
Econometrics Journal (1998), volume 1, pp. 1–55.

Statistical algorithms for models in state space

using SsfPack 2.2∗

Siem Jan Koopman], Neil Shephard[, Jurgen A Doornik[

]CentER, Tilburg University, 5000 LE Tilburg, The Netherlands
s.j.koopman@kub.nl

[Nuffield College, Oxford, OX1 1NF, UK
neil.shephard@nuffield.oxford.ac.uk, jurgen.doornik@nuffield.oxford.ac.uk

SsfPack: http://center.kub.nl/stamp/ssfpack.htm
Ox: http://www.nuff.ox.ac.uk/users/doornik/

Received: November 1998

Summary This paper discusses and documents the algorithms of SsfPack 2.2.
SsfPack is a suite of C routines for carrying out computations involving the stat-
istical analysis of univariate and multivariate models in state space form. The
emphasis is on documenting the link we have made to the Ox computing environ-
ment. SsfPack allows for a full range of different state space forms: from a simple
time-invariant model to a complicated time-varying model. Functions can be used
which put standard models such as ARIMA and cubic spline models in state space
form. Basic functions are available for filtering, moment smoothing and simula-
tion smoothing. Ready-to-use functions are provided for standard tasks such as
likelihood evaluation, forecasting and signal extraction. We show that SsfPack can
be easily used for implementing, fitting and analysing Gaussian models relevant to
many areas of econometrics and statistics. Some Gaussian illustrations are given.

Keywords: Kalman filtering and smoothing; Markov chain Monte Carlo; Ox;
Simulation smoother; State space.

JEL classification: C10, C15, C22.

∗We wish to thank Marius Ooms, Peter Boswijk, and an anonymous referee for many helpful comments
and suggestions. Financial support from the Royal Netherlands Academy of Arts and Sciences (SJK),
the UK Economic and Social Research Council (grant R000237500, JAD) is gratefully acknowledged.

c© Royal Economic Society 1998. Published by Blackwell Publishers Ltd, 108 Cowley Road, Oxford OX4 1JF,
UK and 350 Main Street, Malden, MA, 02148, USA.

2 Koopman, Shephard and Doornik

1. INTRODUCTION

This paper documents the package SsfPack 2.2 which carries out computations for the
statistical analysis of general univariate and multivariate state space models. SsfPack
allows for a full range of different state space forms: from a simple univariate autoregress-
ive model to a complicated time-varying model for aggregated variables. In particular, it
can be used in many areas of econometrics and statistics as will become apparent from
the illustrations given.

Statistical and econometric packages such as SAS, S-PLUS, SPSS, PcGive, STAMP,
and Minitab have many canned options for the fitting of standard time series models.
However, when we work on new areas of time series modelling it is important to have
generic programming tools which offer complete flexibility to carry out the computational
problem. SsfPack provides such a tool, in the form of filtering, moment smoothing and
simulation smoothing routines which are general, fast, and easy to use.

SsfPack is a suite of C routines collected into a library which can be linked to different
computing environments. The version discussed here is linked to the Ox 2.0 (or later)
matrix programming language of Doornik (1998). All examples presented here are in the
form of Ox code; this allows us focus on the important features of SsfPack. Although not
discussed here, it is also possible to call the C functions of SsfPack from other computing
environments.

SsfPack can be downloaded from the address given on the title page. It may be
used freely for non-commercial purposes. The SsfPack web site also provides installation
details. The Ox web site has tutorials and online help for Ox, as well as a downloadable
version. Please cite this paper and Doornik (1998) when using SsfPack.

We begin by introducing the state space form, and the SsfPack notation (§2). Section
3 discusses the state space formulation for several econometric and statistical models. It
also documents the functions provided by SsfPack for this purpose. This shows the gen-
erality of the state space form and the flexibility of SsfPack. The recursive algorithms
associated with the Kalman filter are given in §4, including algorithms for smoothing and
simulation. The emphasis is on efficient implementation; also, missing values are handled
transparently. Examples are given at every stage, using artificially generated data. In
§5 we turn to more practical problems, showing how the special functions for estima-
tion, signal extraction, and forecasting can be used. The examples include estimation
and forecasting of an ARMA model; estimation and outlier detection of an unobserved
components model; spline interpolation when missing values are present; recursive estim-
ation of a regression model. Section 6 considers more advanced applications, including
seasonal adjustment; combining models; bootstrapping; Bayesian analysis of a gaussian
state space model. The final section concludes. The Appendix summarizes the SsfPack
functions and example programs for Ox. Starred sections are considered more technical
and may be skipped on first reading.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 3

2. STATE SPACE FORM

The state space form provides a unified representation of a wide range of linear Gaussian
time series models including ARMA models, time-varying regression models, dynamic
linear models and unobserved components time series models; see, for example, Harvey
(1993, Chapter 4), West and Harrison (1997), Kitagawa and Gersch (1996). This frame-
work also encapsulates different specifications for nonparametric and spline regressions.
The Gaussian state space form consists of a transition equation and a measurement
equation; we formulate it as

αt+1 = dt + Ttαt +Htεt, α1 ∼ N(a, P) , t = 1, . . . , n, (1)
θt = ct + Ztαt, (2)
yt = θt +Gtεt, εt ∼ NID (0, I) , (3)

where NID(µ,Ψ) indicates an independent sequence of normally distributed random vec-
tors with mean µ and variance matrix Ψ, and, similarly, N(·, ·) a normally distributed
variable. The N observations at time t are placed in the vector yt and the N × n data
matrix is given by (y1, . . . , yn). The m×1 state vector αt contains unobserved stochastic
processes and unknown fixed effects. The state equation (1) has a Markovian structure
which is an effective way to describe the serial correlation structure of the time series yt.
The initial state vector is assumed to be random with mean a and variance matrix P but
more details are given in §2.4. The measurement equation (3) relates the observation
vector yt in terms of the state vector αt through the signal θt of (2), and the vector of
disturbances εt. The deterministic matrices Tt, Zt, Ht and Gt are referred to as sys-
tem matrices and they usually are sparse selection matrices. The vectors dt and ct are
fixed, and can be useful to incorporate known effects or known patterns into the model,
otherwise they are zero. When the system matrices are constant over time, we drop the
time-indices to obtain the matrices T , Z, H and G. The resulting state space form is
referred to as time-invariant.

2.1. The state space representation in SsfPack

The state space form in SsfPack is represented by:(
αt+1

yt

)
= δt + Φtαt + ut, ut ∼ NID (0,Ωt) , t = 1, . . . , n,

δt =
(
dt
ct

)
, Φt =

(
Tt
Zt

)
, ut =

(
Ht

Gt

)
εt, Ωt =

(
HtH

′
t HtG

′
t

GtH
′
t GtG

′
t

)
,

α1 ∼ N(a, P) .

(4)

The vector δt is (m+N)×1, the matrix Φt is (m+N)×m and Ωt is (m+N)× (m+N).
Specifying a model in state space form within SsfPack can be done in different ways
depending on its complexity. At the most elementary level, the state space form is time-
invariant with δ = 0, a = 0 and P = κI where κ is some pre-set constant (see §2.5). For

c© Royal Economic Society 1998

4 Koopman, Shephard and Doornik

αt+1, dt, a : m × 1, yt, θt, ct : N × 1, εt : r × 1,

Tt, P : m × m, Zt : N × m,

Ht : m × r, Gt : N × r.

Φ : (m + N) × m δ (m + N) × 1

Ω (m + N) × (m + N) Σ (m + 1) × m

m : dimension of the state vector;

N : number of variables;

n : number of observations;

r : dimension of the disturbance vector.

Table 1. Dimensions of state space matrices

this elementary case only two matrices are required, that is

Φ =
(
T
Z

)
, Ω =

(
HH ′ HG′

GH ′ GG′

)
.

The dimensions are summarized in Table 1.
For example, consider the local linear trend model:

µt+1 = µt + βt + ηt, ηt ∼ NID
(
0, σ2

η

)
,

βt+1 = βt + ζt, ζt ∼ NID
(
0, σ2

ζ

)
,

yt = µt + ξt, ξt ∼ NID
(
0, σ2

ξ

)
,

(5)

with µ1 ∼ NID (0, κ) and β1 ∼ NID (0, κ) where κ is large; for more details about
this model, see §3.2. The state vector contains the trend component µt and the slope
component βt, that is αt = (µt, βt)′. The matrices Φ and Ω for model (5) are given by

Φ =

 1 1
0 1
1 0

 , Ω =

 σ2
η 0 0
0 σ2

ζ 0
0 0 σ2

ξ

 .

In Ox code, when σ2
η = 0, σ2

ζ = 0.1, and σ2
ξ = 1, these matrices can be created as follows:

mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0,0.1,1>);

2.2. Data sets used in the illustrations

SsfPack expects all data variables to be in row vectors. This is different from most
other Ox packages. Various data formats can be loaded easily in Ox, such as Excel and
PcGive files. In this paper we use plain data files, with the first two entries in the file
specifying the matrix dimensions (normally these are .mat files, but here we use the .dat
extension). Many examples therefore start with a statement like:

c© Royal Economic Society 1998

Statistical algorithms for models in state space 5

mYt = loadmat("Nile.dat")’;

which creates mYt as an 1 × n matrix with the Nile data. This is a series of readings
of the annual flow of the Nile river at Aswan for 1871 to 1970. This series is originally
considered by Cobb (1978) and analysed more recently by Balke (1993).

A second data set used in this paper is the airline data, consisting of the number of
UK airline passengers (in thousands, from January 1949 to December 1960), see Box and
Jenkins (1976). Both are graphed in Figure 1.

1880 1900 1920 1940 1960

500

750

1000

1250
Nile

1950 1955 1960

200

300

400

500

600 airline

Figure 1. Nile and airline data

2.3. Initial conditions

The variance matrix P of the initial state vector α1 may contain diffuse elements:

P = P∗ + κP∞, κ is large, (6)

where P∗ is a symmetric m ×m matrix, P∞ is a diagonal m ×m matrix composed of
zero and unity values, and, for example, κ = 106. When the i-th diagonal element of P∞
is unity, the corresponding i-th column and row of P∗ are assumed to be zero. To specify
the initial state conditions (6) in SsfPack explicitly, the (m+ 1) ×m matrix

Σ =
(
P
a′

)
, (7)

is required. The block matrix P in Σ is equal to matrix P∗ except when a diagonal
element of P is equal to −1, indicating that the corresponding initial state vector element
is diffuse. When a diagonal element of P is −1, the corresponding row and column of
P are ignored. When the initial state conditions are not explicitly defined, it will be
assumed that the state vector is fully diffuse, that is

a = 0, P∗ = 0, P∞ = I, (8)

such that α1 ∼ N(0, κI) where κ is the numerical value 106. If any diagonal value of Ω
is larger than unity, the constant κ will be multiplied by the maximum diagonal value of
Ω. In short, we formally have

κ = 106 × max{1, diag(Ω)}.

c© Royal Economic Society 1998

6 Koopman, Shephard and Doornik

In certain circumstances this automatic procedure of dealing with diffuse initialization
may not be desirable and the user may wish to specify P freely. For example, the user
may prefer to input

mSigma = <10^3,0;0,10^8;0,0>;

instead of

mSigma = <-1,0;0,-1;0,0>;

However, it is advisable to use the constant −1 in matrix Σ for a diffuse initial state ele-
ment; for example, it will be more straightforward to calculate the appropriate likelihood
function for certain models. The authors are working on a version of SsfPack which al-
lows the limiting case κ→ ∞. This exact diffuse treatment requires specific adjustments
to the basic functions of SsfPack; see Koopman (1997). Finally, for stationary time series
models in state space, a well-defined initial variance matrix P can be constructed which
does not depend on κ; see §3.1 for an example.

2.4. Time-varying state space form

When some elements of the system matrices are not constant but change over time,
additional administration is required. We introduce the index matrices JΦ, JΩ and Jδ
which must have the same dimension as Φ, Ω and δ, respectively. The elements of the
index matrices are all set to −1 except the elements for which the corresponding elements
in Φ, Ω and δ are time varying. The non-negative index value indicates the row of some
data matrix which contain the time varying values. When no element of a system matrix
is time-varying, the corresponding index matrix can be set to an empty matrix; in Ox,
that is <>. For example, the local linear trend model (5) with time-varying variances
(instead of the variances being constant) is defined as

mJ_Phi = mJ_Delta = <>;
mJ_Omega = <4,-1,-1;-1,0,-1;-1,-1,2>;

indicating that the variances of ξt are found in the third row of an accompanying data
matrix (note that indexing starts at value 0 in Ox). We could also have created JΩ by
first creating a matrix of −1’s, and then setting the diagonal:

mJ_Omega = constant(-1, mOmega);
mJ_Omega = setdiagonal(mJ_Omega, <4,0,2>);

The variances of ηt and ζt are to be found in the fifth row and the first row, respectively,
of the data matrix, which must have at least five rows and n columns. No element of Φ
is time-varying, therefore we set JΦ and Jδ to empty matrices. Examples of time-varying
state space models can be found in §3.3 and §3.4.

2.5. Formulating the state space in SsfPack

The most elementary state space form is time-invariant and it only requires the matrix
specifications of Φ and Ω; in this case, it is assumed that δ = 0, a = 0 and P = κI

c© Royal Economic Society 1998

Statistical algorithms for models in state space 7

with κ = 106×max{1, diag(Ω)}. In addition, initial conditions can explicitly be given by
defining an appropriate matrix Σ. The time-invariant vector δ can also be given when
it is nonzero. Thus, a time-invariant state space form can be inputted in one of three
different formats:

mPhi, mOmega
mPhi, mOmega, mSigma
mPhi, mOmega, mSigma, mDelta

A state space form with time-varying system elements requires the index matrices
JΦ, JΩ and Jδ, together with a data matrix X to which the indices refer. Therefore, the
fourth possible formulation is:

mPhi, mOmega, mSigma, mDelta, mJ_Phi, mJ_Omega, mJ_Delta, mXt

where mXt is the data matrix with n columns as discussed in §2.4.

2.6. Missing values

The algorithms of SsfPack can handle missing values. A missing value is only recognised
within the data matrix (y1, . . . , yn). A dot in an Ox matrix constant indicates a missing
value. Alternatively, the constant value M NAN may be used in any expression. For
example, the second element of the vector

<1,.,3,4,5>;

is treated as missing. No missing values are allowed within the matrices Φ, Ω, Σ and δ
or their time-varying counterparts.

The vector of observations yt with missing entries will be reduced to the vector y†t
without missing entries so that the measurement equation must be adjusted accordingly.
For example, the measurement equation yt = ct + Ztαt +Gtεt with

yt =


5
.
3
.

 , ct =


1
2
3
4

 , Zt =


Z1,t

Z2,t

Z3,t

Z4,t

 , Gt =


G1,t

G2,t

G3,t

G4,t

 ,

reduces to the measurement equation y†t = c†t + Z†
tαt +G†

tεt with

y†t =
(

5
3

)
, c†t =

(
1
3

)
, Z†

t =
(
Z1,t

Z3,t

)
, G†

t =
(
G1,t

G3,t

)
.

The algorithms of SsfPack automatically replace the observation vector yt by y†t when
some entries of yt are missing. Other matrices are adjusted accordingly, so the input
arguments as well as the output are in terms of yt, Gt, etc., rather than y†t , G

†
t . The case

when all entries are missing is discussed in §4.3.

c© Royal Economic Society 1998

8 Koopman, Shephard and Doornik

3. PUTTING LINEAR MODELS IN STATE SPACE FORM

It would be tedious if we had to construct the system matrices of the state space form (4)
manually for every model. Therefore, SsfPack provides functions to create these matrices
for several commonly used models. This section documents those functions. However,
the system matrices may still be constructed or modified manually, even after using the
provided routines.

3.1. ARMA models

The autoregressive moving average model of order p and q, denoted by ARMA(p, q), is
given by

yt = φ1yt−1 + . . .+ φpyt−p + ξt + θ1ξt−1 + . . .+ θqξt−q, ξt ∼ NID
(
0, σ2

ξ

)
. (9)

The lag polynomial of order d is defined as A (L) = 1+A1L+ . . .+AdL
d where L is the

lag operator such that Lryt = yt−r. In this notation, we can write the ARMA model as

φ(L)yt = θ(L)ξt.

