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2 MYATT AND WALLACE

1. INTRODUCTION

Say first, of God above or man below,

What can we reason but from what we know?

Alexander Pope: An Essay on Man

Many interesting games possess multiple Nash equilibria. Absent a suitable refinement
concept, many theorists encourage the examination of the contert in which a game is
played.! In particular, the environment may provide a guideline for players. If this
guideline specifies a particular Nash equilibrium, then an agent can do no better than
to play their part in it. In a coordination game, for example, a convention to play a
particular equilibrium is self-enforcing. Such advice is unsatisfactory, however, as it does
not explain how such an environment might arise.

Players may look to history to inform their decisions and this can, therefore, provide
a suitable context. Of particular relevance are the actions taken previously by others.
Observation of these actions allow an agent to infer the typical play of a game. An
individual will then select a strategy contingent on this observation. The realised action
becomes part of history and history thus evolves.

Jointly modelling the interdependence of history and action choice allows selection
between equilibria. To some extent, this is the approach of the adaptive learning literature
epitomised by the work of Kandori, Mailath and Rob (1993).? They specify a dynamic in
which entrants respond to an existing population’s strategy frequency. Such a dynamic
is path-dependent as the initial configuration of history determines long-run behaviour.
In response the authors achieve ergodicity via the introduction of mutations — agents
make mistakes when choosing their strategies. The invariant distribution of the resulting
process 1s examined as mutations vanish and an equilibrium is selected irrespective of
initial conditions.

!See for example Binmore (1994) or Schelling (1960).
2Henceforth KMR (1993).
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The adaptive learning approach is subject to a number of critiques. Players form
beliefs naively and also fail to choose optimal actions given those beliefs. The latter
objection is highlighted by Myatt and Wallace (1997) in which agents differ rather than
err. Ergodicity of the adaptive learning process requires occasional contrarian behaviour,
where entrants choose against an established convention. A more convincing explanation
for such behaviour is idiosyncrasy on the part of individuals, and this is the approach
employed here. The focus in the present paper will be on the former objection. If a player
repeatedly interacts with randomly selected members of the population, then adopting a
best response to the incumbent strategy frequency is not unreasonable. In contrast, when
an agent expects a single play against an opponent who simultaneously selects a strategy,
this is suspect. Such a framework is envisioned by Young (1993). His model specifies
pairs of entrants who, following a (sampled) observation of history, independently choose
strategies and play a single game. In this situation, an intelligent agent would reason
more carefully.

This paper recognises and responds to this critique. Observed frequencies no longer
provide a theoretical opponent. Rather, context seeds the beliefs of a player. An agent
initially conjectures that their opponent will act optimally given their observation yield-
ing a new hypothesis for their opponent’s play. Bearing the agent’s reaction to this in
mind, their opponent can calculate a new best response. Anticipating such a thought
experiment, the agent constructs a best response to this strategy. Thus, entrants engage
in an iterative best response process whose limit crucially depends upon the starting
point. This starting point is provided by history. Such intelligent reflection upon ones
environment and the reasoning procedure of others is sophisticated play.

Full rationality (in the sense commonly used by economists) might seem a more ap-
propriate response to the naiveté inherent in the adaptive learning literature. It is not.
Observed strategy frequencies would be ignored by “rational” players as they do not have

a direct effect on payofls. Agents would proceed directly to an equilibrium. Again, the

3Henceforth MW (1997).
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modeller is left without a mechanism for selecting between equilibria and players have no
way to coordinate. The suggestion here is that they can use observations of past play to
coordinate on an equilibrium via the use of some reasonable thought experiment. This
is motivated by a desire to model the way in which individuals might think strategically.
Unlike full rationality, sophisticated play is a behavioural postulate — a common feature
of both adaptive and evolutionary research. Such research might question the computa-
tional ability required of the agents in this model. Although players reason indefinitely,
the intention here is to capture a situation in which agents think o some extent about
their opponent’s behaviour. In fact, many of the conclusions are largely unaffected by
allowing less sophistication on the part of the players.*

When sampling is complete, agents observe identical strategy frequencies and this is
common knowledge. The iterative reasoning process converges to a (history dependent)
Bayesian Nash equilibrium of the underlying stage game. As strategies in such Bayesian
equilibria are trigger rules, either action may be realised. Allowing the individual-specific
heterogeneity to vanish, these equilibria correspond to the pure Nash equilibria of the
unperturbed game. With vanishing noise, only one of the actions is played almost all of
the time. Thus an equilibrium is selected. The selection criterion depends crucially upon
the depth and width of the basins of attraction. If an equilibrium is both risk-dominant
(Harsanyi and Selten 1988) and generalised risk-dominant (MW 1997) then it is selected.

When sampling is incomplete, selection results may radically differ. Agents no longer
observe common histories, and hence they must carefully consider not only their oppo-
nent’s action but also what their opponent might have seen. Such deliberation, however,
must also pay heed to their opponent’s beliefs about what they might have seen. Much of
the epistemological literature focuses on this issue, see for example Morris, Rob and Shin
(1995). An infection argument applies. An agent initially conjectures a best response to

the observed strategy frequency. Upon further reflection they recognise that, with high

*Agents are allowed to reason indefinitely purely for mathematical convenience.
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probability, an opponent will observe a different frequency. Such observations may gen-
erate a contrary best response. Mindful of this, the initial player changes strategy. With
sufficiently many iterations of reasoning, a single strategy may be adopted by all entrants
irrespective of their observations. In fact, when sampling is sufficiently incomplete all
players adopt the risk-dominant equilibrium regardless of history. Moreover, this result
holds without resorting to perturbation of the non-ergodic Markov process.

The argument proceeds as follows. Section 2 outlines the model. The trembled stage
game is introduced (2.1) followed by the dynamic (2.2). In Section 2.3 the iterative
reasoning process employed by sophisticated agents is both described and justified. These
components are illustrated by a motivating example of PC adoption in Section 2.4. The
analysis takes place in Section 3. Results are first obtained for the reasoning process
with full sampling (3.2) and its associated dynamic (3.3). Secondly, Sections 3.4 and
3.5 present the results for incomplete sampling. Returning to the example in Section 4,
the results are discussed and illustrated. These elements are drawn together along with

some concluding remarks in Section 5. For convenience, omitted results are collected in

Appendix A.

2. THE MODEL

In this section the model is described. First, the trembled stage game of MW (1997) is
reviewed. Concepts of risk-dominance and generalised risk-dominance are re-introduced.
Turning to the updating procedure, Section 2.2 constructs the specific dynamic driving
the population’s evolution. The method by which individuals make decisions is left open
— this is dealt with in Section 2.3. Here, the reasoning process which connects decision
to context is both introduced and defended. Finally, a motivating example is presented

in Section 2.4.

2.1. The Trembled Stage Game. The key elements of MW (1997) are retained here.

In particular, the analysis centres on the familiar symmetric 2 X 2 strategic form game
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with generic payoffs:

c d

Notice that this game can be represented by a 2 X 2 matrix.

