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ABsTRACT. This paper takes a new look at the classic concession game. It argues that exit
from an asymmetric war of attrition is likely to be instant. Selecting a unique equilibrium
using a “craziness” perturbation device, it finds a notion of stochastic strength determines the

outcome, with a stochastically weaker player giving up immediately.

“It’s not true that nice guys finish last. Nice

guys are winners before the game even starts.”

Addison Walker

1. INTRODUCTION

When should a player exit from a war of attrition? If the player is perceived to be weaker
a priori, then she should exit immediately. Can this be? The standard model of the war
of attrition suggests that players fight for some period of time before exiting. Indeed, in the
symmetric case, the highest valuation player wins the war. This chapter argues that in fact the

two-player war of attrition should reach a prompt conclusion.

1.1. The War of Attrition. The war of attrition is a common modelling device in economics.
Consider the simplest two-player version. It formalises a concession game. The participants
incur costs of delay prior to a concession by one of the players. Following any eventual con-
cession, the remaining player receives a prize.! The model suffers from some flaws, however.
In particular, the model exhibits multiple equilibria. The textbook examples — for instance,
Tirole (1988) and Fudenberg and Tirole (1991) — focus on the symmetric case. Naturally, any
device that picks a unique equilibrium will predict symmetry given a symmetric specification.

But what of the asymmetric case?

Date: This version: June 1999.
'nitial investigation of this scenario in a biological context began with Maynard Smith (1974) and Bishop,
Cannings and Maynard Smith (1978). The dragon slaying and ballroom dancing interests of Bliss and Nalebuff
(1984) introduce the model to the economic literature. In a recent paper, Bulow and Klemperer (1997) extend
the war of attrition to “many player” case, where the number of participants exceeds the number of prizes by
more than one.
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Drawing upon earlier work, this paper argues that exit from the asymmetric war of attrition
is likely to be instant. The model of Fudenberg and Tirole (1986) is reformulated, with the
introduction of a “craziness” perturbation. This enables a characterisation of the unique equi-
librium for vanishing “craziness”. When one player is “stochastically stronger” at the outset,

the device posited here selects an equilibrium in which the weaker player exits immediately.

1.2. The Complete Information War of Attrition. Suppose that two players fight for a
single prize, where the valuations and fighting costs are commonly known. This is a complete
information war of attrition. At each point in time, a player can choose to remain in the fight
or (irreversibly) exit. If Player 1 is the first to exit at time ¢, then Player 2 is the solo recipient
of a prize, valued at vo. Both players pay fighting costs, totalling c¢1t and cot respectively —
it is without loss of generality to normalise ¢; = ca = 1, since (for positive fighting costs and

prize valuations) it is only the ratio v;/¢; that is of importance.

There are two stationary pure strategy equilibria to this game. They involve instant exit —
one player exits immediately at the start of the game, and the other fights forever. The latter
player wins immediately with zero fighting costs. Alternatively, there is a stationary mixed
strategy equilibrium, where players exit according to a constant hazard Poisson process. The
hazard rates satisfy Ay = 1/v9 and A2 = 1/ve. Indeed, in the symmetric case, this yields a
symmetric equilibrium with A\; = Ay = 1/v. At each point in time, a player considers waiting
a fraction longer prior to exit. Costs are incurred at rate 1, whereas the expected gain is \jv;.
The exit rates of players are chosen so that A\;jv; =1 and hence a player is indifferent between

exit and continuation at each point in time.

The comparative statics of the mixed equilibrium make it unattractive. Notice that if vy > vy,
then Ay > A\; — the stronger player, with the higher valuation, exits at a faster rate. Indeed, as
v1 — 0 for fixed v, the weaker player wins with probability approaching 1. In the asymmetric

case, the equilibrium in which the weaker player exits immediately may seem more reasonable.

The desire to select among a multiplicity motivated Kornhauser, Rubinstein and Wilson (1989).
They consider a discrete time, complete information war of attrition. Drawing upon the sugges-
tions of Selten (1975), Myerson (1978), Kohlberg and Mertens (1986) and others, they choose
to perturb this game in particular way. With some small probability, a player is restricted to
fight forever. In the asymmetric case (vy > v1), this selects an equilibrium in which the weaker

player (v1) exits immediately.

1.3. The Incomplete Information War of Attrition. This paper aims to incorporate this
approach into the incomplete information war of attrition. With incomplete information, a

player’s valuation is unknown to her opponent. Bayesian equilibrium strategies are increasing
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in a player’s valuation — stronger players fight for longer. As Riley (1980) notes, there are a
range of equilibria. Essentially, first order conditions determine a pair of differential equations
that must be satisfied by any solution. A full solution requires two boundary conditions.
Equilibrium arguments determine only one of these, and hence there are a range of possible

equilibria.

