
LIKELIHOOD ANALYSIS OF A FIRST ORDER AUTOREGRESSIVE

MODEL WITH EXPONENTIAL INNOVATIONS

By B. Nielsen & N. Shephard

Nu�eld College, Oxford OX1 1NF, UK

bent.nielsen@nuf.ox.ac.uk

neil.shephard@nuf.ox.ac.uk

19 July 1999

Summary

This paper derives the exact distribution of the maximum likelihood estimator of a �rst

order linear autoregression with an exponential disturbance term. We also show that even

if the process is stationary, the estimator is T -consistent, where T is the sample size. In

the unit root case the estimator is T 2-consistent, while in the explosive case the estimator

is �T -consistent. Further, the likelihood ratio test statistic for a simple hypothesis on the

autoregressive parameter is asymptotically uniform for all values of the parameter.

Some key words: Autoregression; Exact distribution; Exponential innovations; Likeli-

hood; Non-regular asymptotics; Stochastic volatility.

1. Introduction

This paper looks at the distributional behaviour of the maximum likelihood estimator

of the non-negative �rst order linear autoregressive time series model

Xt = �Xt�1 + "t; for t = 1; :::; T; (1)

where the initial value X0 is �xed, f"tg is a sequence of independent exponentially distrib-

uted random variables with common positive scale parameter �; and the autoregression

parameter � is non-negative. When � < 1, � has the interpretation of the �rst order

autocorrelation of the series.

The main point of this paper is to derive the exact distribution of the maximum

likelihood estimator, written b�, of �, conditioning on some initial value X0,

b� = min
1�t�T

 
Xt

Xt�1

!
: (2)

We will show that the distribution is remarkably simple whatever the true value of �.

In particular b� is always upward biased. When � < 1 the estimator is asymptotically

exponential and T -consistent. This result extends to the case where � = 1. Then the

distribution will again be exponential but this time the estimator will be T 2-consistent.

These convergence rates are the squares of those obtained in the Gaussian autoregressive

model, see White (1958). In the explosive case the estimator is �T -consistent as in the

Gaussian case although the limit distribution is more complicated. In all cases the likeli-

hood ratio test statistic for � = �0 is asymptotically uniform distributed. This is di�erent

from the Gaussian case where the test distribution depends on �0:

A number of related results are known. For the stationary case Bell and Smith (1986)

proved almost sure consistency for �̂ whereas An and Huang (1993) showed that the
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consistency is faster than the usual T 1=2 consistency rate. In both cases more general

error distributions were considered as well. Consistency results for a second order process

were given by And�el (1989). And�el (1988) found the distribution of an approximation

to �̂: As mentioned above the process given by (1) can be given a stationary initial

distribution, for � < 1: The stationary distribution is non-standard, see Matthai (1982)

and Sim (1992). To overcome this de�ciency some of the literature has focused on non-

linear autoregressive processes in exponential variables, see for instance Lawrance and

Lewis (1985). These are processes with exponential marginals whereas the innovations

are mixtures of exponentials. Raftery (1980,1982) discussed almost sure consistency as

well as T -consistency for the parameter having the role of � for such processes.

In some recent work, Barndor�-Nielsen and Shephard (1999) have used similiar types

of models to (1) as components of their continuous time linear stochastic volatility models.

In the very simplest case they model the sequence fy1; :::; yTg as

yt = �t

q
Xt;

where f�tg and fXtg are totally independent, f�tg are independently standard normal

distributed and Xt is given by (1). An unfortunate feature of this model is that Bayesian

estimation via Markov chain Monte Carlo will typically involve a step which samples from

the conditional density f(�jX0; :::; XT ; �) which shares the non-regular properties of the

maximum likelihood estimator of (1).

2. Likelihood analysis

In this section the likelihood function of the model given by (1) is analysed. The

distribution theory for inference on the autoregression parameter is given. All proofs are

collected in the Appendix.

