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Abstract

As patent data become more available in machine-readable form, an increasing number of
researchers have begun to use measures based on patents and their citations as indicators of
technological output and information °ow. This paper explores the economic meaning of these
citation-based patent measures using the ¯nancial market valuation of the ¯rms that own the
patents. Using a new and comprehensive dataset containing over 4800 U. S. Manufacturing
¯rms and their patenting activity for the past 30 years, we explore the contributions of R&D
spending, patents, and citation-weighted patents to measures of Tobin's Q for the ¯rms. We
¯nd that citation-weighted patent stocks are more highly correlated with market value than
patent stocks themselves and that this fact is due mainly to the high valuation placed on ¯rms
that hold very highly cited patents.
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1. Introduction

Micro-level data on patents that include detailed technology ¯eld, citations to other patents, number

of claims, geographical location, and a variety of other information are increasingly available in

machine-readable form. For economists in the ¯eld of technical change and innovation, these data

have enormous potential: in addition to providing rich technological, geographic and institutional

detail, patent data are publicly available for all kinds of research institutions (¯rms, universities,

other non-pro¯ts, and government labs) in virtually every country. At a general level, economists

have used patents and/or patents weighted by subsequent citations to measure the inventive output

of organizations or geographic units; they have used citation intensity or measures related to the

nature of citations that an entities patents receive to measure the importance or impact of that

entity's inventions; and they have used aggregate °ows of citations to proxy for °ows of knowledge

to investigate knowledge spillovers across organizational, technological and geographic boundaries.

With a few exceptions discussed below, this work has relied on maintained hypotheses that

patents are a proxy for inventive output, and patent citations are a proxy for knowledge °ows or

knowledge impacts. In this kind of work, these maintained hypotheses cannot really be tested,

though they may be supported by results that are consistent with strong priors about the nature of

the innovation process, and which are internally consistent. In this paper, we seek to strengthen

the foundation for the use of patent and patent citation data, by exploring the extent to which

¯rms' stock market value is correlated with their stocks of patents and patent citations. Our

maintained assumption is that stock market investors hold rational expectations about the extent

to which the present value of a ¯rm's future pro¯ts varies with its stock of knowledge. Hence

evidence that patent-related measures are correlated with market values represents evidence that
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they are proxies for the private economic value of the ¯rm's knowledge stock. Previous work

looking at the relationship between patents and market value suggested that the extremely skewed

nature of the value distribution of individual patents makes ¯rm patent totals very noisy as an

indicator of the value of ¯rms' knowledge. In this paper, we explore the extent to which this

problem can be mitigated by using citation-weighted patent counts, in the context of a larger and

more comprehensive dataset than has been used before.

We begin the paper with a discussion of the meaning of patent citations and a brief survey of

prior uses of these data for economic analysis. Then we review what is known about the relationship

between patent counts and a ¯rm's value in the ¯nancial markets. The next sections of the paper

present our data, which is the product of a large-scale matching e®ort at the NBER and Case

Western Reserve University, and the relatively simple "hedonic" model for market valuation that

we use. The primary contribution of this paper, estimates of the market value equation that

include patent citations, is contained in Section 6; the conclusions contain an extensive discussion

of further work and re¯nements to be implemented in a revision of this paper. Appendices describe

the construction of the data, and discuss the important issue of adjusting patent citation data for

the truncation inherent in the fact that we cannot observe the entire citation life of patents, with

the extent of this truncation increasing for more recent patents.

2. Prior Research using Micro-level Patent Data1

A patent, as a matter of de¯nition, is a temporary legal monopoly granted to inventors for the

commercial use of an invention. In principle, in order to receive this right, the invention must

be nontrivial, in the sense that it must not be obvious to a skilled practitioner of the relevant

technology, and it must be useful, meaning that it has potential commercial value. If the patent

is granted, an extensive public document is created which contains detailed information about the

invention, the inventor(s), the organization to which the inventor assigns the patent property right

(usually an employer), and the technological antecedents of the invention.2 These antecedents,

1For more comprehensive literature reviews, see Griliches (1990) and Lanjouw and Schankerman (1999).
2See Appendix B for an example of the front page of such a document, in the form in which it appears on

the publicly accessible website of the United States Patent O±ce (http://www.uspto.gov). Note that no public
information is currently available for patent applications that are still pending, or for patent applications that are
denied by the patent o±ce.
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identi¯ed as references or citations, include previous patents and other published material that

identify or describe aspects of the relevant technology that were previously publicly known. The

citations identify "prior art," the practice of which is necessarily excluded from the property right

granted by the patent. Thus, together with the language of the patent claims{which describe

exactly what the patented invention does that has never been done before{the citations help to

delimit the property right that the patent represents. As will be discussed further below, the cited

patents can be identi¯ed by the inventor herself, by a search conducted by the inventor's patent

attorney, or by the patent examiner who reviews the application for the patent o±ce.3

The use of patent data in the economic analysis of technological change has a fairly long, if

somewhat unsatisfactory history, which stretches back to the pathbreaking analyses of Schmookler

(1966) and Scherer (1965). The availability of information from the U.S. patent o±ce in machine-

readable form in the late 1970s spurred greater interest in econometric analyses using these data;

much of the resulting early work is reported in Griliches (1984).4 In the late 1980s, patent citation

information began to be available in computerized form, which led to a second wave of econometric

research, utilizing the citation information to increase the information content of the patent data

themselves, as well as to investigate an additional set of questions related to the °ow of knowledge

across time, space and organizational boundaries.5

2.1. Patent Citations

Viewed optimistically, patent citations can be seen as providing direct observations of technological

impact and knowledge spillovers, in that one technological innovation explicitly identi¯es several

3As can be seen in the patent in Appendix B., patents can make citations both to earlier patents and to non-patent
publications. The non-patent citations appear in plain text form, and hence are di±cult to manipulate electronically.
Research that utilizes the non-patent references includes Trajtenberg, Henderson and Ja®e (1997) and Narin et al
(1997).

4See also Pakes (1986) and Griliches, Hall and Pakes (1987). Also in the late 1970s Mark Schankerman and Ariel
Pakes pioneered the use of renewal data from the European patent o±ce to estimate the value distribution of patents.
(Pakes and Schankerman 1984, Schankerman and Pakes 1986). (Renewal of U.S. patents was not required before
the mid-1980s.)

5It is perhaps interesting to chart the e®ect of computerization on research via the authors' experience with the
acquisition of patent data. In the early 1980s, Trajtenberg collected citations information for hundreds of CT-
scanner patents by hand from paper patent documents. In 1989, we paid $10,000 to a private data ¯rm for citation
information on about 10,000 patents. In the mid-1990s, we began construction of a database with citations to about
2.5 million patents, using an NSF grant of about $100,000. Today, citations to over 3 million U.S. patents are
available free from numerous websites, and a CD-ROM is available from the authors with comprehensive information
on all patents granted between 1964 and 1996, and all citations made between 1976 and 1996.
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others as constituting the technological state-of-the-art on which it builds. Unfortunately, this

optimistic view is somewhat clouded by the reality that there is substantial "noise" in the patent

citations data. The nature and extent of such noise depends, to some extent, on the purpose to

which the patent data are put. Some authors have used these data to explore questions involving

spatial spillovers (e.g., Ja®e, Trajtenberg, and Henderson 1993), knowledge °ows among ¯rms

in a research consortium (e.g., Ham 1998), and spillovers from public research (e.g., Ja®e and

Trajtenberg 1996; Ja®e and Lerner 1999). In using citations as evidence of spillovers, or at least

knowledge °ows, from cited inventors to citing inventors, it is clearly a problem that many of the

citations are added by the inventor's patent attorney or the patent examiner, and may represent

inventions that were wholly unknown to the citing inventor. On the other hand, in using citations

received by a patent as an indication of that patent's importance, impact or even economic value,

the citations that are identi¯ed by parties other than the citing inventor may well convey valuable

information about the size of the technological "footprint" of the cited patent. That is, if a patent

stakes out a territory in technology space that is later frequently deemed to abut areas that are

patented in the future, this suggests that the cited patent is important, whoever it is that decides

that the citation is necessary.

A recent survey of inventors sheds some qualitative light on these issues (Ja®e, Trajtenberg

and Fogarty, 2000). Approximately 160 patentees answered questions about their inventions, the

relationship of their inventions to patents that were cited by their patents, and the relationship

to "placebo" patents that were technologically similar to the cited patents but which were not

cited. The cited and placebo patents were not distinguished in the survey questionnaire, although

it is possible that the surveyed inventors knew or looked up which patents they actually cited.

The results con¯rm that citations are a noisy measure of knowledge °ow, but also suggest that

they do have substantial information content. Overall, as many as half of all citations did not

seem to correspond to any kind of knowledge °ow; indeed, in a substantial fraction of cases the

inventors judged that the two patents were not even very closely related to each other.6 At the

same time, the answers revealed statistically and quantitatively signi¯cant di®erences between the

6The results also con¯rmed that the addition of citations by parties other than the inventor is a major explanation
for citations that do not correspond to knowledge °ow. About 40% of respondees indicated that they ¯rst learned
of the cited invention during the patent application process.

4



cited patents and the placebos with respect to whether the citing inventor felt that she had learned

from the cited patent, when she learned about it, how she learned about, and what she learned

from it. Qualitatively, it appears that something like one-half of citations correspond to some kind

of impact of the cited invention on the citing inventor, and something like one-quarter correspond

to fairly rich knowledge °ow, fairly signi¯cant impact, or both.

