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Summary
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an exchange economy will satisfy the weak axiom in an open neighborhood of a given
equilibrium price. This property ensures that the equilibrium is locally stable with respect
to Walras’ tatonnement. A related issue is the possibility of local comparative statics;
in particular, the paper examines conditions which guarantee that when an economy’s
endowment is perturbed, the equilibrium price will move in a direction opposite to that of
the perturbation.

A distinguishing feature of this paper’s approach is the heavy use of the indirect utility
function, though we also provide results that allow for the translation of conditions imposed
on indirect utility functions to conditions imposed on direct utility functions. Indeed we
apply this to the special case of exchange economies where all agents have directly additive
utilities - essentially a complete markets finance model with agents having von Neumann-
Morgenstern utility functions. We show that the structural properties of demand near an
equilibrium price depend on variations in the coeflicient of relative risk averison.
Keywords: general equilibrium, demand, indirect utility, stability, risk aversion.
Author: John K.-H. Quah, Department of Economics, Oxford University.
Address: St Hugh’s College, Oxford, OX2 6LE, U.K.

Email: john.quah@economics.oxford.ac.uk



THE WEAK AXIOM

AND COMPARATIVE STATICS

By John K.-H. Quah

June 21, 1999

1. INTRODUCTION

THE AIM OF THIS PAPER is to study the structural properties of demand, firstly in the
case of an individual agent, and then in the case of an exchange economy. This work could
be thought of as a response to the indeterminacy theorems of Sonnenschein (1973, 1974),
Debreu (1974) and Mantel (1976). In those papers, it was shown that utility maximization
alone gives no structure to the excess demand function of an exchange economy. So while
utility maximization will guarantee that each agent’s demand satisfies the weak axiom,
there is no guarantee that this property be preserved with aggregation. This in turn means
that while we know that a general equilibrium exists under fairly mild conditions, there is
no guarantee that the equilibrium is unique, or that it is stable with respect to the Walras’
tatonnement.

While there are some well-known conditions which guarantee that aggregate demand is

well behaved (for examples, see Shafer and Sonnenschein (1982)), they also tend to be far



too strong. This problem at the heart of general equilibrium theory, has led to considerable
effort in finding find more plausible conditions that one can impose, either on preferences or
endowments or both, that will guarantee that aggregate demand retains or acquires some
useful structure. Results of this nature can be found in Hildenbrand (1983), Mas-Colell
(1991), Grandmont (1992) and Quah (1997), amongst many others.

The first structural property of demand we investigate in this paper is monotonicity.
Assuming that the commodity space is Rl+ 1, we denote the demand vector of an agent with
an income of w and facing the price vector p by f(p,w). This demand function satisfies

monotonicity or the law of demand when for any pair of distinct prices p and g,

(p—a)" (f(p,w) — flg,0)) <0,
i.e., the inner product of a price change and its corresponding demand change is less than
zero (the superscript “I” denotes the transpose; p and f are understood as column vectors).
This means, in particular, that the demand curve for any good is downward sloping with
respect to its own price.

Monotonicity has a particularly attractive characteristic: unlike the weak axiom it ag-
gregates easily, at least in the case when incomes are exogenous. In other words, aggregate
demand will be monotonic if all individuals have monotonic demand (the weak axiom also
follows (see Mas-Colell (1985))). The much cited example of Giffen goods show quite clearly
that violations of monotonicity are certainly compatible with utility maximization. So for a
preference to generate a monotonic demand it must have some non-trivial structural prop-
erties. Section 2 of this paper is devoted precisely to establishing these properties. The

instrument for that purpose is the indirect utility function.



We show in this paper that individual demand will satisfy monotonicity if it is generated
by an indirect utility function v that is convex in prices and satisfies

W (P, W)

< 2.
Uw(p,UJ)

e(p,w)
The expression €(p,w) is the elasticity of the marginal utility of income with respect to
income, so we shall refer to it as the elasticity coefficient and the inequality as the elasticity
condition. The indirect utility approach was also studied by Milleron (1974), who arrived at
a condition closely related to ours. The conditions we have found are the natural analogue
to the direct utility conditions found by Milleron (1974) and Mitjuschin and Polterovich
(1978).

While monotonicity is an ordinal property, solely dependent on the structure of an
agent’s preference, our conditions are formulated in terms of the indirect utility function,
which is certainly non-unique. So the crux of the matter is whether the agent’s preference
over price-income combinations can be represented by an indirect utility function that is
both convex in prices and satisfies the elasticity condition. If it does, we know that the
demand it generates is monotonic.

We know from standard consumer theory that indirect utility functions are quasi-convex
in prices (see Varian (1992) or Mas-Colell et al (1995)). What we require here is something
stronger: that it be convex in prices. However, this requirement is not restrictive, in
the sense that an indirect utility function that is convex in prices can typically be found
for a preference over price-income combinations (see Mas-Colell (1985, Propositions 2.6.4
and 2.6.5)). Similarly, a preference would typically admit an indirect utility function that

satisfies the elasticity condition. Indeed, it is straightforward to check that if an indirect
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utility function does not satisfy the elasticity condition, then its transformation with a
suitably concave function certainly would. These observations show that either of our two
conditions alone says little about the underlying structure of the preference and nothing
about monotonicity; but if a preference admits an indirect utility function that satisfies
these conditions stmultaneously then we know that it generates a monotonic demand.

The next question that naturally arises is whether our conditions are necessary. Given
that indirect utility functions are non-unique, there is little hope for this in the usual sense.
However, if we choose the indirect utility function to be least conver (which, again, will
exist under mild assumptions), then the elasticity condition is also necessary.!

In econometric studies, consumer demand is often derived from an indirect utility func-
tion using Roy’s identity. Our theorem allows us to match its conditions against the func-
tional forms of the indirect utility function employed in these studies. The paper checks
these conditions against a few of the more common functional forms. Without prejudicing
the need for a more extensive and careful examination, it is fair to say that one gets the
impression that these conditions are often satisfied.

In Section 3 of the paper, we extend our results on individual demand to the case of
exchange economies. The extension is not completely straightforward. This is because
in the individual demand so far considered, an agent’s income is assumed to be indepen-
dent of price, while in exchange economies an agent’s income depends on the value of his
endowment, which is certainly price-dependent.

Our results on individual demand do permit a straightforward extension to exchange

economies in the special case where all agents have endowments which are collinear with



one another. In that case, one can easily show that price changes which preserve mean
income also preserve the income of every agent. If, in addition, all agents have indirect
utility functions that are convex in prices and satisfy the elasticity condition, then we have
monotonicity of the demand or excess demand functions, when price changes preserve mean
income. One can then go on to establish that there is just one equilibrium price, that the
excess demand function satisfies the weak axiom and that it is globally stable with respect
to Walras’ tatonnement.

The situation gets a lot more complicated when we move away from this extreme case. It
will be ideal if we can still find conditions that guarantee a global structure to excess demand.
What we succeed in doing is a little more modest: beginning at a given equilibrium price,
we identify conditions on
(i) the distribution of agents’ endowments and demand at that price, and
(ii) the local behavior of preferences
which guarantee that the weak axiom holds in some neighborhood of the equilibrium price.
This will guarantee local stability and the possibility of some comparative statics. The local
behavior of preferences is measured by conditions on the elasticity coefficient, assuming, as
in Section 2, that agents have indirect utilities that are convex in prices. The relevent
feature with regard to the distribution of demand and endowments is, loosely speaking,
their departure from the collinear case. The less collinear is the endowment distribution
relative to the demand distribution, the more stringent are the conditions on the elasticity
coeflicient: when endowments are collinear, the elasticity coefficient must be less than 2;

when the endowments are not necessarily collinear, but are still more collinear than demand



(in some precise sense) then the elasticity coefficient must be less than 0; etc.