Definition 1. The mean payoff matrix is defined as:

A_:
¢ d

A player equipped with payoffs A, entering a population is a mean payolfl entrant.

Coordination games are of particular interest, and will be the focus of subsequent analysis.
This is when a > ¢ and d > b. Such a game has two pure Nash equilibria, (1,1) and
(2,2) with associated security payoffs b and ¢. The symmetric mixed equilibrium entails
mixing probabilities of [z* 1 — z*| where:

_ (d—10)
C(d—b)+(a—c)

Note that equilibrium (1, 1) risk-dominates (2, 2) if and only if a—c¢ > d—b, corresponding
exactly to z* < % Unless otherwise stated, and without loss of generality, assume x* < %
throughout.

The payoffs A may be viewed as the mean payofls for any entering player. Any partic-
ular agent has heterogeneous preferences which are generated by the addition of payoff
trembles. Fach payoff is subject to an independent Gaussian disturbance. The variances
of these disturbances may be strategy profile specific, with a common scaling factor
which is allowed to vanish for limiting results. Clearly these disturbances have a fully-

parametric form. This, however, is a natural representation of differing payoffs across
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players. In particular, one might view differences over a particular payoff to be the re-
sulting sum of many individual idiosyncratic factors, yielding the normal distribution as
a natural specification. Furthermore, this formulation allows clear closed-form results to
be obtained. Bergin and Lipman (1996) show that full generality of trembles leads to

inconclusive results. Hence the parametric approach taken here is justified.

Definition 2. Define the payoff heterogeneity matrix ¥ as:

Oq Op
J =

0. Og

An entrant has trembled payofl matrix A where:

Q2
[ by

a+oceg, b+og

A: =

™
S

c+oeg, d+ ogy

where g; ~ N (0,07), with E[g;2;] = 0 for i # j and o is a common scaling factor.

Note that the payoff heterogeneity matrix ¥ determines the relative size of the payoff
trembles. The overall size is determined by the scaling factor o. For later convenience,

the following definitions are introduced.

Definition 3. The payofl balance of A and the tremble balance of ¥ are respectively:

_ 2 2
A=1—2"= (a—c) and = — (Z“_I_UC; 5
(O_a + O_c) + (O_b + O_d)

(a—c)+(d—0)

A game has balanced trembles if 1) = % Otherwise it has unbalanced trembles.

Definition 4. Strategy 1 generalised-risk-dominates strateqy 2 whenever:
a—c - d—>5
Voi+o?2  \Jol+ ol

Using the notions of balance, this is equivalent to A/(1 — X) > 1/¢/(1 —1)). Assembling

these components yields the trembled stage game:
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Definition 5. Define the trembled stage game G as the triple:
G =(AT,0)

Note that G is a Bayesian game of incomplete information.

2.2. The Evolution of Context. Take a finite population of n players. At the begin-
ning of a period each player simultaneously updates their strategy. Alternatively, this
can be interpreted as a new group of players replacing last period’s entire population.
Fach new entrant (or player updating) observes the strategy frequency of the population
in a sample of size s < n taken from last period’s play. The agent considers playing a
game with a prospective opponent who also observes a (possibly different) sample of size
s. In particular, the iterative procedure outlined in Section 2.3 below takes place in the
agent’s mind, and a strategy is selected. This agent, along with their new strategy, then
becomes part of the updated population, and the whole process repeats itself. Denote
the number of individuals playing strategy 1 as z, a member of the finite state space
7 ={0,...,n}. Computation of the probability that the agent chooses either strategy
leads to the construction of a Markov chain on Z.

In the dynamic described above, all players simultaneously update. This coincides with
the approach of KMR (1993). If agents were to update alone and enter a population that
was essentially static in strategy frequency, it might be more reasonable for them to
simply play a best response to the present state (as in KMR (1993) and Young (1993)).
This is the methodology of MW (1997) with players updating sequentially. When there is
simultaneous updating, however, it is more reasonable to assume that players would think
very carefully about their planned action. In particular they would be concerned that
a prospective opponent might also base their decision upon observations of history. To
some extent, Young (1993) adopts such an idea. Taking this a step further, a sophisticated
player might act in the way described in Section 2.3.

The dynamic presented here makes more sense in a sophisticated world, enables a

transparent analysis and helps to focus on the crucial components of the argument.
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2.3. The Reasoning Process. Agents who play adaptively (MW 1997, KMR 1993,
Young 1993 inter alia.) reason very simply indeed. On observation of incumbent strat-
egy frequencies, individuals adopt a simple best response. This naive behaviour might
be justified in a scenario in which an entrant faces a static population, perhaps meet-
ing a randomly selected opponent for a single interaction. Alternatively, this approach
is not unreasonable if an entrant repeatedly plays within a slowly evolving population.
Notice that these conditions are not met by many of the models mentioned earlier. In
particular, KMR (1993) envision a dynamic in which the entire population revises simul-
taneously. An intelligent player might realise this and adjust their behaviour accordingly
— they may anticipate the updated actions of their opponents. In addition, the players
of Young (1993) see only a sample of history to which they play a best response. More
sophistication on their part would lead them to a consideration of the (possibly different)
observations of an opposing agent.

These are precisely the issues to be addressed here. To some extent, agents recognise
the interactive nature of their decisions. They begin (as in previous work) by hypoth-
esising a best reply to the strategy frequency of their sample. The agent conjectures a
similar response from their opponent. Having calculated this, the agent can formulate a
best response to this postulated behaviour. An analogous thought experiment is antici-
pated for their opponent. Bearing in mind the possibly different sample of a prospective
opponent an agent will iteratively reason until convergence. More formally, agents play
a static Bayesian game where their private information is both the realised payoffs and
the observed sample. A myopic strategy profile initialises an iterative best response pro-
cess which leads to a Bayesian Nash equilibrium. This equilibrium generates the actual
behaviour of the agent.

This is a reasonable approach. By their very nature, evolutionary game theory and the
adaptive learning literature make behavioural assumptions. The sophisticated reasoning

process suggested here is an appropriate way to capture the method by which individuals



10 MYATT AND WALLACE

might think about each others’ actions. For mathematical convenience reasoning con-
tinues indefinitely. In fact, the results of a process in which agents only iterate finitely
coincide with those presented here. This is an established characteristic of human be-
haviour. Psychologists have shown that people are capable of interactive reasoning to a
great extent; indeed, this is one of distinguishing features of the human mind. Studies
such as Kinderman, Dunbar and Bentall (1998) have shown that 4 levels of reasoning are
not uncommon among adults.’?

The sophisticated agent also uses observations of their environment to initialise such
an iterative reasoning process. This is payoff irrelevant information and hence there is no
specific reason for a purely rational player to take heed. Nevertheless, this is a reasonable
behavioural hypothesis. Despite the payoff irrelevance of historical precedent, individuals
appear to attach great significance to it. Schelling (1960, Chapter 3) agrees: “Precedent
seems to exercise an influence that greatly exceeds its logical importance or legal force.”
Focal points indicate a possible way to play and history provides the focal point. The
focus of history is sharp as it describes actual previous play rather than merely being an
arbitrary coordination device. The sophisticated agent goes further; instead of naively
following in their predecessors’ footsteps they are guided toward a new mode of play.