There are also a small number of studies that "validate" the use of citations data to mea-

sure economic impact, by showing that citations are correlated with non-patent-based measures of

value.7 Trajtenberg (1990) collected patents related to a class of medical instruments (computer-

ized tomography, or "CAT" scanners), and related the °ow of patents over time to the estimated

social surplus attributed to scanner inventions. When simple patent counts are used, there is es-

sentially no correlation with estimated surplus, but when citation-weighted patent counts are used,

the correlations between welfare improvements and patenting are extremely high, on the order of

0.5 and above. This suggests that citations are a measure of patent "quality" as indicated by the

generation of social welfare. Interesting recent work by Lanjouw and Schankerman (1997, 1999)

also uses citations, together with other attributes of the patent (number of claims and number of

di®erent countries in which an invention is patented) as a proxy for patent quality. They ¯nd that

a patent "quality" measure based on these multiple indicators has signi¯cant power in predicting

which patents will be renewed, and which will be litigated. They infer from this that these quality

measures are signi¯cantly associated with the private value of patents. With respect to univer-

sity patents, Shane (1999a, 1999b) ¯nds that more highly cited M.I.T. patents are more likely to

be successfully licensed, and also more likely to form the basis of starting a new ¯rm. Sampat

(1998) and Ziedonis (1998) explore the relationship between citations and licensing revenues from

university patents. Harho® et al (1999) surveyed the German patentholders of 962 U. S. invention

patents that were also ¯led in Germany, asking them to estimate at what price they would have

been willing to sell the patent right in 1980, about three years after the date at which the German

patent was ¯led. They ¯nd both that more valuable patents are more likely to be renewed to full

term and that the estimated value is correlated with subsequent citations to that patent. The most

7We are not aware of any studies that validate (by reference to non-patent data) the use of citations to trace
knowledge °ows. Since it is hard to ¯nd other measures or proxies for knowledge °ows, this kind of validation is
inherently di±cult.
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highly cited patents are very valuable, "with a single U.S. citation implying on average more than

$1 million of economic value" (Harho®, et al 1999).

2.2. Market Value and Patents

Until recently, research that uses patents in the market value equation (in addition to or in place of

R&D) has been somewhat limited, primarily because of the di±culty of constructing ¯rm datasets

that contain patent data. Most of the work shown in Table 1 and described here has been done by

Griliches and his coworkers using the database constructed at the NBER that contained data on

patents only through 1981. This dataset did not include information on the citations related to the

patents. The other papers in the table use a cross section constructed by Connolly et al. for 1997

of Fortune 500 companies, and datasets involving UK data, one of which uses innovation counts

rather than patents.

[Table 1 about here]

When patents are included in a market value equation, they typically do not have as much

explanatory power as R&D measures, but they do appear to add information above and beyond

that obtained from R&D, as one would expect if they measure the "success" of an R&D program.

Griliches, Hall, and Pakes (1987) show that one reason patents may not exhibit very much corre-

lation with dollar-denominated measures like R&D or market value is that they are an extremely

noisy measure of the underlying economic value of the innovations with which they are associated.

This is because the distribution of the value of patented innovations is known to be extremely skew,

i.e., a few patents are very valuable, and many are worth almost nothing. Scherer (1965) was one of

the ¯rst to make this point, and it has recently been explored further by Scherer and his co-authors

(Scherer 1998; Harho®, et al 1999). Therefore the number of patents held by a ¯rm is a poor proxy

for the sum of the value of those patents and we should not expect the correlation to be high. If

the number of citations received by a patent is indicative of its value, then weighting patent counts

by citation intensity should mitigate the skewness problem and increase the information content of

the patents. As will be shown below, the distribution of citations is also quite skewed, suggesting

perhaps that it can mirror the value distribution.
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Shane (1993) regresses Tobin's Q for 11 semiconductor ¯rms between 1977 and 1990 on measures

of R&D stock, patent stock, and patent stock weighted by citations and ¯nds that the weighted

measure has more predictive power than the unweighted measure, entering signi¯cantly even when

R&D stock is included in the regression; that is, there is independent information about the success

of R&D in the weighted patent count measure. Weighted patent counts are also more highly

correlated with the R&D input measure than simple patent counts; this implies that ex ante more

e®ort was put into the patents that ultimately yielded more citations. An implication of this ¯nding

is that the citations may be measuring something that is not just the luck of the draw; the ¯rms

may have known what they were shooting at. Austin (1993a, 1993b) ¯nds that citation-weighted

counts enter positively but not signi¯cantly (due to small sample size) in an event study of patent

grants in the biotechnology industry. This means they add a small amount of information beyond

the simple fact of a patent having granted. Many of the important Austin patents were applied

for after 1987, which makes this study subject to serious truncation bias (discussed below). In

addition, it uses the 3-day CAR (cumulative abnormal return) at the time of the patent grant as

the indicator of economic value; this is an underestimate of the actual value of the patent because

there is substantial informational leakage before . In fact, the work surveyed in Griliches, Pakes,

and Hall (1987) typically ¯nds that patent counts by application date are more tightly linked to

market value than counts by granting date.

The present research project was inspired partly by the tantalizing results in these earlier small-

scale studies that citation-weighted patent counts might prove a better measure of the economic

value of innovative output than simple patent counts. Rather than working with a single product

or market segment, we have assembled data on the entire manufacturing sector and the patenting

and citing behavior of the ¯rms within it, taking advantage of the computerized databases now

available from the United States Patent O±ce. The remainder of the paper discusses our dataset

construction and some preliminary results.

3. Data

Because of the way in which data on patents are collected at the United States Patent O±ce,

matching the patents owned by a ¯rm to ¯rm data is not a trivial task. Firms patent under a
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variety of names (their own and those of their subsidiaries) and the Patent O±ce does not keep

a unique identi¯er for the same patenting entity from year to year. To construct our dataset, a

large name-matching e®ort was undertaken that matched the names of patenting organizations to

the names of the approximately 6000 manufacturing ¯rms on the Compustat ¯les available to us

and to about 30,000 of their subsidiaries (obtained from the Who Owns Whom directory). As

described in Appendix A, the majority of the large patenting organizations have been matched

to our data, or we have established why they will not match (because they are foreign or non-

manufacturing corporations). However, budget constraints mean that our matching is primarily a

snapshot exercise conducted using 1989 ownership patterns; we have limited evidence using patents

in the semiconductor industry that this leads to some undercounting of patents for some ¯rms.8

Thus the precise results here should be viewed with some caution: they are unlikely to change

drastically, but they may be a®ected by a slight undercount of the ¯rms' patents.

The ¯rm data to which we have matched patenting information is drawn from the Compustat

¯le. The full sample consists of over 6000 publicly traded manufacturing ¯rms with data between

1957 and 1995. After restricting the sample to 1965-1995, dropping duplicate observations and

partially-owned subsidiaries, and cleaning on our key variables, we have about 4800 ¯rms in an

unbalanced panel (approximately 1700 per year). The variables are described in somewhat more

detail in the appendix and the construction of R&D capital and Tobin's q is described fully in Hall

(1990). For the purposes of this paper, we constructed patent and citation-weighted patent stocks

using the same declining balance formula that we used for R&D, with a depreciation rate of ¯fteen

percent. Our patent data goes back to 1964, and the ¯rst year for which we used a patent stock

variable in the pooled regressions was 1975, so the e®ect of the missing initial condition should be

small for the patent variable. However, we only know about citations made by patents beginning

in 1976.

Figure 1 shows the fraction of ¯rms in our sample in a given year who reported R&D expendi-

tures to the SEC, the fraction that year who applied for a patent that was ultimately granted, and

the fraction who have a nonzero stock of patents in that year.9 The increase in R&D reporting

8See Hall and Ham (1999).
9The stock of patents is de¯ned using a declining balance formula and a depreciation rate of 15 percent, by analogy

to the stock of R&D spending:
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between 1969 and 1972 is due to the imposition of FASB rule no. 2, which mandated the public

reporting of "material" R&D expenditures. The fall in the later years in the number of ¯rms with

patent applications is due to the fact that we only know about patent applications when they are

granted, and our grant data end in 1996. The fact the share of ¯rms with patent applications and

with R&D spending is approximately the same is only a coincidence: although there is substantial

overlap, these samples are not nested. 19 percent of the ¯rms have R&D stocks and no patents

while 13 percent have patent stocks but no R&D.

[Figure 1 about here]

We want to construct a citation-weighted stock of patents held by the ¯rm, as a proxy for

its stock of knowledge. This requires that we have a measure of the citation intensity for each

patent that is comparable across patents with di®erent grant years. The di±culty is that, for

each patent, we only observe a portion of the period of time over which it can be cited, and the

length of this observed interval varies depending on where the patent's grant date falls within our

data. For patents granted towards the end our data period, we only observe the ¯rst few years

of citations. Hence, a 1993 patent that has gotten 10 citations by 1996 (the end of our data) is

likely to be a higher citation-intensity patent than one that was granted in 1985 and received 11

citations within our data period. To make matters worse, although our basic patent information

begins in 1964, with respect to citations we only have data on the citations made by patents

beginning in 1976. Hence for patents granted before 1976, we have truncation at the other end of

the patent's life{a patent granted in 1964 that has 10 citations between 1976 and 1996 is probably

more citation-intensive than one granted in 1976 that has 11 citations over that same period.

Our solution to this problem is to estimate from the data the shape of the citation-lag distri-

bution, i.e. the fraction of lifetime (de¯ned as the 30 years after the grant date) citations that

are received in each year after patent grant. We assume that this distribution is stationary and

independent of overall citation intensity. Given this distribution, we can estimate the total (20-

year lifetime) citations for any patent for which we observe a portion of the citation life, simply by

PSt = 0:85PSt¡1 + Pt (3.1)
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dividing the observed citations by the fraction of the population distribution that lies in the interval

for which citations were observed. For patents where we observe the "meat" of the distribution

(roughly years 3-10 after grant), this should give an accurate estimate of lifetime citations. For

other patents, particularly where we observe only the ¯rst few years of patent life, this will give a

very noisy estimate of lifetime citations. Many patents receive no citations in their ¯rst few years,

leading to a prediction of zero lifetime citations despite the fact that some patents with no citations

in the ¯rst few years are eventually cited.10

The details of the estimation of the citation lag distribution and the derived adjustment to

citation intensity are described in Appendix D. Figure 2 shows the ratio of total citations to total

patents for the ¯rms with patents in our data, both uncorrected and corrected for truncation. The

raw numbers decline beginning in about 1983, because citations are frequently made more than

10 years after the original patent is issued, and these later citations are unobserved for patents at

the end of the data period. The truncation-corrected citation intensity is °at after about 1988

and then begins to rise again. Recall that we date the patents by year of application so that a

patent applied for in 1988 was most likely granted between 1989 and 1991 and hence e®ectively

had only 4-6 years to be cited. In addition, the citing patents were also less and less likely to have

been observed as we reach 1995 and 1996. Because of the increasing imprecision in measuring cites

per patent as we approach the end of our sample period, our pooled regressions focus ¯rst on the

1976-1992 period, and then on the subset of years between 1979 and 1988.