We go on from there to examine the possibility of comparative statics. We identity con-
ditions (of the types (i) and (ii) discussed above) which guarantee that when an economy’s
endowment is perturbed, the equilibrium price will move in a direction opposite to that of
the perturbation.

In the final section of the paper, we first prove some results about the connection between
direct and indirect utility functions. We then employ them to translate all the conditions
of our earlier results, from conditions imposed on the indirect utility function to conditions
imposed on the direct utility function. We apply this to an exchange economy where all
agents have additive utilities: this can be interpreted as a finance model with finitely many
states and complete markets, inhabited by agents with von Neumann-Morgenstern utility
functions. When income is independent of price, we show that an agent’s demand for
consumption in different states of the world is monotonic if his coefficient of relative risk
aversion does not vary by more than 4. As usual, this result extends to the whole economy
when endowments are collinear. When they are not collinear, we determine precise bounds
on the variation of the coefficient of relative risk aversion which guarantee the weak axiom
and the valdity of certain comparative static statements. As one would expect, these bounds
become more stringent as the endowment distribution becomes less collinear relative to the

demand distribution.

2. INDIVIDUAL DEMAND

In this section, we will examine conditions on an agent’s indirect utility function that



will guarantee the monotonicity of his demand function. We assume that the commodity
space is in Rﬂr 4, and that the consumer has a preference over it that in turn generates a
preference over the price-income combinations (p,w) in Rﬂr 4+ X Ry . This preference can
be represented by an indirect utility function v : Rl+ . X Ry — R. We will typically assume
v to be regular.

DEFINITION. The indirect utility function v : R"Jr + X Ry — R is regular if it is homo-
geneous of degree zero, it is C?, its partial derivative with respect to the price of any good
is strictly negative, and it is strictly quasi-convex in prices.

Utility maximization guarantees that the indirect utility function is homogeneous of
degree zero, non-increasing with respect to the price of any good, and quasi-convex in
prices (see Varian (1992)). Our assumptions here are only slightly stronger. By strict
quasi-convexity we mean that the Hessian 3§v(p,w) satisfies zT(?gv(p, w)z < 0 for any
Opv(p,w)z = 0 (p and z are understood as column vectors in R! and 27T is the transpose of
z). This assumption is made principally so that we can obtain results in the form of strict
rather than weak inequalities (see, for example, the proof of Theorem 2.2).

It is well-known that our regularity assumptions on v guarantee that the demand func-
tion f : R"Jr X Ry — RQ is homogeneous of degree zero, satisfies the budget identity,
pT f(p,w) = w and can be formulated by Roy’s identity: f(p,w)? = —8,v(p,w)/vy(p, w).
Notice that because we assume that dpv(p,w) < 0, we also have f(p,w) > 0, and since v
is C2, Roy’s identity guarantees that f is C*.

The important non-standard assumption that we make throughout this paper is that the

indirect utility function is convez in prices. Preferences over prices (with income held fixed



at some level), like preferences over goods, can have many indirect utility representations,
but utility maximization will only guarantee that these representations are quasi-convex
in prices. Fortunately, we know that under mild assumptions, a representation that is
convex in prices always exists: when the preference over prices, with income held fixed at 1,
are “differentiably strictly concave”, C? and monotone (in the sense of Mas-Colell (1985),
mutatis mutandis) one can guarantee that on any compact and convex set of prices P in
Ri 1, there is an indirect utility function, defined on Rl+ 4 X Ryy and satisfying all our
standing assumptions, for which v : (-,1) — R is a convex function (see Mas-Colell (1985,
Propositions 2.6.4 and 2.6.5)).

We now give some precise definitions of monotonicity.

DEFINITION: A function f: R\, x Ry — R satisfies local monotonicity at (p,w)
if there is an open neighborhood around (p,w) such that for (p,w) and (¢, w) in that
neighborhood, with p # ¢, we have (p — q)* (f(p,w) — f(q,w)) < 0.

DEFINITION: A function f : Rﬂr+ xRy, — Rl++ satisfies monotonicity in S C Rﬁr+ X
R, if for any (p,w) and (q,w) in S with p # ¢, we have (p — ¢)* (f(p,w) — f(q,w)) < 0.
(If the last inequality is weak, we say that f satisfies weak monotonicity in S.)

Note that when f is homogeneous of degree zero (as a demand function certainly will
be) monotonicity in a set S will guarantee monotonicity in the cone generated by S, i.e.,
the set &' = {(p,w) : A(p,w) € S for some X\ € R;;}. In virtually all the proofs in this
paper we make use of the following facts (see and adapt the proofs in Hildenbrand (1994,
Appendix 1)):

LEMMA 2.1: Let f: R\, x Ry — R\ be a C" function.



(i) Suppose that for some z € R' we have 270, f(p,w)z < (>)0. Then fort € R sufficiently
close to zero, q(t) = p + tz will satisfy (q(t) — p) - (f(q(t), w) — f(p,w)) < (>)0.

(it) The function f is locally monotonic at (p,w) if Opf(p,w) is negative definite.

(iii) The function f is (weakly) monotonic in the convex set S C Rl | x Ryy if d,f(p,w)
is negative (semi-)definite for any (p,w) € S.

We are now ready to state our first major theorem, which identifies conditions on the
indirect utility function which guarantee that the demand it generates is monotonic. Our
proof is analogous to that employed by Mitjuschin and Polterovich (1978) to establish their
conditions on the direct utility function.

THEOREM 2.2: Suppose v is a reqular indirect utility function that is convex in prices.

Then v generates a monotonic demand function if the following FElasticity Condition s

satisfied:
T 52
_ p du(pw)p :
(1) ¢(p,w) = —m < 4 forall  (p,w) € Ry x Ry
or equivalently,
Wy (P, W
(2) e(p,w) = W <2 forall  (p,w) € R', x Ryy.
Proof: By Roy’s identity, the demand generated by v is f(p,y) = —9,v(p,w)T /vy (p, w).

Without loss of generality we fix w at 1. Differentiating this expression and omitting the

arguments to save space, we get

—vp 020 + (Fpv)T A

2
Uy

(3) hf =
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where the row vector

) 4 - ( v 0% 0% >

Owdp1’ Owdpy’ 7 Owdp;”
By Lemma 2.1 (iii) we need only prove that J,f is negative definite. By Euler’s identity,
(5) Vw = —0pUp = —sz‘—
Differentiating this expression by p;, we see that
(6) A = —p'div— .

Substituting this equation into (3), we find that

CFu (B P 0 (90)" (9pv)

Uy vZ, v2,

(7) 8pf =

Then for any vector z in R,

2T 02vz B (Opvz) (2T 0Zup) B (Opv2)?

Uy v2 v2

zTapfz = —

If 27 f = 0, by Roy’s identity and our assumption of strict quasi-convexity,

TaQ
(8) To,fr = 2%

Uy

So we assume 27 f # 0. Without loss of generality, let it equal 1, so d,vz = —v,, by Roy’s

identity. We now have,

9) Lo, f2 = —% [ZTa]%UZ — zT(?]%vp] -1
_ 1 1 7.0 1 lpTagvp
(10) = (g gtz —gp) + g
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By the fact that v is convex, and using equation (5), we know that 270, fz < 0 provided
¢(p,1) < 4. One can check easily that ¢ is homogeneous of degree zero, and so we get

condition (1). Condition (2) will be correct once we establish that

(11) o(p,w) = 2+e(p,w).