The model (9) is stationary when the roots of the polynomial φ(L) = 1−φ1L− . . .−φpLp
are outside the unit circle and the model is invertible when the roots of the polynomial
θ(L) = 1 + θ1L + . . . + θqL

q are outside the unit circle. The parameter space can be
restricted to obtain a stationary invertible ARMA model by following the arguments
in Ansley and Kohn (1986). Any ARMA model can be written as a first order vector
autoregressive, VAR(1), model. Such a representation, which is not unique, is called a
companion form or Markov representation. The most commonly quoted companion form
of the ARMA model is yt = (1, 0, 0, . . . , 0)αt and

αt+1 =


φ1 1 0 · · · 0
φ2 0 1 0
...

...
. . .

φm−1 0 0 1
φm 0 0 · · · 0

αt +


1
θ1
...

θm−2

θm−1

 ξt, ξt ∼ NID
(
0, σ2

ξ

)
, (10)

with m = max(p, q + 1), see e.g. Harvey (1993, §4.4). This can be compactly written
as αt+1 = Taαt + hξt where the time-invariant matrices Ta and h are given in (10).
Multivariate or vector ARMA models can also be written in the companion VAR(1)
form. In the case of a stationary ARMA model in state space form, the unconditional
distribution of the state vector is αt ∼ N(0, V), where V = TaV T

′
a + σ2

ξhh
′. There

are different ways of numerically solving out for V . The most straightforward way is to
invert a matrix in order to solve the linear equations (I − Ta ⊗ Ta) vec(V) = σ2vec(hh′)
for V , where vec(V) operator stacks the columns of V ; see, for example, Magnus and
Neudecker (1988, Theorem 2, p. 30). The variance matrix of the initial state vector is in
this case equal to the unconditional variance matrix of the state vector, that is P = V .

c© Royal Economic Society 1998

Statistical algorithms for models in state space 9

SsfPack implementation. The SsfPack routine GetSsfArma provides the appropriate
system matrices for any univariate ARMA model. The routine requires two vectors
containing the autoregressive parameters φ1, . . . , φp and the moving average parameters
θ1, . . . , θq which must be chosen in such a way that the implied ARMA model is stationary
and invertible; SsfPack does not verify this. The function call

GetSsfArma(vAr, vMa, dStDev, &mPhi, &mOmega, &mSigma);

places the ARMA coefficients within the appropriate state elements and it solves the set
of linear equations for the variance matrix of the initial state vector. The arguments vAr
and vMa, containing the autoregressive and the moving average parameters, respectively,
should be either row vectors or column vectors. The scalar value dStDev represents σξ
in (10). The remaining three arguments are used to receive the system matrices Φ, Ω
and Σ. The & is used to pass a reference to the variable, which is changed on return.

Example. The following example outputs the relevant state space matrices for the
ARMA(2,1) model yt = 0.6yt−1 + 0.2yt−1 + ξt − 0.2ξt−1 with ξt ∼ NID (0, 0.9). The Ox
code and output are given in Listing 1.

#include <oxstd.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

decl mphi, momega, msigma;
GetSsfArma(<0.6,0.2>, <-0.2>, sqrt(0.9), &mphi, &momega, &msigma);
print("Phi =", mphi, "Omega =", momega, "Sigma =", msigma);

}

Phi =
0.60000 1.0000
0.20000 0.00000
1.0000 0.00000

Omega =
0.90000 -0.18000 0.00000

-0.18000 0.036000 0.00000
0.00000 0.00000 0.00000

Sigma =
1.4068 -0.013984

-0.013984 0.092271
0.00000 0.00000

Listing 1. ssfarma.ox with output

As this is the first complete program, we discuss it in some detail. the first line includes
the standard Ox library. The second line includes the SsfPack header file, required to use
the package (this assumes that SsfPack is installed in ox/packages/ssfpack). Every Ox
program must have a main() function, which is where program execution commences.
Variables are declared using the decl statement (variables must always be declared). The
expression inside < > is a matrix constant. Such a constant may not contain variables;

c© Royal Economic Society 1998

10 Koopman, Shephard and Doornik

if that is required, use horizontal (~) and vertical (|) concatenation to construct the
matrix, for example: var = phi1 ~ phi2 ~ phi3;. In most examples below we only
list the salient contents of main(). Then the include statements, main(), and variable
declarations must be added to create an Ox program which can be run. An AR(2) and
MA(1) model is respectively created as:

GetSsfArma(<0.6,0.2>, <>, sqrt(0.9), &mphi, &momega, &msigma);
GetSsfArma(<>, <-0.2>, sqrt(0.9), &mphi, &momega, &msigma);

3.2. Unobserved components time series models

The state space model also deals directly with unobserved components time series mod-
els used in structural time series and dynamic linear models; see, for example, West and
Harrison (1997), Kitagawa and Gersch (1996) and Harvey (1989). Ideally such compon-
ent models should be constructed from subject matter considerations, tailored to the
particular problem at hand. However, in practice there are a group of commonly used
components which are used extensively. For example, a specific time series model may
include the addition of a trend µt, a seasonal γt, a cycle ψt and an irregular εt component
to give

yt = µt + γt + ψt + ξt, where ξt ∼ NID
(
0, σ2

ξ

)
, t = 1, . . . , n. (11)

Explanatory variables (i.e. regression and intervention effects) can be included in this
model straightforwardly.

Trend component. The trend component µt is usually specified as

µt+1 = µt + βt + ηt, ηt ∼ NID
(
0, σ2

η

)
,

βt+1 = βt + ζt, ζt ∼ NID
(
0, σ2

ζ

)
,

(12)

with µ1 ∼ N(0, κ) and β1 ∼ N(0, κ) where κ is large. The model with trend and irregular
is easily placed into state space form; see also §2.3. Model (12) is called the local linear
trend model; the local level model arises when βt is set to zero. Sometimes σ2

η of (12)
is set to zero, and so we refer to µt as a smooth trend or an integrated random walk
component. When σ2

η and σ2
ς are both set to zero, we obtain a deterministic linear trend

in which µt = µ1 + β1(t− 1).

Seasonal component. The specification of the seasonal component γt is given by

S(L)γt = ωt, where ωt ∼ NID(0, σ2
ω) and S(L) = 1 + L+ . . .+ Ls−1, (13)

with s equal to the number of seasons, for t = 1, . . . , n. When σ2
ω of (13) is set to zero,

the seasonal component is fixed. In this case, the seasonal effects sum to zero over the
previous ‘year’; this ensures that it cannot be confounded with the other components.
The state space representation for s = 4 is given by γt

γt−1

γt−2

 =

 −1 −1 −1
1 0 0
0 1 0

 γt−1

γt−2

γt−3

+

 ωt
0
0

 ,

 γ1

γ0

γ−1

 ∼ N(0, κI3) .

Other representations are discussed in §6.1.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 11

Cycle component. The cycle component ψt is specified as(
ψt+1

ψ∗
t+1

)
= ρ

(
cosλc sinλc
− sinλc cosλc

)(
ψt
ψ∗
t

)
+
(
χt
χ∗
t

)
, (14)(

χt
χ∗
t

)
∼ NID

{(
0
0

)
, σ2
ψ

(
1 − ρ2

)
I2

}
,

for which 0 < ρ ≤ 1 is the ‘damping factor’. The frequency is λc = 2π/c, and c is the
‘period’ of the cycle. The initial conditions are ψ0 ∼ N(0, σ2

ψ) and ψ∗
0 ∼ N(0, σ2

ψ) with
cov(ψ0,ψ

∗
0) = 0. The variance of χt and χ∗

t is given in terms of σ2
ψ and ρ so that when

ρ→ 1 the cycle component reduces to a deterministic (but stationary) sine-cosine wave;
see Harvey and Streibel (1998).

SsfPack implementation. The SsfPack routine GetSsfStsm provides the relevant
system matrices for any univariate structural time series model:

GetSsfStsm(mStsm, &mPhi, &mOmega, &mSigma);

The routine requires one input matrix containing the model information as follows:
mStsm = < CMP LEVEL, ση, 0, 0;

CMP SLOPE, σζ , 0, 0;
CMP SEAS DUMMY, σω, s, 0;
CMP CYC 0, σψ, λc, ρ;

...
...

...
...

CMP CYC 9, σψ, λc, ρ;
CMP IRREG, σξ, 0, 0 >;

The input matrix may contain fewer rows than the above setup and the rows may have a
different sequential order. However, the resulting state vector is organised in the sequence
level, slope, seasonal, cycle and irregular. The first column of mStsm uses predefined
constants, and the remaining columns contain real values. CMP SEAS DUMMY refers to
(13), where s is the number of seasonal component. The function GetSsfStsm returns
the three system matrices Φ, Ω, and Σ in a similar fashion to GetSsfArma (§3.1). The
inclusion of a regression effect into the model is discussed in §6.3.

GetSsfStsm(<CMP_IRREG, 1.0, 0, 0;
CMP_LEVEL, 0.5, 0, 0;
CMP_SEAS_DUMMY, 0.2, 3, 0;
CMP_SLOPE, 0.1, 0, 0>, &mphi, &momega, &msigma);

Φ =


1 1 0 0
0 1 0 0
0 0−1−1
0 0 1 0
1 0 1 0

 , Ω =


0.25 0 0 0 0

0 0.01 0 0 0
0 0 0.04 0 0
0 0 0 0 0
0 0 0 0 1

 , Σ =


−1 0 0 0

0−1 0 0
0 0−1 0
0 0 0−1
0 0 0 0

 .

Listing 2. Part of ssfstsm.ox with corresponding output

Example. The code in Listing 2 outputs the relevant state space matrices for a basic
structural time series model with trend (including slope), dummy seasonal with s = 3
and irregular. The output for mphi, momega, msigma is given as Φ,Ω,Σ respectively.

c© Royal Economic Society 1998

12 Koopman, Shephard and Doornik

3.3. Regression models

The regression model can also be represented as a state space model. The Kalman filter
for the regression model in state space form is equivalent to the ‘recursive least squares’
algorithm for the standard regression model; see Harvey (1993, §4.5). The state space
form of the univariate multiple regression model yt = Xtβ + ξt with ξt ∼ NID

(
0, σ2

ξ

)
and the k × 1 vector of coefficients β, for t = 1, . . . , n, is given by:

αt+1 = αt, yt = Xtαt +Gtεt, t = 1, . . . , n,

so that the system matrices are set to Tt = Ik, Zt = Xt, Gt = σξe
′
1, where e′1 = (1 0 · · ·),

and Ht = 0. The vector of coefficients β is fixed and unknown so that the initial
conditions are α1 ∼ N(0, κIk) where κ is large. The regression model in state space
leads to the so-called marginal or modified-profile likelihood function for σ2

ξ , which is
known to have better small-sample behaviour than the standard concentrated likelihood;
see, for example, Tunnicliffe-Wilson (1989, §4.5).

The regression model in state space form implies a time-varying system matrix Zt =
Xt in the measurement equation. Time-varying regression coefficients may be introduced
by setting Ht not equal to zero, for t = 1, . . . , n.

SsfPack implementation. The SsfPack routine GetSsfReg provides the time-varying
state space structure for a univariate (single equation) regression model:

GetSsfReg(mXt, &mPhi, &mOmega, &mSigma, &mJ_Phi);

where mXt is a k × n data matrix containing the explanatory variables. Although the
whole X matrix must be given in the function call, internally only information on the
number of rows is used. The function returns the composite matrices Φ, Ω, and Σ, as
well as the index matrix JΦ; see §2.4. The index matrix JΦ refers to the inputted data
matrix mXt. The structure of the output matrices is clarified in the example below.

Example. The example in Listing 3 outputs the relevant state space matrices for a
standard regression model with three explanatory variables. The data matrix consists of
a 3 × 20 matrix of standard normal random numbers.

GetSsfReg(rann(3,20), &mphi, &momega, &msigma, &mj_phi);

Φ =

 1 0 0
0 1 0
0 0 1
0 0 0

 , JΦ =

 −1 −1 −1
−1 −1 −1
−1 −1 −1

0 1 2

 , Ω =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , Σ =

 −1 0 0
0 −1 0
0 0 −1
0 0 0

 .

Listing 3. part of ssfreg.ox with corresponding output

c© Royal Economic Society 1998

Statistical algorithms for models in state space 13

3.4. Nonparametric cubic spline models∗

Suppose we work with a continuous variable t for which associated observations y(t)
are made at points t1, . . . , tn; see the work by Bergstrom (1984). Define δi = ti+1 − ti,
for i = 1, . . . , n, as the gap between observations, with δi ≥ 0. The aim is to develop
smoothing spline techniques for estimating a signal µ(t) from observations y(t) via the
relationship

y(t) = µ(t) + ε(t), (15)

where ε(t) is a stationary error process. The task at hand is to find a curve which min-
imizes

∑n
i=1 {y(ti) − µ(ti)}2 subject to the function µ(t) being ‘smooth’. The common

approach is to select the fitted µ̂(t) by maximizing the penalized Gaussian log-likelihood,
that is minimizing

n∑
i=1

{y(ti) − µ(ti)}2 + q−1

∫ {
∂2µ(t)
∂t2

}2

dt, (16)

for a given value of q; see Kohn and Ansley (1987), Hastie and Tibshirani (1990) and
Green and Silverman (1994).

The penalty function in (16) is equivalent to minus the log density function of the
continuous-time Gaussian smooth-trend model for µ(t), that is

µ(t) = µ(0) +
∫ t

0

β(s)ds = µ(0) + β(0)t+
∫ t

0

W (s)ds,

where the slope β(t) is generated by dβ(t) = dW (t), and W (t) is a Brownian motion with
variance σ2

W . The model can be represented as a bivariate Ornstein-Uhlenbeck process
for x(t) = {µ(t), β(t)}′, that is

dx(t) =
(

0 1
0 0

)
x(t)dt +

(
0
1

)
dW (t),

where dW (t) ∼ N(0, σ2
Wdt); see, for example, Wecker and Ansley (1983), Kohn and

Ansley (1987) and Harvey (1989, 9.1.2 and 9.2.1).
Taking the continuous time process µ(t) at discrete intervals leads to the following

exact discrete time model for µ(ti):

µ(ti+1) = µ(ti) + δiβ(ti) + η(ti),

β(ti+1) = β(ti) + ζ(ti),
(17)

where
η(ti) = µ(ti+1) − µ(ti) − δiβ(ti)

=
∫ ti+1

ti

β(s)ds− δiβ(ti) =
∫ ti+1

ti

{W (s) −W (ti)} ds,

and ζ(ti) = W (ti+1) −W (ti).

It follows that

c© Royal Economic Society 1998

14 Koopman, Shephard and Doornik

{
η(ti)
ζ(ti)

}
∼ N

{(
0
0

)
, σ2
ζδi

(
1
3δ

2
i

1
2δi

1
2δi 1

)}
,

where σ2
ζ = σ2

W . This can be combined with the more straightforward measurement

y(ti) = µ(ti) + ε(ti),

where ε(ti) ∼ N(0, σ2
ε) and is independent of η(ti) and ζ(ti). The log-density of the

discrete model equals the penalized likelihood (16) with signal-to-noise ratio q = σ2
ζ/σ

2
ε ;

see Wecker and Ansley (1983). Hence the usual state space framework with

Φt =

 1 δt
0 1
1 0

 , Ωt =

 qδ3t /3 qδ2t /2 0
qδ2t /2 qδt 0

0 0 1

 , t = 1, . . . , n,

can be used for filtering, smoothing and prediction. Note that, when the observations
are equally spaced, δt is a constant, and the state space form is time invariant.

SsfPack implementation. The SsfPack routine GetSsfSpline provides the time-
varying state space structure for the cubic spline model (17). The function call is

GetSsfSpline(dq, mDelta, &mPhi, &mOmega, &mSigma, &mJ_Phi, &mJ_Omega, &mXt);

where dq is the signal-to-noise ratio q and mDelta is the 1 × n data matrix with δt
(δt ≥ 0). The routine returns the state space matrices Φ and Ω together with JΦ, JΩ,
and the 4×n data matrixX (see the example below). If mDelta is empty, or only the first
four arguments are provided, δt is assumed to be one, and only Φ and Ω are returned.