Fudenberg and Tirole (1986, FT) provide a solution to this problem. They study a model in
which fighting costs are uncertain. The support of these fighting costs extends below zero, and
hence there is positive probability that a player has a dominant strategy to remain in the game
forever. They develop an asymptotic boundary condition that must be satisfied as ¢ — oo,
tying down a unique solution. The regular boundary condition, however, is tied at a valuation
of zero.? Tt follows that initial boundary conditions do not change as the parameters move, and

“instant exit” comparative statics are not available.

1.4. Instant Exit from the War of Attrition. This paper argues that instant exit by a
weaker player is a more reasonable prediction in the incomplete information war of attrition.
The analysis considers a model with unknown valuations. These are bounded away from zero,
so that the Lipschitz continuity problem addressed by Fudenberg and Tirole (1986) is not an
issue. A multiplicity remains, however. The optimality restrictions imposed by a Bayesian
Nash equilibrium yield a pair of differential equations to be satisfied by players’ stopping time
functions. A range of boundary conditions is available, however, necessitating an equilibrium

selection device.

To tie down a unique equilibrium, the possibility of “craziness” is introduced, and is a direct re-
interpretation of the FT (1986) negative fighting costs. With some small probability, a player
is restricted to fight forever. This ties down the boundary conditions for the stopping time

functions, and yields a unique equilibrium.

The basic model is thus a reformulation of the FT (1986) device, moving the incomplete in-
formation away from fighting costs and onto valuations. Crucially, however, the support of
valuations is bounded away from zero, which yields to the selection of initial conditions. This

enables a new set of comparative statics to emerge. These are as follows.

First, if the valuation distribution of one player first order stochastically dominates that of
her opponent, then the weaker player exits immediately with positive probability. Secondly, a

notion of “stochastic strength” is introduced. This couples first order stochastic dominance with

2In fact, there model is equivalent to one in which there is positive probability that a player has a fighting cost
of +oc0. Such a player exits immediately at ¢ = 0. This results in an equilibrium in which no finite-valued player
exits immediately. Furthermore, it results in a lack of Lipschitz continuity at this point — this is the source of
multiple equilibria in their model.



INSTANT EXIT FROM THE WAR OF ATTRITION 4

an asymptotic hazard rate dominance condition. If the “craziness” perturbations are allowed
to vanish, then the stochastically weaker player exits immediately with probability approaching
1. Viewing this as a selection device for the unperturbed war of attrition, the analysis predicts

instant exit for a stochastically weaker player. The war of attrition ends immediately.

1.5. Guide to the Paper. Section 2 describes the war of attrition model, including the per-
turbation device, and defines a notion of “stochastic strength”. The analysis is split into two
sections. Section 3 deduces the basic properties of any equilibrium. The results in that section
will be familiar to readers of earlier work. The main contribution of this paper is the analysis

of Section 4. Concluding remarks are made in Section 5.

2. THE MODEL

The model is a straightforward two player war of attrition augmented by a perturbation device.

2.1. The Standard War of Attrition. Begin with a standard war of attrition. There are
two players, ¢ € {1,2}, each choosing a stopping time ¢; € [0, 4+00) U{oco}, which may be revised
at any time t < t;. Each player has a fighting cost ¢;, which is normalised to ¢; = 1 without loss
of generality. The players have valuation w; for a prize, where u; € (u;,00). Realised payoffs

are:
Wi(ti’ tj) = uz]I{tz > tj} — min{ti, tj}

where I is the indicator function. Notice that if two players exit simultaneously (¢; = t;) then

the prize is lost. It is assumed that w, > u;.

A player’s valuation is unknown to her opponent — this is a game of incomplete information.
The payoff u; is drawn from the distribution F;(u) with density f;(u). Standard regularity
conditions are assumed. In particular, f;(u) is bounded above and continuously differentiable,

the associated hazard f;(u)/(1 — F;(u)) is increasing, and first and second moments exist.

2.2. The Perturbed War of Attrition. A perturbation is introduced. With probability
& > 0, aplayer is “crazy” and fights forever irrespective of valuation — such a player is restricted
to play t; = oo. Informally, this will be regarded as a payoff of oo, thus extending the valuation
support to u; € (u;,00) U{oo}. The density over valuations becomes g;(u) = (1 — &) fi(u) with
associated cumulative distribution function G;(u) = (1 — &) Fi(u).