Using (5) and (6), we have pTagvp = —Ap — (Opv)p = —Ap + vy,. Since vy, is homogeneous
of degree —1, with Euler’s identity again, we obtain

0% v 0%v
“w = 2P guap T ow? ~ P g

Therefore, pTagvp = 20Uy + Uy, and 80 G(p, 1) = 2 + Uy /Uy SInce @, vy, and vy, are
homogeneous of degree zero, -2 and -1 respectively, we obtain (11). QED

Remark 1. It is clear from the proof of Theorem 2.2 and Lemma 2.1 that we also have
a local result: if v is convex in prices and €(p,w) < 2 then f is locally monotonic at (p,w);
and if the assumptions of the theorem hold only on a convex subset of all price-income
combinations, then monotonicity will be true in that subset, again following from Lemma
2.1.

Remark 2. 1f the Hessian Bgv is invertible, weak monotonicity holds if and only if

Fpv(p, w)p " opu(p,w)p
Fpv(p, w)[G5v(p, w)] 1 dpv(p,w)T Opu(p,w)p

<4.

This becomes quite clear once we notice that, by a standard result, the first term on the
left of this inequality is just the maximum of the first term on the right hand side of
equation (10), when d2v is invertible.? Milleron (1974) establishes this same condition with
a somewhat different proof. Both Milleron (1974) and Mitjuschin and Polterovich (1978)

have the direct analog of this result.
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Remark 3 Note that equation (11) means that the convexity of indirect utility with
respect to prices imposes a lower bound on €(p,w): it cannot be less than -2.

The elasticity condition we have found in Theorem 2.2 is simple and appealing, but it is
not in general a necessary condition. Since monotonicity is an ordinal property, dependent
solely on the preference of the agent, a transformation of the indirect utility function will
generate the same demand, yet this transformed indirect utility might well satisfy the
conditions of Theorem 2.2, while the original one did not. Indeed, suppose one begins with
an indirect utility function v that is convex in prices but does not satisfy the elasticity
condition. Then we may consider © = h o v where h is increasing and concave; it is easy to
show that the elasticity coefficient for ¢ (denote it by e;(p,w)) will be less than €,(p,w).
By choosing a sufficiently concave h, we can guarantee that the elasticity condition will be
satisfied on any compact set of prices and income. Of course, ¥ may no longer be convex in
prices, but if it is, we know that the demand generated is monotonic.

Given this observation, we may guess that the elasticity condition is necessary if we
cannot find a concave h for which ¢ = h o v remains convex in prices, in other words, if v is
a least convex function in prices. This turns out to be true.

DEFINITION: A convex function g : RQ . — R is least convex on the convex set
ScC Ri . if there does not exist a real-valued, increasing, and concave function i such that
h o g is convex in S.

It is known that any preference over prices (with income normalized at 1) that admits a
convex representation also admits, on any given convex set of prices, a least convex repre-

sentation (see Debreu (1976) and Kannai (1977)).2 If v is the least convex representation,
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then any other indirect utility ¥ representing the same preference will be related to v by
¥ = how, where h is an increasing function. If ¥ is convex in prices, then h is also convex
(so, ¥ is “more convex” than v). This least convex representation is unique up to affine
transformations, and affine transformations leave €(p, w) unchanged. The next proposition
shows that with this (essentially) unique least convex representation, the elasticity condition
is necessary for monotonicity.

PROPOSITION 2.3: Suppose the regular indirect utility function v has the following
properties on the compact and convex set P C RZJF+.' v(,1) : P — R is least conver and
€(p,1) > 2 for all p in P. Then there must be a price p in P, for which f is not locally
monotonic at (p,1).*

Proof: See Appendix.

While indirect utility functions are not always convex in prices, nor do they always satisfy
the elasticity condition, the indirect utility functions employed in econometric applications
commonly satisfy these conditions for some if not all price-income combinations; at the least,
they are often of the form that allow the conditions to be easily checked. The following are
a few applications of Theorem 2.2.

Example 1. When a preference defined over commodity space is homothetic, it induces
a homothetic preference over price space, with income held fixed. This means, in turn, that
this prefernce is representable by an indirect utility function v which is convex in prices and
homogeneous of degree one, and so € = —2, achieving the lower bound on € implied by the
convexity of v in prices (see Remark 3).

Ezample 2. A generalization of homothetic preferences is the class of PIGL (price-
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independent generalized linearity) preferences introduced by Muellbauer (1975, 1976). These

preferences have indirect utility functions given by

where a(p) and b(p) are concave and homogeneous of degree one and « is a positive number.
If a(p) = 0 the preference is homothetic; if & = 1, the indirect utility function is of the
Gorman form (1953, 1961).

To apply Theorem 2.2, we require v to be convex in prices and to satisfy the elasticity
condition. Obviously the latter is satisfied if o < 3; we assume this and also that b(p) is
strictly quasi-concave. Then it can be shown quite easily that B(p) = 1/b(p)® is strictly
convex, ie., 27 9*B(p)z > 0 for all z # 0. Since d7v(p, w) = aw*d;B(p) — 3]a(p)®/b(p)*],
on any compact set P in Ri 1, there is w > 0 such that the indirect utility function will be
convex in prices in P X (w,00), and demand will be monotonic in this set.

Ezxample 3. Consider the class of additive indirect utility functions, i.e., functions of the
form v(p,w) = Y>i_, v; (pi/w). We want v to be a decreasing function of price and to be
convex in prices. This holds if v, < 0 and v] > 0. Interestingly, these conditions are also
sufficient to guarantee the law of demand when the price of only one good changes. This
can be easily checked using Roy’s identity. Monotonicity when the price of more than one
good changes will be guaranteed by the elasticity condition, which in the form of inequality
(1) is just S p2vlf(p;) < —4(3 pivi(p;)). This condition will also be necessary if v is least

concave, which will be true if some v; is linear in p;. The condition will certainly hold if

pivl! (pi) Jvh(pi) > —4 for all i.
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3. THE WEAK AXIOM

We will now employ the methods developed in the last section to study the monotonicity
of demand in exchange economies. This extension is not completely straightforward: the
main reason for this is that, unlike the setting of the last section, agents in an exchange
economy generally have incomes that are dependent on price.

The only exchange economy setting where we can apply Theorem 2.2 in a straightforward
way is when all agents in the economy have endowments that are collinear with one another.
In such an economy, each agent will have an endowment of the form y@w, where @ is the
mean endowment, and so price changes that preserve mean income also preserve the income
of every agent. Now if all these agents also have indirect utility functions that are convex in
prices and that satisfy the elasticity condition of Theorem 2.2, then each of them will satisfy
monotonicity for price changes that preserve mean income. More formally, the aggregate

demand function F': RQ L= R’gr . will satisfy

(12) (p—q)"(F(p)—F(q)) < 0,

whenever p # ¢ and p’ @ = ¢”@. Clearly, this implies that there must be only one price for
which the markets are in equilibrium, i.e., when F(p) = @. Less obviously, this aggregate
property of the demand function is also sufficient to guarantee the global stability of the
equilibrium price with respect to the Walras’ tatonnement (see Hildenbrand and Kirman
(1988)).