Given the high level of sophistication the agents in the model display, a natural sug-
gestion might be the imposition of full rationality. This would not be constructive. The
adaptive learning literature is in part motivated by the problem of equilibrium selection.
This is precisely because the “rational” approach has been unable to provide a convincing
answer. Such an imposition thus results in a return to the predictionless vacuum that this
literature attempts to fill. As argued above, evolutionary game theory by its very nature
makes behavioural assumptions. Few social scientists seriously believe that rationality (in
the narrow sense often used by economists) provides a reasonable behavioural hypothesis.

People do not behave “rationally”; at best it is an approximation. An alternative defence

5Certain professions are conducive to an even greater degree of recursive empathy. Novelists, for example,
may be able to achieve five or more levels of interactive reasoning as they place themselves in the minds
of their characters. For further details see the survey of Dunbar (1996) and the references therein.
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is that agents act “as if” they are rational. By playing their part in a Nash equilibrium
individuals are choosing strategies that mimic those of a rational counterpart.® This may
justify equilibrium play; it cannot select between equilibria. Precisely because the focus
here is on such selection, the remit of the “as if” approach is exceeded. Hence the only
role for rationality is one of approximation and here the approximation is explicit. Any
thought experiment that an agent might reasonably engage in will take note of their
environment. In the tradition of English empiricism no inference can be made without

reference to experience. To quote Hume (1764):

In vain, therefore, should we pretend to determine any single event, or infer

any cause or effect, without the assistance of observation and experience.

2.4. An Illustrative Example. MW (1997) outlined a simple example to illustrate
the main results. This example is again employed here. In spirit, it follows a leading
example of Kandori and Rob (1995). Consider a population of n academics in a research
institution. All members use personal computers (PCs) to conduct their work, and
may adopt either the IBM or Apple Macintosh (Mac) standards. Institution members
interact during the course of their work, and receive payoffs according to their PC and

that adopted by their colleagues. The strategic form game for mean payoff agents is:

IBM Mac
5 2
IBM
5 4
4 6
Mac
2 6

The payoffs are chosen as a stylised representation of the following criteria: Players benefit
from compatibility; given compatibility, Mac adoption results in higher productivity than
IBM adoption; the loss from incompatibility is less severe for IBM users than Mac users

due to wider outside support for the IBM standard. This game has two pure strategy

6 Aumann and Brandenburger (1995) provide a detailed account of the conditions necessary for rational
players to adopt Nash equilibrium strategies.
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Nash equilibria corresponding to the two standards. Although Mac is payofl dominant,

IBM is risk-dominant (z* = % < %) The game is thus a Rousseau (1755) stag-hunt.

Using the formal notation of Section 2.1, this becomes the trembled stage game Gpc =

(Apc, Upe, o). Of particular interest are the cases Upe € {Up, Uy} where:

Up = and Uy =

01 0
10 2

O e lw

corresponding to balanced and unbalanced respectively. The second configuration is
specified to reflect the increased risk of being a lone Mac user.

Fach period a randomly selected member leaves the institution and a replacement
chooses their computer system. As an alternative interpretation, researchers periodically
replace their PCs. At replacement time, however, it is assumed that the requirements of
the researcher are different from those at the time of the original purchase, and hence

payoffs are a fresh draw from the payoff distribution.

3. ANALYSIS

The analysis begins by examining the response of an idiosyncratic agent to an observed

strategy frequency.

3.1. Entrant Response and Bayesian Nash Equilibria. When selecting a strategy
a player is concerned with the strategy choice of an opponent. A sufficient statistic for a
player’s beliefs about an opponent’s behaviour is x, the probability with which strategy
1 is played. The expected payoffs from strategies 1 and 2 when an opponent plays 1 with

probability z are respectively:

y=aia+(1—x)b=xa+ (1 —2)b+x0s,+ (1 —x)og,

yo =a¢+ (1 —z)d = zc+ (1 — 2)d + zoec. + (1 — x)oey
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so that:
y—ye=x(a—c)— (1 —2)(d—0b)+x0(eq —2.) + (L — )0 (2 — £4) (1)

If a player believes an opponent will play strategy 1 with probability x then it is optimal
to reply with the same whenever y; > vy, or equivalently y; —yo > 0 — a natural trigger
rule. Rearranging Equation (1) this occurs whenever:

zla—c)— (1 —x)(d—10)

g

z(ee—ca) + (1 —2)(eqg — &) <

(2)

The left hand side of Equation (2) is normally distributed with zero mean and variance
z? (02 4+ 02) + (1 —xz)? (07 + 02). The best response to a conjecture of x will therefore be
strategy 1 with probability:

Prmx]:@< zla—c)— (1—2)(d—b) ) 3)

o\/2? (02 + 02) + (1 — 2)? (0} + 07)

where ® represents the standard Gaussian distribution. The following is useful later on

and can also be found in MW (1997).

Definition 6. Define the basin depth as k(z)* where k(z) satisfies:
zla—c)— (1 —x)(d—10)
Va2 (02 4+ 02) + (1 —2)* (07 + 02)

r(z) =

Using this notation, the above can be summarised in a convenient Lemma:

Lemma 1. If an agent plays strategy 1 with probability x, then with probability p (x,0) =
® (k(x) /o) the optimal response will be strategy 1.

Ignoring for the moment the observations of agents, consider the game in isolation. The
static game G is one of incomplete information with uncertainty over the payoffs. In
such a game, the Bayesian Nash equilibria correspond to fixed points of the mapping
x — p(x,0). Since these equilibria play an important réle in the following analysis a
short examination of their properties is necessary. In particular, interest lies in the case

where the Harsanyian perturbations are small — o0 — 0. Lemma 2 investigates:
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Lemma 2. For o sufficiently small there are three Bayesian Nash equilibria of G. These
correspond to fixved points of x — p(xz,0) local to 0, z* and 1. They converge to these

points as o — 0.

Proof. Fixed points of p (x,0) correspond to roots of:

fo-e (1)

g

Notice that [’ (z) = ¢ (k(x) /o) K (z) Jo —1. When 0 — 0, f(z) — 1 —x if z > z*,
and f (z) — —z if z < &%, so there cannot be a fixed point unless it is local to {0,z*,1}.
Consider the interval 0 < z < e. For sufficiently small o, f (x) is decreasing in this
interval. Moreover, f(0) > 0 and f(g) < 0. Therefore there is exactly one root in
this interval. It is immediate that the fixed point converges to 0 in the limit. A similar
argument appliestol —e <z < 1.