This device is equivalent to that introduced by FT (1986). In their model, valuations are fixed,

with the fighting cost of a player unknown to her opponent. Justifying their assumptions with

an application to exit from a declining industry, the authors extend the support of fighting costs
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to below zero. This implies that, with positive probability, a player has a strictly dominant
strategy to fight forever. The model presented here reformulates this idea, and replaces the

incomplete information over costs with incomplete information over valuations.

There is a key difference between this model and its predecessor, however. A direct transforma-
tion of the FT (1986) model yields a valuation support that extends below zero. Hence there
is also a positive probability that a player will have a dominant strategy to exit at zero. This
ties down the boundary conditions for stopping time functions at this point. A multiplicity still
arises, however. The appropriate first order conditions are not Lipschitz continuous at zero,
and hence there are multiple solutions to the associated differential equations. The “craziness”

device yields a terminal boundary condition at ¢ — oo, and ties down a unique equilibrium.

Here, however, the valuation supports are bounded away from zero. It is thus possible for
one of the players to exit at time t = 0 with positive probability, despite possessing a positive
valuation. Indeed, this initial condition is also determined by the terminal boundary condition.
Of course, this starting point varies as the “craziness” perturbation is allowed to vanish, and

hence enables the equilibrium selection.

2.3. Stochastic Strength. This paper considers the outcome from the perturbed war of at-
trition when Player 2 is in some sense “stronger” than Player 1. This comparison is aided by

the following definitions.

Definition 1. Player 2 first order stochastically dominates Player 1 in the perturbed game if
Go(u) < G1(u) for all w > wuy. This will be denote Gy =psp G1. Similarly, in the unperturbed
game, Fy »=pgp Fy if this inequality holds for {F;}.

Definition 2. Player 2 hazard rate dominates Player 1 in the perturbed game if:

g1(u) 92(v)
1—Gi(a) ~ 1-Ga(w)

This will be denoted Gy =prp G1. Similarly, Fy >=grp F1 if this holds for {F;}.

for all u > u,

Definition 3. Player 2 asymptotically hazard rate dominates Player 1 in the unperturbed
game if her hazard rate is boundedly lower for high valuations. Specifically, for some u > uy
and some A > 0:

hlw)  fo(w)

>/\ p—
= F () 1—F2(u)_)\ forall u>mu

This will be denoted Fy = agrp F1.

Combining Definitions 1 and 3 yields a definition of stochastic strength.

Definition 4. Player 2 is stochastically stronger if Go =rsp G1 and F5 = agrp F1.
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3. PRELIMINARY ANALYSIS

This section establishes the basic properties of any equilibrium in the perturbed war of attrition.
All of the results presented here are mild modifications of those presented by FT (1986) and
readers of that paper may wish to move forward to the main analysis of Section 4. Their results

are modified here to apply to the case of unknown valuations.

The analysis begins by first showing that stopping times in the war of attrition are increasing
in a player’s valuation. The next step is to show that they are continuous, strictly increasing

and differentiable. Finally, the asymptotic behaviour of stopping rules is considered.

A strategy profile in the war of attrition is a pair of stopping rules ¢;(u) and t2(u). These carry

a player’s type realisation to the extended real line:
ti(u) : (u;,00) — RT U {oo0}

For a Bayesian Nash equilibrium profile, these stopping rules need to be mutually optimal, and

hence must satisfy the following functional equations:
ti(u;) € argmax Ey; [wl{t > t;(u;)} —min{t,t;(u;)}] for i,5€{1,2}i#j
t

where I is the indicator function. Recall that & > 0 for ¢ € {1,2} and hence all information
sets are reached with positive probability. It follows that a Bayesian Nash equilibrium profile
will yield a Kreps-Wilson (1982) sequential equilibrium.

The first step is to establish the monotonicity of stopping rules.

Lemma 1. Stopping times are weakly increasing in a player’s valuation.