We now move away from this special case to consider an exchange economy &£, not

necessarily with collinear endowments. The economic agents come from a set of “types”,
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represented by the separable metric space A. The agent a has an endowment w, in Rﬂ_,
which we assume is a continuous function of a. The agent also has a C' demand function
fa, understood (as in Section 2) to be a function of both price and income. We assume
that it is homogeneous of degree zero and satisfies the budget identity p? f,(p,w) = w. We
also assume that both f, and its derivatives are continuous in (a,p,w). The agent in an
exchange economy derives his income from his endowment; we denote a’s demand, as a

function of price alone, by

fa(p) = fa(p,pTwa).

The distribution of types in the economy & is given by the probability measure p on A, which
we assume has a compact support. Given these assumptions we may meaningfully write
the economy’s mean endowment as @ = [, wqdpu, which we assume is in Rﬂ_ +. Similarly,
we may write mean demand F : R, — R., as F(p) = [, fa(p)dp. Our assumptions

guarantee that this is a C'! function with its derivative

(13) 0Fp) = | dpfuplip.

The economy’s excess demand at price p is defined as ((p) = F(p) —@. The function ¢ is C?,
bounded below, homogeneous of degree zero, and satisfies Walras’ Law, i.e., p? ((p) = 0 at
all prices p. It is well-known that these conditions, plus a boundary condition, are sufficient
to guarantee the existence of an equilibrium price (see Hildenbrand and Kirman (1988)). We
let p be such an equilbrium price, so ((p) = 0. We normalize the price to satisfy p’@ = 1.
For the rest of this section, we shall study the properties of ¢ in an open neighborhood

around p.
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DEFINITION. The excess demand function ( satisfies the weak aziom at the equilibrium
price p, if there is some open neighborhood around p such that whenever two non-collinear
prices p and ¢ in that neighborhood satisfy p’((q) < 0, we have ¢7'¢(p) > 0.

Clearly, if ¢ satisfies the weak axiom at p, we must also have p’ ((p) > 0, for all p in some
neighborhood of p, p not collinear with p. This property is sufficient to guarantee the local
stability of the equilibrium price with respect to Walras’ tatonnement (see Hildenbrand and
Kirman (1988)). Instead of directly establishing the weak axiom, we will be find conditions
for a stronger, differentiable version of the weak axiom (see Mas-Colell et al (1995)).

DEFINITION. The excess demand function ( satisfies the differentiable weak axiom at
the equilibrium price p if zT8pC (p)z < 0 whenever the vector z is not zero and not collinear
with p.

The conditions we find for the weak axiom at p will depend on the distribution of
endowments and demand at that price, as well as on the local behavior of demand as
price varies, with the latter captured by specifications on the indirect utility function. We
assume that f, can be generated by some regular indirect utility function v, which is convex
in prices in some neighborhood of (p*, pYw,). We assume that the elasticity coefficients of

all agents are jointly bounded above. Denoting the coefficient of agent a by €., we define

(14) € = supe(p,plwa).
acA

This completes our specification of the model.
In trying to establish the weak axiom, it is natural, given equation (13), to look at

Op fa(p), and find some way of estimating 210, fa(p)z. This is the object of the next propo-

sition. Note that the subscript a has been dropped for convenience.
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PROPOSITION 3.1: The demand function f is generated from the endowment w and a

reqular utility function, v, which is convex in prices. For any z € R,

(5) 4Rz < (-2 el ) EHEL gyt ELLDE)
(2Tw)?
+(2 +€(p, pTw)) T

where € is the elasticity coefficient of the indirect utility v.

Proof: See Appendix.

We observe that a tranformation of v, to 9, = howv, by a convex function h will preserve
convexity in prices while raising the elasticity coefficient; indeed one can always choose a
transformation so that the new €4(p, p’ w,) (corresponding to the function 9, and not v,)
is exactly equal to €. Of course, such a transformation will not change the preference, and
therefore, neither the demand. With this observation, Proposition 3.1 and equation (15)

guarantee that

16) 4T, F(p)x < (—2+9) /@Tﬁz_wd# - G RuD) )

A Plw, Plw,
B (sza)2
+(2+€ /_765 .
(2+¢) ol

The three integrals on the right hand side of this inequality can be re-formulated in
a way that will make its significance clear. We first define a new probability measure ji:
for any measurable subset S of A, we define ji(S) = [4pTwedp. Since we assume that
pT@w =1, we also have fi(A) = 1. The effect of i is to “re-weigh” agents according to their

contribution to mean income at the price p. In this case, the first integral

T F.(p)2 R
AL%Q&W:A@E@MM

P we
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where, by definition, fa(p) = fa(p)/p"wa. The function fa is simply the projection of f,
onto the plane B = {x € R"JrJr : pl'z = pT'@}, so the integral is just the expected value
of (27 fa)Q when it is distributed according to the probability measure ji. We can apply a

similar transformation to the other integrals on the right hand side of (16). This gives us
TGFPe < (-2+) [ TR0 i -2 [ T R@)E" b di+ (24 [ (o)

where we define &g = wy /P! wq.
We now make two more observations. Firstly, the sum of the coefficients of the integrals

on the right hand side add up to zero, and secondly, because p is the equilibrium price,
/ 2T fu(p)dp = / 2L f.(p)dp = / 2L wadp = / 2L&adji.
A A A A

It follows that we may replace the the first integral with the variance of z” f , the second
with the covariance of 2T f and 2TQ, and the third integral with the variance of z7@. All
this is summarized in the next theorem.

THEOREM 3.2: The excess demand function of the economy £ satisfies the differentiable

weak aziom at the equilibrium price p if for all z in R', z not collinear with p,
(17) L(z) = (=24 ¢&Var(z"f) —2eCov(z" f,270) + (2 + &) Var(2T®) < 0.

[Recall the definition of € in equation (14) and note that the variances and covariance are
calculated according to the distribution given by /. |

This theorem gives sufficient conditions for ( to satisfy the weak axiom at p in terms of

the distribution of demand and endowments (as measured by their variances and covariance)

and the local behavior of demand as measured by the elasticity coefficient. As stated it
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may seem a little opaque, but its corollaries will make it clearer. We first note that it
contains the result for collinear endowments as a special case. If w, are collinear for all a,
Cov(2T f,27%) = Var(2T@) = 0 for all 2, and so the weak axiom will hold if Var(z7f) # 0
for all z non-zero and not collinear with p, and € < 2. To go beyond this special case, and
to obtain more informative bounds on €, we need to measure the sizes of the variance and
covariance terms relative to each other.

LEMMA 3.3: Suppose that Var(sz) # 0 for all z non-zero and orthogonal to p. Then
for all z non-zero and not collinear with p,
(i) Var(z" f) # 0,
(ii) there exists 0 satisfying Var(zT&) < 0Var(2T f), and

(i) there exist positive numbers K1 and K» satisfying
—K Var(2" f) < Cov(2" f,270) < KyVar(2T f).

Proof: See Appendix.

This lemma’s assumption - essentially that demand has a non-zero variance - is of course
very mild. The next corollary makes the same assumption.

COROLLARY 3.4: Suppose that Var(sz) % 0 for all z non-zero and orthogonal to p
and define 8 and K as in Lemma 3.3. The excess demand of € satisfies the differentiable
weak axiom at p if any of the following situations hold:

(1) =1 and € <0,

(ZZ) K1 = KQ =0 and



(iii) 0 <1 and

. 201-0)
(1460 +2K;)’

(iv)f >1, Ko <1, and

o 200 — 1)

[(0—1) +2(1 - K3))

Proof: Straightforward and will be omitted.