Example. The example in Listing 4 outputs the relevant state space matrices for the
nonparametric cubic spline model with q = 0.2.

mt = <2,3,5,9,12,17,20,23,25>; // t_0 ... t_n
mdelta = diff0(mt’, 1)[1:][]’; // delta_1 ... delta_n
GetSsfSpline(0.2, mdelta, &mphi, &momega, &msigma, &mj_phi, &mj_omega, &mx);

Φ =

(
1 1
0 1
1 0

)
, JΦ =

(−1 0
−1 −1
−1 −1

)
, Ω =

(
1/15 1/10 0
1/10 1/5 0

0 0 1

)
, JΩ =

(
3 2 −1
2 1 −1

−1 −1 −1

)
,

X′ =

 δ1 qδ1 qδ2
1/2 qδ3

1/3
δ2 qδ2 qδ2

2/2 qδ3
2/3

...
...

...
...

 =


1.0 0.2 0.1 0.0667
2.0 0.4 0.4 0.5333
4.0 0.8 1.6 4.2667
3.0 0.6 0.9 1.8000
5.0 1.0 2.5 8.3333
3.0 0.6 0.9 1.8000
3.0 0.6 0.9 1.8000
2.0 0.4 0.4 0.5333

 .

Listing 4. Part of ssfspl.ox with corresponding output

c© Royal Economic Society 1998

Statistical algorithms for models in state space 15

4. ALGORITHMS

4.1. State space matrices in SsfPack: {Ssf}

In §2.5, we listed four possible formats for specifying the state space form in SsfPack:

mPhi, mOmega
mPhi, mOmega, mSigma
mPhi, mOmega, mSigma, mDelta
mPhi, mOmega, mSigma, mDelta, mJ_Phi, mJ_Omega, mJ_Delta, mXt

where the arguments may be the empty matrix <>. In this section we use {Ssf} to
refer to any of these four forms.

4.2. Simulating from state space models

To generate samples from the unconditional distribution implied by a statistical model
in state space form, or to generate artificial data sets, we use the state space form (4)
as a recursive set of equations. Actual values for α(i)

t+1 and y(i)
t for replication (i) can be

generated recursively from standard normal random numbers ε(i)t using (H ′
t, G

′
t)′ε

(i)
t =

u
(i)
t and: {

α
(i)
t+1

y
(i)
t

}
= δt + Φtα

(i)
t + u

(i)
t , t = 1, . . . , n, (18)

with the initialization α(i)
1 = a+Qu

(i)
0 , where u(i)

0 is a vector of standard normal random
numbers, and Q is such that P = QQ′. The quantities a and Q must be placed in the
SsfPack matrix Σ:

Σ =
(
Q
a′

)
.

Note that this is different from the usual formulation (7) which is used elsewhere. Only
in this particular case Q plays the role of P .

SsfPack implementation. The SsfPack function SsfRecursion implements the re-
cursion (18) for a given sample of u(i)

t (t = 0, . . . , n):

mD = SsfRecursion(mR, {Ssf});

where mR is the (m+N) × (n+ 1) data matrix with structure

mR =
(
u

(i)
0 u

(i)
1 . . . u

(i)
n

)
.

Missing values are not allowed in Ox is not allowed in mR. Although the matrix Ω must
be provided as part of {Ssf}, it does not play a role in this routine. As pointed out
above, Σ should contain Q rather than P . The function SsfRecursion returns the
(m+N) × (n+ 1) matrix

mD =

(
α

(i)
1 α

(i)
2 . . . α

(i)
n+1

0 y
(i)
1 y

(i)
n

)
.

c© Royal Economic Society 1998

16 Koopman, Shephard and Doornik

Example. The Ox program of Listing 5 generates artificial data from the local linear
trend model (5) with σ2

η = 0, σ2
ζ = 0.1 and σ2

ξ = 1. The Ox function rann produces a
matrix of standard normal random deviates. The initial state vector α1 = (µ1, β1)′ is set
equal to (1, 0.5)′.

#include <oxdraw.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

decl mphi = <1,1;0,1;1,0>;
decl momega = diag(<0,0.1,1>);
decl msigma = <0,0;0,0;1,.5>; // Note that Q is zero

decl mr = sqrt(momega) * rann(3, 21);
decl md = SsfRecursion(mr, mphi, momega, msigma);
decl myt = md[2][1:]; // 20 observations

print("Generated data (t=10)",
"%c", {"alpha(1,1)[t+1]","alpha(2,1)[t+1]","y[t]"}, md[][10]’);

DrawTMatrix(0, myt | md[:1][1:],
{"y[t]", "mu[t+1]=alpha(1,1)","beta[t+1]=alpha(2,1)"}, 1, 1, 1);

ShowDrawWindow();
}

Generated data (t=10)
alpha(1,1)[t+1] alpha(2,1)[t+1] y[t]

-0.22002 0.58665 -0.41452

0 5 10 15 20

0

2

4

y[t] mu[t+1]=alpha(1,1) beta[t+1]=alpha(2,1)

Data generated by ssfrec.ox

Listing 5. ssfrec.ox with output

4.3. Kalman filter

The Kalman filter is a recursive algorithm for the evaluation of moments of the normal
distribution of state vector αt+1 conditional on the data set Yt = {y1, . . . , yt}, that is

at+1 = E (αt+1|Yt) , Pt+1 = cov (αt+1|Yt) ,

c© Royal Economic Society 1998

Statistical algorithms for models in state space 17

for t = 1, . . . , n; see Anderson and Moore (1979, page 36) and Harvey (1989, page 104).
The Kalman filter is given by (with dimensions in parentheses):

vt = yt − ct − Ztat (N × 1)
Ft = ZtPtZ

′
t +GtG

′
t (N ×N)

Kt = (TtPtZ ′
t +HtG

′
t)F

−1
t (m×N)

at+1 = dt + Ttat +Ktvt (m× 1)
Pt+1 = TtPtT

′
t +HtH

′
t −KtFtK

′
t (m×m)

(19)

where a1 = a, and P1 = P∗ + κP∞ with κ = 107, for t = 1, . . . , n.

Missing values. In §2.6 it was shown how missing values are deleted internally to create
y†t , c

†
t , Z

†
t , G

†
t . Consequently, when missing values are present, the Kalman filter at time

t are based on y†t instead of yt. The smoothers which are to be introduced in the next
sections are adjusted accordingly.

When the full vector yt is missing, for example when a single observation is missing
in univariate cases, the Kalman filter reduces to a prediction step, that is

at+1 = dt + Ttat, Pt+1 = TtPtT
′
t +HtH

′
t,

such that vt = 0, F−1
t = 0 and Kt = 0. The moment and simulation smoother deal with

these specific values of vt, F−1
t and Kt without further complications. See the example

in §5.3.

Algorithm∗. The SsfPack implementation for the Kalman filter is written in a com-
putationally efficient way. The steps are given by

(i) Set t = 1, a1 = a and P1 = P∗ + 107P∞.
(ii) Calculate:(

āt+1

ŷt

)
= δt + Φtat,

(
P̄t+1 Mt

M ′
t Ft

)
= ΦtPtΦ′

t + Ωt, Kt = MtF
−1
t ,

where δt, Φt and Ωt are defined in (4), and Mt = (TtPtZ ′
t +HtG

′
t).

(iii) Update:

vt = yt − ŷt, at+1 = āt+1 +Ktvt, Pt+1 = P̄t+1 −KtM
′
t.

(iv) If t = n then stop, else set t = t+ 1 and go to (ii).

The program stops with an error message when |Ft| ≤ 0 or when insufficient computer
memory is available.

SsfPack implementation. The SsfPack function KalmanFil calls the Kalman filter
and returns the output vt, Ft and Kt (t = 1, . . . , n) as a data matrix:

mKF = KalmanFil(mYt, {Ssf});

c© Royal Economic Society 1998

18 Koopman, Shephard and Doornik

where mYt is an N × n data matrix. The Kalman filter is available for univariate and
multivariate state space models: the row dimension of mYt determines whether the uni-
variate or the multivariate Kalman filter is used. The function returns a matrix mKF with
dimension q × n where

q = N +mN +
N (N + 1)

2
consists of the number of unique elements in vt, Kt, and F−1

t respectively. For univariate
models in state space form, the returned storage matrix is simply the (m+2)×n matrix

mKF =


v1 . . . vn

(K11)1 . . . (K11)n
...

...
(Km1)1 . . . (Km1)n
F−1

1 . . . F−1
n

 .

In multivariate cases, the returned data matrix is organized as

mKF =



v1 . . . vn
(K−1

∗1)1 . . . (K−1
∗1)n

(F−1
∗1)1 . . . (F−1

∗1)n
...

...
(K−1

∗N)1 . . . (K−1
∗N)n

(F−1
∗N)1 . . . (F−1

∗N)n


.

Here we write (K∗j)t for column j of Kt, which has m elements; (F−1
∗j)t refers to column

j of F−1
t with the lower diagonal discarded: (F−1

∗1)t has 1 element, and (F−1
∗N)t has N

elements.

Example. The Ox code on the next page (Listing 6) applies the Kalman filter to the
data myt generated in Listing 5.

4.4. Moment smoothing

The Kalman filter is a forward recursion which evaluates one-step ahead estimators.
The associated moment smoothing algorithm is a backward recursion which evaluates
the mean and variance of specific conditional distributions given the data set Yn =
{y1, . . . , yn} using the output of the Kalman filter; see Anderson and Moore (1979),
Kohn and Ansley (1989), de Jong (1988b), de Jong (1989) and Koopman (1993). The
backward recursions are given by

et = F−1
t vt −K ′

trt (N × 1)
Dt = F−1

t +K ′
tNtKt (N ×N)

rt−1 = Z ′
tF

−1
t vt + L′

trt (m× 1)
Nt−1 = Z ′

tF
−1
t Zt + L′

tNtLt (m×m)

(20)

with Lt = Tt −KtZt and with the initialization rn = 0 and Nn = 0, for t = n, . . . , 1.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 19

decl mkf = KalmanFil(myt, mphi, momega);
print("mKF\’ (t=10)", "%c", {"v", "K(1,1)", "K(2,1)", "F^-1"}, mkf[][9]’);
DrawTMatrix(0, mkf[0][], {"v"}, 1, 1, 1);
DrawTMatrix(1, mkf[1:][], {"K(1,1)", "K(2,1)", "F^-1"}, 1, 1, 1);
ShowDrawWindow();

mKF’ (t=10)
v K(1,1) K(2,1) F^-1

-3.0347 0.76491 0.21161 0.44669

0 5 10 15 20

-2

0

2

4
v

0 5 10 15 20

.5

1

1.5

2

K(1,1)

F^-1
K(2,1)

K(1,1) K(2,1)
F^-1

Output generated by ssfkf.ox

Listing 6. Part of ssfkf.ox with output

Disturbance smoothing. The moment smoother (20) generates quantities from which
different kinds of estimators can be obtained. For example, it can be shown that the
mean and variance of the conditional density f (εt|Yn) is given by, respectively,

E (εt|Yn) = G′
tet +H ′

trt,

var (εt|Yn) = G′
t (DtGt −K ′

tNtHt) +H ′
t (NtHt −NtKtGt) ,

and expressions for E (ut|Yn) and var (ut|Yn), where ut is defined in (4), follow directly
from this. It is also clear that, when HtG

′
t = 0,

E (Htεt|Yn) = HtH
′
trt,

var (Htεt|Yn) = HtH
′
tNtHtH

′
t,

E (Gtεt|Yn) = GtG
′
tet,

var (Gtεt|Yn) = GtG
′
tDtGtG

′
t,

for t = 1, . . . , n; see Koopman (1993) for more general results. In these computations r0
and N0 are not used, although the are calculated in (20).

Algorithm∗. The SsfPack implementation for the moment smoother is similar to the
Kalman filter:

(i) Set t = n, rn = 0 and Nn = 0.

c© Royal Economic Society 1998

20 Koopman, Shephard and Doornik

(ii) Calculate:

r∗t =
(
rt
et = F−1

t vt −K ′
trt

)
, N∗

t =
(
Nt −NtKt

−K ′
tNt Dt = F−1

t +K ′
tNtKt

)
.

(iii) Update:
rt−1 = Φ′

tr
∗
t , Nt−1 = Φ′

tN
∗
t Φt.

where Φt is defined in (4).
(iv) If t = 1 then stop, else set t = t− 1 and go to (ii).

The program stops with an error message when insufficient memory is available. The
vector δt and the matrix Ωt do not play a role in the basic smoothing recursions. Finally,
it should be noted that the smoothed estimator ût = E (ut|Yn), where ut is from (4), is
simply obtained by Ωtr∗t ; the corresponding variance matrix is var (ut|Yn) = ΩtN∗

t Ωt;
see §5.3 for further details.

Quick state smoothing. The generated output from the basic smoothing recursions can
also be used to obtain α̂t = E (αt|Yn), that is, the smoothed estimator of the state vector,
using the recursion

α̂t+1 = dt + Ttα̂t +Htε̂t, t = 1, . . . , n,

with α̂1 = a+Pr0 and ε̂t = E (εt|Yn) = G′
tet+H

′
trt; see Koopman (1993) for details. This

simple recursion is similar to the state space recursion (18), and therefore we can trick
SsfRecursion into generating αt+1 (but note that here Σ contains P in the standard way,
and not Q). A further discussion on state smoothing is found in §5.3 (with examples)
and §4.6. This method of state smoothing is illustrated in the example below using the
SsfPack function SsfRecursion.

SsfPack implementation. The SsfPack function KalmanSmo implements the moment
smoother and stores the output et, Dt, rt−1 and Nt−1 for t = 1, . . . , n, into a data matrix:

mKS = KalmanSmo(mKF, {Ssf});

The input matrix mKF is the data matrix which is produced by the function KalmanFil us-
ing the same state space form {Ssf}. The return value mKS is a data matrix of dimension
2(m+N) × (n+ 1). The structure of the matrix is

mKS =


r0 r1 . . . rn
0 e1 . . . en

diag (N0) diag (N1) . . . diag (Nn)
0 diag (D1) . . . diag (Dn)

 ,
where diag (A) vectorizes the diagonal elements of the square matrix A. The number
of elements in rt, et, diag(Nt), and diag(Dt) is respectively: m, N , m, N . The output
matrix is organised in this way partly because the first (m+N) rows of mKS can be used
as input to SsfRecursion, as discussed above. More elaborate and more ‘easy-to-use’
functions for moment smoothing of the disturbance and state vector are given in §4.6.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 21

Example. The following Ox code (Listing 7) applies the Kalman filter smoother to
the results from Listing 6. It outputs the matrix mKS, the smoothed disturbances, and
smoothed states.

decl mks = KalmanSmo(mkf, mphi, momega);
print("Basic smoother output: mKS\’ (t=10)",

"%c", {"r","e(1,1)","e(2,1)","N","D(1,1)","D(2,2)"}, mks[][10]’);

decl msmodist = mks[0:2][0] ~ momega * mks[0:2][1:];
print("Smoothed disturbances (t=10)",

"%c", {"E[H.eps](1,1)","E[H.eps](2,1)","E[G.eps]"}, msmodist[][10]’);

decl msmostat = SsfRecursion(msmodist, mphi, momega);
print("Smoothed states (t=10)", "%c",

{"alphahat(1,1)[t+1]","alphahat(2,1)[t+1]","y[t]"}, msmostat[][10]’);

DrawTMatrix(0, msmodist[1:2][],
{"E[H.eps](2,1)[t]","E[G.eps][t]"}, 0, 1, 1);

DrawTMatrix(1, msmostat[0:1][],
{"alphahat(1,1)[t+1]","alphahat(2,1)[t+1]"}, 0, 1, 1);

ShowDrawWindow();

Basic smoother output: mKS’ (t=10)
r e(1,1) e(2,1) N D(1,1) D(2,2)

-0.64966 1.3099 -1.1358 0.60208 2.0578 0.79365
Smoothed disturbances (t=10)

E[H.eps](1,1) E[H.eps](2,1) E[G.eps]
0.00000 0.13099 -1.1358

Smoothed states (t=10)
alphahat(1,1)[t+1] alphahat(2,1)[t+1] y[t]

0.31542 -0.27487 -0.41452

0 5 10 15 20

-1

0

1

E[H.eps](2,1)[t] E[G.eps][t]

0 5 10 15 20

0

2

4

alphahat(1,1)[t+1] alphahat(2,1)[t+1]

Output generated by ssfsmo.ox

Listing 7. Part of ssfsmo.ox with output

c© Royal Economic Society 1998

22 Koopman, Shephard and Doornik

4.5. Simulation smoother

Disturbance simulation smoothing. The simulation smoother is developed by de Jong
and Shephard (1995) and allows drawing random numbers from the multivariate condi-
tional Gaussian density of

ũ = (ũ′1, . . . , ũ
′
n)

′
, where ũ ∼ Γu|Yn, t = 1, . . . , n, (21)

with u = (u′1, . . . , u
′
n)

′ and ut as defined in (4). The (m + N) × (m + N) diagonal
selection matrix Γ consists of unity and zero values on the diagonal. It is introduced to
avoid degeneracies in sampling and, and to allow generating subsets of ut, which is more
efficient, especially when the state vector is large and only a small subset is required.