[Figure 2 about here]

Figure 3 shows the total citation and patenting rates per real R&D spending for our sample.

The patent counts are adjusted for the application-grant lag and the citation counts are shown

both corrected and uncorrected. Although the earlier years (1975-1985) show a steady decline in

patenting and citation weighted patenting per R&D dollar, one can clearly see the recent increase

10Another issue is that the number of citations made by each patent has been rising over time, suggesting a kind
of "citation in°ation" that renders each citation less signi¯cant in later years. It is hard to know, however, to what
extent this increased intensity is an arti¯cial artifact of patent o±ce practices, and the extent to which it might
represent true secular changes in patent impact. In this paper we choose not to make any correction or de°ation
for the secular changes in citation rates, with the cost that our extrapolation attempts become somewhat inaccurate
later in the sample. For further discussion of this point, see Appendix D. For an attempt to econometrically separate
such e®ects, see Caballero and Ja®e, 1993.
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in patenting rate beginning in 1986-87 that has been remarked upon by other authors (Kortum

and Lerner 1998, Hall and Ham 1999). However, the yield begins to decline in about 1993, two

years before the end of our sample, mostly because real R&D increases during that period. The

corrected patent citation yield also begins to increase in 1986-87 but does not decline quite as much

as the patent yield, re°ecting an increase in citations per patent in the early to mid-nineties.

[Figure 3 about here]

Figure 4 provides some evidence on the skewness of the distribution of citations per patent. In

this ¯gure we plot a distribution of the number of citations received by each of the approximately

one million patents that we have assigned to manufacturing corporations. Fully one quarter of

the patents have no citations, 150,000 have only one, 125,000 have two, and 4 patents have more

than 200 citations. Fitting a Pareto distribution to this curve yields a parameter of 1.8, which

implies that the distribution has a mean but no variance. However, a Kolmogorov-Smirnov or

other distributional test would easily reject that the data are actually Pareto.

The most cited patents since 1976 are a patent for Crystalline silicoaluminophosphates held

by Union Carbide Corporation (227 citations through 1995) and a patent for a Transfer imaging

system held by Mead Corporation (195 citations through 1995).11 In Appendix B, we show detailed

information for the ¯rst of these patents obtained from the USPTO website. It is apparent from

the list of citations that the patent is important because the compound it describes is used as a

catalyst in many processes. This single example suggests already that a high citation rate may be

correlated with the value of a patent right, because such a product is useful both directly (via sales

to other users) and in licensing and cross-licensing.12

[Figure 4 about here]

11These two patents are the third and ¯fth most cited overall. The other 3 in the top 5 were taken out before 1976,
so they are not contained in the online database provided by the U.S. Patent O±ce (http://patents.uspto.gov).

12See Somaya and Teece (1999) for an interesting discussion of the IP value creation choice between production or
licensing.
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4. Equation Speci¯cation and Estimation Results

4.1. The Market Value Equation

We use a speci¯cation of the ¯rm-level market-value function that is predominant in the literature:

an additively separable linear speci¯cation, as was used by Griliches (1981) and his various co-

workers. The advantage of this speci¯cation is that it assumes that the marginal shadow value of

the assets is equalized across ¯rms. The model is given by

Vit = qt(Ait + °tKit)
¾t (4.1)

where Ait denotes the ordinary physical assets of ¯rm i at time t and Kit denotes the ¯rm's

knowledge assets. Both variables are in nominal terms.

Taking logarithms of both sides of equation 4.1, we obtain

logVit = log qt + ¾t logAit + ¾t log(1 + °tKit=Ait) (4.2)

In most of the previous work using this equation, the last term is approximated by °tKit=Ait, in

spite of the fact that the approximation can be relatively inaccurate forK=A ratios of the magnitude

that are now common (above 15 percent). In this formulation, °t measures the shadow value of

knowledge assets relative to the tangible assets of the ¯rm and ¾t°t measures their absolute value.

The coe±cient of logA is unity under constant returns to scale or linear homogeneity of the

value function. If constant returns to scale holds (as it does approximately in the cross section), the

log of ordinary assets can be moved to the left hand side of the equation and the model estimated

with the conventional Tobin's q as the dependent variable, as we do here. The intercept of the

model can be interpreted as an estimate of the logarithmic average of Tobin's q for manufacturing

corporations during the relevant period. Thus our estimating equation becomes the following:

logVit=Ait = logQit = log qt + log(1 + °tKit=Ait) + ±tD(Kit = 0) (4.3)

where the last term is included to control for the overall level of Q when either R&D or patents

are missing. Theory does not give much guidance for the speci¯cation of intangible capital stocks
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and it is not clear how we should specify an equation for K that incorporates patents and citation-

weighted patents as measures of intangible assets in addition to R&D stocks. There are at least two

possible approaches. In our ¯rst approach, we simply assume that R&D stocks, patent stocks or

citation stocks are all just di®erent measures of the same thing, and compare their performance in

a logQ equation like equation 4.3, one at a time. This is the simplest way to validate our measures

and compare their performance, but it implies that each stock (R&D, patent, or citation) is just

another indicator of the same underlying concept, the knowledge assets of the ¯rm. In our second

approach to the problem, we ask what incremental value patents add in the presence of R&D stocks,

and similarly for citations in the presence of patent stocks.

4.2. Citation-weighted patent stocks

The central problem we face in estimation is how to model the stock of intangible assets that is

associated with the patents owned by a particular ¯rm. We know that ¯rms apply for patents for

a variety of reasons: to secure exclusive production marketing rights to an invention/innovation,

to obtain a currency that can be used in trading for the technology of other ¯rms, to serve as

a benchmark for the productivity of their research sta®, and so forth. We also know that ¯rms

in di®erent technology areas have substantially di®erent propensities to patent. For the valuation

function, we want a measure of the "book" value of the knowledge capital owned by the ¯rm. That

is, ideally we would like to know the cost in current prices of reproducing the knowledge this ¯rm

has of how to make new products today and how to undertake future innovation.

When we use past R&D expenditure to proxy for the book value of knowledge capital, we are

implicitly assuming that a dollar is a dollar, i.e., that each dollar spent on research generates the

same amount of knowledge capital. The reason one might want to use patents as a proxy for

knowledge capital is because a patent could represent the "success" of an R&D program. That is,

some of the R&D undertaken by the ¯rm produces "dry holes" and although the knowledge gained

by doing that research may have some value, such R&D should not be weighted equally with

successful innovation-producing R&D in our measure of knowledge capital. Our problem is that to

the extent that patents are used as engineer productivity measures and as a currency for technology

licensing exchanges, some of the patents held by a ¯rm may represent the same kind of "dry hole,"
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in the sense that they document technological avenues that turn out not to be productive. More

generally, it is clear from the work cited earlier that the private value distribution of the patent

right is extremely skewed, making simple counts a noisy measure of value.

The idea of using subsequent citations to a patent as a measure of the patent's value rests on

the argument that valuable technological knowledge within the ¯rm tends to generate patents that

future researchers build on (and therefore cite) when doing their own innovation. The example we

gave earlier, the highly cited patent for Crystalline silicoaluminophosphates applied for by Union

Carbide in 1984 (and subsequently granted), suggested that this could be the case. From the

abstract and the citing patents it is clear that this class of chemicals has widespread use as a

catalyst in chemical reactions, which doubtless creates value for the holder of the patent.

Appendix C presents the details of the construction of our citation-weighted patent stocks.

Because citations can happen at any time after a patent is applied for,13 a natural question is

whether we should use citation weights based on all the citations to patents applied for this year

and earlier, or whether we should use only citations that have already occurred. That is, do the

citations proxy for an innovation value that is known at the time the patent is applied for, or do

they proxy for the future value of the innovation, for which the current market value of the ¯rm is

only an unbiased forecast? We attempt to explore this question by dividing our stocks into past

and future. First, we construct the "total" citation stock for a given ¯rm as of a given date, based

on the number of citations made through 1996 to patents held by the ¯rm as of the given date

(depreciated). Then, we construct the "future" stock, as the di®erence between the total citation

stock as of the date, and the stock based only on citations that were actually observed by the given

date. The latter variable represents the future citations that will eventually be made to patents

already held by the ¯rm.

4.3. Basic Results

In Table 2, we show the results from running a "horse race" between R&D stocks, simple patent

stocks, and citation-weighted patent stocks on data pooled across two subperiods (1976-1984 and

13There is at least one citation in our sample that is over 50 years old, to a patent that was applied for in 1921
and granted in 1992! Such very long grant lags usually are the result of the "continuation" process allowed by the
patent rules, under which an inventor can ¯le a modi¯ed patent application that retains the application date of the
original.
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1985-1992).14 As others (including some the present authors) have found before, R&D stock is

more highly correlated with market value than either patents or citations, but it is also clear that

citation-weighted patent stocks are more highly correlated than patents themselves (compare the

R-squares).