Now consider #* — e < x < 2* 4+ . Then f(2* —¢) < 0 and f(2*+¢) > 0. Again
there is at least one root in this interval. ® (k (z) /o) is strictly increasing. A fixed point
of @ (k (z) /o) corresponds to a fixed point of its inverse. Local to z* the derivative of
the inverse is less than one. This locality expands as o gets small. Within this region
there can be only one fixed point of the inverse and hence in this interval the root of

f (z) is unique. Convergence in the limit for ¢ — 0 is again immediate. O

This lemma is illustrated in Figure 1. As 0 — 0, ® (k (z) /o) crosses the 45 degree line

at three points local to 0, * and 1.

3.2. The Reasoning Process with Full Sampling. Lemma 2 establishes the exis-
tence and number of Bayesian Nash equilibria in G. To select between them, an iterative
best response procedure is constructed with the sophisticated nature of the players in
mind — see Section 2.3. Note there is still no private information other than payoffs
at this stage since agents obtain the same (complete) sample of the population. Hence
a symmetric strategy profile can be summarised by the probability z that an individ-

ual plays strategy 1. Suppose an opponent initially is conjectured to play strategy 1
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FI1GURE 1. Bayesian Nash Equilibria for Gpo with ¥ = Up

with probability xg. The probability strategy 1 is played as a best response to this is
x1 = p (x0,0) by Lemma 1. The sophisticated play paradigm suggests an iterative process
with z; = p (x4-1,0). Consider now the limiting behaviour of such a procedure. Further
suppose that ¢ is small enough such that there are three Bayesian Nash equilibria of G

local to 0, * and 1 by Lemma 2. Label these equilibria z;, z; and xpy respectively.

Lemma 3. The limiting behaviour of the best response process satisfies:

T To < Tpy
Ty — Ty o =Tp

Ty To > Tpyg

The process is illustrated in Figure 2. For generic starting points the process converges
to one of the two stable Bayesian Nash equilibria. So far the starting point has not been
discussed. Again, due to the sophisticated reasoning process employed by the agents,
observations of the current population state provide the initial conjecture; as argued in
Section 2.3. With full sampling this entails an identical observation of s = n individuals’

actlons.
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FicUre 2. Convergence to a Stable BNE

Lemma 4. Suppose that agents observe i individuals out of n playing strategy 1. Then
for sufficiently small o, the sophisticated reasoning process converges to xy, for i < [nz*|

and xg fori > [nz*].

Proof. For o small enough, xj; is sufficiently close to * to avoid discretisation problem.

Otherwise follows from Lemma 3. O

3.3. The Ergodic Distribution and Equilibrium Selection. Continuing under the
assumption that there is no private information to a player aside from their payoffs (s =
n), Lemma 4 shows that the sophisticated reasoning process induces each agent to play
the same Bayesian Nash equilibria of G. The particular equilibrium played is contingent
upon the (common) history observed. Furthermore, the probability distribution over an
agent’s actions is governed by the strategy frequencies of the equilibrium. Hence the
population state in any period determines which of the equilibria is to be played. This
determines the population state in the following period via the probability distribution
over strategies implied by the equilibrium. Throughout this section, ¢ is assumed small

enough for the lemmas of Sections 3.1 and 3.2 to apply.
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3.3.1. The Markov Process. In a 2 X 2 coordination game the state space can therefore
be reduced to a two-state model. Recall the original state space Z = {0,1,...,n} where

2 € 7 is the number of agents playing strategy 1. Consider:

Definition 7. For the simultancous updating dynamic define the Markov state space as
Z* = {L,H} with generic element z*. The process has transition probabilities p;; =

Pr [z;‘H =j|z = z} The associated Markov transition matrix is:

P Prr. PLH

PHL PHH

This reduced form is equivalent to L = {0, 1, ..., [nz*| — 1} C Z and H = Z— L. Further:

L z<|nz*] and z € 7

H z>[nz*] and z€ Z

Given z; = H, z; ~ Bin (zy, n). It follows that:

Lemma 5. The reduced form Markov transition probabilitics satisfy:

. n ; n—i
Pry = Z <Z.>J7ZL(1_37L) prr=1—pru

i=[nx*|
[nax*]—1

n ; n—1
PHL = Z <>Q7ZH(1_37H) pur =1 —purL

, i
=0
Proof. State H is reached if z;41 > [nz*]. Strategy 1 is played with probability x in
state L. Applying the binomial distribution formula, obtain prgy. Calculate the remaining

terms similarly. U

3.3.2. Characterisation of the Frgodic Distribution. This is a particularly simple Markov
process with only two states and p;; > 0 Vi, 7, recall that in such cases the ergodic
distribution satisfies:

PHL PrH
and pg =

/1/ = _—
g PHL +PLE PHL + PLH
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i 1s the probability that the Bayesian Nash equilibria involving z; is played in the long

run. Interest lies in the relative frequencies of these two equilibria. Hence:

Lemma 6. The relative frequency of states H and L in the ergodic distribution satisfy:

pe 3T (ag (L am)"

Proof. Apply Lemma 5. O

(5)

Note that both z;, and xy depend upon o. The next section examines the relative ergodic
frequency as idiosyncrasy vanishes, i.e. ¢ — 0, thus enabling selection between the two

available equilibria.

3.3.3. Equilibrium Selection. From Lemma 2, z; — 0 and zy — 1 as ¢ — 0. Thus both
numerator and denominator in Equation (5) tend to zero as o vanishes. Investigation of

the limiting behaviour begins with the following lemma.

Lemma 7. The ratio in Equation (5) as 0 — 0 becomes:

* [nz*]
1
hmM_H:mth TL — (6)
o—0 [r, n — (naj*—‘ oc—0 (1 _ a:H)" [na*]

[na*],

Proof. Multiplying and dividing the numerator of Equation (5) by =,

" n i n—i nx* - n 1—[nx* n—1i
3 (e = 3 (e 0

i=[nz*| i=[nz*]
__[na*] n . n—[nx*] g n i—[nx*] . n—i
a3 () =) +(ZW<> (1=

As 0 — 0, zp — 0 and hence:

S (s (L = (2

i=[nx*]+1



SOPHISTICATED PLAY 19

Performing a similar operation on the denominator to obtain:

i P _ n! (n— [nz*] — D! ([nz*] + 1)! « lim atgm W _
=0 uy  (n— [nz*])! [na*]! n! 70 (1 — )" Mt IE
* [nz*]
:7%&7}_'_1 X lim L -
n— [nz*]  o—0 (1- a:H)"f(m T+1
Which 1s the desired result. O

Some terminology is useful before proceeding to the calculation of the ergodic distribution

for vanishing heterogeneity.

Definition 8. Strategy 1 dominates for vanishing heterogeneity if lim, .o pim /11 = +00.

Strategy 2 dominates for vanishing heterogeneity if limy_0 prr/pr = 0.

When pp/pr is large, the Bayesian Nash equilibrium involving probabilities 2y and
1 —x g 1s played most of the time. For vanishing ¢ this equilibrium entails agents playing

strategy 1 with high probability.

Proposition 1. If (n — [nz*] +1) & (1)* > [na*] k(0)* then strategy 1 dominates for

vanishing idiosyncrasy. If the reverse holds then strateqy 2 dominates.