For example, when we consider the local linear trend model (5) and wish to generate
samples (for t = 1, . . . , n) from the multivariate conditional density of the disturbance
ζt, then:

Γ = diag
(

0 1 0
)
.

In order to generate samples from the multivariate joint conditional density of ηt and ζt
for this model:

Γ = diag
(

1 1 0
)
.

Generating conditional samples for Gtεt of the state space form, which for univariate
cases requires

Γ = diag
(

0 . . . 0 1
)
,

also implicitly produces samples from f (θt|Yn), with signal θt = ct + Ztαt, since yt −
Gtεt = θt.

The simulation algorithms use the s × (m + N) zero-unity matrix Γ∗ which is the
same as Γ but where the zero rows are deleted from Γ. For example,

Γ = diag
(

1 0 1
)

becomes Γ∗ =
(

1 0 0
0 0 1

)
and Γ∗′Γ∗ = Γ,

with s = 2 in this case.
The simulation smoother is a backward recursion and requires the output of the

Kalman filter. The equations are given by

Ct = Γ∗

 Ht

Gt

(I −G′
tF

−1
t Gt − J ′

tNtJt
) Ht

Gt

′

Γ∗′ (s× s)

Wt = Γ∗

 Ht

Gt

(G′
tF

−1
t Zt + J ′

tNtLt
)
, ξt ∼ N(0, Ct) (s×m)

rt−1 = Z ′
tF

−1
t vt −W ′

tC
−1
t ξt + L′

trt, (m× 1)

Nt−1 = Z ′
tF

−1
t Zt +W ′

tC
−1
t Wt + L′

tNtLt (m×m)

(22)

where Lt = Tt −KtZt and Jt = Ht −KtGt, for t = n, . . . , 1. The initialization is rn = 0
and Nn = 0. The notation for rt and Nt is the same as for the moment smoother (20)

c© Royal Economic Society 1998

Statistical algorithms for models in state space 23

since the nature of both recursions is very similar. However, their actual values are
different. It can be shown that

ũt = Γ∗′
{

Γ∗
(
Ht

Gt

)(
G′
tF

−1
t vt + J ′

trt
)

+ ξt

}
, (23)

is a draw as indicated by (21). The selection matrix Γ must be chosen so that Γ∗ΩtΓ∗′ is
nonsingular and rank(Γ∗ΩtΓ∗′) ≤ m; the latter condition is required to avoid degenerate
sampling and matrix Ct being singular. These conditions are not sufficient to avoid
degenerate sampling; see de Jong and Shephard (1995). However, the conditions firmly
exclude the special case of Γ = Im+N .

Algorithm∗. The structure of the SsfPack implementation for the simulation smoother
is similar to the moment smoother. In the following we introduce the s × m matrix
At = C

− 1
2

t Wt. The steps of the program are given by

(i) Set t = n, rn = 0 and Nn = 0.
(ii) Calculate:

r∗t =
(
rt
et = F−1

t vt −K ′
trt

)
, N∗

t =
(
Nt −NtKt

−K ′
tNt Dt = F−1

t +K ′
tNtKt

)
.

(iii) Calculate:
Ct = Γ∗ (Ωt − ΩtN∗

t Ωt) Γ∗′,

apply a Choleski decomposition to Ct such that

Ct = BtB
′
t,

and solve recursively with respect to At:

BtAt = Γ∗ΩtN∗
t .

The matrices Φt and Ωt are defined in (4).
(iv) Update:

rt−1 = Φ′
t (r

∗
t −A′

tπt) , Nt−1 = Φ′
t (N

∗
t +A′

tAt)Φt.

with πt ∼ N(0, Is) .
(v) If t = 1 then stop, else set t = t− 1 and go to (ii).

The program stops with an error message when the Choleski decomposition for Ct fails
or when insufficient memory is available. The vector δt does not play a role in simulation
smoothing.

Generating multiple samples. A draw from the Gaussian density for (21) is obtained
by (23), which can be written as:

ũt = Γ∗′ (Γ∗Ωtr∗t +Btπt) , t = 1, . . . , n.

When M different samples are required from the same model and conditional on the
same data-set Yn, the simulation smoother can be simplified to generate multiple draws.

c© Royal Economic Society 1998

24 Koopman, Shephard and Doornik

The matrices At and Bt (the so-called weights) need to be stored; now M samples can
be generated via the recursion:

rt−1 = Φ′
t

(
r∗t −A′

tπ
(i)
t

)
, π

(i)
t ∼ N(0, I) ,

ũ
(i)
t = Γ∗′

(
Γ∗Ωtr∗t +Btπ

(i)
t

)
, t = n, . . . , 1, i = 1, . . . ,M

(24)

which is computationally efficient. Note that we omitted the superscript (i) from rt, r
∗
t ,

and that r∗t = (r′t, e
′
t)

′; see step (ii) of the algorithm. When s = 1, the storage of At and
Bt (t = 1, . . . , n) requires a matrix of dimension (1 +m+N) × n.

State simulation smoothing. As mentioned earlier, generated samples from the sim-
ulation smoother (22) can be used to get simulation samples from the multivariate
density f (θ|Yn), where θ = (θ′1, . . . , θ′n)

′ and θt = ct + Ztαt, by setting Γ such that
Γ∗ (H ′

t, G
′
t)

′ = G∗
t , for t = 1, . . . , n, and where G∗

t is equal to Gt but without the zero
rows (in the same spirit of Γ and Γ∗). This follows from the identity θt = yt−Gtεt. In a
similar way, it is also possible to obtain samples from the multivariate density f (α|Yn),
where α = (α′

1, . . . , α
′
n)

′, by applying the simulation smoother (22) with Γ such that
Γ∗ (H ′

t, G
′
t)

′ = H∗
t , for t = 1, . . . , n, and where H∗

t is Ht but without the zero rows. Then
the generated sample ũt (t = 1, . . . , n) is inputted into the state space recursion (18) with
initialization α

(i)
1 = a+ Pr

(i)
0 ; see de Jong and Shephard (1995) for details. In this way

a sample from f (θ|Yn) can also be obtained but now via the identity θ(i)t = ct + Ztα
(i)
t

(rather than θ
(i)
t = yt − {Gtεt}(i)) so that this sample is consistent with the sample

from f (α|Yn). Note that sampling directly from f (α, θ|Yn) is not possible because of
degeneracies; this matter is further discussed in §4.6. A simple illustration is given by
the example below.

SsfPack implementation. The SsfPack function SimSmoWgt implements the simula-
tion smoother, but only for Ct, Wt and Nt. It stores the output At = B−1

t Wt and Bt
(remember that Ct = BtB

′
t), for t = 1, . . . , n, into a data matrix. The call is given by

mWgt = SimSmoWgt(mGamma, mKF, {Ssf});

where mGamma is the m+N diagonal ‘selection’ matrix Γ and mKF is the data matrix which
is produced by the function KalmanFil for the same state space form implied by {Ssf}.
The return value mWgt is a data matrix of dimension q×n where q = s(m+N)+s(s+ 1)/2,
and the structure of the matrix is

mWgt =
(

vec (A1) . . . vec (An)
vech (B1) . . . vech (Bn)

)
where vec(At) vectorizes matrix At, resulting in s(m +N) elements, and vech(Bt) vec-
torizes the lower triangular part (including its diagonal) of matrix Bt, giving s(s+1)/2
elements.

The SsfPack function SimSmoDraw generates a sample from the distribution (21) which
is calculated by the equations (24). This function requires the weight matrices At and
Bt for t = 1, . . . , n. The function call is given by

mD = SimSmoDraw(mGamma, mPi, mWgt, mKF, {Ssf});

c© Royal Economic Society 1998

Statistical algorithms for models in state space 25

where mGamma is the diagonal ‘selection’ matrix Γ, mPi is an s×n data matrix containing
the random deviates from the standard normal distribution, matrix mWgt is the matrix
obtained from function SimSmoWgt, matrix mKF is the matrix returned by the function
KalmanFil. The SimSmoDraw function returns the (m+N) × (n+ 1) matrix mD where

mD =
(
r∗0 ũ1 . . . ũn

)
.

where r∗′0 = (r′0, 0′) and ũt is defined in (21). Repeated samples can be generated
consecutively; see example below. The return value mD is constructed such that it can be
used as the input matrix mR for the SsfPack function SsfRecursion which enables state
simulation samples, as illustrated in the next example.

Example. The Ox program in Listing 8 draws from the multivariate conditional Gaus-
sian density f (ζ|Yn), with ζ = (ζ1, . . . , ζn)′, of the local linear trend model (5) used in
Listings 5–7 (σ2

η = 0, σ2
ζ = 0.1, σ2

ε = 1). This draw is also used to generate samples from
the densities f (α|Yn) and f (θ|Yn). Note that Γ is selected such that Γ∗ (H ′, G′)′ = H
but without the zero rows. Thus Γ = diag(0, 1, 0) because σ2

η = 0, so Γ∗ = (0, 1, 0) and
therefore s = 1. Three drawings are shown in Figure 2.

0 5 10 15 20

0

2

4

y1[t] y2[t] y3[t] y

Figure 2. Graphical output generated by ssfsim.ox

4.6. The conditional density: mean calculation and simulation

Efficient methods are provided to estimate the mean of, and draw random numbers from,
the conditional density of the state and disturbance vector (given the observations).
These can be used when only signal estimation and simulation is required; §5 provides
more general functions.

Mean calculation of states. When only the mean of the multivariate conditional density
f (α1, . . . , αn|Yn), i.e. the smoothed state vector α̂t = E(αt|Yn), is required, the following
simple recursion can be used:

α̂t+1 = dt + Ttα̂t +Htε̂t, t = 1, . . . , n− 1,

with α̂1 = a+Pr0 and ε̂t = E(εt|Yn) = H ′
trt +G′

tet; see Koopman (1993) and §4.4. The
smoothing quantities et and rt are obtained from (20). This algorithm is computationally
more efficient, and avoids storage of at and Pt, t = 1, . . . , n, as required in the general
state moment smoothing algorithm.

c© Royal Economic Society 1998

26 Koopman, Shephard and Doornik

#include <oxstd.h>
#include <oxdraw.h>
#include <packages/ssfpack/ssfpack.h>

main()
{

decl mphi = <1,1;0,1;1,0>;
decl momega = diag(<0,0.1,1>);
decl msigma = <0,0;0,0;1,.5>;

decl md = SsfRecursion(sqrt(momega) * rann(3, 21), mphi, momega, msigma);
decl myt = md[2][1:];
decl mkf = KalmanFil(myt, mphi, momega);

decl ct = columns(myt); // 20 observations
decl mgamma = diag(<0,1,0>);
decl mwgt = SimSmoWgt(mgamma, mkf, mphi, momega);
print("Simulation smoother weights (t=10)",

"%c", {"A(1,1)","A(1,2)","A(1,3)","B(1,1)"}, mwgt[][9]’);

// draw 1
md = SimSmoDraw(mgamma, rann(1, ct), mwgt, mkf, mphi, momega);
print("Draw 1 for slope disturbances (t=10)",

"%c", {"H.eps(1,1)","H.eps(2,1)","G.eps"}, md[][10]’);
md = SsfRecursion(md, mphi, momega);
print("Draw 1 for state and signal (t=10)",

"%c", {"alpha(1,1)[t+1]","alpha(2,1)[t+1]","y[t]"}, md[][10]’);
// draw 2
decl md2 = SimSmoDraw(mgamma, rann(1, ct), mwgt, mkf, mphi, momega);
md2 = SsfRecursion(md2, mphi, momega);
// draw 3
decl md3 = SimSmoDraw(mgamma, rann(1, ct), mwgt, mkf, mphi, momega);
md3 = SsfRecursion(md3, mphi, momega);

DrawTMatrix(0, md[2][1:] | md2[2][1:] | md3[2][1:] | myt,
{"y1[t]","y2[t]","y3[t]", "y"}, 1, 1, 1);

ShowDrawWindow();
}

Simulation smoother weights (t=10)
A(1,1) A(1,2) A(1,3) B(1,1)

-0.40350 1.5248 -0.014001 0.24905
Draw 1 for slope disturbances (t=10)

H.eps(1,1) H.eps(2,1) G.eps
0.00000 -0.25514 0.00000

Draw 1 for state and signal (t=10)
alpha(1,1)[t+1] alpha(2,1)[t+1] y[t]

1.1744 -0.78113 1.7004

Listing 8. ssfsim.ox with output

c© Royal Economic Society 1998

Statistical algorithms for models in state space 27

Simulation for states. The simulation smoother can also generate simulations from
f (α|Yn), where α′ = (α′

1, . . . , α
′
n), for a given model in state space form; see de Jong

and Shephard (1995) and §4.5. The simulations are denoted by α(i)′ = (α(i)′
1 , . . . , α

(i)′
n).

The simulation smoother, with an appropriate choice of the selection matrix, outputs
the draws H1ε

(i)
1 , . . . , Hnε

(i)
n from which the simulated states can be obtained via the

recursion
α

(i)
t+1 = dt + Ttα

(i)
t +Htε

(i)
t , t = 1, . . . , n,

with the initialization α(i)
1 = a+Pr0, where r0 is obtained from the simulation smoother

(22). Consistent simulations for the signal θt are obtained via the relation θ
(i)
t = ct +

Ztα
(i)
t , for t = 1, . . . , n. Note that, when no consistency is required between θ(i) and α(i),

it is easier to obtain simulation samples using θ(i)t = yt −Gtε
(i)
t ; see §4.5.

Mean calculation of disturbances. The mean of the multivariate conditional density
f (u1, . . . , un|Yn), where ut = (H ′

t, G
′
t)

′
εt as defined in (4), is denoted by û = (û1, . . . , ûn)

and its calculation is discussed in §4.4 and §5.3.

Simulation for disturbances. Generating samples from f (u|Yn) for a given model in
state space form is done via the simulation smoother; the details are given in §4.5. As
pointed out by de Jong and Shephard (1995), the simulation smoother cannot draw
from f (u|Yn) directly because of the implied identities within the state space form
(4); this problem is referred to as degenerate sampling. However it can simulate from
f (H1ε1, . . . , Hnεn|Yn) directly and then compute the sample θ(i) as discussed under
‘Simulation for states’ above. The identity Gtεt = yt − θt allows the generation of sim-
ulation samples from f (G1ε1, . . . , Gnεn|Yn) which are consistent with the sample from
f (H1ε1, . . . , Hnεn|Yn). Finally, when the rank of Ht is smaller than Gt the described
method of getting simulations from f(u|Yn) is not valid. In that case, the simulation
smoother should be applied directly as described in §4.5.

SsfPack implementation. The SsfPack call for calculating mean and simulation for
the multivariate conditional densities of the disturbances and the states is given by

mD = SsfCondDens(iSel, mYt, {Ssf});

where the structure of the output matrix mD depends on the value of iSel which must
be one of the predefined constants:

iSel computes mD =

ST SMO mean of f (α|Yn) ;
[
α̂1 . . . α̂n
θ̂1 . . . θ̂n

]
,

ST SIM simulation sample from f (α|Yn) ;

[
α

(i)
1 . . . α

(i)
n

θ
(i)
1 . . . θ

(i)
n

]
,

DS SMO mean of f (u|Yn) ;
[
û1 . . . ûn

]
,

DS SIM simulation sample from f (u|Yn) .
[
u

(i)
1 . . . u

(i)
n

]
.