[Table 2 about here]

Comparing the coe±cients in these equations is somewhat di±cult, because the units are not

the same. The coe±cient of the R&D stock/assets ratio is in units of dollar for dollar, i.e., market

value per R&D dollar, whereas that for the patent stock/assets ratio is in units of millions of dollars

per patent. One possibility is to normalize the patent coe±cients by the average or median patent

per million R&D dollars or citation per million R&D dollars in the sample. Because of the presence

of many zeros and the skewness of both the patent and citation distributions, neither measure is

very robust, so we have used the ratio of the total patent stock or total citation stock to the total

stock of R&D for all ¯rms, rather than the average of these ratio across ¯rms. For the ¯rms in

the ¯rst period these numbers are 0.62 (that is, approximately 1.6 million 1980 dollars per patent)

and 4.7 (that is, about 210,000 1980 dollars per citation). Using this method, the marginal shadow

value of a patent (measured in R&D dollars) for this period is approximately 0.37 million 1980

dollars and the marginal shadow value of a citation (again, measured in R&D dollars) is about 0.50

million 1980 dollars. These numbers can be directly compared to the R&D coe±cient of 1.75. The

magnitudes suggest substantial downward bias from measurement error in the patents or citations

variable and from the use of an average patent per R&D yield for normalization. It is noteworthy

that the citation coe±cient is somewhat higher, and that the di®erence in explanatory power is

more marked for the ¯rms that patent.

Although the results in Table 2 are somewhat encouraging, the extremely oversimpli¯ed equation

we are using here is likely to obscure much that is of interest. In the next few sections of the paper

we explore various ways of looking at this relationship in more detail. But ¯rst we examine how it

has changed over time.

14These estimates are computed holding °t and ±t constant across the subperiods for simplicity. The R-squared
graph shown later is based on estimates that allow the coe±cients to vary over time.
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Figures 5a and 5b show the R-squared from the same simple Tobin's q regression on R&D stock,

patent stocks, and citation-weighted patent stocks, estimated year-by-year between 1973 and 1993.

Figure 5a shows the result for the R&D-performing ¯rms and Figure 5b for the patenting ¯rms.

While neither patents nor citation-weighted patents have as great an explanatory power for the

market to book ratio as R&D during the earlier years, by 1984-1986 the citation-weighted patents

are doing about as well as R&D, especially when we focus on patenting ¯rms, though this is partly

because the explanatory power of R&D has declined.15

It is noteworthy that the date at which the explanatory power of citation-weighted patents

converges to that of R&D in Figure 5b coincides roughly with a number of events that led to an

increase in patenting activity during the mid-eighties, such as the Kodak-Polaroid decision. One

interpretation is that patenting and citation behavior changed around this time because of changing

litigation conditions. This might be explored further by looking more closely at which ¯rms are

making and receiving the citations. That is, does fear of litigation lead ¯rms to cite others' patents

more carefully in order to fence o® their own technology?

[Figures 5a and 5b about here]

Because of the inaccuracy of our citation measures post-1990 and because the shadow value of

our measures seems to change over time, in the remainder of this section of the paper we focus on

one ten-year period in the middle of our sample where the data are the most complete, and where

the valuation coe±cients do not change dramatically in Figures 5a and 5b, the 1979-1988 period.

4.4. Explorations(1): Do citations add information?

A second, more informative way to look at the valuation problem is to hypothesize that although

patents are clearly correlated with R&D activity at the ¯rm level, they measure something that

is distinct from R&D, either "success" in innovative activity, or perhaps success in appropriating

the returns to such activity. This suggests that we should include the yield of patents or citations

per R&D dollar as a separate variable in the equation. When interpreting the coe±cient, it is

important to note that R&D is a nominal quantity while patents are "real," so part of what we

15See Hall (1993a,b) for year-by-year measures of the market value of R&D investments.
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see is the changing real price of R&D over the sample. It is also likely that the expected yield of

patents per R&D varies by industry, although we do not allow for this in the present paper.

In Table 3, we explore two variations of this idea. In column 2, we add a patent yield (the

ratio of patent stock to R&D stock) to the equation that already has R&D stock and ¯nd that it

is signi¯cant and has a small amount of additional explanatory power. In column 3, we add the

¯rm's average cites per patent to the equation to see if the citation rate has any impact on market

value above and beyond that due to R&D and patenting behavior. This variable is quite signi¯cant

and its coe±cient is fairly large. To interpret the results, we use the following expression for the

semi-elasticity of market value or Q with respect to the citation-patent ratio:

@ logQ

@C=P
=

°2
1 + °0K=A+ °1P=K + °2C=P

where K is the R&D stock, P is the patent stock, and C is the citation stock. In the table below

we show this quantity together with the corresponding quantity for the patents-R&D stock ratio,

evaluated at a range of values of the independent variables:

Mean Median Ratio of Totals Standard Deviation

K=A($M=$M) 0.31 0.10 0.15 0.57

P=K(1=$M) 0.64 0.0 0.47 3.87

C=P (1=$M) 4.90 3.88 7.48 6.87

Denominator 1.630 1.311 1.562
@ logQ
@C=P 0.030 0.038 0.032
@ logQ
@P=K 0.018 0.023 0.019

Thus an increase of one citation per patent is associated with a three percent increase in market

value at the ¯rm level. This is a very large number and may be consistent with the "million dollar"

citations reported by Harho® et al. (1999). The value of additional patents per R&D is somewhat

lower: an increased yield of one patent per million dollars of R&D is associated with a two percent

increase in the market value of the ¯rm. Note that the statistics in the table above make it clear

that the ratios are far from normally or even symmetrically distributed, which suggests that some

exploration of the functional form of our equation might be useful. We present a simple version of

such an exploration later in the paper.

[Table 3 about here]
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4.5. Explorations(2): When do citations add information?

Table 4 shows the results of an investigation into whether there is a di®erence between the market

valuation of past and future citations. The answer is a resounding yes (see columns 2 and 5 of Table

4). Whether we include the citation stock alone (column 2) or use the full model with R&D and

patents (column 5), the coe±cient of a stock based only on future citations is equal to or greater

than the coe±cient of the stock based on all citations, and the coe±cient of the past citation stock

is negative and marginally signi¯cant or insigni¯cant. The apparent implication is that future

citations are more correlated than past citations with the expected pro¯tability of the patent right.

Because the two stocks, past and future, are highly correlated measures of the same underlying

quantity, this ¯nding does not necessarily imply that citations are worthless for forecasting the

value of the knowledge assets associated with patents or the expected pro¯t stream from those

assets. The past citation stock of a ¯rm could be an excellent forecast of the future citations that

are expected for its patent portfolio, even though it is not quite as good as knowing the future

citations when predicting the ¯rm's market value. To explore this idea, we decomposed the total

citation stock into the part predicted by the past citation stock and the part that is not predicted:16

KC(t) = E[KC(t)jKPPC(t)] +KC(t)¡ E[KC(t)jKPPC(t)]

= cKC(t) + eKc(t)

where KC(t) denotes the total citation weighted patent stock at time t and KPPC(t) denotes

the patent stock weighted by the citations received as of time t (see Appendix C for details on

construction of these variables). The results of including the citation-assets and citation-patent

ratios partitioned in this way are shown in columns 3 and 6 of Table 4. In all cases, the coe±cient

of the unexpected portion of the total citation stock is approximately the same as the coe±cient

of the future citation stock in the preceding column. The coe±cient of the predictable portion of

the total citation stock is approximately 40 percent lower, although still quite signi¯cant. Thus,

although future citations are a more powerful indicator of the market value of the patent portfolio

held by these ¯rms, past citations clearly also help in forecasting future returns.

Figures 6 and 7 show the coe±cients that result when both past and future citation-weighted

16We also included a full set of time dummies in the conditioning set.
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patent stocks or predictable and unpredictable citation-weighted stocks are included in the same

Tobin's q equation year-by-year for the 1973-1993 period. In Figure 6, we see that the future

citation-weighted patent stock is clearly preferred over the past and that the latter has a coe±cient

that is zero or negative. When we separate the citation stock via the orthogonal decomposition

of predictable based on the past versus unpredictable, we ¯nd that both enter, but that the un-

predictable portion has a higher shadow value in the equation and that the predictable portion

behaves more or less like the total stock (Figure 7).17

[Figure 6 about here]

[Figure 7 about here]

4.6. Explorations(3): How do citations add information?

Our working hypothesis is that citations are an indicator of the (private) value of the associated

patent right, and are therefore correlated with the market value of the ¯rm because investors value

the ¯rm's stock of knowledge. For this reason, it is of interest to explore the question of the precise

shape of the citation valuation distribution: does the fact that a ¯rm's patents yield fewer citations

than average mean that its R&D has been unproductive? How does the valuation change for ¯rms

with patents that have very high citation yields of the sort we saw in Figure 4? Table 5 explores

these questions. We broke the average citation stock per patent stock variable up into 5 groups:

less than 4, 4-6 (the median for ¯rms with patents), 6-10, 10-20, and more than 20 (see Table 5

for details). The groups are unequal partly because we were interested in the tail behavior. We

then included dummy variables for four of the ¯ve groups in the valuation regression (the left-out

category was 0-4 citations per patent).

[Table 4 about here]

The results are quite striking. For ¯rms with less than the median number of citations per

patent (6), it makes no di®erence how far below the median they fall; ¯rms with 4-6 citations per

patent have no higher value than ¯rms with less than 4 (the left-out category). However, ¯rms

17Interpretation here is a bit dicey. These coe±cients ought to be normalized in some way to put them on a
common ground.
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that average more than the median number of citations per patent have a very signi¯cant increase

in market value, and one that appears to be approximately linear. The most dramatic e®ect is for

the 508 observations (184 ¯rms) with a stock of more than 20 cites per patent: the market value

of these ¯rms is 54-58 percent higher than would be expected given their R&D capital and their

patent stock.

Further investigation of these 184 ¯rms revealed the following: they are concentrated in comput-

ing, o±ce equipment, semiconductor, and electronics (259 observations on 82 ¯rms), pharmaceuti-

cals and medical instruments (149 observations on 52 ¯rms), and to a lesser extent, in textiles and

apparel (28 observations on 7 ¯rms), and machinery (32 observations on 13 ¯rms). They include

both quite small (so they have a very few highly cited patents) and medium to large ¯rms (such

as Intel, Compaq Computer, Tandem Computer, Alza Corp, and Signal Companies). It appears

that the larger ¯rms are primarily in the electronics sector, broadly de¯ned, while those in the

pharmaceutical sector that average a high citation rate are more likely to be smaller biotechnology

¯rms. It should be kept in mind that we are focusing here on a period that spans the period during

which profound changes in patenting strategy took place in some industries after the creation of

the Circuit Court of Appeals and the well-known Kodak-Polaroid decision of 1986 - see Hall and

Ham 1999 inter alia, for discussion of this point).