Proof. Recall that x; satisfies the equality x; = p (z;,0) = @ (k(z;) /o). Substituting

into the second term on the right hand side of Equation (6):

[nx™] [nx™]

x D (k(zyp) /o

lim Ln%mﬂﬂ = lim (v (1) /o) nTna 41

70 (1= wy) 01 =@ (k(zn) /o))

The first term is just a constant and hence is irrelevant. Separating the above into normal
densities and hazards rates the following obtains:

< ¢ (k (xu) /o) >"("“’*”l<<1><m<a:L>/o>>W* ¢ (r (z1) Jo) ™"
1 =@ (k(zn) /o) ¢ (k(21) /o) ¢ (k (ag) Jo)" "I

lim
g—0

Now as 0 — 0, k (z) — k(0) <0 and k (zy) — (1) > 0. The limit becomes:

i (20 >"W”1<<I><K<o>/o>>w ¢ (5 (0) /o)
1= (r (1) /) GEO) /) G fay T

g—0
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Note that k(0) /o0 — —oo and k(1) /o — 400 as ¢ — 0. The hazard rate of the
normal is asymptotically linear. Therefore the first two terms in the above expression
are asymptotically polynomial. The third term is exponential however and dominates in

the limit. Examining this crucial term:

OO /) {_ [na] % (0)° = (n = [na*] + 1) mf}

¢ (KZ (1) /O_)n7 (nsz:*H»l 20—2
It follows that:

05 (0) /)™
00 (s (1) fo) T

= 400 (n— [nz*] + 1)k (1)* > [nz*] & (0)°
i.e. strategy 1 dominates for vanishing idiosyncrasy; the desired result. O

It is then straightforward to establish the following key result:

Proposition 2. If a strateqy is risk-dominant and generalised risk-dominant then it

dominates for vanishing idiosyncrasy.

Proof. Assume strategy 1 is risk-dominant and generalised risk-dominant (the proof for

strategy 2 is symmetric). Using Definition 6:

b—d)?
KZ(O)Q = % and KZ(1>2 =
g, + 0,

(a—c)’
02+ 02
If strategy 1 is generalised risk-dominant (see Definition 4) then s (1)2 > K (0)2. If
strategy 1 is risk-dominant then z* < %, son (1 —x*) > nz* and hence (n — [nz*] +1) >

[nz*]. Therefore by Proposition 1 strategy 1 dominates for vanishing idiosyncrasy. O

3.3.4. State Dependent Mutations. Mutations do not arise in this model, in the sense
that no mistakes are actually made by the players. However, agents have idiosyncratic
preferences and so it may appear to the modeller as if mistakes take place. “Mutations”
are observed when agents act against the flow of play. That is, an entrant takes a
contrarian action relative to a mean payoff entrant. Since all agents are playing one

of two Bayesian Nash equilibria this will occur with probability x; in any state z €
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{0,1,...;[nz*] — 1} and 1 — g in any state z € {[nz*],...,n}, (see Definition 7 and
Lemma 5).

Mutations are state dependent when they vanish to zero at different rates. Here,
“mutations” arise endogenously and are a function of idiosyncrasy, ¢, which vanishes to
zero independently of the state. Nevertheless this model generates state dependence as
Corollary 1 below illustrates. Bergin and Lipman (1996) have shown that state dependent
mutations can result in the selection of any Nash equilibrium and hence argued for more
convincing explanations for “mutations”. The sophisticated play paradigm is precisely

such an explanation. The corollary follows from Proposition 1.
Corollary 1. The model endogenously generates state dependent mutations.

Proof. Consider the limit of the ratio of “mutation” rates:

S 1C1C79 Lo B {_K<0>Z—K<l>2}

c—01 — xp 501 — P (/{ (ajH) /0‘) 750 9202

Where the first equality follows from the fact that x; satisfies x; = p (x;,0) = & (k (x;) /o),
and the second from an analogous argument involving normal densities and hazards to
that in Proposition 1. Finally note that this limit is either zero or infinity for generic

games. U

Notice that the state dependence in this model is of a much simpler nature than that
of MW (1997). In that paper the “mutations” vanish to zero at different rates in every
state. Here there are only two different rates: The depth of each basin of attraction is

constant.

3.4. The Reasoning Process with Incomplete Sampling. With incomplete sam-
pling, players may observe different strategy frequencies from the population. All agents
obtain samples of size s. Hence there are s + 1 possible observations. Index these by
ieS=1{0,1,..., s}, where the generic element i is the number of individuals seen to be
playing strategy 1. An agent’s strategy is a mapping from their payoffs and sample to

the probability with which they play strategy 1.
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Given their beliefs about an opponent’s play, agents are restricted to consider only
best responses. In Section 3.1 the optimal response of an agent who believes an opponent
plays strategy 1 with probability x was shown to entail playing strategy 1 with probability
p(z,0).

Since payoffs are independently distributed, beliefs are allowed to depend only on the
sample observed.” p (z, o) is the probability with which strategy 1 is a best response. All
that remains is to specify the beliefs of the agents contingent on the sample they observe.

Represent a player’s beliefs as a vector v € |0, 1]S+1, where the ith element, v; € [0, 1],
is the probability with which an opponent is believed to play strategy 1 given the player
has observed 7 out of s individuals playing strategy 1. This is the appropriate state
variable for the reasoning process.

Therefore, given a belief vector, a player observing a sample of 7 € S will play strategy
1 with probability p(v;,0). The value of v is determined by the sophisticated play
paradigm: Players anticipate best responses in the population and construct their belief

profiles iteratively.

Definition 9. g;; is the probability of an opponent observing a sample of j € S given the

agent has observed a sample of i € S.

g;; 1s determined by the type of sampling procedure the agents use and their prior beliefs
over the population states. Two important examples of sampling procedure are consid-
ered in Section 3.6; uniform sampling with and without replacement. Of course, there
are other possible procedures and for this reason the specification of g¢;; is left open at

this stage. The following Lemma is immediate.

Lemma 8. If agents initially hold belief -y, then after one iteration of best response they
will hold updated belief v, where:

Fi=> aip (75,0)
=0

"Beliefs are not contingent on a players’ identity; agents only have an “identity” in as far as they have
idiosyncratic payolffs and samples.
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Assembling into vector notation, define p (v, o) € |0, 1]S+1 as the vector with ith element

p (7i,0) and @ as the matrix with (i, j)th element g;;.

Definition 10. The iterative reasoning mapping is 5 : [0,1)°7 — [0, 1], where:

() = Qp(v,0)

The iterative reasoning mapping extends the best response process of Section 3.2. The
difference is that play may be contingent on an agent’s observation, and because of
this players take into account the fact that others may have observed samples at odds
with their own. The sophisticated play paradigm suggests that (i) the process should be
iterated until it converges and (ii) the starting point for the process should be determined

by the observations. Formally:

Definition 11. The sophisticated reasoning process {v'} is constructed with " =5 (y*~1),

where the starting point, 1°, satisfies:

% =p <3,0>
S

3.5. Equilibrium Selection with Incomplete Sampling. The limiting behaviour of
the sophisticated reasoning process determines the equilibrium to be played. The main
proposition in this section gives sufficient conditions on the sampling procedure (and
hence Q) for selection of the risk-dominant equilibrium.