The likelihood function for the model given by (1) is

��T exp

(
�
1

�

 
TX
t=1

Xt � �
TX
t=1

Xt�1

!)
1

 
min
1�t�T

Xt

Xt�1

� �

!

with the usual convention that division by zero gives in�nity and 1(:) being an indicator

function. The �rst term is increasing in � and thus for each value of � the likelihood is

maximised with respect to � by �̂ given in (2). It follows that �̂� � = min("t=Xt�1): The

exact and, next, the asymptotic distributions of this estimator are given as follows.

Theorem 1: The distribution of �̂ is given by

P (�̂� � > x) = exp

(
�
xX0AT

�
�

T�1X
t=1

log (1 + xAt)

)
; (3)

where x > 0; X0 is �xed and At is the polynomial At =
Pt�1

s=0 (x+ �)
s
:

Theorem 2: The convergence rate for �̂ is given by

rT =

8><
>:

T=(1� �) for 0 � � < 1;

T (T � 1)=2 for � = 1;

�T for � > 1:
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Further, for the non-explosive cases, � � 1;

P frT (�̂� �) > xg ! exp(�x); as T !1.

The super consistency for the stationary case was proposed for the related non-linear

exponential autoregressive models by Raftery (1980,1982), see also An and Huang (1993).

It is worth noting that for the non-explosive cases the convergence rate is the square of

the Gaussian case whereas it is the same for the explosive case, see White (1958).

Having derived the maximum likelihood estimator for �̂ it is rather easy to see that

the maximum likelihood estimator for � is

�̂ =
TX
t=1

Xt � �̂
TX
t=1

Xt�1;

and further that the likelihood ratio test statistic for � = �0 is given by

Q =

(
1� (�̂� �)

PT
t=1Xt�1PT

t=1 (Xt � �Xt�1)

)T

: (4)

In Gaussian autoregressive models the corresponding test statistic has a non-degenerated

limit distribution for all values of �0 although its exact form is di�erent for each of the

stationary, the unit root and the explosive cases. This is even nicer for the considered

exponential model.

Theorem 3: The distribution of the likelihood ratio statistic for � = �0 given by (4) is

asymptotically uniform. Consequently � logQ is asymptotically exponential and �2 logQ

is asymptotically �2 with two degrees of freedom.

3. Discussion

In practice this type of model has some signi�cant disadvantages for the estimator of

� may be very sensitive to small amounts of mismeasurement. In the stochastic volatility

context they are more compelling | for this sensitivity is removed by the addition of

measurement noise. However, when we use simple Markov chain Monte Carlo methods

to estimate them these issues resurface.

From a theoretical viewpoint some interesting insights are provided by the results in

this paper. In addition to those mentioned above it is worth noting that despite having

standard properties the least squares estimator is poorly behaved, since it will fall in the

range of the parameter space where the likelihood function is exactly zero with probability

approaching a half in large samples. Further, the residuals from a least squares �t will

often be negative.

In the stationary case, 0 � � < 1; the mean of the time series is positive. Thus

� can be estimated consistently using the demeaned least squares estimator given by

~� =
PT

t=1(Xt�1�X)Xt=
PT

t=1(Xt�1�X)2: Further, the central limit theorem for martingale

di�erence sequences, see Brown (1971), implies that f
PT

t=1(Xt�1 � X)2g1=2(~� � �) has a

standard normal distribution. On the other hand the likelihood function is zero whenever

� is larger than the maximum likelihood estimator, �̂; which is T -consistent. Thus with

probability approaching a half the least squares estimator leads to a zero likelihood.
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Appendix: Proofs of the theorems

Proof of Theorem 1.

An induction argument is used. Recall that X0 is �xed. Thus, for T = 1 the estimator �̂

is only well-de�ned for X0 > 0 and the result follows from the equation

P ("1=X0 > x) = P ("1 > xX0) = P ("1 > xX0jX0) :

For general T; �rst rewrite P (�̂� � > x) as

E1

 
min
2�t�T

"t

Xt�1

> x

!
1 ("1 > xX0) :

Since X0 is held �xed this can rewritten as

E1 ("1 > xX0)E

(
1

 
min
2�t�T

"t

Xt�1

> x

!�����X1

)
:

The induction assumption, that

P

 
min
2�t�T

"t

Xt�1

> x

�����X1

!
= exp

(
�
xX1AT�1

�
�

T�2X
t=1

log (1 + xAt)

)
;

then implies that P (�̂� � > x) equals

E

"
1 ("1 > xX0) exp

(
�
xX1AT�1

�
�

T�2X
t=1

log (1 + xAt)

)#

= exp

(
�
x�X0AT�1

�
�

T�2X
t=1

log (1 + xAt)

)
E

�
1 ("1 > xX0) exp

�
�
x"1AT�1

�

��
:

Finally (3) follows by computing the expectation and using the identity AT = 1 + (x +

�)AT�1:

Proof of Theorem 2.

