen and Shephard

(1998a), incorporates a number of the well-established common features of observational

series of financial assets, in particular series of stock prices and of exchange rates. One

fairly important such stylized feature, the so called leverage effect, was however not

covered. This is where negative return sequences are associated with increases in the

volatility of stock returns. Such asymmetries are not usually observed for exchange rates.

The leverage effect was studied in some early work by Black (1976), while it motivated

the introduction of the EGARCH model of Nelson (1991) and the threshold ARCH model

of Glosten, Jagannathan, and Runkle (1993). An economic theory behind such effects is

discussed by Campbell and Kyle (1993).

In the present note we indicate a way of extending the type of models referred to so

that they reflect the leverage effect, and we calculate a few of the consequences. Only

the simplest, one-dimensional, version of the models will be considered here. A fuller

treatment will be given elsewhere.

2 Incorporating leverage

2.1 Model construction

As a model for the log price process of, for instance, a stock we consider a stochastic

process x∗(t), 0 ≤ t <∞, defined by a stochastic differential equation

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t) + ρdz̄(λt) (1)

where w is the Wiener process, z̄ is the centered version of a Lévy process z̀ (that is

z̄(t) = z̀(t) − Ez̀(t)), and σ is a stationary process defined, also in terms of z̀, by the

stochastic differential equation

dσ2(t) = −λσ2(t)dt+ dz̀(λt) (2)

with 0 < λ < ∞. This volatility process is thus of Ornstein-Uhlenbeck (OU) type

although it will not have Gaussian increments. The process z̀ is a homogeneous Lévy

process (so it has independent and stationary increments) with positive increments (also

termed a subordinator). As it is the driving process for the OU process we call it a

background driving Lévy process (BDLP). The filtration determined by w and z̀ jointly

will be denoted by F = {F t : 0 ≤ t < ∞}. Throughout we will assume µ = β = 0 for

simplicity of exposition as these terms raise no new issues.

Although we have focused on the simplest OU volatility process, our model extends

to where volatility follows a weighted sum of independent Ornstein-Uhlenbeck processes
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with different persistence rates. That is

σ2(t) =

m∑
j=1

w∗
jσ

2
j (t), where

m∑
j=1

w∗
j = 1,

with

dσ2
j (t) = −λjσ

2
j (t)dt+ dz̀j(λjt),

where the {z̀j(t)} are independent (not necessarily identically distributed) BDLPs. Hence

some of the components of the volatility may represent short term variation in the process

while others represent long term movements. In such a case we would have a process for

the price of the type

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t) +

m∑
j=1

ρjdz̄j(λjt),

where the leverage effect could be different for the various components of volatility. As

this type of extension will raise no new technical issues we will not deal with it in this

note and instead focus on the case where m = 1 and so the model is made up of (1) and

(2).

For ρ = 0 this setup reduces to the elemental version of the models studied in the earlier

paper (Barndorff-Nielsen and Shephard (1998a)). If ρ is negative a positive (infinitesimal)

increment dz̀(λt) in the volatility process σ2(t) will have a negative effect on the stock

price. This expresses, at least qualitatively, the stylized leverage effect — that negative

returns are associated with increases in observed volatility. Notice however that there is

no feedback from the x∗ process to the volatility process σ2 in our model - the innovations

from z̀ affects x∗ and σ2 simultaneously. Hence this model differs from the EGARCH

and threshold ARCH models of leverage referenced above. However, it is in keeping with

the non-symmetrical stochastic volatility models of leverage previously discussed in the

literature (see, for example, the review in Ghysels, Harvey, and Renault (1996)). A typical

example of that style of models is where

d log σ2(t) = −λ{log σ2(t)− µ
}

dt+ κds(t),

a geometric Gaussian Ornstein-Uhlenbeck process, whose increments of the standard

Brownian motion s(t) are correlated with those of w(t). Our construction is mathem-

atically more tractable.

