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1 Introduction

Firms show a great deal of ingenuity in targeting certain products at certain consumers.

A multiproduct monopolist can screen consumers over quality (see Rochet and Choné

(1998)). Alternatively many …rms screen consumers by bundling their products - a so-

phisticated form of quantity discounts (see McAfee et al. (1989), the work of Thanassoulis

(2001) Chapter 2 and Bakos and Brynjolfsson (1999)). On top of these tools …rms could

use the probability of delivery as another screening instrument. Many …rms commit to

…xed take it or leave it prices, however, examples of …rms o¤ering consumers a lottery

or a ‘prize draw’ also exist.1 Still more common are …rms haggling or bargaining with

potential consumers. In terms of calculating the monopolist’s expected pro…t, Riley and

Zeckhauser (1983) showed that both haggling and prize draws are equivalent to lotteries

in which either the goods the consumer receives or the price she pays for them is random.

These selling strategies are screening consumers using the probability of delivery. The

question is, if a multiproduct monopolist can commit to any selling strategy, when is the

probability of delivery a pro…table screening instrument? Can lotteries enhance monopoly

pro…ts or are …xed prices best?

In making her choice between …xed prices and lotteries a seller is attempting to balance

two basic considerations. On the one hand consumers who do not value a product highly

might not be prepared to pay for it outright, but are prepared to pay something less for

the chance of receiving it. Similarly consumers who do value the products will be less keen

to lose them through a lottery or by haggling. The lotteries therefore act to separate the

consumers and so would allow the seller to increase her pro…ts. On the other hand, the

availability of the lottery might encourage some consumers who were going to purchase

a product to try and save money by taking a gamble on receiving it through the lottery.

1For example, package tour operators will o¤er consumers a holiday at a reduced rate in a chosen
country but the exact resort is ex ante random, depending on which has most space left.
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This e¤ect would act against the seller and tend to depress pro…ts. Which of these e¤ects

dominates has thus far remained an open question. Does the cost to the seller of using the

screening instrument at all outweigh any bene…ts she can then receive through enhanced

price discrimination? Can we characterise when this is or isn’t the case?

1.1 A Brief Survey of the Literature

The …rst major inroad into this problem was made by Riley and Zeckhauser (1983).

They considered a one good monopolist selling to a population of consumers with unit

demands. This restriction to one good had the e¤ect of causing all consumers to di¤er

in only one variable. In this context Riley and Zeckhauser (1983) were able to tackle

the problem directly using an integration by parts technique coined in Mirrlees (1971)

which is common to the screening literature in one dimension. With this tool Riley and

Zeckhauser (1983) construct an elegant geometrical proof that the optimal probability of

sale function takes only the values 0 or 1 and so must correspond to a take-it-or-leave-

it o¤er. In other words, lotteries do not help a single good monopolist. However, the

integration by parts technique famously does not hold in multiple dimensions.2 This led

to speculation that the Riley and Zeckhauser (1983) result might be speci…c to the case

in which all consumers can be ordered on a line.

The work of Rochet and Choné (1998) seemed to support this view. They consider

the general multiple dimensional screening problem in which a multiproduct monopolist

sells her goods with a continuous range of product qualities to consumers who are char-

acterised by a multiple dimensional type vector. Rochet and Choné (1998) reduce the

monopolist’s pro…t maximisation problem to a set of partial di¤erential equations. These

partial di¤erential equations often can only be solved numerically. Rochet and Choné

(1998) were able to show that in most such problems the monopolist will o¤er large sec-

tions of the population a personalised quality schedule. This made it seem very unlikely

indeed that in the complicated multiproduct case lotteries could be ruled out with a Riley

and Zeckhauser (1983) type result.

Attempts were however made to extend the ‘no lottery’ result of Riley and Zeckhauser

(1983) to the multiproduct monopoly case. In particular McAfee and McMillan (1988)

attempted to extend the Riley and Zeckhauser (1983) proof to multiple consumer char-

acteristics directly. As mentioned above, the integration by parts method of Mirrlees

(1971) does not extend to multiple dimensions. Instead, McAfee and McMillan (1988)

considered the problem as the sum of one-dimensional elements. To allow the problem to

be broken up in this way McAfee and McMillan (1988) restrict the distribution of con-

sumers’ valuations to satisfy a speci…c hazard rate condition. Having done this McAfee

2See Rochet and Choné (1998).
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and McMillan (1988) reduce their restricted problem to a series of mathematical condi-

tions. However, they acknowledge that these conditions are di¢cult to interpret and so

restrict the problem further to the case of a two good monopolist. Here, they are able to

claim that lotteries are not bene…cial to the monopolist and so the Riley and Zeckhauser

(1983) result does extend, albeit in their special case. This chapter will throw some doubt

on the scope of this result.

Work in a di¤erent area by Rasul and Sonderegger (2000) tilted the question of lotter-

ies in a di¤erent direction. They looked at the context of consumers as agents contracting

with the monopolist or, in their work, the principal. What is crucial now is that the

consumers (agents) have outside options which depend on their types. This is because

Rasul and Sonderegger (2000) model the situation in which the agents must make rela-

tionship speci…c investments before they can contract with the principal.3 Speci…cally,

consumers with high valuations (agents of high type) who do not trade with the principal

lose a great deal more than consumers with low valuations. In the Rasul and Sondereg-

ger (2000) model this is because of the di¤ering opportunity costs of no trade across the

agents. This assumption di¤ers with the standard approach to monopoly situations in

which if a consumer receives nothing their utility is zero. Rasul and Sonderegger (2000)

now …nd that using lotteries is pro…t maximising for the principal, even in the one di-

mensional case. So what has changed? Previously consumers with high valuations might

have been tempted to pay less for a monopolist’s products and take a gamble on receiving

them at all. In the Rasul and Sonderegger (2000) context when these high valuation

consumers lose the lottery they don’t just receive nothing, they are actively hurt. This

of course deters high valuation consumers from using the lottery option and so prevents

pro…t loss along this avenue. On the other side of the equation low valuation consumers

who wouldn’t have participated if no lottery is o¤ered are still tempted to try it. If they

lose they are hardly hurt at all as Rasul and Sonderegger (2000) have a type dependent

outside option. The balance of the two forces we discussed above has therefore clearly

been pushed in favour of lotteries and consequently lotteries are found to be bene…cial.

1.2 Outline of the Chapter

This chapter will show that even without tipping the scales in the sense of Rasul and

Sonderegger (2000) the Riley and Zeckhauser (1983) no lottery result does not extend to

the multiproduct case. In addition this chapter will begin to characterise the bene…ts of

lotteries to the multiproduct monopolist. Previous multiproduct work on lotteries (see

3The Rasul and Sonderegger (2000) work is motivated by the automobile industry in which the com-
ponent manufacturing ‘agent’ …rms make relationship speci…c investments before they can trade with the
principal who actually puts the cars together.
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McAfee and McMillan (1988)) has been impeded by the fact that determining even the

optimal non-lottery (or bundling) tari¤ is incredibly di¢cult.4 Clearly therefore answering

the question of whether there is any improvement in pro…tability with lotteries over and

above the best bundling tari¤ is more complicated still. We are able to begin our analysis

sidestepping these computational issues by introducing a model of substitutable goods in

which bounds can be found for the optimal prices. We suppose that the monopolist is

selling two substitutable goods and consumers demand at most one unit of either good.

However, no consumer will choose to buy both goods. This model applies to a large class

of markets, the market for a TV for example. In addition the results of this model will

have direct implications for the more general multiproduct monopolist case analysed by

McAfee and McMillan (1988).

The chapter begins with a simple example. We show that a monopolist selling substi-

tutes to uniformly distributed consumers can bene…t from using lotteries. In other words,

the optimal selling strategy is more complicated than take it or leave it prices. Section 3

introduces the multiproduct monopoly model of substitutable goods which allows us to

address when a general lottery will be more pro…table than the best …xed prices. By look-

ing in turn at the case of symmetry and asymmetry in Section 4 we …nd key applicability

conditions on consumer taste which are su¢cient to guarantee that lotteries are part of

the most pro…table selling strategy. The conditions are captured formally in Propositions

4 and 6 and discussed intuitively in Section 5.1. We see that one vehicle through which

lotteries become pro…table is if there are few consumers in the population who value both

component goods relatively highly: it is these consumers who already purchase who would

be tempted to make use of a lottery option and so would create a pro…t loss for the …rm.

Secondly we see that lotteries become pro…table if margins are high: in this case pro…t

increases from a small gain in the proportion of the market served outweigh the pro…t loss

from other consumers swapping to the new lottery. More subtly we see that for lotteries

to be pro…table along this avenue we require there to be some consumers who would be

tempted by the lottery. We will see that this might not be the case if the two substitutable

goods di¤er very greatly in their quality. A further applicability condition derives from

the fact that the lotteries can have asymmetric e¤ects across a boundary. These e¤ects

must be considered individually to ensure a lottery is pro…table.

In Section 5.2 we discuss the implication for selling strategies. It may, on the surface,

seem that lotteries are not practical sales tools. However, we will see that pro…table

lotteries can be introduced by (a) claiming capacity constraints or (b) ensuring that a seller

remains haggling over more than one single good, keeping negotiations open on several

fronts. These insights have applications in industries as diverse as car sales, tourism and

4The work of McAfee et al. (1989) and Thanassoulis (2001) Chapter 2 on bundling considers deviations
from optimal pure component pricing rather than the fully optimal tari¤ as a result.

4



telecoms amongst many others.

Having established the relevance of lotteries to the two substitutable goods seller,

Section 6 considers the general two good monopolist serving consumers with no comple-

mentarities in demand. Once again lotteries are found to be generally useful as exhibited

through a class of cases. This family of cases forms the core of a counter-example to the

result of McAfee and McMillan (1988) documented above. We exhibit a case, satisfying

the conditions of their no lottery result, in which lotteries are pro…table. This example

shows that the McAfee and McMillan (1988) result is not fully stated and at least needs

some extra restrictions on consumer types to be valid.

Section 7 returns to the two substitutable goods case and considers how to determine

the fully optimal pricing strategy. Sadly, as discussed in Rochet and Choné (1998),

analytical solutions are hard to come by. The section therefore describes how the problem

can be solved using linear programming techniques. The fully speci…ed problem contains

non-linear constraints which are hard to solve. Section 7 documents how the non-linear

constraints can be relaxed to linear ones using implications of the convexity constraints

satis…ed by the solution. This technique is used to determine the fully optimal solution of

a class of examples with uniformly distributed consumers. Proposition 12 shows us that

in this case the optimal selling strategy is very simple and consists of take it or leave it

prices in combination with only one lottery. This particular class of cases only leads to

very modest pro…t gains. However, to illustrate that this is not always the case, Section

7.3.2 includes an example in which the pro…t gains of lotteries over the best …xed prices

are over 8%.

Having established a model in which the pro…tability of lotteries can be studied, Sec-

tion 8 considers the welfare implications of the pro…table use of lotteries. As the substi-

tutes model is new in the literature as a forum for the discussion of the pro…tability of

lotteries so it is also new as a forum to assess the welfare implications. We show that

if the introduction of a lottery which only alters consumer behaviour slightly is pro…t

enhancing then it is also welfare enhancing. We show that this result not only holds in

the substitutes model of Section 3 but also in the no complementarities model of McAfee

and McMillan (1988). However, we show that this welfare result does not hold once the

monopolist moves to the fully optimal lottery pricing strategy. In this case the welfare

implications of allowing lotteries/haggling are ambiguous. We depict this result through

a numerical example using the substitutes paradigm.

Thus far we have considered the case for lotteries in a monopoly context. Section 9

considers the role lotteries have to play amongst …rms in strong competition. Using a

result of Armstrong and Vickers (2001) we show that lotteries do not have a role to play

in a strongly competitive market. Here prices have been driven too close to cost to make

the lottery option appealing to consumers. Section 10 concludes with Appendix A giving
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the proofs of technical results discussed in the chapter.

2 Motivating Example

Riley and Zeckhauser (1983) showed that lotteries do not form part of the most pro…table

selling strategy for a single product monopolist. This example shows that this result does

not extend to sellers of more than one good.

Suppose a monopolist is selling two substitutable products such as two types of TV set.

We assume that no consumer will choose to purchase both goods together. For simplicity

we assume that the monopolist has a zero unit cost of production for each good. Suppose

that consumers’ valuations for the two goods, (x; y) are uniformly distributed on the

square [5; 6]2 : The size of the population is normalised to 1.

O¤ering only take it or leave it prices the …rm would o¤er price p for either good and

receive a pro…t of

¼ (p) = 2 ¢ p|{z}
revenue

¢ (6¡ p) 1
2
(1 + p¡ 5)| {z }

proportion of consumers
buying one particular good

The …rst order condition for the price p can then be derived and so the optimal …xed price

found to be:

popt =
10 +

p
28

3
= 5:097 (to 3 s.f.)

Producing a pro…t with no lottery of

¼
¡
popt
¢
= 5:049 (to 3 s.f.) (1)

Now suppose that the monopolist introduces a lottery o¤er of
¡
1
2
; 1
2

¢
for a price of

popt ¡ 0:04 = 5:057: In words the new pricing strategy could be expressed as:

“You can purchase good 1 at a price of popt: Alternatively you can purchase

good 2 at the same price, popt: Finally you might instead decide to purchase

the lottery which will deliver to you a good with certainty, with probability 1
2

it will be good 1, alternatively it will be good 2. This lottery can be bought

for a price of popt ¡ 0:04:”

The o¤ering of this lottery will cause a set of people with valuations close to equal

for the two goods to swap to the lottery option. Those consumers who only value one of

the goods highly will not want to take a gamble on receiving the other good. Finally the

number of consumers served will be increased as there will be some who will now decide
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Figure 1: Figure depicting the behaviour of consumers in response to the new lottery o¤er

to buy given the slightly cheaper price. The consumers can therefore be broken down into

three regions, separated by the lines

Indi¤erent between the lottery

and a good with certainty
x¡ p = x

2
+ y

2
¡ p+ 0:04) y = x¡ 0:08

Indi¤erent between the lottery

and the outside option
x
2
+ y

2
¡ p+ 0:04 = 0) x+ y = 2p¡ 0:08

These regions are shown in Figure 1.