Note firstly that all the bounds on € are numbers less than 2, as one would expect,
and greater than -2, as one would require, in order to be compatible with the convexity
of the indirect utility functions in prices (see Remark 3 following Theorem 2.2). In all
cases of the corollary, the set of permissible preferences include homothetic preferences (see
Example 1 in Section 2). Part (i) of this corollary tells us that provided endowment is less
dispersed than demand, in the sense that it has a smaller variance, a sufficient condition
for the weak axiom is that € < 0. This is stronger than the condition € < 2 that is required
when the endowments are collinear. More generally the bound is either positive or negative
depending on whether demand is more or less dispersed than the endowment distribution;
furthermore the bound becomes more stringent as endowment becomes more dispersed
relative to demand. This is clear from (ii) (where demand and endowment are assumed to
be essentially independent), and also in (iii) and (iv), if the covariance term is held constant.
This pattern is, in retrospect, unsurprising, and is certainly reminiscent of a notion that
has manifested itself in various forms in the literature; namely, that a dispersed demand
distribution (variously defined) makes it more likely that mean demand is well behaved as

a function of price (see, for example, Grandmont (1992), Hildenbrand (1994) and Quah
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(1997)).

The distributional conditions on demand and endowments in Corollary 3.4 cover all the
possible cases except the case of § > 1 and Ks > 1. The reason for this is quite evident in the
light of Mantel’s (1976) result. Mantel has shown that simply assuming that all agents have
homothetic preferences need place no restriction on the excess demand function. Yet, as
we had pointed out above, our conditions on € permit all homothetic preferences, so clearly
a distributional restriction is needed. That K5 is greater than 1 is certainly possible, but
there is no reason to believe it is especially likely. Indeed, while much empirical work must
still be done, the overall impression given by Corollary 3.4 is that the conditions needed for

the weak axiom to hold at an equilibrium price are well within the range of the plausible.

4. COMPARATIVE STATICS

In the last section, we established conditions for the excess demand function of an
exchange economy to satisfy the differentiable weak axiom at the equilibrium price p. In
addition to ensuring the local stability of Walras’ tatonnement, the weak axiom also allows
us to make a statement about comparative statics. Imagine that the economy is subjected
to a small perturbation of its parameters which causes excess demand to change; the weak
axiom guarantees that the change in excess demand at the original equilibrium price p will
be in the same direction (in some precise sense) as the change in the economy’s equilibrium
price (see Mas-Colell et al (1995)).

The local comparative statics we discuss in this section is of a stronger variety. Again

the case of collinear endowments provides the motivation. Suppose the economy’s mean
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endowment changes from @ to @ while all agents continue to have the same preference and
the same (collinear) shares of the new mean endowment. The new equilibrium price is 7/,
which we choose to satisfy p'/'@’ = p’@. Since mean income is preserved, so is the income
of every agent; it follows that when each agent’s demand is monotonic (for example, if they

satisfy the conditions of Theorem 2.2), so is the demand of the economy as a whole. Since

P and P’ are equilibrium prices, market demand is @ and &’ respectively, and we have

This means, in particular, that the economy’s mean endowment and its associated equilib-
rium price vary in a way that obeys the weak axiom (the proof is straightforward and can
be found in Mas-Colell (1985)).

There is an alternative presentation of this property that is independent of how equi-
librium prices are normalized. It is straightforward to show that the inequality could be

re-written in the form

l ’
. ox\ B
(-—3 - -—Z> (@f —wi) <0,
—1 Ww; Wwj

7 1

where x; = p;w;/ p'@. So x; is the share of the economy’s expenditure devoted to good ¢ at
equilibrium when the endowment is @ (and analogously for 2} and @;). The property says
in particular, that if we vary the endowment of some good 7, while holding the endowments
of all other goods fixed, then the share of aggregate expenditure devoted to good j per unit
of good j, i.e., x;/w; decreases as w; increases. Put another way, if good j’s endowment
goes up by K%, then the share of aggregate expenditure devoted to good j at equilibrium

might rise or fall, but it cannot rise by K% or more. This is a natural generalization, in a
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multi-good economy, of the notion that “the price” of a good falls when supply increases.
The rest of this section is devoted to showing how this property might hold in economies
with non-collinear endowments.

Our starting point is the economy &, as constructed in Section 3, with an equilibrium
price p satisfying p’@ = 1. We now perturb the economy slightly in the following way. Let
B denote the compact set of unit vectors in R. The economy &(t,b) has exactly the same
characteristics as the economy £ except that the agent a now has an endowment wg + 7,tb,
where t is a positive number, b is in B, and the function v : A — R satisfies [, y.dp = 1.
So the economy £(t,b) has a mean endowment of @ + tb and £(0,b) = £. We assume that
D is a reqular equilibrium price of £. By that we mean the following:

(i) there is an open ball O around p and a positive number 7" such that all the economies
E(t,b), with (¢,0) in (0,7") x B have a unique equilibrium price p(t,b) in O that satisfies
p(t,0)T (0 +tb) = 1; and

(ii) the price p(t,b) is distinct from p and varies continuously with (¢,b), with p(t,b) con-
verging to p uniformly on B as t tends to 0.

The next definition states precisely the property of p we wish to investigate.

DEFINITION: The equilibrium price p of £ varies monotonically with mean endowment
(or “is monotonic” for short) if it is a regular equilibrium price of £, and there is a ¢ > 0

such that for all (¢,b) in (0,¢') x B
b" (p(t,b) —p) <0
for all b in B.

Note that while the economies £(¢,b) do not have collinear endowments, we are confining
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ourselves to collinear endowment changes: in the economy £(t,b), all agents have had their
endowments perturbed in the same direction, that of the vector b, albeit with different (and
possibly zero or negative) magnitudes. This is a restrictive assumption, which cannot be
straightforwardly weakened, but it does include the special case where all agents experience
a small perturbation in their endowment of a single good.

As in Section 3, the conditions we find will depend on the local distribution of demand
and endowments, and on the local behavior of preferences, as measured by €. In addition,
we need to consider the distribution of the endowment change, as captured by ~. Actually,
what is directly relevant is not «y, but the function 7 : A — R where 1, = 7,/p’ Wa. If 7, is
identically 1, each agent’s share of the mean endowment change tb, exactly equals his share
of the mean income at the equilibrium price p. Since [, nadft = [, Vodp = 1, the mean
of  when it is weighted by fi is also 1. Weighted according to ji, we may sensibly speak
of the variance of 7, as well as its covariance with 2’ f and z'@ for any non-zero vector
z. The next theorem sets forth conditions for local comparative statics in terms of these
parameters.

THEOREM 4.1: The equilibrium price vector p of £ wvaries monotonically with the
mean endowment provided it is reqular and satisfies the following condition: for any non-
zero vector z in R', we have L(z) + M(2) < 0, where
L(z) = (¢ — 2)Var(2T f) — 2eCov(2T f, 27&) + (€ + 2)Var(27&) and
M(2) = (2+€)(2T@)2Varn+(e—2) (2T @)2+2e(2T@) Cov (2T f,n) —2(2+8) (2Tw) Cov(2Ta, n).

Proof: See Appendix.