2.2 Volatility and the BDLP

Denoting the cumulants and moments of z̀(1) (when they exist) respectively by κ̀m and

µ̀m (m = 1, 2, ...) we have

z̄(t) = z̀(t)− tκ̀1 = z̀(t)− tξ (3)
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where for brevity we have written ξ = κ̀1. For some purposes it maybe helpful to note that

z̄(t) is bounded from below and that the (marginal) cumulants of σ2(t) follow directly from

the cumulants of z̀(1). In particular, if we write the cumulants of σ2 as κ́m (m = 1, 2, ...)

then it follows (see the proof in Barndorff-Nielsen (1998)) that

κ̀m = mκ́m, m = 1, 2, ...

It will be helpful later to establish the notation that the corresponding cumulant generat-

ing functions will be written as ḱ(θ) = log [E exp {θσ2(t)}] and k̀(θ) = log {E exp (z̀(1))}
for σ2(t) and z̀(1) respectively. Indeed they are related by the fundamental equality

(Barndorff-Nielsen (1998))

ḱ(θ) =

∫ ∞

0

k̀(θe−s)ds, (4)

which can be reexpressed as

k̀(θ) = θḱ′(θ) (5)

(where ḱ′(θ) = θdḱ(θ)/dθ). The common feature of this notation is the BDLP objects,

z̀(1), have graves over them while the volatility itself , σ2(t), have acutes. This style of

notation will be maintained throughout this note. Important special cases of this are

κ̀1 = E{σ2(t)} = κ́1 = ξ and

κ̀2 = 2Var{σ2(t)} = 2κ́2 = 2ω2.

Now, let

x∗0(t) =

∫ t

0

σ(s)dw(s), (6)

which is the log-price process minus the leverage effect. The solution of the equation (1)

is then

x∗(t) = x∗0(t) + ρz̄(λt) (7)

2.3 Moments of returns

As in the previous paper, we shall determine some of the properties of the increments

over time spans of length ∆ of the model process x∗. Thus, let

yn = x∗(∆n)− x∗ {∆(n− 1)}
= y0n + ρz̄n

where

z̄n = z̀(λ∆n)− z̀ {λ∆(n− 1)} − λ∆ξ
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and

y0n = x∗0(∆n)− x∗0 {∆(n− 1)} . (8)

The implication is that

yn|σ2
n, z̄n ∼ N(ρz̄n, σ

2
n), (9)

where integrated volatility influences the distribution of returns through

σ2
n = σ2∗(∆n)− σ2∗ {∆(n− 1)} (10)

and

σ2∗(t) =

∫ t

0

σ2(u)du. (11)

We will write

z̀n = z̀(λ∆n)− z̀ {λ∆(n− 1)} , (12)

and

źn = σ2 (∆n)− σ2 {∆ (n− 1)} .
Then an important implication (Barndorff-Nielsen and Shephard (1998a)) of these con-

structions is that

σ2
n = λ−1 (z̀n − źn) . (13)

It is this linear structure which will allow us to perform a number of analytic calculations

which are not possible for other models.

The formula for the returns (9) is informative for it shows that the effect of the

leverage is to shift the distribution. If the volatility innovations are unexpected large

and ρ is negative, then the mean return will be negative. Hence negative returns are

associated with increases in volatility. Likewise small innovations in the volatility process

will happen at the same time as positive returns.

We now define

z̄n = z̀n − λ∆ξ (14)

σ̄2
n = σ2

n − E
(
σ2

n

)
= σ2

n −∆ξ. (15)

Further, let

σ̄2(t) = σ2(t)− ξ.

After these preparations we have that

E{y2
n} = λ∆(ξ + ρ2κ̀2) (16)

and

Var{y2
n} = Var{y2

0n}+ 2ρ2{2λ2∆2ξκ̀2 + 3(e−λ∆ − 1 + λ∆)µ̀3}+ ρ4λ∆(κ̀4 + 2λ∆κ̀2
2), (17)
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where the expression for

Var{y2
0n} = 6Var

{
σ2(t)

}
λ−2

(
e−λ∆ − 1 + λ∆

)
+ 2∆2ξ2

= 3κ̀2λ
−2
(
e−λ∆ − 1 + λ∆

)
+ 2∆2ξ2

was derived in Barndorff-Nielsen and Shephard (1998a).