We can therefore calculate the new pro…t from this new tari¤. The proportion of

consumers buying one good with certainty is given by·
2 ¢ 1
2
(6¡ p) (1¡ 0:08 + p¡ 0:08¡ 5)

¸
p=5:097

= 0:846

The proportion of consumers purchasing the lottery is given by·
2 ¢ (6¡ p) ¢ 0:08 + 1

2
¢ 0:082

¸
p=5:097

= 0:148

The new pro…t is therefore given by

¼ (p; p¡ 0:04) = [p ¢ 0:846 + (p¡ 0:04) ¢ 0:148]p=5:097
= 5:060 (to 3 s.f.) (2)

Therefore comparing the pro…t without a lottery (1) to that with a lottery (2) we have

achieved a pro…t gain. That is, using a lottery has made the monopolist more pro…table.
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In this case by the very modest margin of 0.2%. This is small in this case but signi…cant

as we now see that lotteries can be pro…table. This chapter will address when this is the

case, how pro…table lotteries might be and the welfare implications of using lotteries at

all.

3 The Substitutes Model

To address the wider applicability of lotteries we consider a formal model of substitutable

goods. Each individual consumer is characterised by two variables, x and y: These vari-

ables capture the consumer’s willingness to pay for good 1 and good 2 respectively. The

goods are substitutable and so we assume that the consumer will not choose to purchase

both. This crucial simpli…cation of the general multiproduct monopolist model allows

us to determine many insights governing the pro…tability of lotteries over and above the

best …xed prices can do in the multiproduct context. We suppose that consumers are

distributed in the population according to an exogenous density function f (x; y) which

is known to the seller. For technical reasons we assume that the support of f is convex

and that the density is bounded with bounded derivative. We normalise the size of the

population to 1. The consumers are all risk neutral.

Each consumer will make the purchase decision which maximises her utility which is

her willingness to pay less the amount paid. Each consumer also has the option of not

making a purchase at all. This outside option is normalised to provide a utility of 0. The

seller cannot di¤erentiate between consumers.

We model the seller as a monopolist who has unit costs of production c1 and c2 for

goods 1 and 2 respectively. The seller has no economies of scale or scope in serving this

market. The seller has no commitment problem and so can o¤er take it or leave it prices

or prices for a lottery of the sort described in the example of Section 2 above absent

credibility issues. We suppose that initially the seller is o¤ering her goods for sale at the

optimal take it or leave it (tioli) prices, p = (p1; p2). The seller is considering introducing

the lottery (q1; q2) such that q1+q2 = 1 priced at q ¢p¡´ where ´ > 0 is to be determined.
This is the lottery which awards the consumer good 1 with probability q1 and failing

that good 2 with probability q2.5 We will establish su¢cient conditions for this to be a

pro…table strategy. I have decided to focus on lotteries which provide the consumer with a

good with probability 1, (q1 + q2 = 1) ; as these seem to have greater practical relevance.6

5The lottery is therefore like a …nancial asset: with probability q1 the state of nature will be such that
good 1 is delivered and with probability q2 the state of nature will be such that good 2 is delivered.

6For a seller to be able to claim to take consumers money and then commit to randomise honestly
and provide them with no good in return only some of the time is placing a great reliance on the sellers
assumed full credibility.
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We will see that in a large class of cases such lotteries will be the only ones involved in

the fully optimal selling strategy.

The key to this chapter is that we can apply a derivatives approach to the …rm’s pro…t

as a function of ´ above. The reason for this is that the choke price of a lottery q is at

most q ¢p: That is, no consumer will ever be willing to purchase the lottery q if its price is
at or above q ¢ p and so the lottery can only be pro…t enhancing as its price falls (´ grows
away from 0).

Lemma 1 No consumer will strictly prefer the lottery q at a price of q ¢ p to the …xed
price options with prices

¡
p
¢
.

Proof. A risk neutral consumer of type (x; y) purchasing the lottery q at a price of
q ¢ p will derive utility q1 (x¡ p1)+ q2 (y ¡ p2) which is the weighted average of the utility
derived from the two …xed price options and so

[Utility from lottery] · max f(x¡ p1) ; (y ¡ p2)g
which proves the result.

The chapter therefore considers how pro…ts are a¤ected as the price of the lottery falls

and consumers begin to be tempted by the lottery option.

3.1 Consumers’ reaction to the lottery o¤er

Consumers make purchase decisions which maximise their utility. We can therefore de-

termine which consumers respond to the introduction of the lottery o¤er q at a price of

q ¢ p¡ ´ and change their purchase behaviour by swapping to the lottery.

3.1.1 Consumers swapping from good 1 to lottery

Incentive compatibility requires good 1 purchasers to have types satisfying

x¡ p1 > 0 x¡ p1 > y ¡ p2
For such a consumer to swap to the lottery implies that

q1 (x¡ p1) + q2 (y ¡ p2) + ´ > x¡ p1
) y > x¡ p1 + p2 ¡ ´

q2

The pro…t change experienced by the seller is therefore given byZ 1

x=p1

Z x¡p1+p2

y=x¡p1+p2¡ ´
q2

q1 (p1 ¡ c1) + q2 (p2 ¡ c2)¡ ´ ¡ (p1 ¡ c1) dF

=

Z 1

x=p1

Z x¡p1+p2

y=x¡p1+p2¡ ´
q2

fq2 [(p2 ¡ c2)¡ (p1 ¡ c1)]¡ ´g dF (3)
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Similarly consumers swapping from good 2 to the lottery results in a pro…t change ofZ 1

y=p2

Z y¡p2+p1

x=y¡p2+p1¡ ´
q1

fq1 [(p1 ¡ c1)¡ (p2 ¡ c2)]¡ ´g dF (4)

3.1.2 Consumers swapping from no consumption to lottery

The consumers who were not previously being served have types satisfying

0 > x¡ p1 0 > y ¡ p2

For these consumers to swap to the lottery we require

q1 (x¡ p1) + q2 (y ¡ p2) + ´ > 0

These three inequalities map out a triangular region in (x; y) space. The contribution to

pro…t change is therefore given byZ p1

x=p1¡ ´
q1

Z p2

y=p2¡ q1
q2
(x¡p1)¡ ´

q2

fq1 (p1 ¡ c1) + q2 (p2 ¡ c2)¡ ´g dF (5)

3.1.3 Pro…t change

Combining terms (3), (4) and (5) and di¤erentiating with respect to ´ gives

@

@´
¢¦(´) = ¡

8<:
R1
x=p1

R x¡p1+p2
y=x¡p1+p2¡ ´

q2

dF +
R1
y=p2

R y¡p2+p1
x=y¡p2+p1¡ ´

q1

dF

+
R p1
x=p1¡ ´

q1

R p2
y=p2¡ q1

q2
(x¡p1)¡ ´

q2

dF

9=; (6)

+
1

q2

Z 1

x=p1

fq2 [(p2 ¡ c2)¡ (p1 ¡ c1)]¡ ´g f
µ
x; x¡ p1 + p2 ¡ ´

q2

¶
dx

+
1

q1

Z 1

y=p2

fq1 [(p1 ¡ c1)¡ (p2 ¡ c2)]¡ ´g f
µ
y ¡ p2 + p1 ¡ ´

q1
; y

¶
dy

+
1

q2

Z p1

x=p1¡ ´
q1

fq1 (p1 ¡ c1) + q2 (p2 ¡ c2)¡ ´g f
µ
x; p2 ¡ q1

q2
(x¡ p1)¡ ´

q2

¶
dx

At this point it would be tempting to examine whether a small increase in ´ above 0

can ever result in a pro…t improvement for the seller. Setting ´ = 0 in (6) above we have·
@¢¦

@´

¸
´=0

=
1

q2

Z 1

x=p1

q2 [(p2 ¡ c2)¡ (p1 ¡ c1)] f (x; x¡ p1 + p2) dx

+
1

q1

Z 1

y=p2

q1 [(p1 ¡ c1)¡ (p2 ¡ c2)] f (y ¡ p2 + p1; y) dy
= 0
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The rate of change in pro…t from the introduction of the lottery q at a price of q ¢ p¡ ´ is
therefore zero for small ´. We cannot as yet say whether the lottery is pro…table or not

without looking at the second order conditions.7

3.1.4 Second Order Conditions on Pro…t Change

Di¤erentiating (6) with respect to ´ and setting ´ to be zero and using the fact that

q1 + q2 = 1 then gives·
@2¢¦

@´2

¸
´=0

= ¡ 2

q2q1

Z 1

x=p1

f (x; x¡ p1 + p2) dx

¡ 1
q2

Z 1

x=p1

[(p2 ¡ c2)¡ (p1 ¡ c1)] f2 (x; x¡ p1 + p2) dx

¡ 1
q1

Z 1

y=p2

[(p1 ¡ c1)¡ (p2 ¡ c2)] f1 (y ¡ p2 + p1; y) dy

+
1

q2q1
fq1 (p1 ¡ c1) + q2 (p2 ¡ c2)g f (p1; p2)

where f1 (¢; ¢) represents the partial derivative with respect to the …rst argument. This
expression can be rewritten as·

@2¢¦

@´2

¸
´=0

(7)

=
1

q2q1

½
¡2
Z 1

x=p1

f (x; x¡ p1 + p2) dx+ fq1 (p1 ¡ c1) + q2 (p2 ¡ c2)g f (p1; p2)
¾

+
[(p2 ¡ c2)¡ (p1 ¡ c1)]

q2q1

½Z 1

x=p1

fq2f1 (x; x¡ p1 + p2)¡ q1f2 (x; x¡ p1 + p2)g dx
¾

A su¢cient condition for lottery q; at a price of q ¢p¡´ with ´ just larger than zero, to
be a pro…table addition to the tioli prices p is therefore given when the right hand side of

(7) is positive. This ensures that the pro…t change becomes positive as ´ increases away

from 0.8

7One can prove similarly that this is actually a universal feature of lotteries as sold by a completely
general multiproduct monopolist. This zero …rst order condition has the implication that pricing exper-
iments aimed at exploring the pro…tability of lotteries must be non-local (in the sense of ´ >> 0) and
therefore inherently riskier for the …rm.

8This is su¢cient not necessary for the lottery (q1; q2) to be a pro…table addition to the tari¤. However,
one would need the pro…t function to not be quasi-concave in pro…t when lotteries are introduced for
lotteries to have a chance of being pro…table when (7) is negative.
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4 Analysis of the Lottery Option

Section 3 has introduced a model of substitutes and noted that if the goods are priced at

p then no consumer will be willing to pay more than q ¢ p for the lottery q: Condition (7)
above therefore determines when the lottery q at a price of q ¢ p ¡ ´ will be a pro…table
addition to the tioli prices. However, we aim to determine whether lotteries can be more

pro…table than the best tioli prices. It is here that the substitutes model comes into its

own. Determining the optimal prices for a general multiproduct monopolist is particularly

di¢cult as noted in Thanassoulis (2001) Chapter 2 and by McAfee et al. (1989). However,

in our model of substitutes, as consumers do not purchase the bundle of both goods, there

are only two tioli prices to …nd - one in the case of symmetry. This section is therefore

able to analyse when lotteries form part of the fully optimal pricing strategy.

4.1 The symmetric case

To understand better the conditions for a lottery to be pro…table let us consider …rst the

symmetric case where c1 = c2 = c, the consumer density function satis…es

f (x; y) = f (y; x)

and the optimal deterministic price is p for each good. To avoid degenerate cases we

suppose that the support of the density function f (¢) is convex in the set R2+n [0; c]2 :9
The second order conditions for a lottery to be pro…table derived from (7) above then

become ½
¡2
Z 1

x=p

f (x; x) dx+ (p¡ c) f (p; p)
¾
> 0 (8)

Before proceeding we de…ne the following constants for the density f :

1. We suppose that consumer types are supported in a bounded space. In particular

we suppose that supp f = ­ ½
h
a; a+ Kp

2

i2
for some positive constants a and K:

2. The consumer density has a bounded derivative along the diagonal and so we de…ne

the constant g as

sup
x2supp f

f1 (x; x) = sup
x2supp f

f2 (x; x) := g

9The symmetry assumption along with the assumption of convexity on R2+n [0; c]2 guarantee that there
exist consumers who value both goods equally and above cost. That isZ 1

x=c

f (x; x) dx 6= 0
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3. The density along the diagonal is bounded above and below so we can de…ne the

constants
©
¹; ¹

ª
such that ¹ = infx2supp f f (x; x) · supx2supp f f (x; x) = ¹:

An argument identical to that in Armstrong (1996), Proposition 1, proves that the

monopolist will always choose not to serve all consumer types so that there will be some

consumers in ­ who are not making a purchase who value the two goods equally:

Lemma 2 Either the best …xed price p is such that consumer (p; p) lies strictly inside ­;
or ­ lies across the line between (p; p) and the origin.

Proof. This result follows by contradiction. Due to the symmetry of the problem
and the convexity of ­ either the lemma holds or all consumers are being served. If all

consumers were being served then the monopolist could increase the price of both goods

by some small " > 0: This would cause pro…ts to grow by O (") from those who remain

buying. In return a set of consumers of order O ("2) will stop buying corresponding to

the area of those consumers remaining unserved. The pro…t gain exceeds the pro…t loss

for small " and so we would have (p; p) lying in the interior of ­ as required.

Analysis of equation (8) highlights two features of the consumers’ tastes which lead to

the presence of lotteries on the fully optimal selling strategy. These are:

1. Having few high valuation consumers. That is consumers who value both of the

goods relatively highly.

and

2. Having high margins as a result of consumers valuing the goods greatly above cost.

4.1.1 The impact of high valuation consumers

Suppose there are few of these consumers so that consumers valuing one component

highly tend to value the other component less, then lotteries will be part of the fully

optimal pricing strategy.10 To prove this we note that associated with any population

tastes f (x; y) there is an ordered family of populations
nefk (x; y)o in which the best

…xed prices, p; are unchanged but in which there are fewer high valuation consumers.