Proof. Suppose that tg = t1(ur) > t1(ug) = tr for up < ug. This implies that:
(1) wpEy, [[{ty > to(ug)} — I{ty > ta(u2)}] > Ey, min{ty, ta(ug)} — min{ty, ta(ug)}]
Observe that the right hand side of this inequality is strictly positive:

Ey, (min{ty, ta(uz)} — min{ty, ta(ug)}] > &a(ty —tr) >0

This follows since there is positive probability (2 > 0) that Player 2 remains in the game
forever. Combining this with the optimality condition, the left hand side of Equation (1) must
be strictly positive, so that:

Eu2 [H{tH > tQ(UQ)} — ]I{tL > tQ(Uz)}] >0



INSTANT EXIT FROM THE WAR OF ATTRITION 7

Hence, from uy > uy, conclude that:

UHEU2 [H{tH > tg(Ug)} — H{tL > tg(Ug)H > uLEu2 [H{tH > tQ(UQ)} — H{tL > tQ(UQ)H

This implies that a player with a valuation uy strictly prefers stopping time ty to t;,. Conclude
that stopping times must be weakly increasing in valuations. Perform a symmetric operation

to establish the same result for to(u). O

Since stopping times are weakly monotonic, it is immediate that they must be continuous almost

everywhere. In fact, as the following lemma reveals, they are continuous everywhere.

Lemma 2. Stopping times are continuous in players’ valuations.

Proof. Take a valuation uj such that limyqy; to(u) =t < tyg = limy, | to(u), yielding a
discontinuity at uj. These limits are well defined, since t2(u2) is weakly increasing. Player 1
will not quit in the interval (¢g,tg], since there is no chance of winning in this interval, and
hence fighting costs would be saved by exiting at ¢;,. For arbitrarily small €, there is some
ug > ub satisfying tg < ta(ug) < tg + €. Such a player ug pays a fighting cost of at least
ty — tr, to arrive at this point. This is a non-negligible fighting cost, and hence there must be
a non-negligible probability of Player 1 exiting just after tz. Taking the limit as € | 0 reveals

that there must be an atom at ¢ty in player 1’s exit strategy. But this is a contradiction. O

The next step establishes strict monotonicity. Notice that this applies only for valuations
mapping to ¢t > 0, and hence the stopping function may be constant for valuations mapping to

t=0ort=o0.

Lemma 3. Stopping times are strictly increasing in players’ valuations, for t > 0.

Proof. Suppose not, so that t1(ur) = ti(ug) =t > 0 for uy, < upy. Then a positive mass
Gi1(ug) — Gi(uyr) of players exits at time ¢. Thus for small €, dropping out by Player 2 in the
interval (t — €, t] is dominated by staying in until just after ¢t. But this implies a discontinuity
in ta(u). This proof assumes that drop out times for Player 2 extend as far as ¢, so that

limy, o to(u) > t. But this cannot be, since otherwise Player 1 would have exited before t. [

Lemma 3 is of relevance only when a player does in fact fight for a positive length of time with

some probability. The next lemma establishes that this occurs.

Lemma 4. Both players fight for some positive length of time with positive probability.

Proof. Suppose that Player 1 exits immediately for all valuations, so that ¢;(u) = 0 for all

w; < u < oo. Player 2 will not exit at ¢t = 0, since by waiting for a short time she can benefit
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from the near-certain (probability 1 — &) exit of Player 1. She will not wait any length of time
beyond ¢t = 0, since any lack of exit by Player 1 will reveal craziness. It follows that she wishes
to choose min{t > 0}. Of course, this minimum does not exist, since {¢t > 0} is an open set.
Suppose, however, that Player 2 did wait an arbitrarily small period of time before exiting. It
would no longer be optimal for Player 1 to exit at time ¢ = 0 — she could wait a little longer,

in anticipation of Player 2’s forthcoming exit. O

The exit strategy of the lowest type player is now investigated.

Lemma 5. The lowest valuation players exit immediately: limy |y, t;(u) =0

Proof. Suppose that limy,|,, t1(u) =t > 0. It follows that Player 2 will never choose to exit in
the interval (0,¢.]. Now, all types of Player 1 fight beyond ¢,, hence incurring a fighting cost of
at least t7,. There must be a non-neglible probability of Player 2 exiting just after ¢;. But this
implies that there is a non-neglible probability of Player 2 exiting at t;,, a contradiction. O

Since the stopping rules are strictly increasing and continuous, their inverses are well defined
for t € (0,00). These inverses will be denoted as v(t) and w(t) respectively, corresponding to

Players 1 and 2.

Lemma 6. At points of differentiability, inverse stopping rules satisfy:

1—Gi(v(t)) 1 — Gy (w(t))
g1(v(t))w(t) ga(w(t))v(t)

Proof. Consider Player 2, with valuation w(¢). This player considers the distribution over

(2) V(t) = and w'(t) =

stopping times for Player 1. This satisfies Pr{t; <t = Gi(v(t))], and hence has hazard:

g1(v(@®)V'(t
1—G1( (t)

)
)
Fighting costs are incurred at rate 1. The prize is w(t). This yields the first order condition:
)
)

)G
1—G1( (t)

Re-arrange to obtain Equations 2. O

w(t)

Lemma 7. The inverse stopping rules are differentiable fort > 0.