Likewise, for s = 1, 2, ... we derive that

E{ynyn+s} = 0, (18)

Cov
(
yn, y

2
n+s

)
= E{yny

2
n+s} = ρκ̀2(1− e−λ∆)2 exp {−λ∆(s− 1)} (19)

Cov(y2
n, y

2
n+s) = Cov(y2

0n, y
2
0n+s) + ρ2(1− e−λ∆)2 exp {−λ∆(s− 1)} µ̀3 (20)

where the expression

Cov(y2
0n, y

2
0n+s) = Var

{
σ2(t)

}
λ−2(1− e−λ∆)2 exp {−λ∆(s− 1)}

=
κ̀2

2λ2
(1− e−λ∆)2 exp {−λ∆(s− 1)}

is given in Barndorff-Nielsen and Shephard (1998a). We note then that there is some

simplification as

Cov(y2
n, y

2
n+s) =

(
κ̀2

2λ2
+ ρ2µ̀3

)
(1− e−λ∆)2 exp {−λ∆(s− 1)} .

Only the formulae (17), (19) and (20) require some steps of calculation, which we place

in the appendix.

The effect of the leverage on the dynamic properties of discrete time returns is made

quite clear by these formulae. First both E
(
yny

2
n+s

)
and Cov(y2

n, y
2
n+s) damp down expo-

nentially with the lag length. In other words, the leverage effect diminishes exponentially

with s. The effect of the leverage on the covariance between the squares is to increase

(decrease) volatility clustering if the BDLP is positively (negatively) skewed. In practice

we would expect the BDLP to be highly positively skewed.

The simplicity of the effect of the leverage term means that we can still compute

analytically the spectrum of squared returns. We may write this as

f(ψ) =
∞∑

s=−∞
cor{y2

ny
2
n+s} cos(sψ)

= 1− cφ−1 + cφ−1a(ψ;φ)

where φ = exp(−λ∆),

a(ψ;φ) =
1− φ2

1− 2φ cosψ + φ2

and

c =
(1− e−λ∆)2(λ−2ω2 + ρ2µ̀3)

Var{y2
n}

,

which generalises the previous result of Barndorff-Nielsen and Shephard (1998a).
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3 Simulation

3.1 Simulating return sequences

A major advantage of the way we construct the leverage effect in our models is that we

can simulate returns without any form of discretisation being introduced. This will work

off the result that

yn|σ2
n, z̄n ∼ N(ρz̄n, σ

2
n),

which means we just simply have to draw sequences of {z̄n, σ
2
n}. In particular we can use

the following setup.

Suppose f is a positive and integrable function on [0, λ] then∫ λ

0

f(s)dz̀(s)
L
=

∞∑
i=1

Q̄−1(a∗i /λ)f(λri) (21)

where {a∗i } and {ri} are two independent sequences of random variables with the ri

independent copies of a uniform random variable r on [0, 1] and a∗1 < ... < a∗i < ... as the

arrival times of a Poisson process with intensity 1. Further,

Q̄−1(x) = inf{y > 0 : Q̄(y) ≤ x},
where the Lévy density of z̀(1) is written as w and we define

Q(x) =

∫ ∞

x

w(y)dy (22)

This result follows from work of Marcus (1987) and Rosinski (1991). A thorough

exposition with self-contained proofs is given in Barndorff-Nielsen and Shephard (1998b).

The point of this development is as follows. We first note that the integrated volatility

over the period of the n− th return is given in (13), so if we note that

σ2 (∆n) = exp (−λ∆) σ2 {∆ (n− 1)}+ wn,

then we can simulate from a sequence {z̄n, σ
2
n} by working with the innovations

(
wn

z̀n

)
L
=

{
exp (−λ∆)

∫ λ∆

0
esdz̀(s)∫ λ∆

0
dz̀(s)

}
. (23)

The simulation is carried out using the infinite series representations of the integrals given

in (21).