Formally de…ne efk (x; y) to be the population with tastes given by f (x; y) but in which
all the consumers whose tastes lie in the small triangle to the North East of the line x+y =

2
³
a+ Kp

2

´
¡ k are moved either South or West as depicted in Figure 2. In addition we

require k 2
h
0; 2

³
a+ Kp

2

´
¡ 2p

´
with the right hand end of this region labelled k: A

typical member of this family is depicted in Figure 2.

10This concept is clearly linked to the concept of negative correlation in consumers’ valuations.
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Figure 2: The distribution of types given by efk (x; y) as detetmined from the population

f (x; y) :

We note that the …rst order conditions for the best …xed price are the same for all

members of the family
nefk (x; y)o and so the left hand side of equation (8) increases as

k becomes larger.

Lemma 3 Given a symmetric distribution of consumers’ tastes, f (x; y) then there exists
some k¤ < k such that lotteries are part of the fully optimal selling strategy for populationsn efk (x; y)¯̄̄ k 2 £k¤; k¢o
Proof. If Lemma 2 is satis…ed by having ­ = supp f cross the line between (p; p) and

the origin then using lotteries is more pro…table than the best …xed prices. To see this

consider the lottery q =
¡
1
2
; 1
2

¢
priced at p ¢ q¡´ where ´ is chosen so that the indi¤erence

curve between buying the lottery and not
¡¡
x¡ p¢ ¢ q + ´ = 0¢ is tangent to the North

East edge of ­: This is possible by the convexity and symmetry of ­: This lottery will

be chosen by a set of consumers who were previously not served and will be a positive

contribution to pro…t by footnote 9. No other consumers will be a¤ected giving the result.

If Lemma 2 is satis…ed by having (p; p) 2 ­ then as k % k;
R1
x=p

f (x; x) dx decreases

monotonically towards 0 which gives the result.

Lemma 3 therefore illustrates the link between having few high valuation consumers

who like both goods and the guaranteed optimality of lotteries. The intuition for this

result is that by introducing a lottery in the manner of the model, pro…ts are made on

new consumers served but lost on previous consumers who value both goods equally and

14



were already purchasing. By limiting the number of high type consumers we automatically

reduce the magnitude of the loss and so lotteries become a more attractive proposition.

This section therefore shows that if Lemma 2 is satis…ed by having (p; p) lie North

East of ­ then lotteries will be part of the most pro…table tari¤: there are no consumers

here who value both goods above their best …xed prices and so a lottery can be introduced

priced low enough that some previously unserved consumers choose it.

4.1.2 The role of pro…t margins

The second feature of consumers’ tastes which guarantees that lotteries are part of the

fully optimal pricing strategy is if margins are high. In particular if consumers’ valuations

for the goods are far greater than cost. This will ensure that any pro…ts made by serving

a few more consumers are large and outweigh the loses made on existing business. To see

that this scenario is compatible with setting the best …xed prices suppose that Lemma 2

is satis…ed by having f (p; p) ¢ 0: Now note from conditions 1 and 2 that
¯̄
d
dx
f (x; x)

¯̄ · 2g
for all x in the support of f and soZ 1

x=p

f (x; x) dx · 1

2
K (f (p; p) + 2gK + f (p; p))

= K (f (p; p) + gK)

From (8) then the su¢cient condition for lotteries to be pro…table becomes

p¡ c > 2K
µ
1 +

gK

f (p; p)

¶
We can now use the fact that the optimal price p must satisfy p ¸ a and so deduce a

condition on a for lotteries to be pro…table. This is captured in the following proposition:

Proposition 4 If the goods are symmetrically valued in the population, have equal pro-
duction cost and consumer valuations satisfy conditions 1 to 3 then a su¢cient condition

for lotteries to be part of the optimal pricing strategy is that the lower bound of consumer

valuations, a; satis…es

a > c+

8<: 2K
³
1 + g

¹
K
´
if g ¸ 0

2K
³
1 + gK

¹

´
if g < 0

Before discussing the margins directly we note that for lotteries to be pro…table we

require either:

1. If the density is downward sloping along the diagonal (so that g is negative) then

having consumers su¢ciently di¤use along the diagonal (K large) will allow the suf-

…ciency condition to be satis…ed. This highlights the high valuation consumer e¤ect
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as, because the density is downward sloping, the number of high valuation consumers

is low and there are a relatively large number of consumers with equal valuations

between the goods who are indi¤erent between purchasing and not. Increasing the

number of consumers being served through lotteries is therefore pro…table.

Or

2. If the density along the diagonal is upward sloping then we need consumers to be

very concentrated in their tastes (K small). This ensures that the pro…t gain from a

small gain in consumers from a lottery is comparable with the pro…t loss sustained

over the population along the diagonal. This is again a product of the …rst insight in

which the number of high valuation consumers had to be limited for the su¢ciency

condition for lotteries to be satis…ed.

We now note that Proposition 4 can always be satis…ed if the margins are high. In

particular if consumers value the goods su¢ciently above cost.

Corollary 5 Given any symmetric consumer density f (x; y) supported on
h
a; a+ Kp

2

i2
and convex in R2+n [0; c]2 such that infx2ha;a+ Kp

2

i f (x; x) > 0 with bounded derivatives then
lotteries will be part of the most pro…table selling strategy for symmetric goods if a is large

enough.

Proof. If Lemma 2 is satis…ed by having ­ = supp f cross the line between (p; p) and
the origin then the proof of Lemma 3 shows that lotteries are part of the most pro…table

pricing strategy. Otherwise, under the conditions of the corollary, Proposition 4 is satis…ed

giving the result.

Corollary 5 therefore implies that lotteries are a robust feature of the optimal selling

strategy when the goods are perfect substitutes. Under the conditions of the corollary

using lotteries is pro…table as they allow the proportion of the population served to be

increased as compared to their not being used. This will be discussed in detail in Section

5 with the welfare implications discussed in Section 8.

4.2 General su¢cient conditions for lotteries to be pro…table

We now move away from symmetry and consider general su¢cient conditions for lotteries

to be part of the fully optimal pricing strategy. We de…ne the following variables associated

with the exogenous density function f (¢; ¢) and its support ­:

1. We …rstly require that the interior of the support of the density function, ­; contains

a consumer of type p = (p1; p2) where p is the optimal take it or leave it price. This

is done by extending f by an arbitrarily small density if necessary.
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2. We now suppose that the support of this density is bounded so that­ ½
h
®; ®+ Kp

2

i
£h

¯; ¯ + Kp
2

i
for some positive constants ®; ¯ and K:

3. The derivatives of the density function are bounded and satisfy

°X = inf
fx;yg2supp f

f1 (x; y) · sup
fx;yg2supp f

f1 (x; y) = °
X

±Y = inf
fx;yg2supp f

f2 (x; y) · sup
fx;yg2supp f

f2 (x; y) = ±
Y

Using these constants we note that d
dx
f (x; x¡ p1 + p2) · °X + ±Y and henceZ 1

x=p1

f (x; x¡ p1 + p2) dx · 1

2
K
£
f (p1; p2) +

¡
°X + ±Y

¢
K + f (p1; p2)

¤
= K

µ
f (p1; p2) +

1

2

¡
°X + ±Y

¢
K

¶
So from (7) we have that

·
@2¢¦

@´2

¸
´=0

¸ 1

q2q1

8><>:
¡2K ¡f (p1; p2) + 1

2

¡
°X + ±Y

¢
K
¢

+ fq1 (p1 ¡ c1) + q2 (p2 ¡ c2)g f (p1; p2)
+ [(p2 ¡ c2)¡ (p1 ¡ c1)]

©
q2°X ¡ q1±Y

ª
K

9>=>;
Now suppose without loss of generality that the goods are labelled such that the

monopolist enjoys a larger margin on good 2. That is p2 ¡ c2 ¸ p1 ¡ c1: We see that if
the margins on the two goods are the same then we have a condition entirely analogous

to that in the symmetric case. However, in general we have the following result:

Proposition 6 Suppose that consumer valuations satisfy assumptions 1 to 3 above. Lot-
teries will be more pro…table than tioli prices p if there exists a lottery (q1; q2) with

q1 + q2 = 1 such that

1. Probabilities can be chosen so that q1±Y · q2°X
and also

2.

q2 (p2 ¡ c2) + q1 (p1 ¡ c1) > 2K
Ã
1 +

1

2

¡
°X + ±Y

¢
K

f (p1; p2)

!

As in the case of symmetry, condition 2 shows that having large enough margins is a

prerequisite to meeting the su¢ciency conditions for lotteries to be more pro…table than
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just prices (p1; p2) : This is because by introducing a lottery some already purchasing con-

sumers will swap to the cheaper option and so one must ensure that the extra pro…ts from

new business outweigh the loss from those who derive the same utility from both goods

and so move to the lottery. This makes clear the importance of having some consumers of

type p in the population, as guaranteed by assumption 1. It is these consumers who are

attracted by this lottery. If there are few of them then this lottery becomes less relevant.

Condition 1 highlights a second point in the general case. When margins on the two

goods are unequal, introducing a lottery will engender a loss in pro…t from those that

stop buying the high margin good coupled with a gain from those moving from the low

margin good. We have labelled the high margin good 2: For a lottery to be pro…table

we need to ensure that this pro…t loss is not too large relative to the margin gain from

those swapping from the other good to the lottery. This is ensured by making sure that

the maximum rate of gain of consumers to the lottery in the Y direction
¡
±Y
¢
is at worst

similar in size to the minimum rate of gain of consumers to the lottery in the X direction

(°X) : This result is captured in condition 1.

Having determined su¢cient conditions in Proposition 6 for lotteries to be pro…table

we must consider if these conditions can ever be met if prices are set to their best tioli

levels. It is here that the model of substitutes allows the insights to appear much more

readily. Given Conditions 1 to 3 on the consumer density function, Proposition 6 can be

made seemingly exogenous using the bounds that p1 ¸ ® and p2 ¸ ¯: However, condition
1 on the density function is endogenous as it requires a consumer of type (p1; p2) to lie

in the interior of the support of consumer tastes where (p1; p2) are the best tioli prices.11

However, in the symmetric case we have seen that there are always consumers South

West of (p; p) who aren’t served by the best …xed prices with Corollary 5 showing that

lotteries are a general feature of optimal pricing. Therefore by continuity the condition

will be satis…ed for a large class of asymmetric cases. This therefore guarantees that

the conditions of Proposition 6 imply that lotteries form part of the most pro…table

selling strategy for a non-empty set of consumer distributions. The key features of these

distributions are summarised together in the next section.

5 Discussion

5.1 Applicability of Lotteries

Propositions 4 and 6 determine key features of the consumer taste distribution which, if

satis…ed, are su¢cient to guarantee that lotteries form part of the most pro…table selling

11It is consumers with tastes immediately South West of this type who will be new consumers if the
lottery is introduced.
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strategy for sellers to pursue. These key criteria are:

1. Existence of target consumers

If a lottery q is introduced awarding consumers some good with probability 1, in

combination with tioli prices p then it is consumers with valuations South West of p

who are the potential new consumers. These consumers therefore must exist for the

su¢ciency conditions to be met. Lemma 2 guarantees this is so in the symmetric

case. In the general case this requirement is explicitly stipulated (Condition 1 of

Section 4.2).

2. High Margins

Initially, if the lottery q is introduced at a price of q ¢ p¡ ´ for small ´; only a small
number of new consumers will be gained. The margins must be high to make this

worth while as there will be a cost in lost pro…t from the introduction of the lottery.

3. Few high valuation type consumers

For lotteries to be pro…table there must be few existing consumers who would be

willing to take the lottery gamble. The consumers who would take the gamble are

those along the diagonal who derive the same positive utility from each good. This

attention to the diagonal is clear from Propositions 4 and 6. The distribution of

consumer tastes must therefore be such that there is no large concentration of mass

in the North East corner of the support.

4. Asymmetric considerations

Condition 1 of Proposition 6 reminds us that amongst existing consumers, the intro-

duction of a lottery has asymmetric e¤ects on pro…t. The seller must ensure that the

loss in pro…t from those leaving the high margin product are at worst comparable

in size to the gain in pro…t from those leaving the lower margin product.

These four conditions help us to build a picture of the characteristics of consumer

taste which are su¢cient to guarantee that lotteries are part of the most pro…table selling

strategy. The …rst condition, that concerning the existence of target consumers, deserves

particular mention as it has immediate implications for the sale of goods of di¤ering

quality. If the quality di¤erences are so large that there are no consumers indi¤erent

between the top quality and the outside option then there can be no new consumers who

would be tempted by a lottery of the two goods priced below q ¢p: Any consumer tempted
by the lottery will be an existing consumer. The lottery cannot therefore produce any

new high margin gains and so its use will be only to micro adjust the current margins

gained.

19



5.2 Implications for selling strategies

We have shown that appropriately chosen lotteries can be an important tool in a mul-

tiproduct …rm’s pricing. Lotteries can be introduced directly by quoting a set of prob-

abilities and a price. However, the theory of lotteries actually captures a wide range

of di¤erent pricing and haggling strategies. The two classes of examples below help ex-

plain some selling practices, theoretically equivalent to lotteries, used by many …rms and

suggest new insights into the selling process.

5.2.1 Claiming capacity constraints

Consider the following selling strategy for a new car salesman:

“You can have the car in red or blue for certain at a price p: However, if you

don’t have a strong preference we can o¤er you your car for p ¡ ´: Which
colour you receive will depend on which one we have left.”

This selling strategy consists of exactly o¤ering the consumers a lottery over the two

substitutable goods (cars in this case). If Proposition 4 is satis…ed then this strategy will

be more pro…table than just o¤ering the consumers their preferred car at a colour of their

choice.12 This particular example has the implication for car manufacturers that painting

their cars in advance of customer orders may not be as expensive as they might have

thought.