If the sophisticated reasoning process converges, so that lim; ,., 7" = ~*, then the
agents play a particular Bayesian Nash equilibrium of the trembled stage game with
sampling. In such an equilibrium, an updating individual plays strategy 1 with prob-
ability >°7 (Pr[i | z] v, where Pr[i | z] is the probability of observing a sample i € S
given the population state z € Z. Hence the appropriate Markov transition probabilities
can be constructed. Notice, however, that if 7} = ~; for all 7 # j, then the updating
agents play the same Bayesian Nash equilibrium regardless of their samples, or indeed

the population state itself. Hence conditions are sought under which this may occur.
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Since interest lies in the case of vanishing idiosyncrasy, the analysis below centres upon
o = 0. With incomplete sampling, equilibrium selection in this sense does not require an
examination of the perturbed stage game. The sophisticated reasoning process itself is
enough to select a unique equilibrium. Nevertheless, in Section 4.2 the issue of ¢ > 0 is

discussed as it is of independent interest.

Condition 1. When a player observes i < [sx*]| their belief that an opponent has ob-
served j > 1 must be greater than x*:

Condition 2. The sampling procedure must satisfy a minimal first order stochastic dom-
inance property, or more weakly:

A oot

The first condition is key. The right hand side of Equation (7) is a measure of how
“dispersed” the () matrix is. This in turn reflects the agents’ beliefs about opponents’
observations given their own. Players must place sufficiently high weight on the possibility

of an opponent having observed a sample higher than they received themselves.
Proposition 3. If Conditions 1 and 2 hold then for alli € S, lim; ., i = 1.

Proof. A best response to a belief of v; > z* is to play strategy 1. So, write p (z,0) =
I (z > x*) where [ is an indicator function. The proof proceeds by showing that v/ > z*
for j > [sz*] —t and t < [s2*]. Recall that 7Y = p (%,0), then 7 =1 for i > [sz*].
Hence the hypothesis holds for ¢ = 0, yielding an induction basis. Now suppose that the

hypothesis holds for some 7 < [sz*], so that ] > a* for i > [sz*| — 7. Notice that:

8

Z Qij

j=Tsa]

v

W=D aue (17.0) =) aul (7] 2 27)
j=0 Jj=0
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First consider [sz*| — 7 —1 < i < [sz*|. Then:
) ) )
: *
,yiTJrl > j%T Gij = j;l Gij = Zi?gilﬂ {j;l Qij} >

Where the last inequality holds by Condition 1’s Equation (7). For i > [sx*]:

8

’YZ-T+1 > Z Gij > Z qij Zizr?gagw Z Qij > r*

j=lsa] - j=ls2*] j=ls2*]

By Equation (8) in Condition 2. Thus, v/ ! > 2* for i > [s2*] —7—1. By the principle of
induction 4f > z* for i > [sz*] —t and ¢ < [sz*]. In particular, this holds for I = [sz*].
Hence, ’y-(smﬂ > z*. But then, for all t > {, ¢ =1 for all i. Therefore, lim; ,,, v} =1 for
alli € S. O

This proof employs an infection argument analogous to that in Morris, Rob and Shin
(1995). This point is returned to in more detail in Section 4.2. Two important remarks

follow from this proof.

Remark 1. If strategy 1 is sufficiently risk-dominant then all agents will play strategy 1

regardless of the samples they observe.

In other words, for (almost) any sampling procedure, there is always an z* small enough
such that the Conditions 1 and 2 hold and hence Proposition 3 applies. Of course,
for reasonable assumptions on the sampling procedure the conditions can hold for any

< %, as will be shown in the next section.

Remark 2. [sz*] is an upper bound on the number of levels of reasoning required to

converge to the equilibrium.

As mentioned earlier (see Section 2.3), psychological research has focused on the number

of iterations humans are capable of — and it is not many. Here, there is no need to assume
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the mathematical nicety of infinite reasoning capacity. In the incomplete sampling case
equilibrium is reached in finite time.®

3.6. Sampling Procedures. If Conditions 1 and 2 are satisfied then all players adopt
the same strategy. Notice that no evolutionary considerations are required — reasoning
alone enables selection. A sufficiently risk-dominant strategy will always be selected
by the sophisticated reasoning process. More formally, fix a sampling procedure and
associate matrix ) then for z* sufficiently small, strategy 1 will be selected. A related
question is raised in this section: Fixing x*, what properties of the sampling procedure
are required to result in the selection of the risk-dominant equilibrium? Conditions 1 and
2 are sufficient and hence this section concentrates on whether two reasonable sampling

procedures (with and without replacement) satisfy these requirements.

3.6.1. Sampling with Replacement. Agents observe a sample of size s, with replacement.
The probability of observing an agent playing strategy 1 is z/n = p.° Therefore the
number of agents playing strategy 1 in an individuals sample is distributed binomially

with parameters p and s. The probability they observe exactly i strategy 1 players is:

Prli | p] = <i>p (1—p)"

Players do not know the population state and thus have priors over p (or z) , g (p), with

distribution function G (p). So:

Puji) = [ Peli | 4G ()
P
Calculating the elements of (), the ¢;; are given by:

~ Peling] S, PrlilplPrli|pldG (p)
W TPl T [ Peli] pldG (p)

8This time could be a very short period indeed. [s2*] can be very small with reasonable sample sizes,
and in any case it is a rather loose upper bound.
9p will be the standard notation throughout this section, simply for convenience.
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For concreteness assume the prior is Beta distributed with parameters 3 and (35:'°

(B + Ba) 11

“TEyr@? et

g(p)

The Beta is technically convenient as well as simplifying nicely to a symmetric prior
(01 = f2) and, as a special case, the uniform (5; = B2 = 1). It is then easily shown that

a closed form can be obtained for the elements of the () matrix.

Proposition 4. With a Beta prior (and n sufficiently large) the elements of Q are:

G = I'(s+1) T(Bi+Pa+s) T(Gi+i+)T(F+2s—i—j)
TOTEHDT(s =+ DT (B+)T (B +s—1) T (6 + By +25)
Proof. The proof is contained in Appendix A. O

Therefore, with the uniform distribution the elements reduce to:

s\ (s
Gij = %% (9)
i+j
Using this formulation Appendix A reports the results of numerical calculations to find
(for a range of sample sizes, s) a lower bound on the maximum value of z* for which
Conditions 1 and 2 hold. This lower bound rapidly approaches 1/2 as s increases. As
x* is increased a higher sample size s is required to satisfy the conditions. For a given
x*, the larger the sample size the more likely the risk-dominant equilibrium is selected
immediately.

In conclusion, this section combined with Appendix A demonstrates that sampling

with replacement is one procedure that can satisfy the conditions of Section 3.5.

