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SUMMARY

This paper derives the exact distribution of the maximum likelihood estimator of a first
order linear autoregression with exponential innovations. We show that even if the process
is stationary, the estimator is T-consistent, where T is the sample size. In the unit
root case the estimator is T2-consistent, while in the explosive case the estimator is p’-
consistent. Further, the likelihood ratio test statistic for a simple hypothesis on the
autoregressive parameter is asymptotically uniform for all values of the parameter.

Some key words: Autoregression; Exponential innovations; Likelihood; Non-regular as-
ymptotics.

1. INTRODUCTION

This paper looks at the distributional behaviour of the maximum likelihood estimator
of the non-negative first order linear autoregressive time series model

Xt = PXt—l + Et, for t= ]_, ...,T, (1)

where X is fixed, {e;} is a sequence of independent exponentially distributed random
variables with common positive scale parameter A, and the autoregression parameter p
is non-negative. When p < 1, p has the interpretation of the first order autocorrelation
of the series. More general versions of this type of model have been discussed by, for
example, Wold (1948) as a model for a sequence of waiting times. Recently Barndorff-
Nielsen and Shephard (1999) have constructed a general continuous time versions of this
type of model in order to provide a basis for volatility processes in financial economics.

For 0 < p < 1 the process given by (1) can be given a stationary initial distribution.
The stationary distribution is non-standard. To over-come this difficulty the related
literature has focused on non-linear autoregressive processes in exponential variables, see
for instance Lawrance and Lewis (1985). These are processes with exponential marginals
whereas the innovations are mixtures of exponentials. By considering the simpler model
with exponential innovations it is possible to demonstrate that the least squares estimator
for the autoregression parameter can have rather unfortunate properties despite being
consistent and asymptotically normal distributed whereas likelihood inference leads to
nicer, but non-standard, properties.

The main point of this paper is to derive the exact distribution of the maximum
likelihood estimator, written p, of p, conditioning on some initial value X,

(X
P= 5 <Xt_1> ' @




We will show that the distribution is remarkably simple whatever the true value of p.
In particular p is always upward biased. A special case is when p < 1, for then the
estimator will be asymptotically exponential and T-consistent. This result extends to
the case where p = 1. Then the distribution will again be exponential but this time
the estimator will be T2-consistent. These convergence rates are the squares of those
obtained in the Gaussian autoregressive model, see White (1958). In the explosive case
the estimator is p?-consistent as in the Gaussian case although the limit distribution is
more complicated. In all cases the likelihood ratio test statistic for p = pg is asymptotically
uniform distributed.

One of the implications of our results will be that in large samples, the least squares
estimator will fall in the range of the parameter space where the likelihood function is
exactly zero with probability approaching a half. Further, the residuals from a least
squares fit will often be negative.

It is perhaps not surprising that the distribution theory of the maximum likelihood
estimator of the parameters of this model is based on order statistics for it echoes familiar
results on the estimation of parameters which control the support of the data. However,
that these effects appear in the estimator of the autocorrelation parameter p is noteworthy:.

2. LIKELIHOOD ANALYSIS

In this section the likelihood function of the model given by (1) is analysed. The
distribution theory for inference on the autoregression parameter is given. All proofs are
collected in the Appendix.

The likelihood function for the model given by (1) is
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with the usual convention that division by zero gives infinity and 1(.) being an indicator
function. The first term is increasing in p and thus for each value of A the likelihood is
maximised with respect to p by p given in (2). It follows that p — p = min(e;/X;_1). The
exact and, next, the asymptotic distributions of this estimator are given as follows.

THEOREM 1: The distribution of p is given by

XA T-—1
P([)—p>:1c):exp{—aj ;)\ T—Zlog(l—l—xAt)},
=

where x > 0 and A; is the polynomial Ay = Y24 (2 + p)°.

THEOREM 2: The convergence rate for p is given by
T/(1—p) for0<p<l,

rp=<{ T(T'—1)/2 forp=1,

o’ for p > 1.

Further, for the non-explosive cases, p < 1,

P{rp(p—p) >z} —exp(—zx), as T — oo.
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The super consistency for the stationary case was proposed for the related non-linear
exponential autoregressive models by Raftery (1985). It is worth noting that for the non-
explosive cases the convergence rate is the square of the Gaussian case whereas it is the
same for the explosive case, see White (1958).

Having derived the maximum likelihood estimator for p it is rather easy to see that
the maximum likelihood estimator for A is

. T T
)\ = ZXt - ﬁZXt—l,
t=1 t=1

and further that the likelihood ratio test statistic for p = p, is given by

zaXo L 0

LR=<1—(p—
{ (,0 p) Zthl (Xt — pXia

In Gaussian autoregressive models the corresponding test statistic has a non-degenerated
limit distribution for all values of pg although its exact form is different for each of the
stationary, the unit root and the explosive cases. This is even nicer for the considered
exponential model.