A similar example of a real world situation in which such lotteries are used is provided

by the tourist industry: package holiday operators will sometimes o¤er consumers location

1 or 2 with certainty for a certain price. If the customer has no strong preference they

can pay a reduced fee to go on a waiting list and be certain to receive a holiday though

at a destination which is ex ante random depending on which resort has more places

remaining.

5.2.2 The importance of haggling over one good

Suppose a …rm is haggling with buyers over the provision of a service from a choice of

two substitutable ones. As time elapses with no agreement the buyer incurs a small

inconvenience cost. The selling …rm in this case can bene…t from introducing lotteries

into their selling strategy. This can be done, for example, by committing to the following

haggling process:

12Those who couldn’t quite stretch to the car at price p might be prepard to take it at price p ¡ ´
with a random colour. Of the existing consumers only those indi¤erent between the two colours would
be tempted by the lottery. Under the conditions of Proposition 4 the net e¤ect is pro…t enhancing.
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1. In period 1 a particular buyer enters and the seller o¤ers the buyer the two substi-

tutable goods/services at …xed prices p:

2. The buyer can either buy one of the goods, leave, or wait for a second period. If the

buyer leaves she receives a utility of 0. If the buyer waits then she incurs a small

inconvenience cost (± say).

3. If the buyer is still waiting the seller commits to lowering one of the good prices by

´:13 Which good has its price lowered is random. The probability of a particular

good having its priced lowered is 1
2
: These prices will not be changed for this buyer

in the future.

4. The buyer decides to purchase one of the goods at the new prices or not.

Clearly this haggling strategy requires the seller to be able to commit in advance.

This strategy is exactly equivalent to the seller o¤ering the lottery
¡
1
2
; 1
2

¢
at a price of

p¡ ´+ ±: If Propositions 4 or 6 are satis…ed then this will be a pro…t enhancing strategy
as compared to refusing to be moved on price.

An example of an industry where this strategy would be applicable is the telecom-

munications industry. A telecoms …rm may be o¤ering two types of telephony service to

a business customer. By waiting without a deal the business customer will be incurring

some inconvenience cost (if nothing else the opportunity cost of not having struck a deal).

By being able to move on price on a random o¤ering the telecoms …rm can enhance its

pro…tability.

This example highlights the insight that it is important for the seller not to allow

the haggling process to focus solely on the one good the buyer is most interested in. By

keeping the possibility of a special o¤er being made on a random good the seller can

enhance her pro…ts. To see this consider a small perturbation of the above haggling

strategy in which the seller allows the buyer to bargain over only one of the two services.

This now becomes a one dimensional problem - there is only one relevant good for sale.

Riley and Zeckhauser (1983) have shown that the seller would be best advised to not

lower her price in this case and stick to take it or leave it prices. This strategy therefore

foregoes all the bene…ts that lotteries could bestow.

5.3 How do lotteries help?

From the discussions of Section 5.1 we noted that lotteries can increase the number of

consumers served. If margins are high then this e¤ect can lead to an overall pro…t en-

hancement. However, this does not explain why it is that even at the best …xed prices

13This haggling strategy requires ± < ´ < 2± otherwise all consumers will opt for waiting or none will.
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there is still scope for pro…ts to be increased in this way. Riley and Zeckhauser (1983)

have shown that indeed lotteries are not part of the most pro…table pricing strategy when

the seller is selling only one good - in this case all the necessary manipulations can be

done through the …xed price level. To understand where Propositions 4 and 6 require the

multiproduct aspect of the problem we note that in the multiproduct case the seller has

fewer instruments than boundaries to set opening up the scope for lotteries to be useful.

In particular we will see that lotteries allow the seller to focus on particular boundaries

in a way which is impossible if she only uses the …xed prices.

When a single product monopolist is setting her optimal price she is only concerned

with the boundary to be set between those that buy and those who don’t. To set this

one boundary she has one instrument - the price of her good. However, in the case of

substitutable goods the seller has three boundaries to set: that between those who buy

good 1 and nothing, that between those who buy good 2 and nothing and …nally that

between those who buy good 1 or good 2. To do this the seller without lotteries only

has two instruments: the price of good 1 and the price of good 2. The optimal prices

will therefore involve some sort of aggregation and averaging. However, with a lottery

the monopolist can focus on one particular boundary and adjust the pro…t made on the

consumers just in its vicinity.

To illustrate how the su¢cient condition for lotteries being optimal focuses on one

boundary we restrict ourselves to the symmetric case and examine the su¢ciency condition

for lotteries to be more pro…table than a …xed price p given by (8) repeated as

¡2
Z 1

x=p

f (x; x) dx+ (p¡ c) f (p; p) > 0

Standard manipulations con…rm that the …rst order condition determining the optimal

…xed price is

¡
Z 1

x=p

Z x

y=¡1
dF + (p¡ c)

Z p

y=¡1
f (p; y) dy = 0

Consider changing coordinates (x; y) to (v; w) so that the x axis is rotated anticlockwise

45o and labelled v with the y axis staying where it is and being labelled w. Given a (v; w)

coordinate the v variable measures the distance travelled North East along a 45o line

beginning height w above the origin. Therefore

(v; w)$
(

x = vp
2

y = w + vp
2

or

Ã
x

y

!
=

Ã
1p
2
0

1p
2
1

!Ã
v

w

!

The magnitude of the Jacobian of this matrix is given by the magnitude of the determinant

of the above matrix which is 1p
2
: That implies that dxdy = 1p

2
dvdw: The …rst order
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Figure 3: Figure showing the break down of the consumers who purchase a good into w

and v coordinates

condition for the optimal …xed price p can therefore be written as

¡
Z 0

w=¡1

Z 1

v=
p
2p

f

µ
vp
2
; w +

vp
2

¶
1p
2
dvdw + (p¡ c)

Z 0

w=¡1
f (p;w + p) dw = 0Z 0

w=¡1

½
¡ 1p

2

Z 1

v=
p
2p

f

µ
vp
2
; w +

vp
2

¶
dv + (p¡ c) f (p; w + p)

¾
dw = 0 (9)

We therefore see that the …rst order conditions for the optimal price require the aver-

aging of a condition on the density along the diagonal slices of width ±w shown in Figure

3. The lottery condition however focuses only on one slice - the one with w = 0: Using

(9) we see that at the optimal pricesZ 0

w=¡1

Expression (8) aggregated across

all strips of width ±w
dw =Z 0

w=¡1

½
¡
p
2

Z 1

v=
p
2p

f

µ
vp
2
; w +

vp
2

¶
dv + (p¡ c) f (p;w + p)

¾
| {z }

Rewritten expression (8)

dw < 0

so for a lottery to be optimal locally the averaging process must be particularly restrictive

as the integrand at w = 0 must be positive. In this case using lotteries will allow a

monopolist to re-adjust her o¤erings at the margin pro…tably.
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6 The general two good case

Hitherto we have established that lotteries are an important part of optimal pricing in

the sale of substitutes. Under conditions of symmetry Corollary 5 has shown that given

large enough margins lotteries will always be optimal. In addition Propositions 4 and 6

were able to provide speci…c su¢ciency conditions on lotteries being more pro…table than

current …xed prices with the insights provided being summarised in Section 5.1. All this

was achieved using the simplifying structure of the substitutes paradigm.

We are now in a position to consider the more general multiproduct monopolist of

McAfee and McMillan (1988). We therefore now consider a two good monopolist facing

consumers with no complementarities in demand. Consumers are still characterised by

two type variables, x and y denoting the value each consumer attaches to the two indi-

vidual component goods. Now, distinct from the substitutes model, we suppose that the

valuation each consumer attaches to the bundle of both goods is additive and is given by

x+ y. The bundle is labelled good 3 and the two component goods 1 and 2:

One might seek to consider the pro…tability of o¤ering a lottery over good 1, good 2 or

the bundle. However, this cannot be done by replicating the local analysis of the previous

sections. To see this note that if the best tioli prices are (p1; p2; p3) with pi corresponding

to the price of good i then the consumers most tempted by lottery q are those which

derive equal utility from all three goods, that is

x¡ p1 = y ¡ p2 = x+ y ¡ p3 ) x = p3 ¡ p2 ; y = p3 ¡ p1

These consumers will derive utility p3¡p1¡p2 from the lottery at a price of q ¢p: McAfee
et al. (1989) suggests that if the valuations for the component goods are independently

distributed then sub-additive bundling will be the best sales strategy. That is p3 < p1+p2:

Therefore no consumer will choose to buy the lottery at a price close to q ¢ p and so a
non-local analysis would be needed. Therefore to maintain the parallels with our previous

work we consider the case where the monopolist’s best …xed prices involve sub-additive

bundling and consider lotteries between good 1 and the bundle (good 3).

We therefore assume that the support of the density function ­ contains the consumer

of type (p1; p3 ¡ p1) who is indi¤erent between purchasing good 1 or the bundle (good 3) :
We seek to determine general conditions guaranteeing that the seller can enhance her

pro…t by o¤ering the lottery (q1; 0; q3) such that q1 + q3 = 1 priced at q1p1 + q3p3 ¡ ´
for some ´: This lottery signi…es that the consumer will receive the whole bundle of both

components with probability q3 and failing that will receive only component 1. This latter

case happens with probability 1 ¡ q3 = q1: The set of consumers a¤ected by this lottery
o¤er is captured in Figure 4.
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Figure 4: Figure showing the consumers a¤ected by the introduction of the lottery o¤er

(q1; 0; q3)

Lemma 7 Suppose that the …rm is charging optimal take it or leave it prices p which are
not super-additive. The lottery (q1; 0; q3) priced at q1p1 + q3p3 ¡ ´ is a pro…table addition
to the best take it or leave it tari¤ if

¡2
Z 1

x=p1

f (x; p3 ¡ p1) dx+ (p1 ¡ c1) f (p1; p3 ¡ p1) (10)

¡ (p3 ¡ p1 ¡ c2)
Z 1

x=p1

f2 (x; p3 ¡ p1) dx ¸ 0

This result is proved in the appendix.

The lemma is expressed in terms of the optimal take it or leave it prices (p1; p2; p3) :

We have already seen that the Riley and Zeckhauser (1983) result doesn’t extend to the

case of multiproduct substitutes. If instead the no lottery result extended to general

multiproduct monopolists then we would expect the lemma above to never be satis…ed.

The next section will show that this is not the case - the Riley and Zeckhauser (1983)

result does not extend to multiple dimensions, either in the case of substitutes or generally.

6.1 A class of cases in which lotteries are bene…cial

The key to satisfying the su¢ciency condition of Lemma 7 is to determine a class of taste

distributions such that f (p1; p3 ¡ p1) 6= 0 at the optimal prices. This is precisely condition
1 of Section 5.1: we must ensure that there are types in the population indi¤erent between
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Figure 5: The population of consumers in quadrilateral Q

the lottery components and the outside option as it is consumers with tastes located South

West of these who will form the new consumers attracted to the lottery o¤er. In the case

of the substitutes paradigm such consumers were naturally present (see Lemma 2). This is

not however the case in the no complementarities model of McAfee and McMillan (1988).

In this case if the margins are high all consumers might well be served at the optimal

prices.

With this in mind we will now provide a class of cases which satisfy the conditions

of Lemma 7. Consider the symmetric arrow shaped area in Figure 5 formed close to the

two outside edges of the unit square [0; 1]2. The inside edges of this triangle are given by

the lines y = a (1¡ x) and y = 1¡ 1
a
x which meet along the line y = x: Call this arrow

quadrilateral Q and suppose that consumers are uniformly distributed on it so that the

density satis…es f (x; y) = 1 + a: We will let a tend to in…nity. In particular we suppose

that a > 1:

Lemma 8 At optimal prices there exist consumers in the interior of Q indi¤erent between
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good 1, the bundle and not purchasing and similarly consumers indi¤erent between good

2, the bundle and not purchasing.

Proof. The method of proof of this lemma uses the insight behind the proof of Lemma
2. By symmetry we will have p1 = p2 at the optimal prices. If all the consumers are served

then we must have the point (p1; p3 ¡ p1) lying on the line y = a (1¡ x) : It is not optimal
for the seller to set p3 = p1 = 1. To see this suppose that p3 = p1 = 1 and the seller raised

the price of the bundle to 1 + " and lowered the component price to 1 ¡ "
a¡1 to ensure

all consumers are still served. The pro…t loss resulting from those that purchase just the

component is of order "3 as only a small triangle of order "2 do so, yet the pro…t gain

from those staying with the bundle is of order ": For small "; this therefore contradicts

the optimality of prices p1 = p3 = 1:

But it is not optimal for all the consumers to be served. Suppose not then we have

established that the point (p1; p3 ¡ p1) lies on the line y = a (1¡ x) above the point (1; 0) :
Now suppose that both p3 and p1 are raised by ": The pro…t gain will be of the order of "

and yet the pro…t loss will be of order "2 as only a small triangle of consumers is a¤ected.

Therefore the result is proved for small ":

Lemma 8 guarantees that there are some consumers who are not purchasing but are

potential targets of a lottery o¤er. This is one of the key lottery applicability requirements

discussed in Section 5.1. It is to achieve this result that the strange quadrilateral shape

Q is studied here rather than the full standard square.

To help …x ideas suppose the marginal costs c1; c2 are 0 and so consider what the

monopolist’s optimal selling strategy would be in the limit as a tends to in…nity. In this

case the consumers would all be uniformly distributed on the outside of the unit square.