Here θ̂t = ct + Ztα̂t is the smoothed estimate of the signal ct + Ztαt and θ
(i)
t is the

associated simulation. The inputs mYt and {Ssf} are as usual. An application is given
in the next section.

c© Royal Economic Society 1998

28 Koopman, Shephard and Doornik

5. USING SSFPACK IN PRACTICE

5.1. Likelihood and score evaluation for general models

The Kalman filter allows the computation of the Gaussian log-likelihood function via the
prediction error decomposition; see Schweppe (1965), Jones (1980) and Harvey (1989,
§3.4). The log-likelihood function is given by

l = log p (y1, . . . , yn;ϕ) =
n∑
t=1

log p (yt|y1, . . . , yt−1;ϕ)

= −nN
2

log (2π) − 1
2

n∑
t=1

(
log |Ft| + v′tF

−1
t vt

)
(25)

where ϕ is the vector of parameters for a specific statistical model represented in state
space form (19). The innovations vt and its variances Ft are computed by the Kalman
filter for a given vector ϕ.

In the remainder we require d, defined as the number of elements in the state vector
which have a diffuse initial distribution. Usually, d is the number of nonstationary
elements and fixed regression effects in the state vector. In terms of the initial variance
matrix Σ, d is the number of diagonal elements of Σ which are set equal to −1; see §2.3.
If −1 is not used to indicate diffuse elements, d will be zero in the SsfPack computations.
In subsequent output where d is involved, explicit adjustment must be made afterwards.
Note that the summation in (25) is from 1 to n, but the first d summations will be
approximately zero as F−1

t will be very small for t = 1, . . . , d.
SsfPack output includes the scale factor

σ̂2 =
1

Nn− d

n∑
t=1

v′t (Ft)
−1
vt. (26)

When starting the iterative optimization of the log-likelihood, it can be helpful to choose
starting values such that initially σ̂2 ≈ 1; see the example below. In general, after
likelihood estimation, σ̂2 will be equal, or close to, one.

The score vector for Gaussian models in state space form is usually evaluated numer-
ically. Koopman and Shephard (1992) present a method to calculate the exact score for
any parameter within the system matrices T , Z, H and G. Let the ith element of ϕ,
that is ϕi, be associated with the time-invariant system matrix Ω of (4), then the exact
score for this element is given by

∂l

∂ϕi
=

1
2
trace

(
S
∂Ω
∂ϕi

)
, with S =

n∑
t=1

r∗t r
∗′
t −N∗

t , (27)

where r∗t and N∗
t are defined in (and calculated by) the smoothing algorithm of §4.4.

SsfPack only implements the analytical scores for parameters in Ω, resulting in more
efficient computation than when numerical derivatives are used.

Usually it is possible to solve explicitly for one scale factor, by concentrating it out
of the likelihood; see, e.g. Harvey (1989, pages 126-127). Let σ be the scale factor, and

c© Royal Economic Society 1998

Statistical algorithms for models in state space 29

use superscript c to denote the scaled version of the measurement equation (3):

yt = θt +Gctε
c
t , εct ∼ N

(
0, σ2I

)
, σ2 > 0,

with unknown variance σ2. The state space form (1) and (3) applies but with Gt = σGct
and Ht = σHc

t . This formulation implies that one non-zero element of σGct or σHc
t is

kept fixed, usually at unity. This reduces the dimension of ϕ by one. Equation (25) can
be solved explicitly for σ2, giving:

σ̃2 =
1

Nn− d

n∑
t=1

v′t (F
c
t)−1

vt, (28)

The concentrated or profile log-likelihood is given by

lc = −nN
2

log (2π) − nN − d

2
(
log σ̃2 + 1

)− 1
2

n∑
t=1

log |F ct | . (29)

Exact scores for the concentrated log-likelihood are not available.

SsfPack implementation. The following SsfPack functions are provided for log-like-
lihood and score evaluation:

SsfLik(&dLogLik, &dVar, mYt, {Ssf});
SsfLikConc(&dLogLikConc, &dVar, mYt, {Ssf});
SsfLikSco(&dLogLik, &dVar, &mSco, mYt, {Ssf});

All functions return a 1 to indicate that they were successful, and 0 otherwise. The input
arguments are the data matrix (N × n; mYt), and the state space model, written here as
{Ssf} (see §4.1).

Additional values are returned in the arguments prefixed by &. These are:

SsfLik: (25) in &dLogLik and (26) in &dVar;
SsfLikConc: (29) in &dLogLikConc and (28) in &dVar;
SsfLikSco: (25) in &dLogLik, (26) in &dVar and S from (27) in &mSco.

All values returned in arguments are scalars, except for the mSco, which is an (m+N)×
(m+N) matrix.

Application: Maximum likelihood estimation of ARMA models. The example
implemented in Listing 9, is the well-known airline model, see Box and Jenkins (1976):

∆∆12yt = (1 + θ1L)
(
1 + θ12L

12
)
εt

= εt + θ1εt−1 + θ12εt−12 + θ1θ12εt−13, εt ∼ N(0, σ2
ε),

where the yt are in logs.
The likelihood (25) can be maximized numerically using the MaxBFGS routine from

Ox; see Doornik (1998, page 243). There are three parameters to estimate:

ϕ = (θ1, θ12, log(σε))
′
.

MaxBFGS works with ϕ, so we need to map this into the state space formulation. In
Listing 9 this is done in two steps:

c© Royal Economic Society 1998

30 Koopman, Shephard and Doornik

#include <oxstd.h>
#import <maximize>
#include <packages/ssfpack/ssfpack.h>

static decl s_mY, s_cT; // data (1 x T) and T
static decl s_vAR, s_vMA; // AR and MA parameters
static decl s_dSigma, s_dVar; // residual std.err. and scale factor

SetAirlineParameters(const vP)
{

// map to airline model: y[t] = (1+aL)(1+bL^12)e[t]
s_vAR = <>;
s_vMA = vP[0] ~ zeros(1,10) ~ vP[1] ~ vP[0] * vP[1];
s_dSigma = exp(vP[2]);

}
ArmaLogLik(const vY, const pdLik, const pdVar)
{

decl mphi, momega, msigma, ret_val;
// get state space model and loglik

GetSsfArma(s_vAR, s_vMA, s_dSigma, &mphi, &momega, &msigma);
ret_val = SsfLik(pdLik, pdVar, vY, mphi, momega, msigma);
return ret_val; // 1 indicates success, 0 failure

}
Likelihood(const vP, const pdLik, const pvSco, const pmHes)
{ // arguments dictated by MaxBFGS()

decl ret_val;

SetAirlineParameters(vP); // map vP to airline model
ret_val = ArmaLogLik(s_mY, pdLik, &s_dVar); // evaluate at vP
pdLik[0] /= s_cT; // log-likelihood scaled by sample size
return ret_val; // 1 indicates success, 0 failure

}
ArmaStderr(const vP)
{

decl covar, invcov, var = s_vAR, vma = s_vMA, dsig = s_dSigma, result;

result = Num2Derivative(Likelihood, vP, &covar);
s_vAR = var, s_vMA = vma, s_dSigma = dsig; // reset after Num2Der
if (!result)
{ print("Covar() failed in numerical second derivatives\n");

return zeros(vP);
}
invcov = invertgen(-covar, 30);
return sqrt(diagonal(invcov) / s_cT)’;

}

Listing 9. ssfair.ox (first part)

1. SetAirlineParameters splits ϕ in AR parameters, MA parameters and σε;
2. ArmaLogLik creates the state space for this model.

ArmaLogLik also computes the log-likelihood. MaxBFGS accepts a function as its first
argument, but requires it to be in a specific format, which is called Likelihood here.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 31

main()
{

decl vp, ir, dlik, dvar, my, mdy;

my = log(loadmat("Airline.dat")); // log(airline)
mdy = diff0(my, 1)[1:][]; // Dlog(airline)
s_mY = diff0(mdy, 12)[12:][]’; // D12D(log(airline)) transposed!!
s_cT = columns(s_mY); // no of observations

vp = <0.5;0.5;0>; // starting values
// scale initial parameter estimates for better starting values
SetAirlineParameters(vp); // map parameters to airline model
ArmaLogLik(s_mY, &dlik, &dvar); // evaluate
vp[sizerc(vp)-1] = 0.5 * log(dvar); // update starting log(sigma)

MaxControl(-1, 5, 1); // get some output from MaxBFGS
MaxControlEps(1e-7, 1e-5); // tighter convergence criteria
ir = MaxBFGS(Likelihood, &vp, &dlik, 0, TRUE);

println("\n", MaxConvergenceMsg(ir),
" using numerical derivatives",
"\nLog-likelihood = ", "%.8g", dlik * s_cT,
"; variance = ", sqr(s_dSigma),
"; n = ", s_cT, "; dVar = ", s_dVar);

print("parameters with standard errors:",
"%cf", {"%12.5g", " (%7.5f)"}, vp ~ ArmaStderr(vp));

}

Ox version 2.00f (Windows) (C) J.A. Doornik, 1994-98
it0 f= 1.079789 df= 1.087 e1= 0.5434 e2= 0.2174 step=1
it5 f= 1.851184 df= 0.2023 e1= 0.1631 e2= 0.01153 step=1
it10 f= 1.867910 df= 0.001848 e1= 0.006105 e2= 0.0002357 step=1
it14 f= 1.867912 df=7.130e-008 e1=4.256e-008 e2=1.977e-008 step=1

Strong convergence using numerical derivatives
Log-likelihood = 244.69649; variance = 0.00134809; n = 131; dVar = 1.00001
parameters with standard errors:

-0.40182 (0.08964)
-0.55694 (0.07311)
-3.3045 (0.06201)

Listing 9. ssfair.ox (continued) with output

We prefer to maximize l/n rather then l, to avoid dependency on n in the convergence
criteria.

A starting value for log(σε) is chosen as follows:

1. first evaluate the likelihood with σε = 1;
2. next, use dVar as returned by SsfLik for the initial value of σ2

ε .

SsfPack only provides analytical derivatives for parameters in Ω, so only for the MA part
of ARMA models.

c© Royal Economic Society 1998

32 Koopman, Shephard and Doornik

Compact output during iteration is given for every fifth iteration. It consists of
the function value (f), the largest (in absolute value) score (df), the largest of both
convergence criteria (e1) and (e2), and the step length. Upon convergence, the coefficient
standard errors are computed using numerical second derivatives.

To illustrate the use of the concentrated log-likelihood, we adjust the program slightly
(see Listing 10). The listing only provides ArmaLogLikc, where GetSsfArma is now called
with standard deviation set to one, and σε is obtained from SsfLikConc. In this setup,
there are only the two MA parameters to estimate, and the maximization process is more
efficient. Note that the attained likelihoods are the same (this is not necessarily the case
when using the SsfPack functions: they are identical when σ from (26) equals one). Also
note that the reported variance in Listing 10 equals the last parameter value in Listing
9: log(0.0367165) = −3.3045.

ArmaLogLikc(const vY, const pdLik, const pdVar)
{

decl mphi, momega, msigma, ret_val;
// use 1 in GetSsfArma

GetSsfArma(s_vAR, s_vMA, 1, &mphi, &momega, &msigma);
ret_val = SsfLikConc(pdLik, pdVar, vY, mphi, momega, msigma);
s_dSigma = sqrt(pdVar[0]); // get sigma from SsfLikConc
return ret_val; // 1 indicates success, 0 failure

}

it0 f= 1.079789 df= 1.087 e1= 0.5434 e2= 0.2174 step=1
it5 f= 1.867912 df= 0.0001485 e1=8.269e-005 e2=1.818e-005 step=1
it7 f= 1.867912 df=2.702e-008 e1=1.086e-008 e2=6.982e-009 step=1
Strong convergence using numerical derivatives
Log-likelihood = 244.69649; variance = 0.0367165 (= dVar); n=131
parameters with standard errors:

-0.40182 (0.08964)
-0.55694 (0.07311)

Listing 10. Part of ssfairc.ox with output

5.2. Prediction and forecasting

Prediction. The Kalman filter of §4.3 produces the one-step ahead prediction of the
state vector, that is, the conditional mean E(αt|Yt−1), denoted by at, together with the
variance matrix Pt, for t = 1, . . . , n. The SsfPack function SsfMomentEst can be used to
obtain these quantities.

SsfPack implementation. The call of the state prediction function is given by

mState = SsfMomentEst(ST_PRED, &mPred, mYt, {Ssf});

where the returned matrix mState contains an+1 and Pn+1. The constant ST PRED is
pre-defined and must be given when state prediction is required. The data matrix mYt
and the sequence {Ssf} are as usual. This function returns in mPred a matrix containing

c© Royal Economic Society 1998

Statistical algorithms for models in state space 33

at and the diagonal elements of Pt, for t = 1, . . . , n. If these are not required, use 0 as
the second argument. The structure of the output matrices is given by

mState =
[
Pn+1

a′n+1

]
, mPred =


a1 . . . an
ŷ1 . . . ŷn

diag (P1) . . . diag (Pn)
diag (F1) . . . diag (Fn)

 ,
where ŷt = E (yt|Yt−1) and Ft = var (yt|Yt−1) = var (vt) with vt = yt− ŷt. The output is
directly obtained from the Kalman filter.

The dimensions of the two matrices returned by SsfMomentEst are:

mState :
[
m×m
1 ×m

]
, mPred, mStSmo, mDisturb :


m× 1
N × 1
m× 1
N × 1

 ,
where mStSmo and mDisturb are defined in §5.3.

Forecasting. Out-of-sample predictions, together with their mean square errors, can be
generated by the Kalman filter by extending the data set y1, . . . , yn with a set of missing
values. When yτ is missing, the Kalman filter step at time t = τ reduces to

aτ+1 = Tτaτ , Pτ+1 = TτPτT
′
τ +HτH

′
τ ,

which are the state space forecasting equations; see Harvey (1989, page 147) and West
and Harrison (1997, page 39). A sequence of missing values at the end of the sample will
therefore produce a set of multi-step forecasts.

Application: Forecasting from ARMA models. In Listing 11 SsfMomentEst is
used to forecast from the airline model estimated in Listing 9. Listing 11 reproduces
ArmaForc, which calls SsfMomentEst twice:

1. first to obtain the state at t = n+ 1;
2. in the next call, Σ is replaced by mState= (P ′

n+1, an+1)′, and a 1 × h matrix of
missing values is used instead of (y1, . . . , yn).

ArmaForc returns the original data, with forecasts appended; the second column contains
the forecast standard errors. The graph presents the forecasts in levels (but still in logs).

5.3. Smoothing

State smoothing. The evaluation of α̂t = E(αt|Yn) and variance matrix Vt = var(αt|Yn)
is referred to as moment state smoothing. The usual state smoothing algorithm can be
found in Anderson and Moore (1979, page 165) and Harvey (1989, page 149). Com-
putationally more efficient algorithms are developed by de Jong (1988a) and Kohn and
Ansley (1989). Koopman (1998) shows how the different algorithms are related. The
state smoother in SsfPack is given by

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt, t = n, . . . , 1, (30)

c© Royal Economic Society 1998

34 Koopman, Shephard and Doornik

ArmaForc(const vY, const cForc)
{

decl mphi, momega, msigma, mstate, mfor, m;

GetSsfArma(s_vAR, s_vMA, s_dSigma, &mphi, &momega, &msigma);
m = columns(mphi);
mstate = SsfMomentEst(ST_PRED, 0, vY, mphi, momega, msigma);
SsfMomentEst(ST_PRED, &mfor, constant(M_NAN,1,cForc), mphi, momega, mstate);
return (vY ~ mfor[m][]) | (zeros(vY) ~ sqrt(mfor[2 * m + 1][]));

}
// ... in main:

decl mforc = ArmaForc(s_mY, 24)’; // forecasts of D1D12
mforc = Cum1Cum12(mforc[][0], mdy, my)’; // translate to levels

1950 1955 1960

5

5.5

6

6.5
actual forecasts

Forecast generated by ssfairf.ox

Listing 11. Part of ssfairf.ox with output

where rt−1 and Nt−1 are evaluated by (20). Note that at and Pt are evaluated in a
forward fashion and the state smoother is a backward operation. Evaluation of these
quantities requires a substantial amount of storage space for the at and Pt. This is
in addition to the storage space required in order to evaluate rt−1 and Nt−1; see §4.4.
When only the smoothed state α̂t is required, more efficient methods of calculation are
provided; see §4.6.