Proof. The aim is to show the Lipschitz continuity of Gi(v(t)) on (0,00). Take a compact
subset C' of this set with members ¢t;, < ty and consider G1(v(ty)) — Gi(v(tz)). Consider a
Player 2 of type w(tr,) waiting until ¢z. The cost is bounded above by ¢z —tr. The probability
of winning is bounded below by G1(v(ty)) — G1(v(tr)). It follows that:

Gl(v(tH)) — Gl(U(tL)) < tg —1tr, < tg —1tr
w(tr) Uy
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This uses the optimality of ¢, as a stopping time for w(t;). Taking absolute values, it follows

that Gy (v(t)) is Lipschitz continuous. Next:

o(ty) —v(tr) = GTH(Gi(v(ty))) — GTH(Gi(v(tL)))
< max { !
~ w()tec | g1(v)

The inverse density term is bounded above. This is because the density is bounded below on a

} < (G (o(tar)) — G (o(t1)]

compact set, and v(t) is continuous — hence mapping the compact subset of the stopping times
into a compact subset of valuations. It follows that v(t) is also Lipschitz continuous. Hence v(t),
and similarly w(t), is differentiable almost everywhere. Where this derivative exists, it satisfies
the appropriate first order conditions. It follows that the inverse stopping time functions are
integrals of Lipschitz continuous functions of ¢, and hence differentiable everywhere by the

Fundamental Theorem of Calculus. O

Assembling the results so far, a number of properties are available. Any equilibrium to the
perturbed war of attrition must involve weakly increasing strategies (Lemma 1). For ¢ €
(0,00), stopping times are strictly increasing (Lemma 3). Behaviour for low valuations has
been partially established (Lemma 5). Analysis of behaviour at this point is now expanded.
There are two possibilities. Focus on Player 1, without loss of generality. The first possibility
is that t1(u) > 0 for all v > w;, so that limjov(t) = v(0) = u;. The second possibility is that
limy o v(t) = v(0) > uy. In this case, t1(u) = 0 for all u; < u < v(0), so that a positive mass
of players exits at the beginning of the game. Of course, it is impossible for a positive mass of

both players to exit at the beginning of the game.
Lemma 8. Either v(0) = u; or w(0) = us.

Proof. Suppose not, so that v(0) > u; and w(0) > uy. A positive mass of both players exit at
t = 0. But then it cannot be optimal for any player to exit at the beginning — by waiting a
little longer, they win the prize with non-neglible probability. O

It remains to consider the properties of equilibrium stopping time functions for larger valuations.

Lemma 9. Selection ends at the same time: limy oo t1(u) = limy oo t1(u) =T

Proof. Suppose that lim, oo t1(u) = T7 < To = limy o0 to(u). For Ty >t > T; Player 2
knows that she is facing a type that will fight forever, and hence should exit earlier. Hence no

Player 2 will wait beyond T';. O

Lemma 10. There is no infinite delay: t;(u) < oo for all u < oco.
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Proof. Suppose that lim, 7 v(t) =7 < co. Now, 1/w(t) is decreasing in ¢ and bounded below.
It follows that:

d 1 1
- <_> =———=uw(t)—0 as t— oo

Recall the first order condition:

w'(t) 1 —Ga(w(t))

w(t)? ~ ga(w(®)w(tu(r)

Taking the limit of this expression, v(t) — 7, a finite value. Furthermore, 1—G2(w(t)) > & > 0.
It must be the case that (1 — &) fo(w(t))w(t)> — oo. But this would eliminate the existence of

second moments for fa(u). Conclude that there is never infinite delay. O

Corollary 1. Allowing t to grow large: lim, =z ov(t) = lim, 7w(t) = oo

This completes the basic characterisation of necessary properties for the stopping time functions.

The next lemma establishes that, given an equilibrium profile, second order conditions hold.

Lemma 11. The first order conditions yield globally optimal stopping times.