The optimal component prices would be 1 and the monopolist’s pro…t function would be

¦

2
= [p1 (p3 ¡ p1) + p3 [1¡ (p3 ¡ p1)]]p1=1 ¢

1

2
) ¦ = p3 ¡ 1 + p3 [2¡ p3]

This has a maximum at p3 = 3
2
and p1 = 1: This result leads to the following proposition:

Proposition 9 If a is su¢ciently large then lotteries will be a pro…t enhancing sales
strategy to use in serving the population Q:

Proof. We recall that if
h
@2¢¦
@´2

i
´=0

> 0 then lowering the price of the lottery (q1; 0; q3)

just below its choke price is pro…t enhancing. From the proof of Lemma 7 and Lemma 8

above and using the fact that the density is ‡at and uniform on its support and costs are
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zero we note that·
@2¢¦

@´2

¸
´=0

=
1

q1q3
f¡2 (1¡ p1) f (x; y) + p1f (x; y)gf(x;y)=1+a

=
1 + a

q1q3
f3p1 ¡ 2g

where the lottery (q1; 0; q3) has q1+q3 = 1: Therefore if at the optimal deterministic prices

p1 >
2
3
then lotteries would be pro…t enhancing. However, by letting a tend to in…nity, p1

tends to 1 and so
h
@2¢¦
@´2

i
´=0

> 0 for a su¢ciently large.14 This proves the result.

To recap, the intuition for this result is the fact that when margins are large (produced

by a large a) a …rm will be very keen to try and serve as many people as possible. When

consumers exist in quadrilateral Q then without using lotteries there will exist some

consumers who aren’t served. Lotteries allow the …rm to serve some of these consumers

and so increase her pro…ts.

6.2 Implications for McAfee and McMillan (1988)

The above class of examples shows that the Riley and Zeckhauser (1983) result ruling

out lotteries for the single good monopolist does not extend to the general multiproduct

case. McAfee and McMillan (1988), in Section 4 of their paper, claim that the Riley and

Zeckhauser (1983) result does extend to the general two good case as long as the consumer

type space satis…es a regularity condition given in their work as equation (46). We can

show that their result as stated is not correct: some extra restrictions need to be placed

on the consumer types for the result to apply.

The McAfee and McMillan (1988) claim. Suppose that a monopolist is selling

2 component goods. The consumers have valuation (x; y) for the two goods distributed

according to density f (x; y) supported on [0; b1] £ [0; b2] : Suppose also that the density
function satis…es the regularity condition ((46) in their work)

3f (x) + x ¢ rf (x) ¸ 0

Then lotteries do not help the multiproduct monopolist.

We can use the class of examples above to …nd a counter example to this claim.

The class of examples above have consumers uniformly distributed on a quadrilateral Q:

Suppose that the rest of the support of [0; 1]2 is …lled out smoothly with a vanishingly

small density outside of the arrow shaped quadrilateral Q described above. If the density

is su¢ciently small then the optimal prices will not be substantially altered from when

consumers were just in quadrilateral Q: In particular the optimal prices p1; p2 and p3 will

14In fact a > 2 is su¢cient as this guarantees that the best …xed component price is at least 23 :
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still lie strictly in the interior of Q: The hazard rate condition in McAfee and McMillan’s

work will be satis…ed as

3f (x) + x ¢ rf (x) =

8><>: 0 Away from the boundary of Q

Ã
both inside and outside

the quadrilateral

!
> 0 Near to the boundary of Q

This is because as we move in the direction of increasing x or y the density is either ‡at

or increasing up to the plateau Q: The proposition above then guarantees that lotteries

will be pro…t enhancing which is a counter example to the McAfee and McMillan claim

to have extended the Riley and Zeckhauser result in two dimensions. We have therefore

shown that (i)lotteries can help increase pro…t in certain situations and (ii)the result in

McAfee and McMillan (1988) requires some extra restrictions on the form of the density

function which gives consumers’ tastes.

7 Finding the fully optimal sales strategy

We have thus far determined that using lotteries can be part of the fully optimal pricing

strategy for the multiproduct monopolist in both the substitutes paradigm of Section 3

and the no complementarities in demand paradigm of McAfee and McMillan (1988). We

have yet to address how a seller can determine what the fully optimal selling strategy is.

This section returns to the substitutable goods paradigm and illustrates exactly how the

seller can use standard linear programming packages to determine their optimal pricing

strategy. We will solve a large class of such examples fully in the next section. We therefore

now return to the original model of two substitutable goods. To ease the exposition we

assume that the consumers have types supported on the square ­a = [a; a+ 1]
2 and are

given by a symmetric density function. In addition we normalise the monopolist’s unit

costs to zero. These assumptions allow us to use less cumbersome notation. Relaxing

these assumptions would not alter the method of solution of the problem. This class of

cases includes that used as the initial motivating example of Section 2. We seek the seller’s

optimal sales strategy. The seller can potentially use a whole schedule of lotteries
©
q
ª

should she wish. The lottery (q1; q2) represents the option through which the consumer

receives good 1 with probability q1 or good 2 with probability q2 with q1 + q2 · 1.15 The
consumers are all risk neutral. A consumer’s ex ante expected utility if the price of lottery

q is p
¡
q
¢
is therefore given by q1x+ q2y¡ p

¡
q
¢
: The surplus, v (¢) ; of a consumer of type

15We now include all possible lotteries including those in which a consumer receives nothing in some
instances.
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x = (x; y) can be derived from the incentive compatibility constraints and is given by

v (x) = max
q

©
q ¢ x¡ p ¡q¢ª

Due to the symmetry of the problem the monopolist’s optimal selling strategy will be

symmetric. Rochet and Choné (1998) have shown that we can suppose that the seller

selects a consumer surplus allocation function. From this we can determine what lotteries

are sold and at what price.16 Rochet (1987) has shown that for the surplus v (¢) to be
implementable we require v convex and rv (x) = q (x) almost everywhere by the envelope
theorem.

The …rm’s pro…t is given by

¼ =

Z
­a

8<:p ¡q (x)¢¡ q (x) ¢ c| {z }
=0

9=; f (x) dx
) ¼ (v (¢)) =

Z
­a

fx ¢ rv (x)¡ v (x)g f (x) dx

where we have used the fact that

p
¡
q (x)

¢
= q (x) ¢ x¡ v (x)

from the incentive compatibility condition.

The divergence theorem guarantees thatZ
­

divFdV =

Z
@­

F ¢ ndS

where n is the outward pointing unit normal and F is a vector …eld. In this case note

that

div [v (x) f (x) x] = x ¢ ff (x)rv (x) + v (x)rf (x)g+ 2v (x) f (x)
16Given an implementable consumer surplus allocation function v (x; y) a consumer of type x receives

the lottery

rv (x)

in return for a payment of

x ¢ rv (x)¡ v (x)

We therefore know how much each consumer pays and what lottery she decides to purchase. We therefore
have the full tari¤ structure as a function of the lottery chosen.
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as x 2 R2+: Using the divergence theorem we have that

¼ (v (¢)) =

Z
­a

fdiv [v (x) f (x)x]¡ x ¢ v (x)rf (x)¡ 2v (x) f (x)g dx¡
Z
­a

v (x) f (x) dx

=

Z
@­a

v (x) f (x) x ¢ ndS ¡ 3
Z
­a

v (x) f (x) dx¡
Z
­a

v (x)x ¢ rf (x) dx

Going clockwise let the four corners of the square ­a be labelled A at (a; a+ 1) ; through

to D at (a; a) : We then see that

x ¢ n =

8>>><>>>:
a+ 1 along line AB

a+ 1 along line BC

¡a along line CD

¡a along line DA

So we have

¼ (v) = (a+ 1)

Z
AB [ BC

v (x) f (x) dx¡ a
Z
CD [ DA

v (x) f (x) dx

¡
Z
­a

v (x) f3f (x) + x ¢ rf (x)g dx

We …nally note that v (a; a) = 0 as we established (Lemma 2) that at the optimum

some consumers will always be left unserved.

Combining these insights we have the following problem

Problem 10 Let v (¢) : R2+ 7¡! R and ­a = [a; a+ 1]2

max
v(¢)

(
(a+ 1)

R
AB [ BC v (x) f (x) dx¡ a

R
CD [ DA v (x) f (x) dx

¡ R
­a
v (x) f3f (x) + x ¢ rf (x)g dx

)
subject to

v symmetric (v (x; y) = v (y; x))

v (a; a) = 0 (11)

v (x; y) ¸ 0 (12)

0 · rv (13)
@v

@x
+
@v

@y
· 1 (14)

v convex )

8>><>>:
@2v
@x2

¸ 0
@2v
@y2
¸ 0³

@2v
@x2

´³
@2v
@y2

´
¸
³
@2v
@x@y

´2 (15)

This is a complicated problem in which the seller hopes to …nd an optimal function

v (¢) to maximise her objective function subject to a large number of constraints. Rochet
and Choné (1998) show that analytical results are di¢cult to come by in this situation.
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7.1 The …nite di¤erencing technique

7.1.1 The objective function

We can solve Problem 10 using a …nite di¤erencing technique. We can approximate the

consumer surplus function v (x; y) on the square ­a by its value at every point on a …ne

N £ N grid. As the problem is symmetric we need only consider the lower triangle of

[a; a+ 1]2 using a grid which runs from v0;0 at the point (a; a) through to vN;N at the

point (a+ 1; a+ 1) : We therefore have the variables (fvi;jj 0 · i · N; 0 · j · ig) :17
Given N we are covering the lower half triangle of [a; a+ 1]2 by a grid of points

separated by a distance of h = 1
N
: Each point vi;j represents the height of a characteristic

function resembling an h£ h square tower block centred on (a+ ih; a+ jh) with area of
cross-section h2: Recalling that the square ­a is labelled as A at (a; a+ 1) through to D

at (a; a) and using the symmetry we can rewrite the objective function as:

2

(
(a+ 1)

R
CB
v (x) f (x) dx¡ a R

DC
v (x) f (x) dx

¡ RLowerTriangle(­a) v (x) f3f (x) + x ¢ rf (x)g dx
)

We now use the parameter Hi;j to represent the value of f3f (x) + x ¢ rf (x)g at the
point (a+ ih; a+ jh) : We note that Hi;j is not a variable to be calculated but rather a

parameter that can be found in advance as the seller knows the distribution of consumer

types f: The terms of the objective function can then be given by:Z
LowerTriangle(­a)

v (x) f3f (x) + x ¢ rf (x)g dx

= h2

8>><>>:
P

j·i
i6=j
j 6=0
i6=N

vi;jHi;j +
1
2

³PN¡1
i=1 vi;0Hi;0 +

PN¡1
j=1 vN;jHN;j +

PN¡1
i=1 vi;iHi;i

´
+1
8
vN;NHN;N +

1
4
vN;0HN;0

9>>=>>;
where we have used the fact that v (a; a) = v0;0 = 0: Letting fi;j denote the value of f (¢)
at the point (a+ ih; a+ jh) the …rst two terms of the objective function become:Z

CB

v (x) f (x) dx = h

(
N¡1X
j=1

vN;jfN;j +
1

2
vN;0fN;0 +

1

2
vN;NfN;N

)
Z
DC

v (x) f (x) dx = h

(
N¡1X
i=1

vi;0fi;0 +
1

2
vN;0fN;0

)
Summing these we have the maximisation objective function of Problem 10.
17An N £N grid in the case of symmetry will result in

N+1X
r=1

r =
1

2
(N + 1) (N + 2)

free variables. (So if N = 20 then we will have 231 variables).
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7.1.2 The constraints

Constraints (11) and (12) are easily handled by

v0;0 = 0

vi;j ¸ 0 for fvi;jj 0 · i · N and 0 · j · ig

For the derivative constraints (13) and (14), we use the second order accurate approx-

imation ·
@v

@x

¸
i;j

¼ vi+1;j ¡ vi¡1;j
2h

Harnessing the symmetry of the problem we can therefore use the following expressions

in the optimisation problem:

·
@v

@x

¸
i;j

=

8>>><>>>:
1
2h
(vi+1;j ¡ vi¡1;j) 1 · i · N ¡ 1 and 0 · j · i¡ 1

1
2h
(vi+1;i ¡ vi;i¡1) 1 · i · N ¡ 1 and j = i

1
h
(vN;j ¡ vN¡1;j) i = N and 0 · j · N ¡ 1
not de…ned i = N and j = N

Along the far edge
¡
BC

¢
given by i = N we have used the one sided derivative running

from i = N ¡ 1 through to i = N: Along the main diagonal we have used the fact that
vi;j = vj;i by symmetry. We note that constraints (13) and (14) will be linear in the fvi;jg :
We …nally now turn to the convexity constraints (15). We can approximate the second

derivatives @
2v
@x2

by determining the rate of change of the expression for
£
@v
@x

¤
i;j
given above.

This gives ·
@2v

@x2

¸
i;j

¼ 1

h2
(vi+1;j + vi¡1;j ¡ 2vi;j)

The constraints
h
@2v
@x2

i
i;j
¸ 0 and

h
@2v
@y2

i
i;j
¸ 0 will therefore be linear in the vi;j: However

the …nal convexity constraint is not linear and as such has two e¤ects:

1. Nonlinear constraints cause the optimisation problem to be much harder to solve.

The algorithms for the solution of such a problem are therefore slower for any given

…neness of the N £N grid.

2. The coarseness of the di¤erence expressions used above can become problematic in

a non-linear expression for the convexity constraint. This problem can be mitigated

by choosing a very …ne grid. This however has the e¤ect of aggravating 1.
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The solution in the case of substitutable goods is to require the consumer surplus

function v (x; y) to satisfy a much weaker condition than convexity or even quasi-convexity.

One must then check that the …nal solution does satisfy the full convexity constraint. We

aim to rule out surplus functions v (¢) which assign low surplus near to the edge CD and

high surplus towards the diagonal. Such solutions will not be convex when v is extended

to cover the whole of the square ­a: We therefore note that quasi-convexity of v implies

that the consumer surplus iso contours have gradient in the lower triangle that lies in

(¡1;¡1] : This condition can be captured in the simple constraint:

vi¡1;j+1 · vi;j (16)

to be applied at interior points of the lower triangle of ­a:

These constraints are therefore all linear as is the objective function. Standard linear

programming routines can therefore be used to solve for the optimal selling strategy.