3.2 Simulating forecast volatilities and leverage effects

3.2.1 Basics

The above argument easily generalises to the case where we wish to simulate from

σ2∗(t)− σ2∗ (∆n) , z̀(t)− z̀ (∆n) |σ2 (∆n) , t ≥ ∆n,
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which determines the forecast distribution of log-returns as

x∗(t)− x∗ (∆n) |σ2∗(t)− σ2∗ (∆n) , z̀(t)− z̀ (∆n)

∼ N
[{
µ (t−∆n) + β

{
σ2∗(t)− σ2∗ (∆n)

}}
+ ρ {z̀(t)− z̀ (∆n)} ,{σ2∗(t)− σ2∗ (∆n)

}]
.

Hence the distribution of log-returns is a mixture of Gaussians, which will be typically

skewed due to the leverage effect.

One of the implications of this type of argument is that we can estimate via simulation,

for an arbitrary function g and for t > ∆n,

E
[
g {x∗(t)} |x∗ (∆n) , σ2 (∆n)

]
,

by simply drawing from the mixed Gaussian conditional distribution of log-prices. In the

special case where it is possible to analytically evaluate

E
[
g {x∗(t)} |x∗ (∆n) , σ2∗(t)− σ2∗ (∆n) , z̀(t)− z̀ (∆n)

]
,

it would be possible to potentially dramatically improve the efficiency of the simulation

based estimator by applying a Rao-Blackwellisation of the simulation estimator. This will

take on the form of an estimator

ĝ =
1

M

M∑
j=1

g
[{x∗(t)} |x∗ (∆n) , σ2∗(t)j − σ2∗ (∆n) , z̀(t)j − z̀ (∆n)

]
,

where the {σ2∗(t)j , z̀(t)j} are simulated as

σ2∗(t)j , z̀(t)j iid∼ σ2∗(t), z̀(t)− z̀ (∆n) |σ2 (∆n) .

Such arguments may lead to very fast ways of computing the fair price of some general

European options under leverage effects — although such arguments will not be based on

the usual mathematical finance arguments of unique equivalent martingale measures as

the existence of stochastic volatility means the market is not complete. Previously option

prices have been computed by simulating the whole path of price over the duration of the

option (Hull and White (1987)) and so is enormously less efficient than the scheme given

above.

3.2.2 Control variables

For some problems it may be helpful to employ control variables to improve the efficiency

of this simulation estimator. Let us write

νj = σ2∗(t)j − σ2∗ (∆n) , z̀(t)j − z̀ (∆n) .
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We can compute the mean of νj|σ2 (∆n) which we will write as µ1 and restate ĝ as

ĝ =
1

M

M∑
j=1

g [{x∗(t)} |x∗ (∆n) , vj ] .

This can be potentially improved by constructing a control variable (see, for example,

Ripley (1987, pp. 123-128)) off a term from the first order Taylor’s expansion:

g̃ =
1

M

M∑
j=1

(vj − µ1)
′ ∂g [{x∗(t)} |x∗ (∆n) , v]

∂v

∣∣∣∣
v=µ1

.

Then we will estimate the mean of g by the unbiased (over the simulations) estimator

ĝ − g̃. This argument can be generalised to higher order expansions in a straightforward

way. When quite a few terms in the expansion are used it may become pointless to use

any form of simulation at all as the analytic approximation will become, in effect, exact.

4 Integrals with respect to the price

The distributional properties of x∗ are embodied in the class of integrals of the form

f • x∗ =

∫ ∞

0

f(t)dx∗(t) (24)

where f is a deterministic real function. We therefore proceed to determine the cumulant

function of such integrals (when they exist). In particular, by suitable choice of f (see

below) one obtains the cumulant functions of the multivariate marginal distributions of

x∗. Noting that x∗ is a local martingale, we interpret f • x∗ as a stochastic integral (as

defined, for instance, in Protter (1992)).