5. Conclusion and Suggestions for Further Research

This paper is a "¯rst look" at these data. We ¯nd that augmenting ¯rms' patent counts with

citation intensity information produces a proxy for the ¯rms' knowledge stocks that is considerably

more value-relevant than the simple patent count itself. It remains true that, for most of the time

period, patent-related measures cannot win a "horserace" with R&D as an explanator of market

value. But this should not surprise us. As emphasized by Sam Kortum in his comments on this

paper, even if citations are a reasonably informative signal of success, this does not mean they

will be more correlated with value than R&D, because optimizing ¯rms will increase their R&D

in response to success. The citation stock is also associated with signi¯cant incremental market

value after controlling for ¯rms' R&D. Indeed, ¯rms with very highly cited patents (more than

20 cites per patent), the estimates imply almost implausibly large market value di®erences, on the
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order of a 50% increase in value, relative to ¯rm with the same R&D and patent stocks but with

the median citation intensity

The main truly new result is that market value is correlated, to a signi¯cant extent, with the

portion of eventual citations that cannot be predicted based on past citations. This suggests

that the market "already knows" much about the quality of inventions, which will ultimately be

con¯rmed by the arrival of future citations that are "unexpected" in the sense of unpredictable

based only on past citation information. This result clearly requires further exploration. First,

it would be useful to explore the use of a functional form or normalization that would allow the

relative value of past and future citations to be compared more directly, rather than just asking

which adds more to the R-squared. In addition, one could ask how many years' worth of citations

does one have to see to know most of what citations will eventually reveal. Is 10 years enough?

What fraction of what you "know" (in the sense of correlation with market value) by knowing

the lifetime citations do you "know" after 5 years? Also, one could explore whether this result

is driven by the tail of the distribution, which we know is associated with much of the value. In

other words, to what extent is it possible to predict that a patent will ultimately get >20 citations

based only on the ¯rst few years' patents? Is it this di±culty of predicting the really big winners

that makes the unpredictable portion of the citations total so important?

Other variations on the results include more exploration of the shape of the citations-value

relationship. Has the importance of highly cited patents changed over time with changes in the

patent regime? As noted, the ¯rm-years with a citation intensity above 20 include both small

and large ¯rms. It would be useful to sort out whether these are di®erent from each other, and

also the extent to which the results relating to an average citation intensity of more than 20 are

themselves driven by a few patents in the extreme tail. Here again, it would be useful to explore

other functional forms.

In addition to these variations on the themes already struck, there are other aspects of citation

behavior that ought to be value-relevant. These include:

² Self citations. Approximately one-quarter of citations received by corporate patents come
from other patents assigned to the same company. Such "self citations may represent con-

struction of patent thickets or other behaviors that are less value-relevant than citations from
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outsiders. On the other hand, a self-citation may represent evidence that the ¯rm is success-

fully appropriating downstream impacts that would otherwise represent spillovers stemming

from the patent. This would imply that self-citations are more valuable than citations from

others. We could have two counts of citations, and allow for di®erent coe±cients on self ver-

sus other citations in the market value equation. Preliminary investigation suggests that the

self-citation e®ect is small and positive: if the "self" share of citations is higher, the market

value is higher, other things equal.

² Generality. Trajtenberg, Ja®e, and Henderson have proposed a measure of "generality,"

de¯ned as (1 minus) the Her¯ndahl Index of concentration of citations over patent classes.

The idea is that citations that are spread over a larger number of technological ¯elds are

more "general", and vice versa. In terms of impacting the market value of ¯rms, though, one

could hypothesize the following: for ¯rms that concentrate in narrow ¯elds of activity, more

generality is bad, since the ¯rm will not be able to appropriate the spillovers to other ¯elds.

For conglomerates, the opposite may be true. Thus, we could compute the average generality

of patents for ¯rm j in year t, and interact this variable with a dummy for whether or not

the ¯rm is a conglomerate. This may be tricky; see the strategy literature on diversi¯cation

that occurs in order to exploit an innovation resource base (Silverman 1997). We may need

to normalize generality as well, since the measure depends on the number of citations. This

suggests both conceptual di±culty in separating the e®ects of citation intensity and generality,

and also a complex truncation problem in the generality measure itself.
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Study Country Years Functional Other R&D R&D Stock Patent or Innov Comments
(industry) Form Variables Coeff Coeff Coeff

Griliches 1981 US 1968-74 Linear (Q) Time & Firm dummies, [log Q(-1)] 1.0-2.0 .08 to .25 ? units appear to be 100 pats
Ben-Zion 1984 US 1969-76 Linear (V) Ind dummies, Investment, Earnings 3.4 (0.5) .065 (.055) No time dummies?
Jaffe 1986 US 1973, 79 Linear (Q) Time & tech dummies, C4, mkt share,  7.9 (3.3) 3SLS even higher

  Tech pool, interactions
Connolly, Hirsch, Hirschey 1986 US 1977 Linear (EV/S) Growth,risk,age,Mkt share,C4,Adv, 7.0 (0.8) 4.4 (0.6) Unexpected patents

Union share, Ind dummies
Cockburn, Griliches 1988 US Linear (Q) Industry appropriability (Yale survey) .9-1.2 0.1 patent coef. Is insignificant
Griliches, Pakes, Hall 1987 US
Connolly, Hirschey 1988 US 1977 Linear (EV/S) Growth, risk, C4, Adv 5.6 (0.6) 5.7 (0.5) Bayesian estimation
Hall 1993a US 1973-91 Linear (V) Assets, Cash flow, Adv, Gr, time dummies 2.5-3.0 (.8) 0.48 (.02) By year also
Hall 1993b US 1972-90 Linear (Q) time dummies  2.0-10.0 0.5-2.0 By year; LAD; absolute coeff
Johnson, Pazderka 1993 US
Thompson 1993 US

Megna, Klock 1993
semi-

conductors 1977-90 Linear (Q) Rivals R&D and patents 0.82 (0.2) 0.38 (0.2) Patent stock
Blundell, Griffith, van Reenen 1995 UK 1972-82 Linear (V) Time dummies,Assets,Mkt share  1.93 (.93) Innovation counts
Stoneman, Toivanen 1997 UK 1989-95 Linear (V) Assets,Debt,Growth,Mkt share,investment, 2.5 (1.5) insig. Selection correction; by year

Cashflow, time dummies, Mills ratio

Table 1
Market Value - Innovation Studies with R&D and Patents
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Number of observations
R&D Stock/Assets 1.736 (.069) 1.741 (.070) 1.754 (.082)
D(R&D=0) .029 (.014) - -   0.024 (.017)   
Patent Stock/Assets 0.607 (.042) 0.493 (.042) 0.599 (.041)
Cite Stock/Assets  0.108 (.006) 0.087 (.006) 0.107 (.006)
D(Pats=0) 0.120 (.013) 0.144 (.013) 0.252 (.019) 0.282 (.018) - - - -

R-squared 0.228 0.110 0.138 0.249 0.127 0.161 0.231 0.129 0.181
Std. Err. 0.669 0.719 0.707 0.683 0.737 0.722 0.644 0.685 0.665

Ratio of Total Pats or Cites to 
Total R&D ($1980M) 0.566 4.228 0.550 4.125 0.619 4.617
Coefficient scaled by ratio of totals 1.736 0.344 0.457 1.741 0.271 0.359 1.754 0.371 0.494

Number of observations
R&D Stock/Assets 0.547 (.027) 0.560 (.027) 0.563 (.033)
D(R&D=0) 0.004 (.015) - -   0.027 (.019)   
Patent Stock/Assets 0.710 (.049) 0.638 (.050) 0.711 (.049)
Cite Stock/Assets  0.080 (.005) 0.074 (.005) 0.080 (.005)
D(Pats=0) 0.144 (.014) 0.148 (.014) 0.279 (.020) 0.291 (.019) - - - -

R-squared 0.116 0.067 0.085 0.123 0.077 0.103 0.121 0.103 0.134
Std. Err. 0.748 0.769 0.761 0.764 0.784 0.773 0.729 0.737 0.724

Ratio of Total Pats or Cites to 
Total R&D ($1987M) 0.331 2.979 0.324 2.928 0.352 3.162
Coefficient scaled by ratio of totals 0.547 0.235 0.238 0.560 0.207 0.217 0.563 0.250 0.253

Heteroskedastic-consistent standard errors.
All equations have a complete set of year dummies.
Stocks are computed using 15 percent annual depreciation rate.

Patenting Firms

Table 2

U.S. Manufacturing Firm Sample (Cleaned) - 1976-92
Nonlinear Model with Dependent Variable = log Tobin's q

All Firms R&D-Doing Firms

"Horse-race" Regressions comparing R&D, Patents and Citations

15,605 10,432 9,718

Period: 1976-1984

Period: 1985-1992

17,111 10,761 10,509

Tab2
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(1) (2) (3) (4)
Independent Variable K K with P/K P/K and C/P K with C/K

R&D Stock(K)/Assets 1.112 (.043) 1.139 (.045) 1.189 (.052) 1.159 (.046)
D(R&D=0) 0.004 (.013) -.011 (.015) -.001 (.015) 0.012 (.015)

Pat Stock/K 0.0252 (.0061) 0.0299 (.0075)
Cite Stk/Pat Stk 0.0494 (.0037)
Cite Stock/K 0.0095 (.0012)
D(Pats=0) 0.116 (.011) 0.347 (.019) 0.136 (.012)

R-squared 0.206 0.211 0.228 0.216
Standard error 0.710 0.708 0.701 0.706

Heteroskedastic-consistent standard errors in parentheses.
All equations include year dummies.