7.2 Worked example – the uniform case

We explicitly solve the case in which consumers are uniformly distributed on the square

­a = [a; a+ 1]
2 : In this case fi;j = 1 and rf ´ 0 and so we have Hi;j = 3 in the objective

function determined above. Bringing terms together we can write the sellers problem as

Problem 11 Removing a factor of 2h the objective function becomes

max
fvi;jg

³PN¡1
j=1 vN;j

´ ¡
a+ 1¡ 3

2
h
¢¡ 3h

0BBBB@P j·i
i6=j
j 6=0
i6=N

vi;j +
1
2

PN¡1
i=1 vi;i

1CCCCA
¡
³PN¡1

i=1 vi;0

´ ¡
a+ 3

2
h
¢
+ vN;0

¡
1
2
¡ 3

4
h
¢
+ vN;N

¡
a
2
+ 1

2
¡ 3

8
h
¢

(17)

subject to the constraints given above.

This problem was solved at a number of di¤erent parameter values (that is choices

of a and N) using an optimiser called BPMPD available from the NEOS server at:

http://www-neos.mcs.anl.gov/. The routine is written by C. Mészaros of the Mta Sztaki

in Budapest, Hungary. The linear programming problem must be submitted in AMPL

format. A typical such submission used to solve this problem is available in Appendix B.

The output data from programs, such as that in Appendix B, gives the optimal values

of the variables, fvi;jg : These represent the amount of surplus a consumer i; j receives
from the seller’s optimal selling strategy. The data displays the derivatives

£
@v
@x

¤
i;j
andh

@v
@y

i
i;j
calculated as …nite di¤erences. We recall that these show the lottery which the
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consumers receive through the optimal selling strategy. Finally the data displays a variable

called ‘probreceive’ which gives
£
@v
@x

¤
i;j
+
h
@v
@y

i
i;j
: This variable is used to determine if any

lotteries are used which give the consumer a positive probability of receiving nothing in

return for their money.

The following results stand out from the output …les:

1. The resultant values for vi;j satisfy the full convexity constraints. We can see this

by plotting the resultant consumer surplus function and checking that it is convex

(bowl shaped). This surplus function has been drawn in Figure 6 for the case a = 5

and N = 20.

2. The derivatives
£
@v
@x

¤
i;j
and

h
@v
@y

i
i;j
are almost all given by 0.5 and 1. This suggests

that the lottery
¡
1
2
; 1
2

¢
and the take it or leave it prices form the lions share of the

optimal tari¤.

3. The sum of the derivatives
£
@v
@x

¤
i;j
and

h
@v
@y

i
i;j
for almost everyone add to 1. The

exceptions occur only at the very edge of the sample where boundary e¤ects in

our …nite di¤erencing approximation are to blame. This therefore shows that at

the optimal selling strategy no consumer pays money for a positive probability of

receiving nothing.

4. The table of
£
@v
@x

¤
i;j
values has 0.5 and 1 as the main entries apart from a line of

entries of value 0.676777 followed by 0.926777 (in the case of a = 10). Note that the

di¤erence between these two values is exactly 0.25. This will prove crucial. At …rst

glance this suggests that the optimal selling strategy is subtly more complicated

than just using the lottery
¡
1
2
; 1
2

¢
with the take it or leave it prices. We will see

below that this interpretation is misleading.

Proposition 12 Suppose consumers are uniformly distributed on a square ­a = [a; a+ 1]
2

and the seller has two symmetric substitutable goods to sell with marginal costs normalised

to 0. The fully optimal selling strategy is to use take it or leave it prices in combination

with the lottery
¡
1
2
; 1
2

¢
only.

Numerical Proof. This proposition is substantiated through a large number of

numerical optimisations. The typical such results are discussed in the four points given

above. The most important point is to note (4) which describes that the
£
@v
@x

¤
i;j
variable

has two lines of entries which di¤er from 0, 1
2
and 1. We …rst need to show that this is

compatible with the optimal surplus allocation function being piecewise ‡at and contain-

ing only a couple of distinct pieces. To see this consider the following depiction of 4 grid
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Figure 6: The consumer surplus remaining after the optimal selling strategy is used for

consumers uniformly distributed on [5; 6]2 :

points spanning the boundary between the part of v (¢) with gradient (1; 0) and the part
with gradient

¡
1
2
; 1
2

¢
: The distance between E and F is h: We de…ne the proportion of

the distance between E and F lying to the left of the boundary as ®:

¢ ¢
E| {z }

rv=( 12 ; 12)

,
¢
F

¢

| {z }
rv=(1;0)

Now recall that the …nite di¤erence approximation for
£
@v
@x

¤
i;j
is given by

vi+1;j ¡ vi¡1;j
2h

we therefore have:

1. If vi;j is at the point E then

vi+1;j = v +
1

2
®h+ (1¡ ®)h

vi¡1;j = v ¡ 1
2
h

)
·
@v

@x

¸
at E

=
1
2
®h+ (1¡ ®)h+ 1

2
h

2h
=
3

4
¡ ®
4
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2. If vi;j is at the point F then

vi+1;j = v + h

vi¡1;j = v ¡ (1¡ ®)h¡ 1
2
®h

)
·
@v

@x

¸
at F

=
h+ (1¡ ®) h+ 1

2
®h

2h
= 1¡ ®

4

The gradient with respect to x on either side of E and F will give the values 0.5 and

1 as expected. We now note that·
@v

@x

¸
at F

¡
·
@v

@x

¸
at E

= 0:25 exactly

We therefore see that the line of parallel …gures (0.676777 followed by 0.926777 in the case

of a = 10) is entirely expected if the consumer surplus function satis…es the conditions of

the proposition.

The same e¤ect of the …nite di¤erencing approximation is expected and seen at all the

other boundary points.

The proof is completed by ensuring that
£
@v
@x

¤
i;j
and

h
@v
@y

i
i;j
only take the values 1

2
, 1

and 0 and sum to 1, except where the …nite di¤erencing technique causes two distinct

values to be averaged across a boundary. This process is repeated for a large number of

di¤erent parameter values a: I have run this experiment for a 2 f0; 1; 2; 3; 5; 10; 20; 50g
and have found that the Proposition holds in all of these cases.

We note that the above proof is numerical and so does not constitute an analytical

proof. Such proofs would be hard to come by due to the large number of constraints

active on candidate surplus functions v (¢) :

7.3 The scale of possible pro…t gain from lotteries – Numerical
examples

7.3.1 The uniform case

Proposition 12 has established that when consumers are uniformly distributed on [a; a+ 1]2

and the seller has two substitutable goods to sell with marginal costs normalised to 0, then

the fully optimal selling strategy is achieved by using the lottery
¡
1
2
; 1
2

¢
in combination

with the take it or leave it prices. This section will determine what the scope for pro…t

gain is from such a strategy as compared to not using lotteries at all.

Lemma 13 When the seller of two substitutable goods does not use lotteries then her
pro…t function at a price of p for each good is given by

¼no lot (p) = p ¢ 2 ¢ 1
2
(a+ 1¡ p) (1 + p¡ a)
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with the optimal price being given by

pno lot =
2a+

p
a2 + 3

3

This lemma follows as the problem is symmetric and the pro…t function can be found

by an application of the area of a trapezium rule.

Now consider the optimal prices if the …rm o¤ers the deterministic goods at a price p

and also a lottery
¡
1
2
; 1
2

¢
at a price p¡ ´: This lottery awards a consumer the …rst good

with probability 1
2
or the second good with probability 1

2
: There is no chance the consumer

receives nothing or both goods together. This case constitutes the fully optimal selling

strategy for the monopolist as shown by Proposition 12.

Lemma 14 The fully optimal prices for the monopolist selling two substitutable goods
to consumers uniformly distributed on [a; a+ 1]2 are component prices p and the lottery¡
1
2
; 1
2

¢
priced at p¡ ´ where

1. If a > 1:25 then ´ = 1
6
and p = ´ +

2a+
p
a2+ 3

2

3
:

2. If 1 < a · 1:25 then ´ = 2p¡ 4
3
(a+ 1) and

p =
1

21

µ
2 (7a+ 8)¡

q
4 (7a+ 8)2 ¡ 7 (a+ 1) (29a+ 35)

¶
3. If a · 1 then ´ = 0; that is lotteries are not part of the optimal selling strategy.

The proof of this result is given in the appendix. The pro…t attained from using the

lottery
¡
1
2
; 1
2

¢
and not can be calculated from the pro…t equations in the appendix and

compared. The percentage pro…t gain is then calculated. This is drawn in Figure 7. In

this case the pro…t gain is very modest, at best of the order of a single percentage point.

7.3.2 An asymmetric example

Until now all the concrete numerical examples in which lotteries have proved pro…table

have been symmetric with pro…t gains resulting from the enlargement of the …rm’s cus-

tomer base. In addition the pro…t gains have all been very modest. The following simple

example shows us that lotteries can in fact be very pro…table and o¤er much higher per-

centage pro…t gains than the best …xed prices. In addition this example shows that the

number of consumers served need not be increased for lotteries to be pro…table.

Consider a discrete market with 2 consumers who have additive valuations for the

two goods, x and y: Suppose that the …rm has no unit costs in production, that one

of the consumers is at (1; 3) and the other at (2; 1) : This market is drawn in Figure 8.
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Figure 7: Graph showing the percentage gain in pro…t from the optimal selling strategy

using the lottery
¡
1
2
; 1
2

¢
as compared to …xed prices when serving consumers uniformly

distributed on [a; a+ 1]2

The optimal deterministic tari¤ in this case has consumer (2; 1) receiving good 1 with

probability 1 at a price of 2, and consumer (1; 3) receiving both goods with probability 1

at a price of 4: This provides the seller with a pro…t of 6.

The optimal tari¤ is however stochastic with the type (1; 3) consumer’s bundle un-

changed and the (2; 1) consumer receiving either good 1 only or both goods with equal

probability for a price of 21
2
: This selling strategy now provides the seller with a pro…t of

6.5. This is a gain of over 8% even though no new consumers were served.

8 The Welfare Implications of Lotteries

Thus far this chapter has been about …rm pro…tability. We have been able to construct a

method of introducing a lottery q at a price q ¢p¡´ which allows us to use a local derivative
approach to ascertain how the lottery a¤ects …rm pro…t. This chapter has therefore been

able to construct su¢ciency conditions which guarantee that adding a lottery option will

be pro…t enhancing. In particular Proposition 4 gives conditions on consumer density in

the substitutes paradigm which guarantee that lotteries form part of the fully optimal

pricing strategy thus proving that the Riley and Zeckhauser (1983) no lottery result from

the sale of 1 good does not extend to the multiproduct context.

Our new approach to lotteries can now be applied to an analysis of the e¤ects of

lotteries on welfare. We have established that …rms will often be most pro…table if they

use lotteries. Is this to be encouraged or discouraged? Would welfare be enhanced if

lotteries/haggling was not allowed and …xed prices had to be posted and adhered to?
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Figure 8: A discrete market in which lotteries provide a substantial pro…t gain

Proposition 15 If the introduction of lottery q to …xed prices p at a price of q ¢ p¡ ´ is
pro…t enhancing for ´ close to 0 in either the substitutes paradigm or the no complemen-

tarities paradigm of McAfee and McMillan (1988) then it is also welfare enhancing.

The proof of this result is established by showing that the expression for the rate of

change of welfare with respect to the parameter ´ is equal to the rate of change of pro…t

with respect to ´ plus a positive constant. Therefore if pro…ts increase so must welfare.

This result parallels the intuition provided by Varian (1989) in the slightly di¤erent

context of third degree price discrimination. Varian (1989) notices that when considering

third degree price discrimination a necessary condition for welfare to increase is that

output rises as a result of the discrimination. Section 5.1 notices that a direct way for

lotteries to be bene…cial is if there exist new consumers who can be gained by introducing

a lottery o¤er. Indeed in the case of symmetry in the substitutes paradigm this is the

only way the su¢ciency conditions given can be met. Proposition 15 con…rms that this

output enlargement e¤ect is su¢cient to guarantee that welfare is increased.

Proposition 15 therefore suggests that a central planner need not worry: when intro-

ducing lotteries is in the …rm’s interests then a small change introducing a lottery tari¤ is

also welfare enhancing. However, this does not necessarily mean that as the monopolist

moves to the fully optimal lottery tari¤ welfare will be improved as compared to main-

taining …xed prices. The introduction of the lottery allows the monopolist to raise the

price of the goods provided with certainty. As consumers swap from their preferred good

to a lottery their valuations for the purchased good are reduced, though more consumers
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Figure 9: The welfare gain in moving from the optimal deterministic tari¤ to the fully

optimal lottery tari¤. The consumers are uniformly distributed on ­a = [a; a+ 1]
2 and

see the goods as substitutes.

are served. The …rst e¤ect has a counterbalancing e¤ect on the welfare calculation.

Proposition 16 The fully optimal tari¤ need not be a welfare improvement on the best
…xed prices.

To prove this result we consider the case of consumers distributed uniformly on the

square [a; a+ 1]2 choosing between two symmetric substitutes produced at zero marginal

cost. The globally optimal tari¤ structure was determined for this population in Section

7.3.1.

The proof of Proposition 16 is contained in the appendix. The calculations in the

proof result in us being able to calculate the percentage welfare gain in moving from not

using a lottery to using the fully optimal lottery tari¤. This is plotted in Figure 9.18

Not withstanding Proposition 15, moving to the fully optimal lottery tari¤ from having

not used lotteries can be detrimental to welfare. Proposition 15 only showed that small

deviations to introduce lotteries were welfare enhancing. The Proposition above shows

that the rise in the prices of the goods delivered with certainty can result in the overall

e¤ect on welfare being negative even if the e¤ect on pro…ts is positive.