Since

dx∗(t) = σ(t)dw(t) + ρdz(λt) = σ(t)dw(t) + ρdz̀(λt)− ρξλdt

we have

f • x∗ = (fσ) • w + ρf(λ−1·) • z̀ − ρξλ

∫ ∞

0

f(t)dt. (25)

Now,

E{exp(iζ(fσ) • w)|z̀(·)} = exp

{
−1

2
ζ2

∫ ∞

0

f 2(t)σ2(t)dt

}
and hence

E{exp(iζf • x∗)} = E

[
exp

{
−1

2
ζ2

∫ ∞

0

f 2(t)σ2(t)dt+ iζρ

∫ ∞

0

f(λ−1t)dz̀(t)

}]
· exp

{
−iζρξλ

∫ ∞

0

f(t)dt

}
.
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Furthermore, using the representation

σ2(t) = e−λt

∫ t

−∞
eλsdz̀(λs)

we find ∫ ∞

0

f 2(t)σ2(t)dt = I0 + I1

where

I0 =

∫ ∞

0

f 2(t)e−λt

∫ 0

−∞
eλsdz̀(λs)dt

=

{∫ ∞

0

e−λtf 2(t)dt

}∫ 0

−∞
esdz̀(s)

and

I1 =

∫ ∞

0

∫ ∞

s

e−λ(t−s)f 2(t)dtdz̀(λs)

=

∫ ∞

0

∫ ∞

0

e−λuf 2(s+ u)dudz̀(λs)

=

∫ ∞

0

∫ ∞

0

e−λuf 2(λ−1s + u)dudz̀(s)

It follows that

E{exp(iζf • x∗)} = E

〈
exp

[
−1

2
ζ2

{∫ ∞

0

e−λtf 2(t)dt

}∫ 0

−∞
esdz̀(s)

]〉
·E
〈

exp

[∫ ∞

0

{
−1

2
ζ2

∫ ∞

0

e−λuf 2(λ−1t+ u)du+ iζρ

∫ ∞

0

f(λ−1t)

}
dz̀(t)

]〉
· exp

{
−iζρξλ

∫ ∞

0

f(t)dt

}
Consequently, writing C{ζ ‡ x} = log E{eiζx} for the cumulant function of any random

variable x, and recalling k̀(θ) = log E{exp θz̀(1)}, and using the known result that for an

arbitrary Lévy process z

C{ζ ‡ f • z)} =

∫ ∞

0

C{ζf(t) ‡ z(1)}dt

(a proof may be found, for instance, in Barndorff-Nielsen (1998)), we obtain

C{ζ ‡ f • x∗} =

∫ ∞

0

M(t)dt

where

M(t) = k̀

[
−1

2
ζ2

{∫ ∞

0

e−λuf 2(u)du

}
e−t

]
+λk̀

{
−1

2
ζ2

∫ ∞

0

e−λuf 2(t+ u)du+ iζρ

∫ ∞

0

f(t)

}
−iζλρξf (t)
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In particular, letting ζ = 1 and

f(t) = ζ11[0,t1] + ... + ζm1[0,tm]

(where 0 < t1 < ... < tm) we obtain the joint cumulant function of x∗(t1), ..., x∗(tm).

The special case of m = 1 and t1 = t, when ρ = 0, deserves explicit consideration as

it yields the cumulant function of the (unconditional) log-prices at time t. In particular

C{ζ ‡ x∗(t)} = λ

∫ ∞

0

k̀

{
−1

2
ζ2λ−1(1− e−λt)e−λs

}
ds

+λ

∫ t

0

k̀

{
−1

2
ζ2λ−1(e−λs − e−λt)

}
ds.

This can be reduced somewhat further. In fact, recalling ḱ(θ) = log E{exp θσ2}, the first

integral is simply, following from (4),

ḱ

{
−1

2
ζ2λ−1(1− e−λt)

}
.

Using the same result (4) we may rewrite the second integral as

λ

∫ t

0

k̀

{
−1

2
ζ2λ−1(e−λs − e−λt)

}
ds =

∫ λt

0

k̀

{
−1

2
ζ2λ−1(e−s − e−λt)

}
ds

= −1

2
ζ2λ−1

·
∫ λt

0

(e−s − e−λt)ḱ′
{
−1

2
ζ2λ−1(e−s − e−λt)

}
ds

= −1

2
ζ2λ−1(J0 + J1)

where, by partial integration,

J0 =

∫ λt

0

e−sḱ′
{
−1

2
ζ2λ−1(e−s − e−λt)

}
ds

= −ḱ
{
−1

2
ζ2λ−1(1− e−λt)