3.6.2. Sampling withoul Replacement. An alternative to the procedure of Section 3.6.1
is the slightly more intuitive case of sampling without replacement. This is the scenario
Young (1993) investigates. Players observe a random sample of size s consisting of dif-
ferent individuals’ strategy choices. In a population of size n there are z agents playing

10The Beta is a continuous distribution and hence n needs to be large enough for a this to be a reasonable
approximation. This is assumed throughout, although it is stated in Proposition 4.
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strategy 1. The number of strategy 1 observations a player makes is then hypergeomet-
rically distributed with parameters z, n and s. The probability of observing exactly 4
agents playing strategy 1 is:
() (5

(2)

Retaining the assumptions of Section 3.6.1 concerning the prior once again yields g;;.

Prli|z] =

Hypergeometric probabilities are well approximated by Binomial probabilities for suffi-
ciently large n/s. Hence, by Proposition 4 and the numerical results of Appendix A, with
n, n/s and s sufficiently large Conditions 1 and 2 are satisfied for a given z* < 1/2.
The size of n/s is the only additional concern for sampling without replacement. The
condition that this ratio be large is reminiscent of Young (1993). Sample and population
sizes must be large, but the total number of individuals in the population must still dwarf

the number observed by any agent.

4. DISCUSSION

The results are briefly discussed with reference to the example introduced in Section 2.4.

4.1. Full Sampling. The model endogenously generates state-dependent mutations (see
Figure 3). From the results of Bergin and Lipman (1996) selection need not focus on the
risk-dominant equilibrium. However, despite this possibility, the emphasis remains upon
risk-dominance. Indeed, the tight selection results described in Section 3.3.3 corroborate
the earlier research of MW (1997) with a continued rdle for both risk-dominance and
generalised risk-dominance. In fact, as proven in Proposition 2, if an equilibrium has

both these properties then it is selected for vanishing heterogeneity.

2

= and hence the IBM equilibrium is risk-

Turning to the example of Section 2.4, z* =
dominant. With balanced trembles (U in the example) notice that Definition 4 reduces
to standard risk-dominance. Hence an equilibrium which is risk-dominant will always be

generalised risk-dominant and thus will be selected. For unbalanced trembles (Uy;) this
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need not be the case. The Mac equilibrium will be selected in favour of IBM, as a short

inspection of the selection criterion in Proposition 1 will verify.
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Given some o > 0 players will reason their way to one of the two stable Bayesian
Nash equilibria. Figure 4 illustrates this process. Which of the equilibria they play
depends upon their starting point — provided by a common observation of history. In
the figure, players rather quickly converge given any possible initial conjecture. Hence
the two basins of attraction for the equilibria are characterised by a different uniform
rate of “mutation”, see Figure 3. In the diagram, the first basin — |0, ;) — is narrower,
but has a much smaller “mistake probability”, determined by the chance of playing IBM
(strategy 1) in the Bayesian Nash equilibrium which involves playing Mac (strategy 2)
with high probability. The second basin — (zar,1] — is wider and has a relatively high
probability of “mistakes”.!! The depth and width of the basins of attraction determine
selection. Having played their part in a Bayesian Nash equilibrium their actions become
part of history and the whole process repeats itself. As ¢ — 0, the “mutations” vanish
at different rates, the Bayesian equilibria become the two pure strategy Nash equilibria
and selection is achieved.

The similarities between the results here and those of MW (1997) are striking. Firstly,
a risk-dominant and generalised risk-dominant equilibrium will be selected for vanishing
heterogeneity. Secondly, when o > 0, MW (1997) concludes that the modes of the ergodic
distribution correspond to the Bayesian Nash equilibria of the underlying stage game.
Here, this fact is trivial. Agents reason their way to Bayesian Nash equilibria via the
sophisticated deliberation process. The ergodic distribution consists of two atoms, one

at each of the equilibria.

4.2. Incomplete Sampling. With sufficiently incomplete sampling there is no need
to rely upon evolutionary game theoretic arguments. Equilibrium selection is obtained
without recourse to limiting results and the introduction of “mutations” is unnecessary.
Fixing o = 0, the sophisticated thought process alone allows agents to reason their way

to the risk-dominant equilibrium. Convergence takes place instantaneously.

Upigure 3 also illustrates equivalent “mutation” rates for the same o in the MW (1997) case and for
the KMR (1993) dynamic — which of course is not state-dependent.
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Conditions 1 and 2 determine precisely how incomplete sampling needs to be for any
particular game and prior. Agents must place sufficiently high weight on the possibility
that others have observed quite different samples from themselves. Given that they have
observed a sample of i < [sx*| agents playing the risk-dominant strategy, they must
believe it more than likely that another agent has observed j > 4.!2 Since this is true for
all players, they can infer that each agent will believe it more than likely that the others
have observed a k > j, and so on. Through this consideration of the deliberations of
others, agents will eventually reach a point at which they consider it sufficiently likely that
their prospective opponent will play the risk-dominant strategy to make their optimal
response the same (with high probability). Once this point is reached both players begin
(through the iterative thought process) to believe it more and more likely that their
opponent will play the risk-dominant strategy. Condition 2 guarantees this. Fventually
(and in finite iterations), all players find it optimal to play the risk-dominant strategy
with probability 1. Figure 5 depicts this process.!?

Notice that initial observations are ignored. As soon as the iterative procedure begins,
an infection process takes the posteriors to the belief that the prospective opponent ob-
served all risk-dominant players. Proposition 3 employs this infection argument formally
— and is described in the above paragraph. Morris, Rob and Shin (1995) use a similar
method which, although subtly different, bears a strong resemblance (at least in form)
to that presented above.

In Section 3.6.1 and Appendix A a particular sampling process is shown to abide by
Conditions 1 and 2, given a particular prior. Other reasonable sampling procedures will
also satisfy the conditions. Section 3.6.2 argues that sampling without replacement (per-
haps the most intuitively appealing procedure) presents no problems. The key require-

ment here is that although s must be large, the population must still dwarf the sample

12Condition 1 states this formally.

135 > 0 merely for illustrative purposes. However, this does demonstrate that the results will go through
in general when there are “mutations”, although this case is of less interest. If o is sufficiently small it is
straightforward that the conclusions hold. For ¢ sufficiently large recall there is only one Bayesian Nash
equilibrium of G and hence selection is of no importance.
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size. Again, sampling needs to be sufficiently incomplete. This constraint is reminiscent
of Young (1993) — of course, here, when this proviso is met, evolution and mutation
are not required to select the risk-dominant equilibrium. Naturally it will be possible
to generate sampling procedures and parameters for which the conditions fail. However,
both the examples presented are common and easily justified, and the restrictions on the

matrix () are themselves not unreasonable.