The next two corollaries will help clarify the meaning of this theorem. The first considers

26



the case where 7 is independent of f and @.
COROLLARY 4.2: Suppose that Cov(zT f, ) = Cov(2T&,n) = 0 for all z in Rt Then
the reqular equilibrium price p of £ varies monotonically with the mean endowment if
(i) L(z) <0 for all z, non-zero and not collinear with p, and
(i)

6<2{1—Var77]‘

1+ Varng

Proof: Condition (ii) guarantees that M(z) < 0. M(z) = 0 if and only if z is orthogonal
to @; in this case, z is not collinear with p and L(z) < 0 by (i) provided z is non-zero.
Therefore L(z) + M(z) < 0 for all non-zero z. Conclusion follows from Theorem 4.1. QED

Condition (i) is simply the condition we have found for the local weak axiom to hold
(see Theorem 3.2); condition (ii) imposes an additional bound on €, which becomes more
stringent as Varn increases. An interesting special case is where 7 = 1, then we certainly
have Cov(zT f,n) = Cov(2T&,n) = Varn = 0 so condition (ii) is simply € < 2. When
this happens, the conditions on € in Corollary 3.4, which guarantee the weak axiom, also
guarantee the monotonicity of the equilibrium price since they are all require € to be less
than 2 anyway.

We will now deal with the case where 7 is not independent of f and @. As in the
previous section, we need some way of measuring the covariance of these variables relative
to the standard deviation of f .

LEMMA 4.3: Suppose that Var(sz) # 0 for all non-zero z orthogonal to p. There exist

numbers L1 and Lo such that whenever z is non-zero and not collinear with p,
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(i) |Cov(2T f,n)| < Ly1y/ Var(2T f) and
(ii) |Cov(2T&,n)| << Lo/ Var(2T f).

Proof: Similar to proof of Lemma 3.3 and will be omitted.

Using L1 and Lo we will be able to construct a precise bound on the size of € that will
guarantee the monotonicity of the equilibrium price.

COROLLARY 4.4: Suppose that Var(sz) % 0 for all non-zero z orthogonal to p, and
define 8 and K5 as in Lemma 3.3, and L1 and Lo as in Lemma 4.3. Suppose also that 6 > 1

and that L3 /4 + Ko < 1. Then the quadratic equation in €,
[2¢(La — L1) 4+ 4L)* = 4[e(1 — 2K5 + 0) — 2 + 26][e(Varn + 1) + 2(Varn — 1)]

has exactly one root €* in the interval (—2, min{M;, Ms} |, where

20 —1)
M| = —
0D+ 20 - Ky)]
and
4 [1— Varpy
My =2 [1 +Var77] ’

The equilibrium price p varies monotonically with the mean endowment provided € < €*.
While the corollary allows 1 to co-vary with f and é, this is restricted by the condition
L?/4+ K5 < 1. The corollary gives a condition for the monotonicity of the equilibrium price
that is clearly stronger than what we obtained for the weak axiom, which is that € be less
than M (see Corollary 3.4 (iv)). Quite naturally it is also stronger than the condition we
obtained in the case where L; = Ly = 0; that required € to be less than Ms (see Corollary

42).
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5. THE DIRECT UTILITY APPROACH

In the previous sections, we had studied the structure of demand using the indirect
utility function. We will now explore the connection between direct and indirect utility,
so that we may translate the indirect utility conditions that we have employed in various
contexts into conditions imposed on the direct utility functions. We first make a definition of
regularity for direct utility functions. The restrictions are standard (see Mas-Colell (1985))
and innocuous.

DEFINITION: The utility function « : Rﬂ_ . — R is regular if it is C?, its partial
derivatives are strictly positive, it is differentiably strictly quasi-concave, and the sets C;z =
{z € R\, :u(x) > u(z)} are closed in R! for any Z in R, .

Milleron (1974) and Mitjuschin and Polterovich (1978) show that a regular utility func-
tion will generate a demand satisfying monotonicity (in the sense defined in Section 2, i.e.,

with income fixed as price changes) if it is concave and satisfies the condition

21 0%u(x)x .
(18) Y(z) = T ul)n < 4 forall zeR,,.

Condition (18) is really a statement about the behavior of the utility function along rays
emanating from the origin. For any Z in R, we define the function Gz (t) = u(tz), where
t is a positive real number, and the function gz(t) = —tG%(t)/G%(t). So gz is a measure
of the curvature of the utilty function in the direction of Z. Since G%(t) = 2T d,u(tz) and
G!(t) = 2T 02u(tz)x we have gz(t) = 1(tZ) and so condition (18) is equivalent to having
gz < 4 for all z.

It turns out that ¢ is also relevant in determing whether or not the indirect utility
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function generated by u, i.e., v(p,w) = u(f(p,w)), is convex in prices.

PROPOSITION 5.1: Suppose that the reqular indirect utility function v is generated by

the reqular utility function u. The following are equivalent:

(i) v is convex in prices,

(i) the functions g are convex for all x, where pi; : R14 — R is defined by piz(s) = u(x/s).
(7ii) Y(x) < 2 for all x.

Proof: See Appendix.

The proposition essentially says that a direct utility will generate an indirect utility
that is convex in prices if and only if its ¢ < 2. The next proposition is analogous and
says that a utility function is concave if and only if it generates an indirect utility that is a
concave function of income. Its proof is also similar to that of the last proposition and will
be omitted.

PROPOSITION 5.2: Suppose that the reqular indirect utility function v is generated by
the reqular utility function uw. The following are equivalent:

(i) w is concave

(i) v is a concave function of income (equivalently, €(p,w) < 0 for all (p,w)).
(iii) ¢(p,w) < 2 for all (p,w).

[Recall the definition of ¢ in Theorem 2.2.]

Propositions 5.1 and 5.2 together tell us that u is concave and ¥ (z) < 2 for all z,
if and only if the indirect utility it generates is convex in prices and concave in income.
This statement is also true locally when suitably modified. In particular, we will need

the following result, whose proof is omitted because it is similar to that of the previous
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propositions.

LEMMA 5.3: Suppose that a preference generates the demand function f, and that in
an open and convex neighborhood around f(p*,1), the preference admits a reqular utility
function u, which in turn generates a regqular indirect utility function v in an open neigh-
borhood of (p*,1).

(1) If u is concave, €(p*,1) < 0.
(i) If u satisfies ¥(f(p*,1)) < 2, then there is an open and convexr neighborhood of prices
around p* (with income fized at 1) such that v is convex in prices.

Using this lemma, we can prove the next result.

THEOREM 5.4: Suppose that a preference generates the demand function f and that in
an open and convexr neighborhood around f(p*,1), the preference admits a utility function
w which is concave, with ¥(f(p*,1)) < M. Then there is an open and convexr neighborhood
of prices around p* such that the indirect preference over prices in that neighborhood (with
income fized at 1) admits an indirect utility function (not necessarily the one generated by
u) which is convex in prices, with e(p*,1) < M — 2.

Proof: See Appendix.