}
+

∫ λt

0

e−sḱ

{
−1

2
ζ2λ−1(e−s − e−λt)

}
ds

and

J1 = −e−λt

∫ λt

0

ḱ′
{
−1

2
ζ2λ−1(e−s − e−λt)

}
ds

= e−λtḱ

{
−1

2
ζ2λ−1(1− e−λt)

}
Thus

C{ζ ‡ x∗(t)} =

(
1 +

1

2
ζ2λ−1(1− e−λt)

)
ḱ

{
−1

2
ζ2λ−1(1− e−λt)

}
−1

2
ζ2

∫ t

0

e−λsḱ

{
−1

2
ζ2λ−1(e−λs − e−λt)

}
ds
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But, by the substitution

w = −1

2
ζ2λ−1(e−λs − e−λt)

the last term reduces to

−
∫ 0

− 1
2
ζ2λ−1(1−e−λt)

ḱ(w)dw = ḱ∗(−1

2
ζ2λ−1(1− e−λt))

where we have introduced

ḱ∗(x) =

∫ x

0

ḱ(w)dw

The final result is then

C{ζ ‡ x∗(t)} =

{
1 +

1

2
ζ2λ−1(1− e−λt)

}
ḱ

{
−1

2
ζ2λ−1(1− e−λt)

}
+ḱ∗

{
−1

2
ζ2λ−1(1− e−λt)

}
Example. Suppose σ2 is the IG-OU process, i.e. σ2(t) ∼ IG(δ, γ), then we have ḱ(θ) =

δγ
{
1− (1− 2θ/γ2)1/2

}
and so

ḱ∗ (θ) = δγθ − δγ

∫ θ

0

(1− 2w/γ2)1/2dw.

In general for any positive β,∫ θ

0

(1− βw)1/2dw = − 2

3β
(1− βθ)3/2 +

2

3β
=

2

3β

{
1− (1− βθ)3/2

}
.

Hence

ḱ∗ (θ) = δγ

[
θ − γ2

3

{
1−

(
1− 2

γ2
θ

)3/2
}]

.

5 Conclusion

Leverage type effects are empirically important for some stock return data. In this note we

have extended the models considered in Barndorff-Nielsen and Shephard (1998a) to deal

with this problem. Our model construction allows a great deal of analytic tractability —

again giving us the ability to give results on the moments of returns measured in discrete

time without any form of approximation. This is not available in more traditionally

defined models of these effects.

6 Appendix: Some derivations

The following basic results on OU processes

dσ2(t) = −λσ2(t)dt+ dz̀(λt) (26)
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are of help in this Appendix. They are

σ2(t) = e−λtσ2(0) + e−λt

∫ t

0

eλsdz̀(λs)

σ2(t) =

∫ 0

−∞
esdz̀(λt+ s)

σ2∗(t) = λ−1{z̀(λt)− σ2(t) + σ2(0)}
Each is discussed extensively in Barndorff-Nielsen and Shephard (1998a). Then we note

that

σ2
n = σ2∗(∆n)− σ2∗ {∆(n− 1)}

= λ−1{z̀(λ∆n)− z̀(λ∆(n− 1))− σ2(∆n) + σ2(∆(n− 1))} (27)

= λ−1
{
z̀n + (1− e−λ∆)σ2 {∆(n− 1)}

−
∫ ∆

0

e−λ∆+λudz {λ∆(n− 1) + λu}
}

= λ−1
{
z̄n + (1− e−λ∆)σ̄2 {∆(n− 1)}

−
∫ ∆

0

e−λ∆+λudz̄ {λ∆(n− 1) + λu}+ λ∆ξ

}
= λ−1

{
z̄n + (1− e−λ∆)

∫ 0

−∞
eudz̄ {λ∆(n− 1) + u}

−
∫ 0

−λ∆

eudz̄(λ∆n + u) + λ∆ξ

}
(28)

In the rest of this Appendix we let λ = 1, for the general results are easily derived

from those for λ = 1 by dilation of the time scale. In fact, the general forms follow from

those given below simply by substituting ∆ by λ∆.