Proof. Consider the payoff of Player 1 with valuation u; waiting until time t:
7T1(U1, t) = Eu2 [ul]I{t > t2(u2)} — min{t, t2(u2)}]

w(t)
— wGa(w(®) - [ taa)ga(w)do — 1 - Gaw(t))

This expression is differentiable for ¢ > 0, yielding:

dﬂ'l

- = wme®)w(t) = ta(w(t))ga(w(t))w' () - [1 = Ga(w(®))] + tga(w(t))w' ()

= wuga(w(t))w'(t) — [1 — Ga(w(t))]

It follows that:

dm > e 1 — Ga(w(t))
—= = 1 1 t) = log —————=
I < 0 < logus +logw'(t) = log 200 (D)
From the (necessary) first order condition for Player 2:
1 —Ga(w(t))
logw'(t) = log ———— — logv(t

The last term —logwv(t) is decreasing in ¢. Hence if the first order condition is satisfied for
t1(u1), then:

d’7T1

E 20 <~ t§t1(u1)

It follows that first order conditions yield a global optimum. O
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4. ANALYSIS

This section presents the main results of the paper. First, the existence of a unique equilibrium is
established. Behaviour of the inverse stopping time functions v(¢) and w(t) is then characterised,
focusing on behaviour at ¢t = 0. The perturbations are then allowed to vanish, yielding the

appropriate selection results.

4.1. Uniqueness of Equilibrium.

Lemma 12. Take two times 0 <t <ty <T. The inverse stopping time functions satisfy:

W) gy (x) . i) gy(x) .
3) Am>xu—ewmd'iﬁm>xu—emmd

Proof. To show this, differentiate the left hand side with respect to ty to obtain:

T e TR G ) L U R
{/ w»d}‘w

iy | Jo,) (1—G t)(1 = Gi(v(tm)))  v(ta)w(tn)

Differentiating the right hand side yields an identical expression. O

Next, take limits as ty — oo. Taking the first of expression in Equation (3), the integral
diverges as v(t) — oo for £ = 0. To see this, notice that & = 0 yields G; = F;. The hazard is

increasing, and hence:

/”“m fil(x) filv(tr)) /”“H’l
dx <

@) r(1—Fi(z) 1= F(v(ty)) —dr — o0 as v(ty)— oo

(tr) ¥
With &; > 0 this does not occur:

v(ty) g1 (x) 1— gl v(ty) 1— 51 -
Am:w—&unmﬁmmaﬁw>“@“ vy L~ Pt <eo

This observation ensures that any equilibrium is unique.

Proposition 1. There is a unique equilibrium to the perturbed war of attrition.

Proof. Corollary 1 shows that v(tg) — oo and w(ty) — oo as t — T. The integrals of Equation

(3) are well-defined for these valuations, and hence:

o0 g1(x) - o g2() .
/v(tL) z(1 — G1(x)) I /w(tL) z(1 — Ga(x)) I

Next take limits as t;, — 0. The hazard rate is bounded above, and x is bounded below, since

w; > 0. It follows that the following integrals are well defined:

el [ e
) A@wu—au»d Z@wﬂ—%@»d
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This places a single equation restriction on v(0) and w(0), and this is a strictly increasing and
continuous relationship. Recall from Lemma 8 that either v(0) = u;, or w(0) = uy. There are

two cases to consider:

1. One possible equilibrium is for v(0) = u;. Equation (4) then determines w(0). If there
is such a w(0) satisfying w(0) > wy, then this is an equilibrium. Furthermore, there
cannot be another equilibrium. Raising v(0) implies a higher w(0), yielding w(0) > us
and v(0) > u;, in contradiction of Lemma 8.

2. Suppose that the first possibility fails. Then v(0) may be raised until w(0) = u, satisfies
Equation (4).

It remains to show that this procedure does in fact yield an equilibrum. Focus on the first case,
with v(0) = u,, finding w(0) > u, to satisfy Equation (4). Write:

W

Hi(v) = /v ﬂdm and HQ(w):/ g2(2) dx

Jo(o) ©(1 = G1(x)) Jwy (1 = Ga(x))
These functions are well defined, strictly increasing and differentiable. This implicitly defines
w = w(v) = Hy ' (Hy(v)), which is again continuously differentiable. Next, recall that:
1—G1(v(t)) g1(v)w(v)
V() = —— s () = 2
00 B e )
Integrate this to obtain:

_ " 9w
alv) = ./1;(0) 1= Gi(z) !

which yields the stopping time function ¢;(v), and implicitly (via w(v)) the stopping time
function to(w). This solution satisfies all appropriate conditions, and hence yields the unique

equilibrium. O

This result corresponds directly to the uniqueness result of Fudenberg and Tirole (1986). In
their paper, the authors set boundary conditions at zero. This prevents the Lipschitz continuity
of the differential equations about zero, and hence leads to a multiplicity of solutions. Here
the support of valuations is bounded away from zero. The selection device thus highlights
which lower boundary conditions are used, based on the terminal condition generated by the
“craziness” perturbation. This reformulation allows a new set of comparative statics, which

form the main contribution of this paper and are explored in the next section.