18The kink in the graph is due to the movement from an interior to a corner solution for the optimal
lottery price at the point a = 1:25 as documented in Lemma 14.
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9 Lotteries in Competitive Markets

This chapter has shown that lotteries can help a multiproduct monopolist increase her

pro…t. However, we will see that they are of no use in strongly competitive one-stop shop

environments. Consider a model consisting of two multiproduct …rms with N di¤erent

product bundles in direct competition across a Hotelling line of length one. Consumers

have valuations x 2 RN+ for the products with the density of types independent of the

location on the Hotelling line and equal to f (x) : Suppose that consumers take part in

one-stop shopping (that is go to only one supplier for their products) and are uniformly

distributed along the Hotelling line. Consumers have a transport cost proportional to

¸ where ¸ is small to model strong competition. The consumers’ valuation is private

information but both …rms are assumed to know the distribution of valuations f (¢) in the
population.

We suppose that all consumers value at least one of the goods strictly above cost. The

…rms o¤er consumers the whole schedule of lotteries
©
q
¯̄P

i qi · 1
ª
where qi represents the

probability that the consumer will receive good i: This one-stop shop model of competition

is a good paradigm for industries such as mobile telephone calls and supermarkets. This

model is analysed in considerable detail in Thanassoulis (2001) Chapter 4. Armstrong

and Vickers (2001), Proposition 6 have shown that if the transport cost ¸ is su¢ciently

small then there exists a symmetric equilibrium in which all consumers are served with

the prices being

t
¡
q
¢
= ¸+ c ¢ q

where c is a vector of unit costs. This implies that the take it or leave it (tioli) equilibrium

price of product i is ¸ + ci: However, we noted in Lemma 1 that if the …xed prices were

given by the vector p no consumer would be willing to pay more than p ¢ q for the lottery
q: Hence:

Maximum willingness to

pay for lottery q
=

X
products i

qi (tioli price of good i) =
X
i

qi (¸+ ci)

= ¸
X
i

qi + c ¢ q

· t
¡
q
¢

=
Equilibrium price

of lottery q

The price of all the lotteries will therefore be priced at or above their choke price. This

implies that at best only a set of consumers of zero measure purchase them so that they

have no role to play in the competitive equilibrium.
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This brief section therefore highlights that even though lotteries can be useful to

multiproduct monopolists they are not of use to multiproduct …rms in strong competition

in one-stop shop industries. This is because strong competition has driven the prices of

the goods so close to cost that consumers …nd the equilibrium lottery prices unappealing.

10 Conclusion

This chapter has shown that lotteries are a pro…table tool for the multiproduct monopolist

generally. The result is particularly robust when the goods are perfect substitutes but

extends in certain situations even if the goods have no complementarities between them.

This con…rms that the Riley and Zeckhauser (1983) no lottery result does not extend

to more than one good. This result provides two insights into optimal selling strategy.

Firstly, we see that sellers have a justi…cation in using capacity constraints (actual or

alleged) to randomise over what good is delivered. This helps to explain the tour operators

of footnote 1 and suggests that painting new cars before they’re bought might not be a

bad idea. Secondly we have shown that it can be important for sellers to haggle with

consumers over more than one good/service. Failure to do so forgoes all the bene…ts that

lotteries can bestow.

This chapter has assumed two key features which tilted the tables against lotteries and

yet they were still found to be important pricing tools. Firstly the consumers were risk

neutral and secondly the seller had no commitment or credibility problems. If consumers

are risk averse, Riley and Zeckhauser (1983) note that a seller can do better than take it

or leave it prices even in the one good case. If consumers are made to bid for their product

with the probability of receiving it being higher the higher the bid, risk averse consumers

will bid almost all of their valuation for their preferred product yielding the seller almost

all the consumer surplus. With regard to commitment, Wang (1998) considers a risk

averse principal who can’t commit over time, bargaining with an informed agent who is

one of two types. To preserve as much bargaining power as possible, the principal o¤ers a

menu of contracts which has every type of consumer accepting something. The intuition

for this is that as the low type accepts the high type cannot a¤ord to reject and bargain

for better. Doing so would reveal her type and allow the principal to extract full rents.

Analogously, if a multiproduct monopolist has no commitment power then she must o¤er

a menu of contracts which have the lowest types accepting, otherwise the high valuation

types can pool with the low types in rejecting. The requirement to serve all consumers

is accomplished by o¤ering the low types lotteries over whether or not they receive the

good. The high valuation types will not want to risk not receiving the good.

These considerations combine to suggest that lotteries are a robust feature of a mo-
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nopolist’s optimal selling strategy.

A Proofs of technical results

Proof of Lemma 7. We …rst examine the change in consumer behaviour as a result of

the lottery being o¤ered. This is captured in Figure 4 on page 25.

1. Those consumers indi¤erent between good 1 and the lottery will have types satis-

fying

q1 (x¡ p1) + q3 (x+ y ¡ p3) + ´ = x¡ p1
) y = p3 ¡ p1 ¡ ´

q3

Recalling that those consumers who were previously indi¤erent between good 1 and

the bundle have types such that y = p3¡p1 we see that the gain in pro…t from those
that swap from good 1 to the lottery is given byZ 1

x=p1

Z p3¡p1

y=p3¡p1¡ ´
q3

q3 ((p3 ¡ c1 ¡ c2)¡ (p1 ¡ c1))¡ ´dF

2. Those consumers indi¤erent between purchasing the bundle and the lottery will

have types satisfying

q1 (x¡ p1) + q3 (x+ y ¡ p3) + ´ = x+ y ¡ p3
) y = p3 ¡ p1 + ´

q1

The gain in pro…t from those that swap from the bundle consumption to the lottery

is therefore given byZ p3¡p1+ ´
q1

y=p3¡p1

Z 1

x=p3¡y
q1 ((p1 ¡ c1)¡ (p3 ¡ c1 ¡ c2))¡ ´dF

3. Finally those consumers who are now indi¤erent between the lottery and the outside

option will have types satisfying

q1 (x¡ p1) + q3 (x+ y ¡ p3) + ´ = 0

) x+ q3y = q3p3 + q1p1 ¡ ´

referring to Figure 4 we see that the gain in pro…t from those consumers that swap

from not purchasing to the lottery is given byZ p1

x=p1¡ ´
q1

Z p3¡x

y=¡ x
q3
+p3+

q1p1
q3

¡ ´
q3

q1 (p1 ¡ c1) + q3 (p3 ¡ c1 ¡ c2)¡ ´dF
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Combining these three expressions gives ¢¦(´), the change in pro…t as a result of

the lottery addition to the tari¤. Di¤erentiating this expression with respect to ´

gives

@¢¦

@´

= ¡
Z p3¡p1+ ´

q1

y=p3¡p1¡ ´
q3

Z 1

x=q3p3+q1p1¡q3y¡´
dF

+
1

q3

µZ 1

x=p1

[q3 (p3 ¡ p1 ¡ c2)¡ ´] f
µ
x; p3 ¡ p1 ¡ ´

q3

¶
dx

¶
+
1

q1

ÃZ 1

x=p1¡ ´
q1

[¡q1 (p3 ¡ p1 ¡ c2)¡ ´] f
µ
x; p3 ¡ p1 + ´

q1

¶
dx

!

+
1

q3

ÃZ p1

x=p1¡ ´
q1

[q1 (p1 ¡ c1) + q3 (p3 ¡ c1 ¡ c2)¡ ´] f
µ
x;¡ x

q3
+ p3 +

q1p1
q3

¡ ´

q3

¶
dx

!
We note that this expression vanishes when ´ = 0 implying that this lottery has no

…rst order e¤ect on pro…t. Di¤erentiating again with respect to ´ and setting ´ = 0

gives·
@2¢¦

@´2

¸
´=0

=
1

q1q3

(
¡2 R1

x=p1
f (x; p3 ¡ p1) dx+ (p1 ¡ c1) f (p1; p3 ¡ p1)

¡ (p3 ¡ p1 ¡ c2)
R1
x=p1

f2 (x; p3 ¡ p1) dx

)
(18)

This is exactly the expression given in the statement of Lemma 7. If the right hand

side of this expression is positive then lotteries will be pro…t enhancing as ´ increases

from 0 as required.

Proof of Lemma 14. We consider this problem as a number of distinct cases.

Suppose that the optimal ´ is so large that no consumer in ­a is indi¤erent between a

good with certainty and not buying at all. That is 2´ ¸ p¡ a:

In this case the pro…t of the …rm is given by

¦ (p; ´) =
2p1

2
(a+ 1¡ a¡ 2´) (a+ 1¡ 2´ ¡ a)

+ (p¡ ´) £1¡ (a+ 1¡ a¡ 2´)2 ¡ 1
2
(2 (p¡ ´)¡ 2a)2¤

= ´ (1¡ 2´)2 + (p¡ ´) £1¡ 2 (p¡ ´ ¡ a)2¤ (19)

Di¤erentiating this with respect to p and ´ gives

@¦

@p
= 1¡ 2 (p¡ ´ ¡ a) (3p¡ 3´ ¡ a) (20)

@¦

@´
= (1¡ 2´) (1¡ 6´)¡ 1 + 2 (p¡ ´ ¡ a) (3p¡ 3´ ¡ a) (21)
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Setting (20) = 0 in (21) gives

(1¡ 2´) (1¡ 6´) = 0

) ´ =
1

2
or
1

6

Brief investigation con…rms that the maximum is at ´ = 1
6
:

Now in (20) let P = p¡ ´ giving

1¡ 2 (P ¡ a) (3P ¡ a) = 0

) P =
4a§p4a2 + 6

6

The maximum is found again at

p = ´ +
2a+

q
a2 + 3

2

3

We …nally note that this formula can only apply when 2´ ¸ p ¡ a: Basic manipulations
con…rm that this is true if and only if a ¸ 1:25:

Now suppose that ´ is su¢ciently small that there exist consumers indi¤erent between

the take it or leave it option and not buying at all. That is 2´ < p¡ a:

In this case the pro…t of the …rm is given by

¦ (p; ´) =
2p (a+ 1¡ p) 1

2
(1¡ 2´ + p¡ 2´ ¡ a)

+ (p¡ ´) ¡1
2
(2´)2 + 2´ (a+ 1¡ p) 2¢

= ¡p3 + 2ap2 + p ¡6´2 + 1¡ a2¢¡ 4´2 (a+ 1)¡ 2´3 (22)

Di¤erentiating this expression with respect to p and ´ gives

@¦

@´
= 2´ [6p¡ 4 (a+ 1)¡ 3´] (23)

@¦

@p
= ¡3p2 + 4ap+ 6´2 + 1¡ a2 (24)

We know from above that if a ¸ 1:25 then ´ will be so big as to make this pro…t function
incorrect. To determine when lotteries will be used at all we consider the second derivative

of pro…t with respect to ´

@2¦

@´2
= 4 [3p¡ 2a¡ 2¡ 3´]
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If it is optimal not to use a lottery (´ = 0) we know that the best …xed price is p =
2a+

p
a2+3
3

: We therefore deduce that·
@2¦

@´2

¸
´=0

¯̄̄̄
¯
p= 2a+

p
a2+3
3

> 0 if and only if a2 > 1

Therefore if a · 1 lotteries will not help the seller.
Therefore suppose that 1 < a < 1:25: In this case

@¦

@´
= 0) ´ = 2p¡ 4

3
(a+ 1) for the optimum

Setting (24) = 0 and using the expression for ´ given above we have

3p2 ¡ 4ap + (a+ 1) (a¡ 1)¡ 6
½
4p2 +

16

9
(a+ 1)2 ¡ 16p

3
(a+ 1)

¾
= 0

which implies that for the optimal we have

p =
2 (7a+ 8)¡

q
4 (7a+ 8)2 ¡ 7 (a+ 1) (29a+ 35)

21

This completes the proof of the lemma.

Proof of Proposition 15. We prove the proposition in two parts by …rstly consid-

ering the substitutes paradigm of Section 3 and secondly the no complementarities model

of McAfee and McMillan (1988).

Firstly, we aim to determine the e¤ect of introducing a lottery o¤er (q1; q2) with

q1 + q2 = 1 to the optimal deterministic tari¤ for substitutes on the population’s welfare.

We note that there are three types of consumer a¤ected by introducing the lottery: those

swapping from good 1 to the lottery, those swapping from good 2 and those who previously

didn’t make a purchase. Each individual consumer contributes the di¤erence between their

willingness to pay and the cost of manufacture to welfare. We therefore have:

1. The change in welfare arising from a consumer swapping from good 1 to the lottery

is given by

[q1 (x¡ c1) + q2 (y ¡ c2)]¡ [x¡ c1]
= q2 [(y ¡ c2)¡ (x¡ c1)]

2. The change in welfare arising from a consumer swapping from good 2 to the lottery

is given by

q1 [(x¡ c1)¡ (y ¡ c2)]
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3. The change in welfare arising from a consumer swapping from consuming nothing

to purchasing the lottery is given by

q1 (x¡ c1) + q2 (y ¡ c2)

Combining these three e¤ects with the analysis of consumers’ reaction to the lottery

o¤er in Section 3.1 we can establish the change in welfare for the population arising from

the introduction of the lottery (q1; q2) priced at a price of q1p1 + q2p2 ¡ ´ as

¢W (´) =

Z 1

x=p1

Z x¡p1+p2

y=x¡p1+p2¡ ´
q2

q2 [(y ¡ c2)¡ (x¡ c1)] dF

+

Z 1

y=p2

Z y¡p2+p1

x=y¡p2+p1¡ ´
q1

q1 [(x¡ c1)¡ (y ¡ c2)] dF

+

Z p1

x=p1¡ ´
q1

Z p2

y=p2¡ q1
q2
(x¡p1)¡ ´

q2

q1 (x¡ c1) + q2 (y ¡ c2) dF

Di¤erentiating this expression with respect to ´ gives

@

@´
¢W (´) (25)

=

Z 1

x=p1

½
(p2 ¡ c2)¡ (p1 ¡ c1)¡ ´

q2

¾
f

µ
x; x¡ p1 + p2 ¡ ´

q2

¶
dx

+

Z 1

y=p2

½
(p1 ¡ c1)¡ (p2 ¡ c2)¡ ´

q1

¾
f

µ
y ¡ p2 + p1 ¡ ´

q1
; y

¶
dy

+

Z p1

x=p1¡ ´
q1

½
q1
q2
(p1 ¡ c1) + (p2 ¡ c2)¡ ´

q2

¾
f

µ
x; p2 ¡ q1

q2
(x¡ p1)¡ ´

q2

¶
dx

We now note that
h
@
@´
¢W (´)

i
´=0

vanishes and so the …rst order e¤ect on welfare from

introducing the lottery (q1; q2) at a price of q1p1 + q2p2 ¡ ´ is zero. To determine the
welfare e¤ects of introducing the lottery we must determine the second order conditions.