THEOREM 3: The distribution of the likelihood ratio statistic for p = po given by (4) is as-
ymptotically uniform. Consequently —log LR is asymptotically exponential and —2log LR
is asymptotically x? with two degrees of freedom.

3. DISCUSSION

In practice this type of model has some significant disadvantages for the estimator of p
may be very sensitive to small amounts of mismeasurement. However, from a theoretical
viewpoint some interesting insights are provided. In addition to those mentioned above
it is worth noting that despite having standard properties the least squares estimator is
poorly behaved.

In the stationary case, 0 < p < 1, the mean of the time series is positive. Thus
p can be estimated consistently using the demeaned least squares estimator given by
p= (Xio1— X)X/ XL, (Xy—1—X)?. Further, the central limit theorem for martingale
difference sequences, see Brown (1971), implies that {37, (X;_; — X)?}*/2(p — p) has a
standard normal distribution. On the other hand the likelihood function is zero whenever
p is larger than the maximum likelihood estimator, p, which is T-consistent. Thus with
probability approaching a half the least squares estimator leads to a zero likelihood.



APPENDIX: PROOFS OF THE THEOREMS

Proof of Theorem 1.
An induction argument is used. For T' = 1 the estimator p is only well-defined for Xy > 0
and the result follows from the equation

P(El/XO > .I') = P(81 > .I'X()) = P(81 > :EX()’X()) .

For general T' successive conditioning gives

P(p—p>z) = Fl <2r<r}:1<nT X,

> a:) 1(e1 > zXo)

. . €t
= FEl(eg >2Xo)E { 1 <21<%ng X > :1:)

The induction assumption, that
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t=1

implies that P(p — p > z) equals

T-2
E [1 (e1 > zXj) exp {—xXlTAT_l - log(1+ a:At)H
=1
T—2
= exp {—% - ) log(1+ ycAt)} E {1 (e1 > xXo) exp (—%)} :
=1

Finally (3) follows by computing the expectation and using the identity Ay = 1+ (x +
p)Ar_1.

Proof of Theorem 2.
The case 0 < p < 1. Choose x = z/T. For sufficiently large T' the polynomials A; are
increasing and convergent and hence for T' — oo

T-2 T-2 Py T-2t-1

> log (14 zA) ~

t=1
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It then follows that

—p
The case p = 1. The polynomial Ar is given by 1+ zAr = (1 + z)” and hence

P (Tg > z) — exp(—z2).

P(p—1>x)=(1+2) T exp [—aXo {(1+2)" =1} /]

Hhos {T(T— 1)
pITT-1)

5 (ﬁ—1)>m}—>exp(—m).

The case p > 1. The polynomial A is of order p?. Thus all T' terms in the exponent of
(3) are equally important.



Proof of Theorem 3.

In all three case it is used that the denominator, YL (X; — pX;_1)/T = S, &;//T, in (4)
converges to A by the law of large numbers.

The case 0 < p < 1. The Law of Large Numbers for linear processes, see Phillips and Solo
(1992), implies that the average of the observations >, X; 1/T converges in probability
to A/(1 — p). Thus, —log LR is asymptotically equivalent to T'(p — p)/(1 — p).

The case, p = 1. Theorem 3.27 of Breiman (1968) implies that >/, X, ; normalised by
T(T —1)/2 converges in probability to A. Thus, —log LR is asymptotically equivalent to
T(T—-1)/2(p—1).

For case p > 1. The theorem follows by proving that

Yty Ximn

T{1 - (LRV" = (5 —
{1- (@R} =(p ‘))%zlest

is asymptotically exponential. Theorem 2 of Lai and Wei (1983) implies that the nor-
malised process Z; = p~' X, converges almost surely to Z = X + 322, p~Je; which has
a continuous distribution. Correspondingly, (p — 1) X7, Xy 1 = p" Zp 1 — Xo — X 17" &,
so that the Strong Law of Large Numbers implies that p~7 > | X;_; converges almost
surely to Z/(p — 1). Thus it suffices to proved that H = p?(p — p)Z/{\(p — 1)} con-
verges in distribution to an exponential. Two cases are considered. First, since Z; 1 is an
increasing, convergent process, then

PH>z) = E ﬁ e >a(p—1) g7 2,/2)

> FE H 1 {at >zA(p—1) ptflfT} — exp (—z). (5)

Secondly, since Z; converges almost surely to Z Egoroff’s Theorem implies that for any
m, 12 > 0 there exist a set €; with probability P(£2;) = 1—6; and a T > 0 such that for
w e Q and t > Ty then Z;/Z > 1 — 6;. Therefore

P(H>z) = P(H>uzQ)+P(H>uzQ)
< PO+ P(H > 5,0

T
= s+ E[[1{e>aA(p-1)p """ Z0/Z} 1 ()
=1
This expression can be bounded further by

T
PH>z) < 6+E [ t{e>ar(p—1)p " (1-6)}
t=To+1

— 0+ (1 —06)exp{—z(1—-462)}. (6)

Combination of (5) and (6) implies that P (H > z) — exp (—x).
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