It is also worth noting that, despite the tedium of results, the analysis is somewhat simpler than
that of FT (1986). Concentrating on the relationship between v and w yields an immediate

equilibrium characterisation, without resort to the FT (1986) “relative toughness” condition.
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4.2. Instant Exit. The first step draws upon Definition 1, establishing that instant exit occurs.

Proposition 2. If Gy =rsp G1, then Player 1 exits att = 0 with positive probability.

Proof. Suppose not. Then v(0) = v;. Consider Equation (4). Using integration by parts:

./'oo B ICON _./‘0o L d1og]1 — Go(a)

w(o) T(1 = G2(7)) w(®) ¥
_ [Mr’ = [ toglt = Ga(o)] di1/2)
T w(0) w(0)
_ log[l — Ga(w(0))] [ log[l — Ga(x)] x
- w(0) ./w(o) a? !

A symmetric expression holds for the left hand side. Note, however, that since v(0) = v, it
follows that G1(v(0)) = 0 and hence log[1 — G1(v(0))] = 0. Thus:
/ p@ o _/ log[1 —2Gl(33)} A
v(0) (1 — G1(x)) v(0) T
Recall that w(0) > uy > u; = v(0), an inequality that is in fact implied by G >=psp G1. Using

this observation, equate the previous expressions to obtain:

log[1 — Ga(w(0))] _ /oo log[1 — Gs()] —log[l = Gr()] , /w<0> log[1 — Ga(2)]
w(0) w(0) z? v(0) z?
negative strictly positive positive

This equation cannot hold, since the left hand side is weakly negative and the right hand side
strictly positive. To see this, note first that 1 — G;(x) < 1 and hence log[l — G;(z)] < 0.
Secondly:

Ga(z) < Gi(z) = log[l — Ga(x)] > log[l — Gi(x)]

so that the first term on the right hand side is strictly positive. This contradicts the original
supposition that v(0) = v;. It follows that v(0) > v;, and Player 1 exits with positive probability
at ¢t = 0. O

Corollary 2. If Gy =pyrp G1, then Player 1 exits at t = 0 with positive probability.

Proposition 2 establishes that instant exit occurs with some probability. Employing the notion

of stochastic strength (Definition 4), this result can be sharpened.

Proposition 3. Suppose that Player 2 is stochastically stronger than Player 1. Allowing
max{&1,&} — 0, and ensuring that G2 =psp G1 throughout this sequence, the unique equilib-

rium entails the instant exit of Player 1 with probability arbibtrarily close to 1.

Hence, in the limit, the stochastically weaker player always exits immediately.
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Proof. Begin by picking @ such that @ > uy = w(0) and, for all u > u:

fi(u) fo(u) ;
=AW 1-B ="

This is possible, since the stochastic strength of Player 2 implies that F» > rp F1. Re-write
Equation (4) as:

< 1@ e@ 1.
(5) ,/max{v(m,a}x [w(l—ca(x)) x<1—G2<x>>] I

max{v(0),u} max{v(0),u}
/ @) . / a@ .
Juw(0) (1 — Ga(x)) Ju(0) (1 = Gi(x))

Bound the right hand side of Equation (5) by:

max{v(0),u} max{v(0),u}
/ 2@ . / folz)
Juw(0) (1 = Ga(x)) Juw(0) z(1 = Fy(x))

fo(max{v(0),u}) o max{v(0),u}
= <1—F2<max{v<o>,a}>>1g< w(0) )

<

Attention now turns to the left hand side of Equation (5). For arbitrary U > max{v(0),u},

formulate the lower bound:

o { gi(z)  ga(w) } og ( log U )
max{v(0)u}<z<U | 1 —Gi(x) 1—Ga(x) max{v(0),u}
The infimum is taken over a compact set. It follows that for sufficiently small & and &, the
difference in hazards becomes arbitrarily close to the difference in unperturbed hazards. Hence,
for max{¢;, &} sufficiently small:

gz)  g=)
1-Gi(x) 1-—Ga(x)

| >

>

Combining these inequalities, and using G2 >prsp G1 to set w(0) = uy, obtain:

A . log U fo(max{v(0),a}) ,  (max{v(0),7}
2! (max{v(o),ﬂ}>S(l—Fz<max{v(0>ﬂ}))lg< Ug )

which holds for sufficiently small {{;}. For bounded v(0), the left hand side of this equality is

arbitrarily large for suitable choice of U, breaking the inequality. It follows that, for sufficiently
small {§}, v(0) must grow arbitrarily large. This implies that Player 1 exits at ¢ = 0 with
arbitrarily high probability for sufficiently small {¢;} — the desired result. O

4.3. Instant Exit with Truncated Valuations. Truncated valuations are also of interest:
Players have identical distributions, but the valuation of one player is truncated below. In

companion work, Dworak, Johnson and Myatt (1999) consider a three-player war of attrition
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with team effects. The truncated specification arises as a continuation game of that model, due

to asymmetric rates of exit in an initial stage.