SsfPack implementation. The call for the state smoothing function is

mSmo = SsfMomentEst(ST_SMO, &mStSmo, mYt, {Ssf});

The constant ST SMO is predefined and must be given when state smoothing is required.
The structure of the returned matrices is given by:

mSmo =
[
N0

r′0

]
, mStSmo =


α̂1 . . . α̂n
θ̂1 . . . θ̂n

diag (V1) . . . diag (Vn)
diag (S1) . . . diag (Sn)

 ,
where θ̂t = ct +Ztα̂t is the smoothed estimate of the signal θt = ct +Ztαt with variance
matrix St = ZtVtZ

′
t.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 35

Disturbance smoothing. The smoothed estimate of the disturbance vector of the state
space form (4), ut = (H ′

t, G
′
t)

′εt, denoted by ût (t = 1, . . . , n), is discussed in §4.4.
Disturbance smoothing can be represented by the simple algorithm:

ût = Ωtr∗t , var (ût) = ΩtN∗
t Ωt,

rt−1 = Φtr∗t , Nt−1 = ΦtN∗
t ,Φ

′
t, t = n, . . . , 1,

where r∗t and N∗
t are defined in step (ii) of the algorithm in §4.4; see also Koopman

(1993).

SsfPack implementation. The call of the disturbance smoothing function is given by

mSmo = SsfMomentEst(DS_SMO, &mDisturb, mYt, {Ssf});

The constant DS SMO is pre-defined and must be given when disturbance smoothing is
required. The structure of the returned matrices is given by:

mSmo =
[
N0

r′0

]
, mDisturb =


H1ε̂1 . . . Hnε̂n
G1ε̂1 . . . Gnε̂n

diag {var (H1ε̂1)} . . . diag {var (Hnε̂n)}
diag {var (G1ε̂1)} . . . diag {var (Gnε̂n)}

 .
Application: Detecting outliers and structural breaks. The example, partially
reproduced in Listing 12, estimates a local level model for the Nile data, and performs
outlier and structural break detection.

MaxBFGS is used again to estimate the local level model:

yt = µt + ξt, ξt ∼ NID
(
0, σ2

ξ

)
,

µt+1 = µt + ηt, ηt ∼ NID
(
0, σ2

η

)
, t = 1, . . . , n, (31)

with µ1 ∼ N(0, κ) and κ large. This model has two unknown variances which are re-
parameterized as

σ2
η = exp (2ϕ0) , σ2

ξ = exp (2ϕ1) ,

so that the likelihood criterion can be maximized without constraints with respect to
ϕ = (ϕ0, ϕ1)

′. The score (27) is calculated by

∂l

∂ϕ0

∣∣∣∣ ϕ = ϕ∗ = σ2∗
η S00,

∂l

∂ϕ1

∣∣∣∣ ϕ = ϕ∗ = σ2∗
ξ S11,

where Sij is the (i, j)-th element of matrix S in (27) for ϕ = ϕ∗. The log-likelihood and
S are obtained from SsfLikSco. The first graph in Listing 12 shows the estimated local
level with a band of ± two standard errors.

General procedures for testing for outliers and structural breaks based on models in
state space form are discussed by Harvey, Koopman, and Penzer (1998). Such irregular-
ities in data can be modelled in terms of impulse interventions applied to the equations
of the state space form. For example, an outlier can be captured within the measurement
equation by a dummy explanatory variable, known as an impulse intervention variable,
which takes the value one at the time of the outlier and zero elsewhere. The estimated

c© Royal Economic Society 1998

36 Koopman, Shephard and Doornik

// smoothed state vector
mstate = SsfMomentEst(ST_SMO, &mks, s_mYt, s_mPhi, s_mOmega);
// smoothed disturbance vector
SsfMomentEst(DS_SMO, &md, s_mYt, s_mPhi, s_mOmega, s_mSigma);
// auxiliary residuals
ms = md[0:1][] ./ sqrt(md[2:3][]);

DrawTMatrix(0, s_mYt, {"Nile"}, 1871, 1, 1);
DrawTMatrix(0, mks[1][], {"Smooth +/- 2SE"}, 1871, 1, 1, 0, 3);
DrawZ(sqrt(mks[3][]), "", ZMODE_BAND, 2.0, 14);
DrawTMatrix(1, ms,

{"Structural break t-test", "Outlier t-test"}, 1871, 1, 1);
ShowDrawWindow();

Strong convergence using analytical derivatives
Log-likelihood = -633.465; dVar = 1.00002; parameters:

3.6462 4.8112
Omega

1469.2 0.00000
0.00000 15098.

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

500

750

1000

1250

Nile Smooth +/- 2SE

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

-2

0

2

Structural break t-test Outlier t-test

Estimated level, outlier and break tests generated by ssfnile.ox

Listing 12. Part of ssfnile.ox with output

regression coefficient of this variable is an indication whether an outlying observation is
present. In the case of unobserved component time series models, this approach reduces
to a procedure based on the so-called auxiliary residuals. The standardized residuals as-
sociated with the measurement and system equations are computed via a single filter and

c© Royal Economic Society 1998

Statistical algorithms for models in state space 37

smoothing step; see §4.4 and §5.3. These auxiliary residuals are introduced and studied
in detail by Harvey and Koopman (1992); they show that these residuals are an effective
tool for detecting outliers and breaks in time series and for distinguishing between them.
It was shown by de Jong and Penzer (1998) that auxiliary residuals are equivalent to
t-statistics for the impulse intervention variables. The second graph in Listing 12 shows
the auxiliary residuals for ξt and ηt.

Application: Regression analysis. When the standard regression model

yt = Xtβ + ξt with ξt ∼ NID
(
0, σ2

ξ

)
with k vector of explanatory variables Xt = (x1,t, . . . , xk,t) is placed in the state space
form, the Kalman filter reduces to what is known as ‘recursive least squares’ algorithm.
The state prediction at is the least squares estimate (

∑t−1
j=1XjX

′
j)

−1(
∑t−1

j=1Xjyj) and
matrix Pt is the matrix (

∑t−1
j=1XjX

′
j)

−1, see Harvey (1993, §4.5). Therefore, the SsfPack
function SsfMomentEst can be used to obtain these quantities and to obtain the final
OLS estimates, that is an+1 and Pn+1.

Additional statistical output is obtained from smoothing. Following the arguments of
de Jong and Penzer (1998), the output of the basic smoothing recursions can be used to
construct t-tests for structural changes in regression models. The null hypothesis βi = β∗

i

with respect to the ith explanatory variable in

yt = . . .+ xi,tβi + . . .+ ξt, for t = 1, . . . , τ,
yt = . . .+ xi,tβ

∗
i + . . .+ ξt, for t = τ + 1, . . . , n,

against the alternative βi 6= β∗
i can be tested via the t-test

ri,τ/
√
Nii,τ , τ = 1, . . . , n− 1,

where rt = (r1,t, . . . rp,t)
′ and Nt, with the element (i, i) denoted as Nii,t, are evaluated

using the basic smoothing recursions (20). The (n − 1)k t-tests can be computed from
a single run of the basic smoother. The test has a t distribution with n − k degrees of
freedom. A relatively large t-test provides evidence against the null hypothesis.

1880 1900 1920 1940

1.5

2

2.5
spirits price income

1880 1900 1920 1940

2

4

t-trend t-const t-price t-income

Figure 3. Spirits data and stability tests generated by ssfspirits.ox

The regression application is based on per capita consumption of spirits in the UK
from 1870 to 1938. This data set was collected and first analysed by Prest (1949); also

c© Royal Economic Society 1998

38 Koopman, Shephard and Doornik

see Kohn and Ansley (1989) and Koopman (1992, pages 127–129) among others. As can
be seen in Figure 3, there is strong evidence of structural breaks in this model. This
can be no surprise, as the model is clearly misspecified (lack of dynamics, special periods
such as World War I, and so on).

GetSsfReg(mx, &mphi, &momega, &msigma, &mj_phi);// regression in state space
// calculate likelihood and error variance
SsfLikConc(&dlik, &dvar, myt, mphi, momega, msigma, <>, mj_phi, <>, <>, mx);
// regression
momega *= dvar;
mstate = SsfMomentEst(ST_PRED, <>, myt, mphi, momega, msigma, <>,

mj_phi, <>, <>, mx);
vse = sqrt(diagonal(mstate[0:ck-1][]));
mols = mstate[ck][] | vse | fabs(mstate[ck][] ./ vse);
// stability tests
mkf = KalmanFil(myt, mphi, momega, msigma, <>, mj_phi, <>, <>, mx);
mks = KalmanSmo(mkf, mphi, momega, msigma, <>, mj_phi, <>, <>, mx);
mstab= fabs(mks[:ck-1][1:ct-1] ./ sqrt(mks[ck+1:(2*ck)][1:ct-1]));

coef s.e. t-value
const 1.8277 0.36964 4.9445
trend -0.0091153 0.0011578 7.8731
price -0.85994 0.059011 14.572
income 1.0618 0.16930 6.2718
Modified profile log-likelihood 104.968 log-likelihood 123.353
variance 0.00174044 RSS 0.113128

Listing 13. Part of ssfspirits.ox with output

Application: Spline with missing values. The nonparametric spline method can be
regarded as an interpolation technique. Consider a set of observations which are spaced
at equal intervals but some observations are missing. To ‘fill in the gaps’ the spline model
of §3.4 can be considered. Applying filtering and smoothing to this model, we obtain the
estimated signal. In this way, a graphical representation of the nonparametric spline can
be produced.

The spline application is based on the Nile data set, where we replaced observations
from 1890–1900 and 1950–1960 by missing values. We fixed q at 0.004 in the spline
model, but, of course, in the state space setup it would be easy to estimate q. The
first graph in Listing 14 presents ŷt, the filtered estimate of the signal; the second shows
θ̂t, the smoothed estimate. The graphs show a distinct difference between filtering and
smoothing, corresponding to extrapolation and interpolation respectively.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 39

myt = loadmat("Nile.dat")’;
myt[][1890-1871:1900-1871] = M_NAN; // set 1890..1900 to missing
myt[][1950-1871:1960-1871] = M_NAN; // set 1850..1960 to missing

GetSsfSpline(0.004, <>, &mphi, &momega, &msigma); // SSF for spline
SsfLik(&dlik, &dvar, myt, mphi, momega); // need dVar
cm = columns(mphi); // dimension of state
momega *= dvar; // set correct scale of Omega
SsfMomentEst(ST_PRED, &mpred, myt, mphi, momega);
SsfMomentEst(ST_SMO, &mstsmo, myt, mphi, momega);

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

500

1000

1500

Nile Pred +/- 2SE

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

500

750

1000

1250

Nile Smooth +/- 2SE

Output generated by ssfnilesp.ox

Listing 14. Part of ssfnilesp.ox with output

c© Royal Economic Society 1998

40 Koopman, Shephard and Doornik

6. FURTHER APPLICATIONS

6.1. Seasonal components

The unobserved components model was discussed in section 3.2. The basic model con-
sisted of trend, seasonal and irregular components. For the seasonal component we
formulated a simple model which was based on seasonal dummy variables. There are
however other seasonal models; for example, they can be based on a set of trigonometric
terms which are made time-varying in a similar way as for the cycle of section 3.2 but
with ρ = 1. This so-called trigonometric seasonal model for γt is given by

γt =
[s/2]∑
j=1

γ+
j,t, where

(
γ+
j,t+1

γ∗j,t+1

)
=
(

cosλj sinλj
− sinλj cosλj

)(
γ+
j,t

γ∗j,t

)
+
(
ω+
j,t

ω∗
j,t

)
, (32)

with λj = 2πj/s as the j-th seasonal frequency and(
ω+
j,t

ω∗
j,t

)
∼ NID

{(
0
0

)
, σ2
ωI2

}
, j = 1, . . . , [s/2].

Note that for s even [s/2] = s/2, while for s odd, [s/2] = (s−1)/2. For s even, the process
γ∗j,t, with j = s/2, can be dropped. The state space representation is straightforward
and the initial conditions are γ+

j,1 ∼ N(0, κ) and γ∗j,1 ∼ N(0, κ), for j = 1, . . . , [s/2]. We
have assumed that the variance σ2

ω is the same for all trigonometric terms. However, we
can impose different variances for the terms associated with different frequencies; in the
quarterly case we can estimate two different σ2

ω ’s rather than just one.
The dummy and trigonometric specifications for γt have different dynamic properties;

see Harvey (1989, page 56). For example, the trigonometric seasonal process evolves more
smoothly; it can be shown that the sum of the seasonals over the past ‘year’ follows an
MA(s−2) rather than white noise. The same property holds for the Harrison and Stevens
seasonal representation for which all s individual seasonal effects collected in the vector
γ×t follow a random walk, that is

γ×t+1 =


γ1

γ2

...
γs


t+1

= γ×t + ωt, where ωt =


ω1

ω2

...
ωs


t

∼ NID
{

0, σ2
ω

(
sIs − isi

′
s

s− 1

)}
,

and is is a s× 1 vector of ones; see Harrison and Stevens (1976). The specific covariance
structure between the s disturbance terms enforces the seasonal effects to sum to zero
over the previous ‘year’. Also, the covariances between the s seasonal disturbances are
equal. The state space form is set up such that it selects the appropriate seasonal effect
from γ×t ; this implies a time-varying state space framework. However, the state space
representation can be modified to a time-invariant form as follows. Let γt = (1, 0′)γ×t ,
then

γ×t+1 =
(

0 Is−1

1 0

)
γ×t + ωt, where ωt ∼ NID

(
0, σ2

ω
sIs−isi′s
s−1

)
,

and γ×1 ∼ N
(
0, κ sIs−isi′s

s−1

)
.

(33)

c© Royal Economic Society 1998

Statistical algorithms for models in state space 41

The implications of the different seasonal specifications are discussed in more detail by
Harvey, Koopman, and Penzer (1998).

An interesting extension of the Harrison and Stevens seasonal is given by γt =
(1, 0′)γ×t with

γ×t+1 = ργ×t + ωt, where ωt ∼ NID
{
γ̄, σ2

ω

(
1 − ρ2

) sIs−isi′s
s−1

}
,

and γ×1 ∼ N
{
γ̄, σ2

ω
sIs−isi′s
s−1

}
.

This specification provides a stationary seasonal model around some average seasonal
pattern given by the unknown fixed s× 1 vector of means γ̄. It is possible to have both
stationary and nonstationary seasonal components in a single unobserved components
model, but in that case identification requirements stipulate that γ̄ is set to zero.

In SsfPack the dummy seasonal specification (13) was set as the pre-defined constant
CMP SEAS DUMMY for the function GetSsfStsm; see §3.2. The constant CMP SEAS TRIG
must be used if a trigonometric specification (32) is required; use CMP SEAS HS for the
Harrison and Stevens specification (33).

Application: Seasonal adjustment with trigonometric seasonals. Seasonal ad-
justment is a relatively easy task when time series are modelled as an unobserved com-
ponents time series model in which a seasonal component is included; see §3.2. The
estimated seasonal component is subtracted from the original time series in order to get
the seasonally adjusted series. In the same way the original time series is detrended by
subtracting the estimated trend component. In the example below we model the monthly
airline data with trend, seasonal and irregular components. The trigonometric seasonal
specification is used but without the restriction that the variances of the six time-varying
trigonometric terms are the same. This model for the airline data is estimated in three
steps. Firstly, we estimate the variances with the restriction of one variance for all trigo-
nometric terms. It turned out that the slope variance was estimated to be zero resulting
in a fixed slope. Secondly, the model is estimated without the restriction of equal vari-
ances for the six trigonometric terms, but with the restriction of a zero variance for the
slope. Two variances associated with the trigonometric terms were estimated to be zero.
Finally, the model is estimated with three zero restrictions on the variances imposed. The
results of this model are presented in Listing 15. The values of the estimated variances
are given, together with a set of eight graphs. The last four plot the four trigonometric
terms which have been estimated. Together, these make up the seasonal component of
the second graph.