The first result is that

Var{y2
n} = E{y4

n} − E{y2
n}2

= E{y4
0n}+ 4ρE{y3

0nz̄n}+ 6ρ2E{y2
0nz̄

2
n}

+4ρ3E{y0nz̄
3
n}+ ρ4E{z̄4

n} −∆2(ξ + ρ2κ̀2)
2

= Var{y2
0n}+ 6ρ2{∆2ξκ̀2 + (e−∆ − 1 + ∆)µ̀3}

+ρ4∆(κ̀4 + 3∆κ̀2
2)− 2∆2ξρ2κ̀2 −∆2ρ4κ̀2

2

= Var{y2
0n}+ 2ρ2{2∆2ξκ̀2 + 3(e−∆ − 1 + ∆)µ̀3}+ ρ4∆(κ̀4 + 2∆κ̀2

2).

Second we have that

E{yny
2
n+s} = E{(y0n + ρz̄n)(y0n+s + ρz̄n+s)

2}
= ρE{z̄nσ

2
n+s}

14



= ρ(1− e−∆)

∫ 0

−∞
euE{z̄ndz̄ (∆(n + s− 1) + u)}

= ρ(1− e−∆)κ̀2

∫ −∆(s−1)

−∆s

eudu

= ρκ̀2(1− e−∆)2e−∆(s−1)

Finally, for the determination of Cov
(
y2

ny
2
n+s

)
for s > 0 we note that

E{y2
ny

2
n+s} =

9∑
i=1

Ti

with

T1 = E(y2
0ny

2
0n+s)

T2 = 2ρE(y2
0ny0n+sz̄n+s) = 0

T3 = ρ2∆2ξκ̀2

T4 = 2ρE(y0nz̄ny
2
0n+s) = 0

T5 = 4ρ2E(y0nz̄ny0n+sz̄n+s) = 0

T6 = 2ρ3E(y0nz̄nz̄
2
n+s) = 0

T7 = ρ2
{
∆2ξκ̀2 + (1− e−λ∆)2e−λ∆(s−1)µ̀3

}
T8 = 2ρE(y2

0ny0n+sz̄n+s) = 0

T9 = ρ4E(z̄2
nz̄

2
n+s) = ρ4∆2κ̀2

2.

Here only T3 and T7 involve several steps of calculation, as follows

T3 = ρ2E(y2
0nz̄

2
n+s)

= ρ2E(y2
0n)E(z̄2

n+s)

= ρ2∆2ξκ̀2

and

T7 = ρ2E(z̄2
ny

2
0n+s)

= ρ2E{z̄2
nE{y2

0n+s|F∆n}}
= ρ2E{z̄2

nσ
2
n+s}

= ρ2((1− e−∆)

∫ 0

−∞
euE{z̄2

ndz̄ (∆(n + s− 1) + u)}

−
∫ 0

−∆

euE{z̄2
ndz̄(∆(n + s) + u)}

+∆2ξκ̀2)
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= ρ2((1− e−∆)

∫ −∆(s−1)

−∆s

euE{z̄2
ndz̄ (∆(n+ s− 1) + u)}

+∆2ξκ̀2)

= ρ2

(
∆2ξκ̀2) + (1− e−∆)

∫ −∆(s−1)

−∆s

∫ −∆(s−1)

−∆s

∫ −∆(s−1)

−∆s

eu

·E{dz̄(∆(n+ s− 1) + u)dz̄(∆(n + s− 1) + v)dz̄(∆(n+ s− 1) + w)})
= ρ2

{
∆2ξκ̀2 + (1− e−∆)2e−∆(s−1)µ̀3

}
All in all

Cov(y2
ny

2
n+s) = E(y2

ny
2
n+s)− E(y2

n)E(y2
n+s)

= Cov(y2
0n, y

2
0n+s) + ∆2ξ2

+2ρ2ξ∆2κ̀2 + ρ4∆2κ̀2
2 + ρ2(1− e−∆)2e−∆(s−1)µ̀3

−∆2(ξ + ρ2κ̀2)
2

= Cov(y2
0n, y

2
0n+s) + ρ2(1− e−∆)2e−∆(s−1)µ̀3
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