Proposition 4. Consider the following specification. The valuations of both players are drawn
from a common distribution F with lower bound w. The perturbations are balanced, so that
& = & = & The valuation of Player 2 is then truncated below at uy > w = wy. In this
model, the unique equilibrium entails w(t) = v(t), satisfying w(0) = v(0) = uy. This solution is

symmetric from wy upwards, and Player 1 exits immediately if she has a valuation u < u < uy.

Proof. The proof checks that the posited solution is in fact an equilibrium. If Player 1 drops out
for valuations as stated, the remaining subgame is symmetric, yielding the symmetric solution

as described. Hence this is an equilibrium. O

4.4. Nlustration. When will Proposition 3 apply? The following example presents an illustra-
tion. Suppose that the basic valuations of Players 1 and 2 are drawn from a common distribution
F. The valuation of Player 2 is then multiplied by some constant o > 1. Hence F}(u) = F(u)
and Fy(u) = F(u/a). The perturbations are common to both players, so that £ = &».

This simple example is sufficient for the conditions of Proposition 3 to apply. To see this, first

check the first order stochastic dominance property. Notice that:
Fy(u) = F(u/a) < F(u) = Fi(u)

and hence the first condition holds for the distributions F;. Since the craziness perturbations

are equal, this also holds for G;, so that Go =psp G1. Next, check the hazard dominance
d U 1 U
- Ar(2)-1r(2
fa(u) R O af -

fo(w) 1 f(u/a)
1-Fu) ol—-Fu/a)

property. Differentiating:

This yields the hazard:

By inspection, this is bounded away from f(u)/1 — F(u) for large u, since o« > 1 and the hazard
is increasing. The conditions of Proposition 3 hold, and hence Player 1 exits immediately for

vanishing &;.

5. CONCLUSION

The analysis of this paper suggests that wars of attrition should end quickly: a stochastically
weaker player may exit immediately. Of course, this is a consequence of a particular equilibrium

selection device. How reasonable is this?
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In the absence of the “craziness” perturbation, there are many equilibria. There is no direct
reason to focus on a particular one. Certainly, under a symmetric specification the symmetric
equilibrium may be focal. This requires exact symmetry, however. With any asymmetry
between the players, there is no symmetric equilibrium on which to focus. Adopting the FT
(1986) perspective, the “craziness” perturbation is a reasonable one. It reflects the possibility
of negative fighting costs. Fudenberg and Tirole’s example is one of exit from a duopoly: A
duopolist cannot cover her fixed costs, whereas a monopolist can, yielding a war of attrition to
determine exit. Of course, it is perfectly reasonable to suppose that a duopolist may cover her
fixed costs with some probability. The small probability of a dominant “always fight” strategy

is then reasonable.

Suppose the argument of this paper is accepted. With vanishing craziness, we should see no
fighting. So might explain the lack of exit in an observed war of attrition? A possible answer is
the lack of learning. Of course, during a war of attrition, each player learns about the valuation
of her opponent. This learning, however, is not direct. Rather, it occurs by revelation: The

continued presence of a player allows her opponent to restrict the range of possible valuations.

What might happen with the introduction of direct learning? First notice that in the model
presented here, there is great advantage in a priori strength; the “stochastically stronger” player
wins the war at minimal cost. Consider a pre-game stage. Players may wait for the revelation
of a public signal about their respective valuations. Should a player wait? The signal may
yield a public posterior that switches or maintains that stochastic ordering of the valuation
distributions, prior to the start of the “real” war of attrition. A player has an incentive to wait

for such a signal: A favourable realisation will yield an instant win in the subsequent war.

Formal investigation of this idea is the topic of ongoing research. Motivated by the results
of this paper, the objective is build a model of combined learning and revelation. Until that

research is complete, however, it may well be wise to follow the advice of Alfred Hitchcock:

“There’s nothing to winning, really. That is, if you happen to be blessed with a

keen eye, an agile mind, and no scruples whatsoever.”
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