6.2. Combining models

The system matrices of two different models can be combined into the corresponding
system matrices for the joint model. Consider model A and B, where

ΦA =
[
TA

ZA

]
, ΦB =

[
TB

ZB

]
.

c© Royal Economic Society 1998

42 Koopman, Shephard and Doornik

SetStsmModel(const vP)
{

// map to sts model with level, slope and trig seasonal
s_mStsm = <CMP_LEVEL, 1, 0, 0;

CMP_SLOPE, 0, 0, 0;
CMP_SEAS_TRIG, 1, 12, 0; // 12 for monthly data
CMP_IRREG, 1, 0, 0>;

decl vr = exp(2.0 * vP); // from log(s.d.) to variance
s_vVarCmp = // s_vVarCmp is diagonal(Omega)
// level slope --------- monthly trigonometric seasonal -------- irreg

vr[0] | 0 | ((vr[1] | vr[2] | 0 | vr[3] | vr[4]) ** <1;1>) | 0 | vr[5];
}
LogLikStsm(const vY, const pdLik, const pdVar)
{

decl mphi, momega, msigma, ret_val;
GetSsfStsm(s_mStsm, &mphi, &momega, &msigma); // get state space model
momega = diag(s_vVarCmp); // create Omega from s_vVarCmp
ret_val = SsfLik(pdLik, pdVar, vY, mphi, momega, msigma);
return ret_val; // 1 indicates success, 0 failure

}

Log-likelihood = 223.46337; n = 144;
variance parameters (* 10,000):
2.38 0 0.11 0.11 0.05 0.05 0 0 0.02 0.02 0.01 0.01 0 3.27

1950 1955 1960

5

5.5

6

6.5
data trend

1950 1955 1960

-.2

0

.2
seasonal

1950 1955 1960

0

irregular

1950 1955 1960

5

5.5

6 seasonally adjusted data

1950 1955 1960

-.1

0

.1

.2
trig 1

1950 1955 1960

-.05

0

.05

.1 trig 2

1950 1955 1960

-.025

0

.025
trig 4

1950 1955 1960

-.02

0

.02
trig 5

Output generated by ssfairstsm.ox

Listing 15. Part of ssfairstsm.ox with output

c© Royal Economic Society 1998

Statistical algorithms for models in state space 43

ZA and ZB have the same number of rows. The combined system matrix Φ is:

Φ =

 TA 0
0 TB

ZA ZB

 .
The matrices ΣA, ΣB, and δA, δB can be combined in the same way. This procedure
also applies when combining the index matrices JAΦ and JBΦ into JΦ. However, where Φ
has two blocks of zeros, JΦ must have two blocks with −1s.

To combine the variance system matrices ΩA and ΩB, where

ΩA =

[
(HH ′)A (HG′)A

(GH ′)A (GG′)A

]
, ΩB =

[
(HH ′)B (HG′)B

(GH ′)B (GG′)B

]
,

use:

Ω =

 (HH ′)A 0 (HG′)A

0 (HH ′)B (HG′)B

(GH ′)A (GH ′)B (GG′)A

 ,
noting that matrix (GG′)B is lost. This procedure can also be used for the index matrices
JAΩ and JBΩ but, again, where Ω has blocks of zeros, JΩ must have −1s.

ARMA-plus-noise model. In certain cases, models can be combined in a simple fashion.
For example, the ARMA plus noise model is defined as

yt = µt + εt, εt ∼ NID
(
0, σ2

ε

)
,

φ(L)µt = θ(L)ξt, ξt ∼ NID
(
0, σ2

ξ

)
,

where the disturbances are mutually uncorrelated. The state space form of this model is
simply

yt = (1, 0, 0, . . . , 0)αt +Gtεt,

with αt as given by (10). The SsfPack function GetSsfArma can be used for the ARMA
model, and afterwards, when the element of Ω, associated with GG′, is set to a non-zero
value, we obtain the ARMA-plus-noise model. A time-varying sequence for GtG′

t can
also be imposed.

SsfPack implementation. Two Ox functions are supplied to facilitate model com-
bination:

SsfCombine(mPhiA, mPhiB, dValue);
SsfCombineSym(mOmegaA, cStA, mOmegaB, dValue);

The function SsfCombine can be used to create the matrices Φ, Σ, δ (using 0 for the
dValue argument), as well as for JΦ and Jδ (using −1 for the dValue argument). The
function SsfCombineSym is used to create Ω and JΩ, setting dValue to 0 and −1 respect-
ively. SsfCombineSym requires cStA, the dimension mA of the state vector of model A.

c© Royal Economic Society 1998

44 Koopman, Shephard and Doornik

SetSplArmaParameters(const vP)
{

s_vAR = vP[0]; // AR(1) model
s_vMA = <>;
s_q = exp(2. * vP[1]);

}
SplArmaLogLikc(const vY, const pdLik, const pdVar)
{

decl mphi, momega, msigma, mphiB, momegaB, msigmaB, ret_val;

GetSsfSpline(s_q, <>, &mphi, &momega, &msigma);
GetSsfArma(s_vAR, s_vMA, 1, &mphiB, &momegaB, &msigmaB);

mphi = SsfCombine(mphi, mphiB, 0);// combining models
momega = SsfCombineSym(momega, 2, momegaB, 0);
msigma = SsfCombine(msigma, msigmaB, 0);

ret_val = SsfLikConc(pdLik, pdVar, vY, mphi, momega, msigma);
s_dSigma = sqrt(pdVar[0]); // get sigma from SsfLikConc
return ret_val; // 1 indicates success, 0 failure

}

1880 1900 1920 1940 1960

500

750

1000

1250

Nile trend

1880 1900 1920 1940 1960

-200

-100

0

100

200
arma error

1880 1900 1920 1940 1960

500

750

1000

1250
Nile signal

1880 1900 1920 1940 1960

-100

0

100

irregular

Output generated by ssfsplarma.ox

Listing 16. Part of ssfsplarma.ox with output

Application: Cubic spline model with ARMA errors. A particular example for
which we can use the provided functions SsfCombine and SsfCombineSym is the cubic
spline model with a stationary ARMA specification for ε(t) in (15). Standard estimation
methods for nonparametric splines as discussed in Green and Silverman (1994) can not

c© Royal Economic Society 1998

Statistical algorithms for models in state space 45

deal with such generalisations, while the state space framework can do this easily. To
illustrate this model we consider the Nile data and model it by a cubic spline for the trend
with serially correlated errors. The Ox code in Listing 16 combines a cubic spline model
with AR(1) errors. Apart from the likelihood evaluation, the Ox code of ssfsplarma.ox
is very similar to ssfair.ox and ssfairc.ox. We see a very smoothly estimated spline
in the reported figure, because the remaining ‘local’ movements around the fitted line
are captured by the AR(1) process.

6.3. Regression effects in time-invariant models

Stochastic models such as the ARMA model or the unobserved components model can
be extended by including explanatory variables or fixed unknown effects.

Regression model with ARMA errors. For example, we may wish to extended the
standard ARMA model by including a constant and a number of regression variables:

yt = µ∗ + x′tδ + µt + εt,

where δ is a vector of regression coefficients, and µt is the ARMA part of the model. The
state space form of this model is given by

yt = (1, x′t, 1, 0, . . . , 0)αt + εt,

αt+1 =

 µ∗

δ
α∗
t+1

 =

 1 0 0
0 I 0
0 0 Ta

 µ∗

δ
α∗
t

+

 0
0
h

 ξt, ξt ∼ NID
(
0, σ2

ξ

)
,

where α∗
t is the state vector of (10), and therefore µt = (1, 0, . . . , 0). The initial state

variance matrix is given by

P =

 κ 0 0
0 κI 0
0 0 V

 ,
with κ being the diffuse constant as discussed in §2.3.

Unobserved components and regression effects. Extending equation (11) with regressors
gives:

yt = µt + γt + ψt + x′tδ + ξt, where ξt ∼ NID
(
0, σ2

ξ

)
, t = 1, . . . , n,

with xt the vector of explanatory variables with coefficients δ. A constant can not be
included in the model when µt is present: this would cause a problem closely related
to the well-known regression problem of multicollinearity. The same applies to the time
index as an explanatory variable when the slope term is included in the specification for
µt. The state space set-up is extended in the same way as for the ARMA model with
regression effects.

c© Royal Economic Society 1998

46 Koopman, Shephard and Doornik

SsfPack implementation. SsfPack provides the function AddSsfReg to include re-
gressors to a time-invariant model:

AddSsfReg(mXt, &mPhi, &mOmega, &mSigma, &mJ_Phi);

where mXt is the k × n matrix of regressors; it is only used to identify the number of
regressors to be included in the model. The returned matrices Φ, Ω and Σ are adjusted
such that

Φ =

 Ik 0
0 T
0 Z

 , Ω =

 0 HH ′ HG′

0 GH ′ GG′

0 0 0

 , Σ =

 −Ik 0
0 P
0 a′

 ,
where k is the number of rows in the data matrix mX. The matrices T , Z, H , G, a and P
are obtained from the inputted matrices mPhi, mOmega and mSigma. The returned index
matrix mJ Phi is

JΦ =

 −Ik −I
−I −I
i −I

 ,
where i is a 1 × k vector (0, 1, . . . , k − 1).

6.4. Monte Carlo simulations and parametric bootstrap tests

Statistical methods such as Monte Carlo and bootstrap require random samples from
the unconditional distribution implied by the model in state space form. The SsfPack
function SsfRecursion can be useful in this respect. For illustrative purposes, we will
present a simple parametric bootstrap procedure for testing for a unit root when the null
is stationarity. This problem has been extensively studied in the literature. The initial
work was carried out by Nyblom and Makelainen (1983) and Tanaka (1983), while the
more recent work is reviewed in Tanaka (1996, Ch. 10).

Consider the local level model (31) and the vector of univariate observations y =
(y1, . . . , yn)

′. The hypothesis

H0 : σ2
η = 0, H1 : σ2

η > 0,

implies that yt is a stationary series under the null hypothesis, and that yt has a unit
root otherwise. The null also implies a constant level, µ0 = · · · = µn = µ, and that the
constrained maximum likelihood estimators of µ and σ2

ξ are simply the sample average

y and the sample variance σ̂2
ξ = 1

n

∑n
t=1 (yt − y)2.

The null hypothesis can be tested using a score test:

s =
∂l(y; θ)
∂σ2

η

∣∣∣∣
σ2
η = 0, µ = y, σ2

ξ = σ̂2
ξ

,

and the null hypothesis is rejected if the score is relatively large. This statistic (up to a
constant) is the same as the locally best invariant (LBI) test, and is known to be asymp-
totically pivotal; see, for example, Tanaka (1996, Ch. 10.7). The form of the distribution

c© Royal Economic Society 1998

Statistical algorithms for models in state space 47

is complicated, and has to be derived by numerically inverting a characteristic function,
or by simulation.

A bootstrap test for the null hypothesis is particularly straightforward for this prob-
lem. Define y(i) as a sample of size n drawn from NID(y, σ̂2

ξ). Then for each draw the
corresponding score statistic is computed:

s(i) =
∂l(y(i); θ)
∂σ2

η

∣∣∣∣
σ2
η = 0, µ = y(i), σ2

ξ = 1
n

∑n
t=1

(
y
(i)
t − y(i)

)2
.

The observed value ŝ is compared with a population of simulated score statistics s(i),
j = 1, . . . ,M , where M is the number of bootstrap replications. This bootstrap test is
easily generalized to more general settings.

Interestingly the bootstrap test for the local level model can be made exact if we
simulate y(i) in a slightly different way. Define u(i) as a sample of size n drawn from
NID(0, I). Transforming the generated sample by

y∗(i) = y + σ̂ξ
u(i) − u(i)√

1
n

∑n
t=1

(
u

(i)
i − u(i)

)2
,

it follows that:

y∗(i) = y and
1
n

n∑
t=1

(
y
∗(i)
t − y∗j

)2

= σ̂2
ξ .

Thus, under the null hypothesis y∗ is being simulated conditionally on the sufficient
statistics, consequently, the distribution of y∗ is parameter free. As a result, simulations
from

s∗(i) =
∂l(y∗j; θ)
∂σ2

η

∣∣∣∣ σ2
η = 0, µ = y, σ2

ξ = σ̂2
ξ
,

provide an exact benchmark for the distribution of s. For example, a test with 5% size
can be constructed using 100 simulations by recording ŝ and then simulating s∗1, . . . , s∗99.
If ŝ is one of the largest five in ŝ, s∗(1), . . . , s∗(99) then the hypothesis is rejected.

This exact testing procedure is difficult to extend to more complicated dynamic mod-
els and one usually relies on the asymptotic pivotal nature of the score statistic to produce
good results.

Application: Bootstrap test of stationarity. The exact testing procedure is im-
plemented for the local level model for the Nile data, with the null hypothesis σ2

η = 0 and
M = 1000. The output in Listing 17 shows that the null hypothesis is strongly rejected.

6.5. Bayesian parameter estimation

The basics. Bayesian inference on parameters indexing models has attracted a great
deal of interest recently. Recall that if we have a prior on the parameters ϕ of f(ϕ), then

c© Royal Economic Society 1998

48 Koopman, Shephard and Doornik

SsfLikSco(&dlik, &msco, my, mphi, momega, msigma);
vboot[0][0] = msco[0][0]; // first is actual test value

for (i = 1; i < cboot; i++) // bootstrap loop
{

y_i = mn_y + (sd_y * standardize(rann(ct, 1))’);
SsfLikSco(&dlik, &msco, y_i, mphi, momega, msigma);
vboot[0][i] = msco[0][0];

}
vquant = quantiler(vboot, <0.9, 0.95, 0.99>);

Test for fixed level (Nile data) = 0.832334
90% 95% 99%

Bootstrap critical values: 0.072170 0.10187 0.21229

Listing 17. Part of ssfboot.ox with output

f(ϕ|y) ∝ f(ϕ)
∫
f(y|α, ϕ)f(α|ϕ)dα = f(ϕ)f(y|ϕ).

In the Gaussian case we can evaluate f(y|ϕ) =
∫
f(y|α, ϕ)f(α|ϕ)dα using the Kalman

filter. Although we have the posterior density up to proportionality, it is not easy to
compute posterior moments or quantiles about ϕ, as this involves a further level of
integration. Thus it appears as if Bayesian inference is more difficult than maximum
likelihood estimation.

However, recent advances in numerical methods for computing functionals of the
posterior density f(ϕ|y) have changed this situation. These developments, referred to
as Markov chain Monte Carlo (MCMC), consisting of the Metropolis-Hastings algorithm
and its special case the Gibbs sampling algorithm, have had a widespread influence on the
theory and practice of Bayesian inference; see for example Chib and Greenberg (1996),
and Gilks, Richardson, and Spiegelhalter (1996).

The idea behind MCMC methods is to produce variates from a given multivariate
density (the posterior density in Bayesian applications) by repeatedly sampling a Markov
chain whose invariant distribution is the target density of interest — f(ϕ|y) in the above
case. There are typically many different ways of constructing a Markov chain with this
property, and an important goal of the literature on MCMC methods in state space
models is to isolate those that are simulation efficient. It should be kept in mind that
sample variates from a MCMC algorithm are a high-dimensional (correlated) sample from
the target density of interest. The resulting draws can be used as the basis for making
inferences by appealing to suitable ergodic theorems for Markov chains. For example,
posterior moments and marginal densities can be estimated (simulated consistently) by
averaging the relevant function of interest over the sampled variates. The posterior mean
of ϕ is simply estimated by the sample mean of the simulated ϕ values. These estimates
can be made arbitrarily accurate by increasing the simulation sample size. The accuracy
of the resulting estimates (the so-called numerical standard error) can be assessed by

c© Royal Economic Society 1998

Statistical algorithms for models in state space 49

standard time series methods that correct for the serial correlation in the draws. Indeed,
the serial correlation can be quite high for badly behaved algorithms.

To be able to use an MCMC algorithm we need to be able to evaluate the target
density up to proportionality. This is the case for our problem as we know f(ϕ|y) ∝
f(ϕ)f(y|ϕ) using the Kalman filter. The next subsection will review the nuts and bolts
of the sampling mechanism.

Metropolis algorithm. We will use an independence chain Metropolis algorithm to sim-
ulate from the abstract joint distribution of ψ1, ψ2, .., ψm. Proposals z are made to pos-
sibly replace the current ψi, keeping constant ψ\i, where ψ\i denotes all elements of ψ
except ψi. The proposal density is proportional to q(z, ψ\i), while the true density is
proportional to f(ψi|ψ\i). Both densities are assumed to be everywhere positive, with
compact support and known up to proportionality. If ψ(k) is the current state of the
sampler, then the proposal to take ψ(k+1) = (z, ψ(k)

\i) is accepted if

c < min

f(z|ψ(k)
\i)q(ψ(k)

i , ψ
(k)
\i)

f(ψ(k)
i |ψ(k)

\i)q(z, ψ(k)
\i)

, 1

 , where c ∼ UID(0, 1).