Citation stocks are patent stocks weighted by all the cites they received before 1994 plus an estimate of post-1993 
cites, depreciated as of the patent date.

Table 3

U.S. Manufacturing Firms (Cleaned Sample) - 1979-88 - 19,628 firm-years
Nonlinear Model with Dependent Variable = logarithm of Tobin's q

Effect of Adding Patents and Citations to R&D Regression
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Independent Variable (1) (2) (3) (4) (5) (6)

R&D Stock(K)/Assets 1.189 (.052) 1.149 (.050) 1.087 (.048)
D(K=0) -.001 (.015) -.002 (.014) -.002 (.014)

Cite Stock/A 0.117 (.006)  

Past Cite Stk/A -0.056 (.019)  
Future Cite Stk/A 0.162 (.008)
Pred. Cite Stk/A 0.106 (.005)
Unpred. Cite Stk/A 0.159 (.008)

Pat Stock/K 0.030 (.007) 0.028 (.007) 0.026 (.007)
Cite Stk/Pat Stk 0.049 (.004)  

Past Cite Stk/P Stk -0.005 (.007)  
Future Cite Stk/P Stk 0.059 (.004)
Pred. Cite Stk/P Stk 0.032 (.004)
Unpred. C Stk/P Stk 0.056 (.004)
D(P=0) 0.204 (.012) 0.202 (.012) 0.202 (.012) 0.347 (.019) 0.325 (.019) 0.325 (.019)

R-squared 0.140 0.145 0.145 0.228 0.231 0.231
Standard error 0.740 0.737 0.737 0.701 0.699 0.699

Heteroskedastic-consistent standard errors in parentheses.
All equations include year dummies.
Stocks are computed using 15 percent annual depreciation rate.

Past citation stocks are stocks of citations that have already occurred as of the valuation date, depreciated as of the patent date. 
Future citation stocks are the difference between citation stocks and past citation stocks.
Pred. and unpred. citation stocks are the orthogonal decomposition of citation stocks into the piece predictable from the past and the residual. 

p g y y p p , p p
date.

Cite/Assets P/K and C/P

Table 4

U.S. Manufacturing Firms (Cleaned Sample) - 1979-88 - 19,628 firm-years
Nonlinear Model with Dependent Variable = logarithm of Tobin's q

Splitting Total Citation Stock into Past and Future
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Indep Variable K and C/P K, P/K, C/P P/A only K and C/P K, P/K, C/P P/A only K and C/P K, P/K, C/P P/A only

R&D Stock (K)/Assets 0.910 (.039) 0.943 (.041)  0.961 (.041) 0.995 (.043)  0.853 (.047) 0.905 (.051)  
D(R&D=0) -.054 (.013) -.034 (.014)  -- --  -.007 (.016) 0.032 (.018)  

Pat Stock/A 0.620 (.039) 0.520 (.039) 0.616 (.039)
Pat Stock/K 0.022 (.005) 0.024 (.006) 0.025 (.006)
D(Pats=0) 0.196 (.016) 0.207 (.016) 0.302 (.017) 0.246 (.022) 0.270 (.023) 0.460 (.024) -- -- --

4-6 Cites per Patent
  (3,211 observations) -.012 (.017) -.013 (.017) -.012 (.018) -.019 (.022) -.019 (.022) -.058 (.023) -.004 (.017) -.003 (.017) -.013 (.018)
6-10 Cites per Patent
  (3,900 observations) 0.095 (.017) 0.094 (.017) 0.135 (.017) 0.085 (.021) 0.086 (.021) 0.081 (.022) 0.112 (.017) 0.112 (.017) 0.139 (.017)
10-20 Cites per Patent
  (1,853 observations) 0.346 (.023) 0.344 (.023) 0.475 (.023) 0.357 (.027) 0.357 (.027) 0.456 (.028) 0.375 (.024) 0.372 (.023) 0.483 (.023)
>20 Cites per Patent
  (508 observations) 0.534 (.043) 0.536 (.043) 0.811 (.041) 0.583 (.047) 0.590 (.047) 0.835 (.044) 0.569 (.043) 0.570 (.043) 0.819 (.041)

R-squared 0.232 0.234 0.161 0.245 0.249 0.180 0.254 0.257 0.232
Standard error 0.703 0.702 0.735 0.710 0.708 0.740 0.671 0.670 0.681

Heteroskedastic-consistent standard errors in parentheses.
All equations include year dummies.
Stock are computed using 15 percent annual depreciation rate.

The left-out category is fewer than 4 cites per patent (2,478 observations) and there are 7,479 observations with no patents or cites.
Citation stocks are patent stocks weighted by all the cites they received before 1994 plus an estimate of post-1993 cites, depreciated as of the patent date.

Patenting Firms (12,119 obs)

Table 5

U.S. Manufacturing Firm Sample (Cleaned) - 1979-88
Nonlinear Model with Dependent Variable = log Tobin's q

R&D-Doing Firms (12,771 obs)All Firms (19,706 obs)

The Shape of the Citations-Value Relationship
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Figure 1
US Manufacturing - Cleaned Sample - 4,846 Firms
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Figure 2
Citation Counts before and after Truncation Correction
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Figure 3
U.S. Manufacturing Sector - 4,846 Firms
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Figure 4
Citation Distribution
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 Figure 5a
R&D Performing Firms - R-Squared from Tobin's Q Equation
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 Figure 5b
Patenting Firms Only - R-Squared from Tobin's Q Equation
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 Figure 6
R&D Performing Firms - Splitting Citations Stocks

into Past and Future
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 Figure 7
R&D Performing Firms - Splitting Citation Stocks
into Predictable and Unpredictable Components
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7. Appendix A: Data Description

The data we use are drawn from the Compustat ¯les and from ¯les produced by the United States

Patent O±ce. We have included all the ¯rms in the manufacturing sector (SIC 2000-3999) between

1976 and 1995 in a large unbalanced panel (approximately 4800 ¯rms). The ¯rms are all publicly

traded on the New York, American, and regional stock exchanges, or traded Over-the-Counter on

NASDAQ. For details on data construction, see the documentation in Hall (1990), although we

have drawn a new sample from a larger dataset than the ¯le described in that document.

The main Compustat variables that we use are the market value of the ¯rm at the close of the

year, the book value of the physical assets, and the book value of the R&D investment. The market

value is de¯ned as the sum of the value of the common stock, the value of the preferred stock (the

preferred dividends capitalized at the preferred dividend rate for medium risk companies given by

Moody's), the value of the long-term debt adjusted for in°ation, and the value of short-term debt

net of assets. The book value is the sum of the net plant and equipment (adjusted for in°ation), the

inventory (adjusted for in°ation), and the investments in unconsolidated subsidiaries, intangibles,

and others (all adjusted for in°ation). Note that these intangibles are normally the good will and

excess of market over book from acquisitions, and do not include the R&D investment of the current

¯rm, although they may include some value for the results of R&D by ¯rms that have been acquired

by the current ¯rm. The R&D capital stock is constructed using a declining balance formula and

the past history of R&D spending with a 15 percent depreciation rate.

The patents data have been cleaned and aggregated to the patent assignee level at the Regional

Economics Institute, Case Western Reserve University. We have matched the patent assignee

names with the names of the Compustat ¯rms and the names of their subsidiaries in the Who

Owns Whom Directory of Corporate A±liations as of 1989 in order to assign patents to each ¯rm.

In order to ensure that we picked up all important subsidiaries, we also tried to positively identify

the unmatched patenting organizations that had more than 50 patents during the period to ensure

that we had not missed any subsidiaries. A spot check of ¯rms in the semiconductor industry, which

is an industry with lots of new entry during the period, suggests that our total patent numbers are

fairly accurate for the period 1975-1995, but that they are an undercount in the case of some ¯rms

28



(averaging about 5-15% under).18

18See Hall and Ham Ziedonis (1999).
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8. Appendix B: Highly Cited Patents
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Citations to Patent on Previous Page
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9. Appendix C: Citation-weighted patent stocks

De¯ne

C(t; s) = number of cites received at time s to patents applied for at time t (9.1)

and

C(t) =
TX
s=t

C(t; s) = total number of cites to patents applied for at time t (9.2)

Note that in our case T = 1995, so the measure of the total number of cites is truncated for all

patents, and badly truncated for patents post 1985 or so.

Assume a single depreciation rate for the "private value" of a patent, ±: Then the simplest

citation-weighted patent stock treats each patent as if it is worth the number of citations it ever

receives and sums these citations over all the patents applied for in a given year to obtain a measure

for the increment to the stock of knowledge at time t equal to C(t): Using the standard declining

balance formula, the stock of knowledge itself is de¯ned by the following equation:

KC(t) = (1¡ ±)KC(t¡ 1) +C(t) (9.3)

= C(t; t) + (1¡ ±)C(t¡ 1; t¡ 1) + (1¡ ±)2C(t¡ 2; t¡ 2) + :::
C(t; t+ 1) + (1¡ ±)C(t¡ 1; t) + (1¡ ±)2C(t¡ 2; t¡ 1) + :::::
C(t; t+ 2) + (1¡ ±)C(t¡ 1; t+ 1) + (1¡ ±)2C(t¡ 2; t) + :::::
+::::::

Note that in the above equation, the knowledge associated with a patent is assumed to be created

at the time the patent is applied for, and future citations are depreciated as though they occurred

at that time. Note also that when we put this stock into a valuation equation, we are implicitly

assuming that the market knows the "true" value of the innovation, which is only revealed later to

us via the citations.