5. CONCLUSION

Focal points often provide a way to select between strict equilibria. However, they can be
arbitrary and game specific. The focal point here is provided by history — the context in
which the game is played. Players do not imitate history or play a naive best response.
Rather they make an initial conjecture — that their opponent will play a best response —
and consider what to do in such an event. Nor does their deliberative process stop there,
they continue to make iterative conjectures in a sophisticated manner. This procedure

leads them to an action which then becomes part of history. Context evolves.
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With such a framework in mind, the conclusions unsurprisingly rest upon the com-
pleteness of information available to agents. When each individual observes the entire
population in their sample, an exact equilibrium selection criterion is found. Using the
sophisticated play paradigm expounded above, agents reason their way to Bayesian Nash
equilibria. In the classic Stag-Hunt game, which equilibrium strategy is played depends
on their initial observation of history. As the idiosyncratic nature of the population is
reduced to zero, Bayesian equilibria become Nash and selection takes place. If a strategy
is both risk-dominant and generalised risk-dominant then it is selected.

Agents are more likely to obtain only incomplete information concerning their envi-
ronment. A complete characterisation is not available in such a scenario. Nevertheless,
much can be deduced. There is no need for the introduction of artificial “mutations” to
enable selection. In fact, with sufficiently incomplete sampling — and hence only partial
information — the risk-dominant equilibrium is selected immediately. Players ignore his-
tory altogether in an effort to coordinate with their opponents. Two conditions on the
game and sampling procedure suffice to ensure this result. For two common sampling
procedures with reasonable constraints on the population and sample sizes, these condi-
tions hold. Further, if a strategy is sufficiently risk-dominant it is selected. Finally, it
only takes an agent a finite (and small) number of iterations of the form “I believe that
you believe that I believe...” to find it optimal to play the risk-dominant strategy.!* Or

perhaps, at this point, the reader shares the sentiments of Dmitri Nekhlyudov:

“[...] Now suppose that they suppose that you suppose that... In a word,”
he concluded, feeling that his argument was getting tangled up, “it’s much

better not to suppose anything at all.”

Tolstoy: Youth

MMoreover thought processes of this type are all that is required for selection to take place — “muta-
tions”, evolution and observations of history are rendered irrelevant.
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APPENDIX A. OMITTED PROOFS AND NUMERICAL CALCULATIONS

Section A.1 provides the proof of Proposition 4. Section A.2 illustrates and describes the

numerical calculations referred to throughout Section 3.6.

A.1l. Proof of Proposition 4. Allowing n sufficiently large for the prior to be well

approximated by a Beta distribution, note that:

g(p)Pr(i|p)
fol Pr(i|z)g(z)dx

g(p)Pr(i|p)

xp  (1-p)* P (1 -p)

o p[31+i71 (1 _ p>[32+57i71

Pr(p|i) =

Which is a Beta distribution with parameters 3; 4+ i and J2 + s — i. The multiplicative

factor to ensure this probability integrates to one can be inserted to give an exact form

for Pr(p | i). Hence:

N (Bt B+s) el Bkl
Pr(p’Z)_P(ﬂ1+i)P(ﬂ2+s—i) (1 — pyt

Now the elements of () are:

%zHUMZAPMNmH@MW

s! DB+ P+ 9) ! Bititi—1 (g \Bat2s—i—j—1
_j!(s—j)!r(ﬂ1+i)T(ﬂ2+s—i)/0p (1=p) ap
_ 8! T(Bi+Pa+s) T(Bi+it+i)T(B+2s—i—7)

M (s=NT (B +i)T (B + 5 —1) T (B + Pa + 25)
! I'(B1 + 52 + 2s) Grtiti—1 (1 _ o \F2A2s—i—j—1
X/O C(B+i+5)T(B+25—i—7) (1=p) ap
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The second term in the last line is a Beta distribution with parameters 3 + 7 + j and

(9 + 25 — i — 7 which integrates to one. Hence, as required:

FC(s+1) LB+ P+ 9) F(Bi+i+5)T(B+2s—1i—j)
TG+DT(s—j+ )T (B 4+9)T(By+5—1) T (By + Ba + 2s)

qij =

A.2. Numerical Calculations. Setting 3, = s = 1 obtains the uniform distribution
for the prior. Then g;; simplifies to the expression in Equation 9. Condition 1 can provide
a lower bound for maximum values of z* for which it is satisfied. Since z* < 1/2:

s s
The second expression can be numerically calculated for a range of sample sizes s, using

Equation 9. If z* is less than this value, then Condition 1 is certainly satisfied. Such

lower bounds are illustrated in Figure 6.

0.5

0.4 A

0.3 A

Maximum Value

0.2 T T T
0 50 100 150 200

Sample Size

FiGURE 6. Lower Bounds on the maximum value of 2* for Condition 1 to hold.
Finally, Condition 1 implies Condition 2 for such g;; as shown in the following lemmas:

Lemma 9. If j > i then g;; < qi41; and if 7 < then ¢;; > ¢;1,, where:

s+1 (6)0)

T 241 (fig)

qi;
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Proof. Consider the ratio g;;/qiy1;:

qij 25;;11 (f) (j) <z+215+j> - (f) <z+215+j>

- (@6

di+1;5 25;;11 (fi;) (zjl) (j)

Expanding the terms of this fraction leaves:

i (2s —i— )i+ J)! (s —i—D!{E+1)!

Gii (5 —i)l! (2s—i—1—NIE+1+)!
_@+1)@s—i—yg) _ (+D(s—i)+(@E+1)(s—7)
(s—i)(i+1+7) (i+1)(s—i)+j(s—1i)

If j > i then (since both i and j are integers and lie between 0 and s) s(j —i) > s —j
and hence j (s —i) > (i +1) (s — j), s0 ¢;;/gi+1; < 1 and the result holds. Likewise for
j <i. O

Lemma 10. Condition I implies Condition 2 for such g;;.

Proof. Consider the bound in Condition 2:

LRI AR AN R

J=[sw*] j=0 7=0
Notice that in the last term j < ¢ throughout the sum. Bringing the results of Lemma 9
to bear, ¢;; > ¢, 41, for all such j < i. Hence, the maximum takes place at the minimum

i available, i.e. i = [sx*]. So, the equality becomes:

[sx*]—1

Zgﬁ;ﬁw Z % =1- Z Qlsz*1j ( = Z Qlsz*]j
2 =

j=[sz*] j=[sz*]
But if Condition 1 holds then:
" < min Z %Gj ¢ < Z Qrsa*]—15 < Z qsa*15
<[ sx*] = . .
j=i+1 j=[sz*] j=[sz*]
Where the first inequality follows simply because the minimum is being taken over all

values of i < [sx*], which includes i = [sz*] — 1. The second inequality again follows
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from Lemma 9. i = [s2*] — 1 < j and hence ¢;; < giy1;. That is, grepe1-1; < qrse=1; for

all such j. The bound in Condition 2 is met once Condition 1 is satisfied. O

Figure 6 therefore illustrates lower bounds on the maximum value of z* for both Condi-
tions to hold. It seems, from the numerical calculations, that any value of z* < 1/2 can
satisfy the Conditions given a large enough s. Fven for relatively small sample sizes, z*

can be very close to 1/2.
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