Di¤erentiating (25) with respect to ´ and setting ´ equal to 0 then gives·
@2¢W

@´2

¸
´=0

(26)

=
1

q1q2

½
¡
Z 1

x=p1

f (x; x¡ p1 + p2) dx+ fq1 (p1 ¡ c1) + q2 (p2 ¡ c2)g f (p1; p2)
¾

+
(p2 ¡ c2)¡ (p1 ¡ c1)

q1q2

½Z 1

x=p1

fq2f1 (x; x¡ p1 + p2)¡ q1f2 (x; x¡ p1 + p2)g
¾

The local introduction of a lottery is welfare enhancing if and only if (26) is positive.

However, comparing (26) with the expression for the local change in pro…t,
h
@2¢¦
@´2

i
´=0

48



contained in (7) gives·
@2¢W

@´2

¸
´=0

=
1

q1q2

Z 1

x=p1

f (x; x¡ p1 + p2) dx| {z }
¸0

+

·
@2¢¦

@´2

¸
´=0

We therefore note that if introducing a lottery to the optimal deterministic tari¤

is locally pro…t enhancing then by de…nition
h
@2¢¦
@´2

i
´=0

will be positive. This in turn

guarantees that welfare is enhanced by the introduction of the lottery.

We now turn to the no complementarities model of McAfee and McMillan (1988). We

consider the seller introducing the lottery (q1; 0; q3) with q1 + q3 = 1 to the best …xed

prices. The welfare changes in this case are given by:

1. The change in welfare arising from a consumer swapping from good 1 to the lottery

is given by

[q1 (x¡ c1) + q3 (x+ y ¡ c1 ¡ c2)]¡ [x¡ c1]
= q3 (y ¡ c2)

2. The change in welfare arising from a consumer swapping from the bundle to the

lottery is given by

¡q1 (y ¡ c2)

3. The change in welfare arising from a consumer swapping from consuming nothing

to purchasing the lottery is given by

(x¡ c1) + q3 (y ¡ c2)

Combining these three e¤ects with the analysis of consumer behaviour in response to

the lottery contained in the proof of Lemma 7, we can establish the change in welfare

for the population arising from the introduction of the lottery (q1; q3) priced at a price of

q1p1 + q3p3 ¡ ´ as

¢W (´) =

Z 1

x=p1

Z p3¡p1

y=p3¡p1¡ ´
q3

q3 (y ¡ c2) dF

¡
Z p3¡p1+ ´

q1

y=p3¡p1

Z 1

x=p3¡y
q1 (y ¡ c2) dF

+

Z p1

x=p1¡ ´
q1

Z p3¡x

y=¡ x
q3
+p3+

q1p1
q3

¡ ´
q3

(x¡ c1) + q3 (y ¡ c2) dF
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Di¤erentiating this expression with respect to ´ gives

@¢W

@´

=

Z 1

x=p1

µ
p3 ¡ p1 ¡ c2 ¡ ´

q3

¶
f

µ
x; p3 ¡ p1 ¡ ´

q3

¶
dx

¡
Z 1

x=p1¡ ´
q1

µ
p3 ¡ p1 ¡ c2 + ´

q1

¶
f

µ
x; p3 ¡ p1 + ´

q1

¶
dx

+
1

q3

Z p1

x=p1¡ ´
q1

½
¡c1 + q3

µ
p3 +

q1p1
q3

¡ ´

q3
¡ c2

¶¾
f

µ
x;¡ x

q3
+ p3 +

q1p1
q3

¡ ´

q3

¶
dx

Noting that this expression vanishes when ´ = 0 we again di¤erentiate with respect to ´

to …nd·
@2¢W

@´2

¸
´=0

=

Z 1

x=p1

¡ 1
q3
f (x; p3 ¡ p1)¡ 1

q3
(p3 ¡ p1 ¡ c2) f2 (x; p3 ¡ p1) dx

¡
Z 1

x=p1

1

q1
f (x; p3 ¡ p1) + 1

q1
(p3 ¡ p1 ¡ c2) f2 (x; p3 ¡ p1) dx

¡ 1
q1
(p3 ¡ p1 ¡ c2) f (p1; p3 ¡ p1)

+
1

q1q3

½
¡c1 + q3

µ
p3 +

q1p1
q3

¡ c2
¶¾

f (p1; p3 ¡ p1)

Combining terms and using the fact that q1 + q3 = 1 gives·
@2¢W

@´2

¸
´=0

=
1

q1q3

(
¡ R1

x=p1
f (x; p3 ¡ p1) dx+ (p1 ¡ c1) f (p1; p3 ¡ p1)

¡ (p3 ¡ p1 ¡ c2)
R1
x=p1

f2 (x; p3 ¡ p1) dx

)
(27)

Comparing (27) to the expression (18) which gives
h
@2¢¦
@´2

i
´=0

in the general two good

case we see that·
@2¢W

@´2

¸
´=0

=
1

q1q3

Z 1

x=p1

f (x; p3 ¡ p1) dx| {z }
¸0

+

·
@2¢¦

@´2

¸
´=0

We therefore have an analogous result to that in the substitutes paradigm.

This therefore proves the proposition.

Proof of Proposition 16. We consider the case of consumers distributed uniformly

on the square [a; a+ 1]2 choosing between two symmetric substitutes which the …rm pro-

duces at zero marginal cost. The globally optimal tari¤ structure was determined for this

population in Section 7.3.1. We can therefore calculate the welfare provided when using

the fully optimal lottery pricing strategy and when using the best …xed prices only.
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No lottery used If no lottery is o¤ered and the goods are sold at a price p with the
population uniform on ­a = [a; a+ 1]

2 we have welfare

W (a) = 2

Z a+1

x=p

Z x

y=a

x dydx = 2

Z a+1

x=p

x (x¡ a) dx = 2
·
x3

3
¡ ax

2

2

¸a+1
p

=
1

3

©£¡a3 + 3a+ 2¤+ p2 (3a¡ 2p)ª (28)

From Lemma 14 this is the case if a · 1:

Lottery used an interior solution to pro…t maximisation From Lemma 14 if 1 <

a < 1:25 the optimal tari¤ has a lottery used which ensures that there exist con-

sumers in ­a indi¤erent between purchasing the good delivered with certainty or

the outside option. In this case we have welfare

W (a) = 2

( R a+1
x=p

R x¡2´
y=a

x dydx+
R p
x=p¡´

R x
y=2(p¡´)¡x

1
2
(x+ y) dydx

+
R a+1
x=p

R x
y=x¡2´

1
2
(x+ y) dydx

)

= 2

8><>:
R a+1
x=p

x (x¡ 2´ ¡ a) dx+ R p
x=p¡´ x (x¡ (p¡ ´)) +

h
y2

4

ix
2(p¡´)¡x

dx

+
R a+1
x=p

´x+
h
y2

4

ix
x¡2´

dx

9>=>;
= 2

½Z a+1

x=p

x2 ¡ x (a+ 2´) dx+
Z p

x=p¡´
x2 ¡ (p¡ ´)2 dx+

Z a+1

x=p

2´x¡ ´2dx
¾

= a¡ 2´2 + 2
3
¡ 2a´2 + p2a+ 4p´2 ¡ a

3

3
¡ 4
3
´3 ¡ 2

3
p3 (29)

Lottery used a corner solution to the pro…t maximisation problem We …nally note

from Lemma 14 that if a ¸ 1:25 then the optimal tari¤ ensures that there are no

consumers in ­a indi¤erent between purchasing the good delivered with certainty

or the outside option. In this case we have welfare

W (a) = 2

( R a+1
x=a+2´

R x¡2´
y=a

x dydx+
R 2(p¡´)¡a
x=p¡´

R x
y=2(p¡´)¡x

1
2
(x+ y) dydx

+
R a+2´
x=2(p¡´)¡a

R x
y=a

1
2
(x+ y) dydx+

R a+1
x=a+2´

R x
y=x¡2´

1
2
(x+ y) dydx

)

= 2

8><>:
R a+1
x=a+2´

x (x¡ 2´ ¡ a) dx+ R 2(p¡´)¡a
x=p¡´ x (x¡ (p¡ ´)) +

h
y2

4

ix
2(p¡´)¡x

dx

+
R a+2´
x=2(p¡´)¡a

x
2
(x¡ a) +

h
y2

4

ix
a
dx+

R a+1
x=a+2´

´x+
h
y2

4

ix
x¡2´

dx

9>=>;
= 2

( R a+1
x=a+2´

x2 ¡ x (a+ 2´) dx+ R 2(p¡´)¡a
x=p¡´ x2 ¡ (p¡ ´)2 dxR a+2´

x=2(p¡´)¡a
3x2

4
¡ ax

2
¡ a2

4
dx+

R a+1
x=a+2´

2´x¡ ´2dx

)
= a¡ 4ap´ ¡ 2´2 + 2

3
+ 2a´2 + 4p2´ + 2p2a¡ 4p´2 ¡ 2

3
a3 + 4´3 ¡ 4

3
p3 (30)

We can therefore calculate the e¤ect of lotteries on welfare. Lemmas 13 and 14 give

the optimal prices if no lottery is used and those if a lottery is used for all values of the
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parameter a: Expressions (28), (29) and (30) allow us to determine the welfare of the

populations as a function of the parameter a when lotteries are not used and when they

are under the fully optimal tari¤. These results are combined and the percentage welfare

gain in moving from not using a lottery to using the fully optimal lottery tari¤ is plotted

in Figure 9 on page 41. This shows that welfare can be both increased and decreased

when lotteries/haggling are allowed. This proves the proposition.

B Linear Programming code

Section 7.2 was solved using an AMPL program to determine the optimal selling strategy

of a seller facing consumers uniformly distributed on the square [a; a+ 1]2 : A typical such

program follows.

# Objective: consumer surplus

# Constraints: incentive compatibility and therefore non-linear

param a := 20; #the bottom left hand point of the grid

param N := 50; #the number of grid points along the bottom row (starting

from 0)

param h := 1/N; #the distance between grid points

#######

#Now the variables

#######

var v {i in 0..N, j in 0..i};

##dv/dx using symmetry

var dvdx {i in 1..N, j in 0..i} =

if i in 1..N-1 and j in 0..i-1 then ( (v[i+1,j]-v[i-1,j])/(2*h) )

else if i in 1..N-1 and j=i then ( (v[i+1,i]-v[i,i-1])/(2*h) )

else if i=N and j in 0..N-1 then ( (v[N,j]-v[N-1,j])/h )

else if i=N and j=N then ((v[N,N]-v[N,N-1])/h)

#but won’t use the N,N one

;

##dv/dv using symmetry

var dvdy {i in 1..N, j in 0..i} =

if i in 2..N and j in 1..i-1 then ( (v[i,j+1]-v[i,j-1])/(2*h) )

else if i in 1..N-1 and j=i then ( (v[i+1,i]-v[i,i-1])/(2*h) )

else if i in 1..N and j=0 then ((v[i,j+1]-v[i,j])/h)

else if i=N and j=N then ((v[N,N]-v[N,N-1])/h)
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;

##only use second order conditions in the interior

##d2v/dx2

var d2vdx2 {i in 1..N-1, j in 0..i-1} = (v[i+1,j]+v[i-1,j]-2*v[i,j])/(h^2)

;

##no values at 0,0 or i=N or along middle edge

##d2v/dy2

var d2vdy2 {i in 2..N, j in 1..i-1} = (v[i,j+1]+v[i,j-1]-2*v[i,j])/(h^2)

;

##no values at N,N or j=0 or along middle edge

##d2v/dxdy

var d2vdxdy {i in 3..N-1, j in 1..i-2} =

(v[i+1,j+1]-v[i+1,j-1]-(v[i-1,j+1]-v[i-1,j-1]))/(4*h^2);

##no values at i=N

##sum for printing out

var probreceive {i in 1..N-1, j in 0..i} = dvdx[i,j]+dvdy[i,j];

maximize integral:

h*( (a+1-1.5*h) * sum {j in 1..N-1} (v[N,j])

- 3*h*( (sum{i in 2..N-1}( sum{j in 1..i-1}(v[i,j]) ) )

+ (0.5*sum{i in 1..N-1}(v[i,i]) ) )

- (a+1.5*h)*sum{i in 1..N-1}(v[i,0]) + (0.5-3*h/4)*v[N,0]

+ (a/2+0.5- 3*h/8)*v[N,N] );

subject to pos{i in 0..N, j in 0..i}:

v[i,j]>=0;

subject to bound: v[0,0]=0;

subject to dx{i in 1..N, j in 0..i}:

dvdx[i,j] >= 0;

subject to dy{i in 1..N, j in 0..i}:

dvdy[i,j] >= 0;

subject to aprob{i in 1..N-1, j in 0..i}:

(dvdx[i,j]+dvdy[i,j]) <= 1;

subject to bprob{j in 0..N-1}:

(dvdx[N,j]+dvdy[N,j]) <= 1;

subject to d2x{i in 1..N-1, j in 0..i-1}:

d2vdx2[i,j] >=0;

subject to d2y{i in 2..N, j in 1..i-1}:

d2vdy2[i,j] >=0;

53



subject to relax{i in 2..N, j in 0..i-2}:

v[i-1,j+1]-v[i,j] <= 0;

solve;

display integral;

display v;

display dvdx;

display dvdy;

display probreceive;
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