If it is rejected, we set ψ(k+1) = ψ(k). Typically, we wish to design q(ψ(k)
i , ψ

(k)
\i) to be

close to f(z|ψ(k)
\i), but preferably with heavier tails (see, for example, Chib and Greenberg

(1996)).
In the context of learning about parameters in a Gaussian state space model, this

algorithm has ψ = ϕ|y. Then the task of performing MCMC on the parameters is
one of designing a proposal density q(ϕ(k)

i , ϕ
(k)
\i) which will typically be close to being

proportional to f(ϕi|ϕ(k)
\i , y) ∝ f(ϕi, ϕ

(k)
\i |y). This is not particularly easy to do, although

generic methods are available: see, for example, Gilks, Best, and Tan (1995).
In the rather simpler case where we can choose

q(ψi, ψ
(k)
\i) = f(ψi|ψ(k)

\i),

the Metropolis algorithm is called a Gibbs sampler; see Geman and Geman (1984) and
Gelfand and Smith (1990). In that case the suggestions are never rejected. Unfortunately,
for the unknown parameter problems in a Gaussian model, f(ϕi|ϕ(k)

\i , y) is only known up
to proportionality, and consequently the simplicity of the Gibbs sampler is not available.

Augmentation. As the design of proposal densities for the Metropolis algorithm is
sometimes difficult an alternative method has been put forward by Fruhwirth-Schnatter
(1994). This suggestion is of added interest because it is the only available way to
make progress when we move to non-Gaussian problems, where evaluating f(y|ϕ) =∫
f(y|α, ϕ)f(α|ϕ)dα is generally not possible.

The suggestion is to design MCMC methods for simulating from the density π(ϕ, α|y),
where α = (α1, . . . , αn) is the vector of n latent states, rather than π(ϕ|y). The draws
from this joint density provide draws from the marginal density π(ϕ|y), by simply ig-
noring the draws from the states, and therefore solve the original problem. It turns out

c© Royal Economic Society 1998

50 Koopman, Shephard and Doornik

that rather simple Markov chain Monte Carlo procedures can be developed to sample
π(ϕ, α|y). In particular we could

1. Initialize ϕ
2. Sample from the multivariate Gaussian distribution of α|y, ϕ using a simulation

smoother.
3. Sample from ϕ|y, α directly or do a Gibbs or Metropolis update on the elements.
4. Go to 2.

The key features are that the simulation smoother allows all the states to be drawn as
a block in a simple and generic way, and secondly that we can usually draw from ϕ|y, α
in a relatively trivial way. This second point is illustrated in the next section.

Illustration. Suppose the model is a local linear trend (12) with added measurement
error ξt ∼ NID(0, σ2

ξ). When we draw from ϕ|y, α we act as if y, α is known. Knowing α
gives us both {µt} and {βt}. Thus we can unwrap the disturbances

ηt = µt+1 − µt − βt ∼ NID(0, σ2
η),

ζt = βt+1 − βt ∼ NID(0, σ2
ζ),

ξt = yt − µt ∼ NID(0, σ2
ξ).

Let the prior densities be given by

σ2
ξ ∼ IG

(
cξ
2
,
Sσξ

2

)
, σ2

η ∼ IG
(
cη
2
,
Sση

2

)
, σ2

ζ ∼ IG
(
cζ
2
,
Sσζ

2

)
,

for some choices of shape parameters cξ, cη, cζ and scales Sσξ
, Sση , Sσζ

. For example, the
inverse gamma distribution IG for σ2

ξ implies that the prior mean and variance of σ2
ξ is

given by
Sσξ

cξ − 2
,

2S2
σξ

(cξ − 2)2 (cξ − 4)
,

respectively. The posteriors are then given by

σ2
ξ |y, α ∼ IG

(
cξ + n

2
,
Sσξ

+
∑
ξ2t

2

)
, σ2

η|y, α ∼ IG
(
cη + n

2
,
Sση +

∑
η2
t

2

)
,

σ2
ζ |y, α ∼ IG

(
cζ + n

2
,
Sσζ

+
∑
ζ2
t

2

)
.

Each of these densities are easy to sample from as shown in the Ox example program.
Although it is not always possible to sample the ϕ|y, α this easily, it is usually the

case that it is much easier to update the parameters having augmented the MCMC with
the states, than when the states are integrated out. Of course, it is often the case that
the MCMC algorithm has such a large dimension that the algorithm converges rather
slowly. This danger needs to be assessed carefully in applied work.

Application: Bayesian estimation of local level model. The Bayesian procedure
for σ2

ξ and σ2
η is implemented for the local linear trend model with βt = 0 (i.e. the local

level model(31)) using the Nile data; see Listing 18. The prior density parameters are
set to cη = cξ = 5 and Sη = 5000, Sξ = 5000. We use 2000 replications.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 51

GetSsfStsm(<CMP_LEVEL, 1.0, 0, 0;
CMP_IRREG, 1.0, 0, 0>, &mphi, &momega, &msigma);

s_eta = 5000; s_xi = 50000;
c_eta = c_eps = 2.5 + (0.5 * columns(myt));

for (i = 0, mpsi = zeros(2, crep); i < crep; ++i)
{

md = SsfCondDens(DS_SIM, myt, mphi, momega, msigma);
md = md * md’;
mpsi[0][i] = 1.0 / rangamma(1,1, c_eta, (s_eta + md[0][0])/2);
mpsi[1][i] = 1.0 / rangamma(1,1, c_eps, (s_xi + md[1][1])/2);
momega = diag(mpsi[][i]);

}

mean st.dev.
var_eta 1519.168 818.687
var_eps 15011.850 2637.460

1000

3000

5000
drawn var_eta

10000

15000

20000

25000
drawn var_xi

0 20 40 60 80 100

0

.5

1
ACF var_eta

0 20 40 60 80 100

0

.5

1
ACF var_xi

0 1000 2000 3000 4000 5000 6000

.00025

.0005
Density var_eta

10000 15000 20000 25000

.00005

.0001

.00015
Density var_xi

Histogram and estimated density of σ2
ε and σ2

η

Listing 18. Part of ssfbayes.ox with output

c© Royal Economic Society 1998

52 Koopman, Shephard and Doornik

7. CONCLUSION

In this paper we have discussed SsfPack, which is a library of statistical and econometric
algorithms for state space models. The functionality is presented here as an extension
to the Ox language. We have shown that a wide variety of models can be handled in
this unified framework: from a simple regression model with ARMA errors to a Bayesian
model with unobserved components. Many applications are given and the Ox code is
provided. They illustrate the enormous flexibility of this approach. Furthermore, SsfPack
allows the researcher to concentrate on the problem at hand, rather than on programming
issues. Here we have concentrated on Gaussian univariate models, but the algorithms can
deal as easily with multivariate models and with certain classes of non-Gaussian model.
For an example of the latter, which uses SsfPack, see the stochastic volatility models in
Kim, Shephard, and Chib (1998). A general overview is given in Koopman, Shephard,
and Doornik (1998).

Although the algorithms are implemented using efficiently written computer code,
SsfPack can be relatively slow when the model implies a large state vector (for example,
when we deal with monthly observations). This is mainly due to the generality of the
package: the algorithms do not take account of sparse structures in system matrices.
Some ARMA models and unobserved components models imply sparse system matrices;
this happened with the airline model (§5.1), for which maximization was relatively slow.
We are currently developing algorithms which are able to recognise sparse matrix struc-
tures without losing the generality of SsfPack.

The Kalman filter and smoothing algorithms as implemented in SsfPack are not able
to take account of diffuse initial conditions. We have solved this by setting the initial
variances associated with diffuse elements of the state vector to a large value (the so-
called big-κ method). However, there are methods available to address this issue in
an exact way. The next release of SsfPack will provide such routines for filtering and
smoothing which are based on the methods of Koopman (1997).

c© Royal Economic Society 1998

Statistical algorithms for models in state space 53

A. APPENDIX: SSFPACK FUNCTIONS AND SAMPLE PROGRAMS

Models in state space form
AddSsfReg §6.2 adds regression effect to time-invariant state space.
GetSsfArma §3.1 puts ARMA model in state space.
GetSsfReg §3.3 puts regression model in state space.
GetSsfSpline §3.4 puts nonparametric cubic spline model in state space.
GetSsfStsm §3.2 puts structural time series model in state space.
SsfCombine §6.2 combines system matrices of two models.
SsfCombineSym §6.2 combines symmetric system matrices of two models.

General state space algorithms
KalmanFil §4.3 returns output of the Kalman filter.
KalmanSmo §4.4 returns output of the basic smoothing algorithm.
SimSmoDraw §4.5 returns a sample from the simulation smoother.
SimSmoWgt §4.5 returns covariance output of the simulation smoother.

Ready-to-use functions
SsfCondDens §4.6 returns mean or a draw from the conditional density.
SsfLik §5.1 returns log-likelihood function.
SsfLikConc §5.1 returns profile log-likelihood function.
SsfLikSco §5.1 returns score vector.
SsfMomentEst §5.2, §5.3 returns output from prediction, forecasting and smoothing.
SsfRecursion §4.2 returns output of the state space recursion.

GetSsfArma GetSsfStsm SimSmoDraw SsfLik SsfMomentEst

Listing GetSsfReg KalmanFil SimSmoWgt SsfLikConc SsfRecursion

program GetSsfSpline KalmanSmo SsfCondDens SsfLikSco SsfCombine

ssfair 9 X . . X .
ssfairc 10 X X . .
ssfairf 11 X X . X . .
ssfairstsm 15 . . . X X . X . . .
ssfarma 1 X
ssfbayes 18 . . . X X
ssfboot 17 . . . X X . . .
ssfkf 6 X X .
ssfnile 12 . . . X X . X X . .
ssfnilesp 14 . . X X . . X . .
ssfrec 5 X .
ssfreg 3 . X
ssfsim 8 X . X X X .
ssfsmo 7 X X X .
ssfspirits 13 . X . . X X X . X . .
ssfspl 4 . . X
ssfsplarma 16 X . X X X X . . . X
ssfstsm 2 . . . X

c© Royal Economic Society 1998

54 Koopman, Shephard and Doornik

REFERENCES

Anderson, B. D. O. and J. B. Moore (1979). Optimal Filtering. Englewood Cliffs: Prentice-Hall.
Ansley, C. F. and R. Kohn (1986). A note on reparameterizing a vector autoregressive moving

average model to enforce stationarity. J. Statistical Computation and Simulation 24, 99–
106.

Balke, N. S. (1993). Detecting level shifts in time series. J. Business and Economic Statist. 11,
81–92.

Bergstrom, A. R. (1984). Gaussian estimation of structural parameters in higher order con-
tinuous time dynamic models. In Z. Griliches and M. Intriligator (Eds.), The Handbook of
Econometrics, Volume 2, pp. 1145–1212. North-Holland.

Box, G. E. P. and G. M. Jenkins (1976). Time Series Analysis: Forecasting and Control (2nd
ed.). San Francisco, CA: Holden-Day.

Chib, S. and E. Greenberg (1996). Markov chain Monte Carlo simulation methods in econo-
metrics. Econometric Theory 12, 409–31.

Cobb, G. W. (1978). The problem of the Nile: conditional solution to a change point problem.
Biometrika 65, 243–51.

de Jong, P. (1988a). A cross validation filter for time series models. Biometrika 75, 594–600.
de Jong, P. (1988b). The likelihood for a state space model. Biometrika 75, 165–169.
de Jong, P. (1989). Smoothing and interpolation with the state space model. J. American

Statistical Association 84, 1085–8.
de Jong, P. and J. Penzer (1998). Diagnosing shocks in time series. J. American Statistical

Association 93, 796–806.
de Jong, P. and N. Shephard (1995). The simulation smoother for time series models. Biomet-

rika 82, 339–50.
Doornik, J. A. (1998). Object-Oriented Matrix Programming using Ox 2.0. London: Timberlake

Consultants Press.
Fruhwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. J. Time Series

Analysis 15, 183–202.
Gelfand, A. E. and A. F. M. Smith (1990). Sampling-based approaches to calculating marginal

densities. J. American Statistical Association 85, 398–409.
Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distribution and the Bayesian

restoration of images. IEEE Transactions, PAMI 6, 721–41.
Gilks, W. K., S. Richardson, and D. J. Spiegelhalter (1996). Markov Chain Monte Carlo in

Practice. London: Chapman & Hall.
Gilks, W. R., N. G. Best, and K. K. C. Tan (1995). Adaptive rejection Metropolis sampling

within Gibbs sampling. Applied Statistics 44, 155–73.
Green, P. and B. W. Silverman (1994). Nonparameteric Regression and Generalized Linear

Models: A Roughness Penalty Approach. London: Chapman & Hall.
Harrison, J. and C. F. Stevens (1976). Bayesian forecasting (with discussion). J. Royal Stat-

istical Society B 38, 205–247.
Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-

bridge: Cambridge University Press.
Harvey, A. C. (1993). Time Series Models (2nd ed.). Hemel Hempstead: Harvester Wheatsheaf.
Harvey, A. C. and S. J. Koopman (1992). Diagnostic checking of unobserved components time

series models. J. Business and Economic Statist. 10, 377–389.
Harvey, A. C., S. J. Koopman, and J. Penzer (1998). Messy time series. In T. B. Fomby and

R. C. Hill (Eds.), Advances in Econometrics, volume 13. New York: JAI Press.
Harvey, A. C. and M. Streibel (1998). Testing for nonstationary unobserved components. J.

Time Series Analysis 19. Forthcoming.
Hastie, T. and R. Tibshirani (1990). Generalized Additive Models. London: Chapman & Hall.

c© Royal Economic Society 1998

Statistical algorithms for models in state space 55

Jones, R. H. (1980). Maximum likelihood fitting of ARIMA models to time series with missing
observations. Technometrics 22, 389–95.

Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: likelihood inference and
comparison with ARCH models. Rev. Economic Studies 65, 361–93.

Kitagawa, G. and W. Gersch (1996). Smoothness Priors Analysis of Time Series. New York:
Springer Verlag.

Kohn, R. and C. F. Ansley (1987). A new algorithm for spline smoothing based on smoothing
a stochastic process. SIAM J Sci. Statistical Computing 8, 33–48.

Kohn, R. and C. F. Ansley (1989). A fast algorithm for signal extraction, influence and cross-
validation. Biometrika 76, 65–79.

Koopman, S. J. (1992). Diagnostic Checking and Intra-daily Effects in Time Series Models,
Volume 27 of Tinbergen Institute Research Series. Amsterdam: Thesis Publishers.

Koopman, S. J. (1993). Disturbance smoother for state space models. Biometrika 80, 117–126.
Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for non-stationary time

series models. J. American Statistical Association 92, 1630–1638.
Koopman, S. J. (1998). Kalman filtering and smoothing. In P. Armitage and T. Colton (Eds.),

Encyclopedia of Biostatistics. Chichester: Wiley and Sons.
Koopman, S. J. and N. Shephard (1992). Exact score for time series models in state space

form. Biometrika 79, 823–6.
Koopman, S. J., N. Shephard, and J. A. Doornik (1998). Fitting non-Gaussian state space

models in econometrics: Overview, developments and software. Unpublished paper.
Magnus, J. R. and H. Neudecker (1988). Matrix Differential Calculus with Applications in

Statistics and Econometrics. New York: Wiley.
Nyblom, J. and T. Makelainen (1983). Comparison of tests of for the presence of random walk

coefficients in a simple linear models. J. American Statistical Association 78, 856–64.
Prest, A. R. (1949). Some experiments with demand analysis. Review of Economics and Stat-

istics 31, 33–49.
Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transac-

tions on Information Theory 11, 61–70.
Tanaka, K. (1983). Non-normality of the Lagrange multiplier statistics for testing the constancy

of regression coefficients. Econometrica 51, 1577–82.
Tanaka, K. (1996). Time Series Analysis: Nonstationary and Noninvertible Distribution The-

ory. New York: Wiley.
Tunnicliffe-Wilson, G. (1989). On the use of marginal likelihood in time series model estimation.

J. Royal Statistical Society B 51, 15–27.
Wecker, W. E. and C. F. Ansley (1983). The signal extraction approach to nonlinear regression

and spline smoothing. J. American Statistical Association 78, 81–89.
West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic Models (2 ed.). New York:

Springer-Verlag.

c© Royal Economic Society 1998