An alternative possibility is to use citation weights that depend only on citations to the patents

that have already occurred, and to depreciate the citations as of the date when they occur, rather

than the date of the original patent application:
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KPC(t) = (1¡ ±)KPC(t¡ 1) +C(t; t) + C(t¡ 1; t) + C(t¡ 2; t) + :::: (9.4)

= C(t; t) + (1¡ ±)C(t¡ 1; t¡ 1) + (1¡ ±)2C(t¡ 2; t¡ 2) + :::
C(t¡ 1; t) + (1¡ ±)C(t¡ 2; t¡ 1) + (1¡ ±)2C(t¡ 3; t¡ 2) + :::::
C(t¡ 2; t) + (1¡ ±)C(t¡ 3; t¡ 1) + (1¡ ±)2C(t¡ 4; t¡ 2) + :::::
+::::::

Comparing equations (9.3) and (9.4) we can see that they di®er not only because one is forward-

looking (it counts citations at time t that will not be made until later than t), but also because the

pattern of depreciation is di®erent. This suggests an alternative to equation (9.4), shown below,

that uses only past citations, but depreciates them as of the patent date rather than at the citation

date:

KPPC(t) = (1¡ ±)KPPC(t) +
t¡1X
s=0

(1¡ ±)sC(t¡ s; t) (9.5)

= C(t; t) + (1¡ ±)C(t¡ 1; t¡ 1) + (1¡ ±)2C(t¡ 2; t¡ 2) + :::
+(1¡ ±)C(t¡ 1; t) + (1¡ ±)2C(t¡ 2; t¡ 1) + :::::
+(1¡ ±)2C(t¡ 2; t) + :::::
+::::::

That is, the innovation is assumed to be valuable when it is made, but we don't learn about it

until the citations happen. In the previous equation (9.4), the assumption is that the innovation

becomes more valuable each time a citation is made. The advantage of the formulation in (9.5) is

that it is nested within (9.3):

KC(t) = KPPC(t) +C(t; t+ 1) +C(t; t+ 2) + (1¡ ±)C(t¡ 1; t+ 1)
+C(t; t+ 3) + (1¡ ±)C(t¡ 1; t+ 2) + (1¡ ±)2C(t¡ 2; t+ 1) + :::::

= KPPC(t) +
TX
s=1

s¡1X
j=0

(1¡ ±)jC(t¡ j; t+ s¡ j)

= KPPC(t) +KFPC(t) (9.6)
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Thus this formulation will allow us to separate the total citation weighted stock of patents at time t

into two components, one that contains only citation information prior to t, and one which contains

only citation information at t+1 and later. However, it remains unclear whether we have chosen

an appropriate depreciation structure.

10. Appendix D: Truncation Bias

We face at least two types of truncation bias in our measures: bias in our patent measures due

to the fact that we have patent data only for granting years between 1967 and 1996 and bias in

our citation measures because there is a long citation lag and therefore we will not have observed

many citations for patents granted during the later part of our sample. The ¯rst bias is fairly

straightforward and easy to correct for because the application grant lag is fairly stable and has

a median of only about two years. The second is both more complex and of substantive interest,

since it is unclear whether our forecast of future citations should agree with that of the market.

Therefore we may wish to investigate the relationship between current citation stock and future

realized citations in somewhat more detail.

In this section of the paper we outline the steps we take to correct for the ¯rst type of bias (due

to the application-grant lag). Then we describe the measures of citation stocks that we construct

for use in our regressions.

10.1. Patent truncation

Figure D.1 shows the average distribution of the lag between application and grant for all U.S.

patents issued during the past four decades. The distributions are quite similar across decades,

although there does seem to be a net reduction in the lag between the 1960s and the later periods.19

Except for the 1960s, 95 percent of patent applications that are eventually granted will be granted

by year 3, and 99 percent by year 5. Our measure of patents in a year is the number applied for

that are ultimately granted, so our goal is to adjust the granted-application count at both ends of

our sample. The fact that the median lag is short means that in making our adjustment we cannot

go back before an application data of 1964 (because we only have grants made in 1967 and later)

19The data for the 1990s are based only on the ¯rst half of the period and therefore longer issue lags will be
truncated, implying that the apparent shortening of the issue lag may be an artifact.
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and that we will not be able to adjust the patent counts beyond 1993 (because we only see about

half the patents applied for in 1994 due to the grant lags). We describe these adjustments in more

detail below.

[Figure D.1 about here]

At the beginning of the sample (1967) we observe some of the patents applied for in 1964-1966,

but not the ones that were granted so quickly that their grant date is before 1967. This suggests

that we might be able to correct our application counts for 1964-1966 (that is, ¯ll in for lags 0 to

3) using weights drawn from the distribution for the 1960s. At the end of the sample, the opposite

happens: there are patents applied for between about 1991 and 1996 that are still pending; some

of them will be granted eventually, meaning that our counts of successful patent applications for

those years are too small. Again, we can scale up the numbers we do have using the grant-lag

distribution. Therefore we will compute the following two adjustments to our patent counts:

ePt =
PtPM

s=67¡t ws
64 < t < 67 (10.1)

ePt =
PtP94¡t
s=0 ws

91 < t < 94

where Pt is the number of patent applications at time t,M is the maximum issue lag (assumed to be

equal to about 10), and the weights ws are weights constructed from the average lag distributions

shown in Figure D.1. In Table D.1 we show the weighting factors we will use (the inverse of the

expressions in equations (10.1)). Note the edge e®ects, which imply that the 1996 data will not be

usable, and that the 1964 and 1995 data will have more variance due to estimation error.20

[Table D.1 about here]

20For this reason, we make no attempt to use data later than 1993 in the body of the paper (although we do use
that data to construct stocks of future citations). The 1964 data is used only to the extent that it enters into the
stocks of patents and citations that we construct. The ¯rst stock in our regressions is dated around 1973, so the
measurement error e®ect should be quite small (recall that the counts are being depreciated by 15 percent per year).
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10.2. Citation truncation

As discussed in the text, we seek citation-based measures of patent quality that are comparable

across patents. The number of citations that we observe for any given patent may depend on many

things. These include:

1. Technological ¯eld;

2. Grant date or "vintage" of the patent;

3. The total number of years for which we have data on the patent's citations.

The ¯rst two factors may well contain arti¯cial in°uences due to variations in patent and citation

practice across technologies and across time. For example, the number of citations made by each

patent rose over much of this period, possibly due to changes in the ease of identifying prior art

due to computer technology. Arguably, this "citation in°ation" means that a typical citation given

in the 1990s is less signi¯cant than the typical citation given in the 1970s. Similarly, there may be

variations in norms of citation behavior that make a typical citation in a particular technological

¯eld more or less signi¯cant than the average. In the absence, however, of some external information

about these artifactual variations, the only way one could deal with them would be to "take out"

time and technology e®ects, by subtracting from the observed citation counts mean ¯eld and time

e®ects. The problem with such an approach is that there is likely to be variation over time and

across ¯elds in the true importance of the typical patent. Taking out these e®ects would drastically

reduce the variance in the data, probably throwing out a good part of the baby with the bathwater.

Therefore in this paper we choose not to make any correction for technology ¯eld or secular citation

trends.2122

We do, however, adjust for truncation due to the number of years of citations we actually

observe, by ¯tting a model of the citation lag distribution introduced by Caballero and Ja®e (1993)

21One might believe that secular trends associated with the year of the citing patent are associated with changes
in citation practice, and hence artifactual, while secular trends associated with the cited year represent movements in
the true average importance of new inventions. Separating the two, while simultaneously estimating the citation-lag
distribution, requires strong functional form assumptions. See Caballero and Ja®e, 1993.
22To the extent that the variation across time and ¯elds is artifactual, it represents measurement error in the

citation variables that reduces their explanatory power and biases their coe±cients. One could construct the citation
stocks with and without purging citations of ¯eld and time e®ects; comparing the results might yield some insight as
to the fraction of ¯eld and time variance that is real and the fraction that is artifactual.
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and developed by Ja®e and Trajtenberg (1996). This model allows the average level of citing activity

to vary across ¯elds and times (either because of real or artifactual forces), and thereby estimates

a citation lag distribution that is purged of these variations.23

A patent can be cited at any time after it is issued. Although the majority of citations happen

in the ¯rst 10 years of a patent's life, there is a long tail of citations that can occur into the in¯nite

future.24 Figure D.2 shows the number of citations received at each lag for patents in our sample

applied for at di®erent dates between 1965 and 1993. Because our citation data only go from 1976

until 1996, our citations are truncated at both ends: for patents applied for in 1965, we have only

the citations at lag 10 and later, whereas for patents issued in 1993, our citations are abruptly

truncated at lag 3. Thus we need to adjust for both these truncation biases.

[Figure D.2 about here]

In addition, as Ja®e, Trajtenberg, and Henderson (1993) have shown, citations vary considerably

by technological ¯elds. To adjust for this fact, we have grouped the 436 3-digit patent classes in

our data into 6 major technological ¯elds: drugs and medical, chemical exc. drugs, electrical and

electronics, computers and communication, mechanical, and all other.25 Our estimated citation

model will include these e®ects, in order to prevent our estimate of the citation-lag distribution

from being distorted by the combination of di®erences in citation practices across ¯elds and changes

in the ¯eld mix of patents over time.