The case 0 � � < 1: Choose x = z=T: For su�ciently large T the polynomials At are

increasing and convergent and hence for T !1

T�2X
t=1

log (1 + xAt) �
z

T

T�2X
t=1

At =
z

T

T�2X
t=1

t�1X
s=0

�
� +

z

T

�s

�
z

1� �
:

It then follows that

P

 
T
�̂� �

1� �
> z

!
! exp (�z) :

The case � = 1: The polynomial AT is given by 1 + xAT = (1 + x)T and hence

P (�̂� 1 > x) = (1 + x)
�T (T�1)=2

exp
h
�xX0

n
(1 + x)T � 1

o
=�
i
:

Thus

P

(
T (T � 1)

2
(�̂� 1) > x

)
! exp (�x) :
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The case � > 1: The polynomial AT is of order �T . Thus all T terms in the exponent of

(3) are equally important.

Proof of Theorem 3.

In all three case it is used that the denominator,
PT

t=1(Xt� �Xt�1)=T =
PT

t=1 "t=T; in (4)

converges to � by the law of large numbers.

The case 0 � � < 1: The Law of Large Numbers for linear processes, see Phillips and Solo

(1992), implies that the average of the observations
PT

t=1Xt�1=T converges in probability

to �=(1� �): Thus, � logQ is asymptotically equivalent to T (�̂� �)=(1� �):

The case, � = 1: Theorem 3.27 of Breiman (1968) implies that
PT

t=1Xt�1 normalised by

T (T � 1)=2 converges in probability to �. Thus, � logQ is asymptotically equivalent to

T (T � 1)=2(�̂� 1):

For case � > 1: The theorem follows by proving that

T
n
1�Q1=T

o
= (�̂� �)

PT
t=1Xt�1

1

T

PT
t=1 "t

is asymptotically exponential. Theorem 2 of Lai and Wei (1983) implies that the norm-

alised process Zt = ��tXt converges almost surely to Z = X0 +
P
1

s=1 �
�j"j which has a

continuous distribution. Correspondingly, (� � 1)
PT

t=1Xt�1 = �TZT�1 � X0 �
PT�1

t=1 "t;

so that the Strong Law of Large Numbers implies that ��T
PT

t=1Xt�1 converges almost

surely to Z=(� � 1): Thus it su�ces to proved that H = �T (�̂ � �)Z=f�(� � 1)g con-

verges in distribution to an exponential. Two cases are considered. First, since Zt�1 is an

increasing, convergent process, then

P (H > x) = E
TY
t=1

1
n
"t > x� (�� 1) �t�1�TZt�1=Z

o

� E
TY
t=1

1
n
"t > x� (�� 1) �t�1�T

o
! exp (�x) : (5)

Secondly, since Zt converges almost surely to Z Egoro�'s Theorem implies that for any

�1; �2 > 0 there exist a set 
1 with probability P (
1) = 1� �1 and a T0 > 0 such that for

! 2 
1 and t � T0 then Zt=Z > 1� �2: Therefore

P (H > x) = P (H > x;
c
1) + P (H > x;
1)

� P (
c
1) + P (H > x;
1)

= �1 + E
TY

t=1

1
n
"t > x� (�� 1) �t�1�TZt�1=Z

o
1 (
1)

This expression can be bounded further by

P (H > x) � �1 + E
TY

t=T0+1

1
n
"t > x� (�� 1) �t�1�T (1� �2)

o

! �1 + (1� �1) exp f�x (1� �2)g : (6)

Combination of (5) and (6) implies that P (H > x)! exp (�x) :
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