The impact of this theorem is far reaching. Firstly, it allows us to re-establish the direct
utility conditions for individual monotonicity which we already know (see condition (18))
via Theorem 2.2: if a utility function w is concave, with ¥ (x) < 4 for all =, then Theorem
4.4 says that around the supporting price of every commodity bundle x there is, locally, an
indirect utility function (not necessarily generated by w) which is convex in prices and with

the elasticity condition of Theorem 2.2 satisfied. This guarantees monotonicity.
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Similarly, the conditions required in Corollaries 3.4, 4.2 and 4.4 can be translated into
conditions on the utility function. In those results, we assumed that each agent had an
indirect utility representation v, that, at least in a neighborhood of (p, p’ w,) is convex in

prices. Conditions of the form

(19) € = supe(p,plwa) < J,
acA

were then imposed. Instead of this, we can assume that each agent has a regular utility
representation u, that is concave in an open and convex neighborhood of fa(p). Theorem

5.4 guarantees that any condition of the form (19) can be replaced with the condition

(20) v o= supa(fu(p) < J+2,
ac A

where 1) is just the formula in (18) applied to u,.

One special situation in which such a translation is particularly useful is when all agents
in the economy & have utility functions that are regular and directly additive, i.e., u(z) =
Zizl miu;(x;), where the m;s are positive, and the wu;s are concave. This is essentially a
finance model with complete markets, where agents choose consumption across [ states of
the world according to their von Neumann-Morgenstern utility functions. In this case, the
monotonicity conditions are expressible in terms of the coefficients of relative risk aversion,

and in particular, on its variation. We define the function B : Rﬂr L — Rby
xuy (x;) B f”j“;'/(fj)

12%}%1 wj(;) U; ()

(21) B(x) =

LEMMA 5.5: Suppose that a preference admits a reqular and additive utility function u,

with B(x*) < M at some commodity bundle x*. Then in an open and convex neighborhood
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around x*, the preference also admits a (possibly different) concave utility function with its
P(z*) < M.

Proof: See Appendix.

The next result on individual demand follows immediately from this lemma and the
direct utility conditions for monotonicity (see condition (18)).

THEOREM 5.6: The reqular and additive utility u will generate a monotonic demand
if B(z) <4 forallz € R .

Suppose that all agents in the economy £ have directly additive utility functions. Then

for each agent, we may define B, (as in (21)). Using Theorem 5.4, the constant

B = sup By(fu(p))
acA

then takes the place of €, in Corollaries 3.4, 4.2 and 4.4. The next theorem simply restates

Corollary 3.4 in this context; Corollaries 4.2 and 4.4 can be similarly restated.
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THEOREM 5.7: Suppose that all the agents in £ have directly additive utility functions.
We also assume that Var(sz) # 0 for all z non-zero and orthogonal to p and define 6 and
K as in Lemma 3.3. The excess demand of £ satisfies the differentiable weak axiom at p if
any of the following situations hold:

(i) 0 =1 and B < 2,

(1)) K1 = K2 =0 and
_ 1-46
poaia(l29),

(iii) 0 <1 and

_ 2(1—-0)
B<24 27
(1+6+2K)
(iv)f > 1, Ks <1, and
_ 2(0—1
B<2-— ( )

(0—-1)+21-K))

St Hugh’s College, Oxford, OX2 6LFE, UNITED KINGDOM:; john.quah@economics.ox.ac.uk
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APPENDIX

Proof of Proposition 2.3: To each p in P we associate the set

Z(p)={z€ R :||z|| =1 and p + tz € P for some t # 0}.

Then v(+, 1) is convex in P if and only if 27 9,v(p, 1)z > 0 for all (p, 2) in C' = Upep{p}x Z(p).

By taking limits, 27 0,v(p,1)z > 0 for all (p,z) in C, the closure of C.

For a positive «, the function h(y) = — exp(—ay) is convex and increasing in y € R, and
non-affine in v(P) if P is non-singleton. For z in R', the composition h o v = — exp(—aw)
satisfies

zT(?]%[— exp(—av)|z = aexp(—aw) [zTagvz — a(Op2)?].

Since zTﬁgv(p, 1)z can be thought of as the image of a continuous map from the com-
pact set C' to R, if zT(?gv(p, 1)z is always strictly positve in C, it must also be uni-
formly bounded away from zero in C, and there will be an & sufficiently small, such that
2T 92— exp(—aw)]z > 0 for all (p,z) in C. This means that —exp(—av) is convex in P,
contradicting our assumption that v is least convex.

So there exists (p,Z) in C such that chBgv(ﬁ,l)a’c = 0. Since P is compact, p is in
P; because v is strictly quasi-convex, z' f(p,1) # 0, so there is a number \ such that
AT = x = p/2+a, where 2’ is perpendicular to f. Of course, we also have xTagv(]ﬁ, 1z =0.
If we choose z = 2 +p/2, then 2% f(p,1) = 1, and from equations (10) and (11), we see that
L0, f(p, 1)z = [e(p,1) — 1]/2, which is positive by assumption (ii). By Lemma 2.1 (i), f is

not locally monotonic at (p,1). QED
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Proof of Proposition 3.1: Let us first assume that p’w = 1. From equation (7) and

Roy’s identity we find that

82 TaQ
(22) 0pf = _LU+M_

Uy w

£

Differentiating Roy’s identity with respect to w, we obtain

of _ Vg (Op0) T — vy AT
ow v2,

)

with A defined by (4). Using equation (6) and Roy’s identity, we obtain

(23) ow

Uy

[ﬁ

]' ww
wl' = —0vplw’]+ <—1 — v_) ful.
Vyy

Then, using (22), (23) and (11), and denoting s = 27 (f + w), one can check that

Tofwe = o0z + (o) (1 [2L])
= —i (z - %p)T@?v (Z B %p) - 5742(2 +6) =N+ (1= N'w)

82

4

IN

246 = (W' f)?+ (-1 - fv'w)

Re-substituting s = 27(f + w) and re-arranging terms, we obtain inequality (14), with
w = plw = 1. When w # 1, we need only note that 9, f is homogeneous of degree -1, to
get inequality (14) again. QED

Proof of Lemma 3.3: If z is not collinear with p, we may write it as ap + bz’, where
b # 0, and 2 is a unit vector orthogonal to p. Since p’f = 1, we have Var(Tf) =
Var(ap” f + 2T f) = b?Var(2'T f) # 0. This proves (i). To prove (ii), we note that 6
certainly exists if we confine ourselves to z that are unit vectors orthogonal to p. For any

other z, we may decompose it as we did above, and we have Var(sz) = bQVar(z’Tf), and
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Var(27@) = v?Var(2T®). The inequality follows. Part (iii) can proved in a similar way.
QED
Proof of Theorem 4.1: The economy E(t,b), (t,b) € (0,T) x B has the equilibrium price
p(t,b), which is not equal to p. So we may write p(t,b) = p + ktz, where z is a unit vector

and k is a positive number. We define the functions g, and G from [0,¢] to R by
Ga(t) = 2L fo(p+ ktz, (p + kt2)T (wa + Yath)) — 27 fu(P, P ws) and
G(t) = 2"F'(p+ ktz) — 2T F(p)
where F” is the market demand of the economy £(t,b) at the price p + ktz, so G is just the

integral of g, over A. Crucially, G(f) = 27 (tb), precisely the object which we are trying to

show is negative. Differentiating g, and dropping the subscript a for convenience we obtain

g (t) = k210, f2+ 27 ﬁ} (7}5Tb + k2Tw + thszb) )

ow

Note also that
1 _
P N P L T~
pib = t_{p (W +tb) pw}
1y TANT(~ | T Tl | F T
= ?{(p—i—ktz) (@ +tb) — ktz(w +tb) — p w}
= —k2T (0 +1b).
This means that

g (0) = e{emafo+ [ EL] Ty = [ 90 7o)~z [s7 2L o) 2t [ s S1 ] ey}

When ¢ is small, we can essentially ignore the last two terms. Therefore, we conclude that