We de¯ne our dependent variable to be the following:

Ct;j;s = Pr(cite at lag sjpatent applied for at t in ¯eld j) (10.2)

23The unbalanced nature of the patent data makes it important to control for ¯eld and time e®ects. For example,
the only observations that we have on the longest lags are produced by citations made in years at the end of the data
period. If the citation-lag distribution were estimated without controling for the secular rise in citation rates, the
estimated tail of the lag distribution would be too thick, because we only observe long lags from high-citation years.
24Because we date patents by date of application, and grant lags are somewhat variable, we occasionally observe

citations with negative citation lags, i.e. the citing patent has an application date before the cited patent. For
example, there is one patent in our dataset (#4,291,005, belonging to Calgon Corporation) that was issued in 1992,
but had originally been applied for in 1921 and then continued. This patent cited another patent that had been
issued in 1979, 13 years before Calgon's patent actually issued, but 58 years after the citing patent (Calgon's) had
been applied for. Such anomalies are rare, and we have chosen to set the cite lag to zero in these cases.
25This classi¯cation was performed by Gal Steinberg and Manuel Trajtenberg (Tel Aviv University) and is available

from the present authors on request.
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=
#cites at lag s to patents applied for at t in ¯eld j

#patents applied for at t in ¯eld j

where j is the one digit ¯eld of the patent, t is the year in which the patent was applied for, and

s is equal to t¶¡ t, where t¶is the application year of the citing patent. A problem one confronts

when trying to model the citation lag distribution is the fact that we cannot allow both the citing

and cited year e®ects to change freely over time, because some years (notably those post-1996) are

never observed, so their e®ects will not be identi¯ed. We use a slightly more °exible version of the

model of Ja®e and Trajtenberg (1996) to solve this problem. Our model of the citation probability

is then the following:

Ct;j;s = ¯0®¿ (t)°t+s¯j exp(¡¯1¯Sj s)(1¡ exp(¡¯2¯Dj s) (10.3)

where ¿(t) maps the years into ¯ve-year cohorts (see the table of results for details). As in Ja®e-

Trajtenberg, this model constrains the citation-lag distribution to have the same shape for patents

of any year, but allows the shape and level of the distribution to be di®erent for each ¯eld and it

allows the overall level to vary by 5-year patenting interval and by citation year. The only di®erence

from their model is that in our most general version we have allowed both the di®usion process

(the ¯2¯
D
j term) and the obsolescence process (the ¯1¯

S
j term) to vary by technology ¯eld, whereas

they held the di®usion constant across ¯eld due to di±culties with identi¯cation.

Model (10.3) was ¯t to citation data aggregated by ¯eld (6 ¯elds), application year (1963-1993),

and citation year (1976-1994), yielding 2616 observations, each of which is the ratio of citations

made with lag s to patents in ¯eld j applied for in the application year t. The results are shown in

Table D.2. There are three sets of columns, the ¯rst for a model where di®usion and obsolescence

e®ects do not vary across ¯eld (¯Sj = 18j = 1; ::; 5 and ¯Dj = 18j = 1; ::; 5), the second for a model
where di®usion is the same for all technology ¯elds (¯Dj = 18j = 1; ::; 5), and the third for a model
where both di®usion and obsolescence are allowed to vary over technology ¯eld. Although allowing

di®usion to vary over technology ¯elds produces only a marginal improvement in the R-squared, it

is clear from the coe±cient estimates that there are substantial di®erences among ¯elds.

[Table D.2 about here]
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The J-T model allows for both cited and citing year e®ects. Although the cited year e®ects do

not vary much over the sample, the citing year e®ects show a substantial growth rate, consistent

with the "citation in°ation" mentioned earlier, plus the increase in the rate of patenting, which

generates more citations made each year. Figure D.3 shows the estimated citation lag distribution

purged of the fact that the probability of citation is increasing over time for all patents, and that

patents in a given cohort may be cited more or less, based on the complete model in the last

column of Table D.2. The vertical axis is the relative citation probability; the area under each of

the curves is the estimated relative overall citation intensity for a given ¯eld; the left-right position

of the curve indicates the "speed" of citation in a given ¯eld. The most cited patents are those in

computers and communications, followed by drug and medical patents. The average citation lag is

notably longer for drugs and medical, and the di®usion rate substantially slower for patents in the

"other" category. The modal lag ranges from 2.6 years for mechanical to 5.3 years for other.

[Figure D.3 about here]

We will use the results for the ¯rst model (shown on Figure D.3 as column 1 estimates) to

estimate the unobserved citation probabilities, since we do not want to purge the data of ¯eld

e®ects. We are missing citations made before 1976 to patents issued between 1963 and 1975, and

citations made after 1996 for patents issued between 1963 and 1995 (that is, we are missing one

year (1996) for patents issued in 1965, two years (1996, 1997) for patents issued in 1966, and 30

years (1997-2026) for patents issued in 1996. Our model allows us to predict the number of these

missing citations. De¯ne the ¯tted lag distribution in the following way:

Ds = exp(¡¯1s)(1¡ exp(¡¯2s) s = 0; ::; 30

Then the predicted number of citations at lag s for a patent issued at time t, when we do not

observe citations beyond lag S=T-t is the following:

Ct;s = Ds

PS
j=0 Ct;jPS
j=0Dj

For example, the predicted number of citations in the year 2000 to a patent issued in 1993 is the

following (when we observe citations only through 1996):
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C1993;7 = D7

P3
j=0C1993;jP3
j=0Dj

There is one problem with this procedure in the later years: because count data has a skew dis-

tribution and is bounded below by zero, when zero citations are observed (due to a short period over

which to observe them), the expected number of citations that will eventually be observed condi-

tional on this fact is not zero, but positive. We correct for this fact by replacing
PS
j=0 Ct;s=

PS
j=0Dj

in the equation above by the following quantity, derived empirically from our data in 1975 (where

we see 20 years of citations):

E[
20X
j=0

Ct;jj
SX
j=0

Ct;j = 0]

That is, we predict the total number of citations that will be observed in the 20 years given that

we observed zero citations in the ¯rst S years, and then distribute these citations according our

citation lag distribution.

To derive the estimated total (20-year) citations for any patent, we simply sum the observed

citations from the observed years and the predicted citations based on the above methodology for

the unobserved years. Totals based on these "corrected" citation counts are used as indicated in

Figures 2 and 3, and were used to construct the citation stocks used in the regressions.

40



Hall, Jaffe, and Trajtenberg 2000 5/4/00

Inverse
Year Weight

1964 2.119
1965 1.229
1966 1.063
1967 1.000

1968-89 1.000
1990 1.000
1991 1.003
1992 1.009
1993 1.034
1994 1.166
1995 2.230
1996 37.461

Table D.1
Weighting Factors for Patent Applications
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Coefficient S.E. Coefficient S.E. Coefficient S.E.
Tech Field Effects (base=other)
Chemicals excl Drugs 0.8788 0.0130 0.8943 0.0189 0.4443 0.0195
Computers & Communication Equip. 1.6150 0.0184 2.0179 0.0327 1.3016 0.0599
Drugs & Medical 1.3714 0.0164 1.1165 0.0189 0.5396 0.0195
Electrical & Electronics 1.1146 0.0145 1.2660 0.0235 0.6039 0.0238
Mechanical 0.9011 0.0131 0.9068 0.0188 0.4063 0.0160

Citing Year Effects (base=1976)
1977 0.8920 0.0279 0.8851 0.0220 1.0077 0.0251
1978 0.9961 0.0304 0.9902 0.0240 1.0936 0.0264
1979 1.0821 0.0330 1.0764 0.0261 1.1540 0.0277
1980 1.1507 0.0357 1.1468 0.0281 1.1959 0.0289
1981 1.1751 0.0375 1.1727 0.0296 1.1927 0.0295
1982 1.2540 0.0408 1.2508 0.0322 1.2390 0.0312
1983 1.2530 0.0426 1.2526 0.0337 1.2051 0.0317
1984 1.3981 0.0482 1.3956 0.0381 1.3048 0.0349
1985 1.5637 0.0548 1.5618 0.0434 1.4213 0.0388
1986 1.7444 0.0622 1.7447 0.0494 1.5508 0.0433
1987 1.9992 0.0727 2.0011 0.0578 1.7328 0.0497
1988 2.2563 0.0844 2.2648 0.0674 1.9086 0.0566
1989 2.4626 0.0954 2.4684 0.0761 2.0245 0.0625
1990 2.5883 0.1038 2.5991 0.0831 2.0780 0.0667
1991 2.6691 0.1106 2.6823 0.0886 2.0976 0.0698
1992 2.8730 0.1227 2.8921 0.0986 2.2111 0.0762
1993 2.7362 0.1219 2.7587 0.0981 2.0596 0.0741
1994 1.2983 0.0667 1.3108 0.0538 0.9545 0.0389

Cited Year Effects (base=1963-65)
1966-70 0.6736 0.0139 0.6723 0.0110 0.8749 0.0174
1971-75 0.6352 0.0125 0.6283 0.0104 0.9295 0.0220
1976-80 0.5687 0.0144 0.5594 0.0120 0.9369 0.0284
1981-85 0.4959 0.0159 0.4860 0.0133 0.9300 0.0352
1986-90 0.4275 0.0173 0.4152 0.0142 0.8935 0.0403
1991-93 0.3332 0.0188 0.3174 0.0148 0.7435 0.0410

Beta1: Obsolescence by Technology Field
Chemicals excl Drugs 1.0249 0.0204 0.7022 0.0248
Computers & Communication Equip. 1.2731 0.0185 1.1015 0.0268
Drugs & Medical 0.7796 0.0140 0.4559 0.0167
Electrical & Electronics 1.1558 0.0197 0.7960 0.0223
Mechanical 1.0125 0.0199 0.6251 0.0214
Beta1  (Base=Other) 0.1229 0.0018 0.1188 0.0017 0.1250 0.0017

Beta2: Diffusion by Technology Field 
Chemicals excl Drugs 3.5478 0.2699
Computers & Communication Equip. 2.2286 0.1406
Drugs & Medical 3.9224 0.2342
Electrical & Electronics 3.8451 0.2489
Mechanical 4.7339 0.3507
Beta2 (Base=Other) 0.4801 0.0132 0.4608 0.0104 0.1599 0.0063

R-squared 0.904 0.939 0.949
Standard error of regression 0.0591 0.0472 0.0430

Dep. Var.=No. of Citations by Citing Year Patents to Patents in Cited Year & Field 

TABLE D.2
Estimation of Citation Probability based on Jaffe-Trajtenberg Model

Cited Year: 1963-1993  Citing Year: 1976-1994  6 Tech Fields
2616 Observations = 6*(14*19 + (18*19)/2 - 1)



Hall, Jaffe, and Trajtenberg 5/4/00

Figure D.1
Application-Grant Lag Distribution
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Figure D.2
Empirical Citation Lag Distribution by Year
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Figure D.3
Citation Lag Distribution (1976-1994)
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Figure D.4
Citation Lag Distribution by Cited Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Lag

R
el

at
iv

e 
C

ita
tio

n 
Pr

ob
ab

ilit
y

1976 1981 1986 1991