if the expression

Tafa

2" O % 50 (P, P wa)

a_w(p7pTwa) (ZTwa) — Ya

J:/ {ZTapfa(ﬁ,ﬁTwa)Z-l-
A

(sz)} dp < 0
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for all unit vectors z, then by the regularity of p, there exists a ¢’ (applicable to any b in
B) such that provided ? is less than ¢, we have G'(t) < 0 for all ¢ in the interval [0,]. The
integral J (or rather its integrand) we have to estimate bears a remarkable resemblance to
the expression for 279, f (p)z in the proof of Proposition 3.1. We can essentially repeat its
arguments, having s = 27 (f +w — @) instead; then following the same arguments as those

which follow the statement of Proposition 3.1, we obtain the expression

(_2+€)[4( Tfa _9¢ / Tfa ( _’Y(lw)]dlu_‘_(2_’_€)/ [ZT(WC_E_’YGC‘_})Q]dM

TW a TW a A pTwa

which we require to be negative. Note that this is expression is identical to the right hand
side of (16), except that 27w, has be replaced with 27 (w, —Y,@). We can then modify this

expression, as we did with (16) to obtain

A~

(=2 + &)Var(2" f) — 2eCov(2" f, 27 (& — n@)) + (2 + &) Var(z" (& —n@)) < 0.

This is identical to the expression in (17), except that @ has been replaced with @ — na.

Expanding this expression gives us the condition we need. QED
Proof of Corollary 4.4: Provided € < 0, we have L(z)+ M(z) < Ax?+ Bxy+Cy?, where

x =/ Var(2T f),

y=zuw,

A=€—-2—-2eKy+ (€+2)0,

B = —2€eL; +2(2+€) Ly and

C=(2+¢)Vam+ (e - 2).

The quadratic equation in € in the Corollary is obtained by setting B? = 4AC. It is easy
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to check that if e = —2, B? < 4AC provided L?/4 + K3 < 1. A= 0 when

B —2(0 —1)
SO -1)+2(1 - K)]

and C' = 0 when

{1—Vam]
€E=2|———|.
1+ Vamn

Since 6 > 1, the minimum of these two terms, ¢ must be negative. Between -2 and €, 4AC
is a positive and decreasing function. On the other hand B? is always non-negative, so by
the intermediate value theorem, there exists €* in (—2,€'] with B2 = 4AC. Because B? and
4AC are both quadratic functions of €, there is only one such €*. Provided € < €*, we have
A<0,C<0and B2 <4AC so Ax®> + Boy +Cy? <Ounless x =y =0. But =y =0
cannot happen unless z = 0: if y = 0, x is orthogonal to @, which means that it is not
collinear with p, and therefore cannot be zero by Lemma 3.3. QED

Proof of Proposition 5.1: We first assume that v is convex in p and show that p, is
convex. Let p and p’ be supporting prices of x/s; and x/ss respectively, where s; and so

are two positive numbers. Then we have
apg(s1) + (1 - a)pa(s2) = av(p,1)+ (1 —a)u(p,1)
> v(ap+(1-a)p,1)
> pgp(as; + (1 —a)sa).
The first inequality follows from the convexity of v with respect to prices; the second

inequality follows from the fact that the bundle z/[as; + (1 — a)s2] is valued at 1 when the

price is ap + (1 — a)p'.
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Now we assume that pu; is convex for all x and show that v is convex in prices. Let
p and p’ be two prices and let z = f(ap + (1 — a)p’,1). By the convexity of p,, u(x) =

pz(1) < apg(pfa) + (1 — a)p (pF'z) since (ap + (1 — a)p’)'x = 1. Therefore,

viap+ (1 —a)p’,1) = pe(l)

IA
2
=
=
Naw
+
=
!
L
=
’E\
=

where the last inequality follows from the definition of v.

To show the equivalence of (ii) and (iii), we need only check that
" T 52
(1) = o' 07u(x)z 4 20u(x).

This is positive if and only if g(1) = ¢¥(x) < 2. QED

Proof of Theorem 5.4: Without loss of generality, we can assume that 2*7 9, u(z*) = 1,
where x* = f(p*,1). [If this is not satisfied, multiply « with a number - this leaves both the
preference and 1 unchanged.] Transform u to @ = h o u, where h is an increasing function.

It is easy to check that the formula (18) when applied to @ (we denote it as ¢)) is given by

P(x) = —%(H@u(x)) —

2T 02u(x)x
2T opu(z)

If we can find h with A (u(x*)) /b (u(x*)) = M’ — 2, where M > M’ > 1(f(p*,1)) then

2o o W'(u(@?) 2T Ru(at)at
1/](1") - _h’(u(x*)) B x*Tamu(x*)

< —(M'=2)+ M =2.
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By Lemma 5.3, © = h o v, the indirect utility generated by @ is convex in prices in a
neighborhood of p*. Note that v,(p*,1) = 2*T0,u(x*) = 1, and that v, (p*,1) < 0, the
latter following from the concavity of u (by Lemma 5.3 again). Therefore, the elasticity

coeflicient corresponding to @

h"(v(p*,l))v * wa(p*’]')
wolrn) DT D)

< M -2<M-2.

ép*,1)

For any number 7, a function i with h” /h/ = r can easily be found: simply choose h(t) = e

if r is positive and h(t) = —e™ if r is negative. QED

Proof of Lemma 5.5: As in the proof of Theorem 5.4, we assume without loss of gener-
ality, that 2*19,u(x*) = 1. Subsuming the m; into u;, we can write u as u(x) = 3 u;(z;).
This also leaves the function B unchanged. Suppose also that

wiu(@))

k
= u;i ()

<K,

for 1 <i <. Given that B(x*) < M, we can certainly choose K and k such that K —k < M.
It is straightforward to check that ¥ (2*) < K. If we choose an increasing function h with
W'/ =k, then formula (18) when applied to @ = h o u (denote this by 1) satisfies

i(m*) = _;;L///((Z:)) +(a*) < K —k < M.

Now we need only show that 4 is concave. We have

' (u(z"))

To2u(x*)z = B(u(z?)) |———

(2T 0pu(x*))? + 2T 02u(x*)z| .

If 270,u(z*) = 0, then, by strong quasi-concavity 27 0?u(z*)z < 0, so 2792 (x*)z < 0.
Otherwise, without loss of generality we assume 27 0,u(x*) = 1. In that case, by a standard
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formula (see Footnote 2),

1
(Ozu(z*)) T (OFu(a*))~H (Fpu(e*))
1
ey ()2 uf ()

max 27 2u(z*)z =

It is not difficult to check that this expression is less than —k. Therefore, when 2T 0 u(z*) =

1, equation (24) tells us that

R (u(z”))

21 9%u(x)z < W (u(z*)) [W

—k] =0.

Therefore, we have 27 92a(x*)z < 0 for all z # 0, which guarantees the local concavity of .

QED
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Footnotes:

1. Least convex functions are the convex analog to the better known least concave
functions. The definition is in Section 2.

2. For a symmetric and positive definite I x [ matrix A, a column vector b € R, and
a number 7, min,r,_, v Ar = r2/bT A=1b. Note that in our case, r = 1/2, A = 8]%1) and
b=f.

3. The results cited pertain to the existence of least concave functions. It is quite
obvious they are also applicable here since a function is concave if and only if its negative
is convex.

4. For a similar result with a different proof in the direct utility case, see Kannai (1989).
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