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When analysing cointegration in vector autoregressive models it is usually assumed
that (i) the number of cointegrating relations is not smaller than what is tested for,
(ii) the number of unit roots equals the number of common stochastic trends, and (iii)
the remaining characteristic roots of the time series are stationary roots. Condition
(iii) could be violated in data from hyper-inflationary economies and in connection
with seasonally integrated data while condition (ii) is not satisfied by processes which
are integrated of order two. Here it is proved that condition (iii) is redundant when
determining the cointegration rank whereas both condition (ii) and (iii) are redundant
when testing linear restrictions on the cointegrating vector.

1 Introduction

Cointegration analysis was originally suggested by Engle and Granger (1987) as a
method for finding long-run equilibria among stochastically trending variables. This
analysis is typically used in the context of difference stationary multivariate time se-
ries, where the levels of the series exhibit non-stationary behaviour but stationarity
is achieved by differencing. In that setting it is often possible to find stationary linear
combinations which can be associated as long-run economic equilibria. In a recent
study by Juselius and Mladenovic (1999) of Yugoslavian hyper-inflation data it is
found that cointegration analysis is a useful econometric tool despite the explosive
behaviour of data and the consequent violation of the usual assumptions to cointe-
gration analysis. In this paper Johansen’s (1988, 1996) likelihood-based procedure
for cointegration analysis is investigated with a view towards this issue. In particular
it is found that the asymptotic results are valid for explosively growing variables.

! Discussions with Katarina Juselius and Zorica Mladenovic are gratefully acknowledged.



The available tests for cointegration hinge on the assumption that data are differ-
ence stationary. This can be formulated more precisely in terms of three conditions to
the characteristic roots of the time series: (i) the number of cointegrating relations is
not smaller than what is tested for, (ii) the number of unit roots equals the number of
common stochastic trends, and (iii) the remaining characteristic roots are stationary
roots. It is proved that the condition (iii) is redundant when determining the number
of cointegration relations whereas both of the conditions (ii) and (iii) are redundant
when testing linear restrictions on the cointegration parameters.

The findings for the multivariate cointegration model generalise a result for unit
root tests by Nielsen (2000) although the proof is more involved. For the univariate
case the intuition is as follows. The unit root hypothesis is tested in an autoregressive
model of order (k+1) by first regressing differences and lagged levels of the process on
k lagged differences, and then finding the sample correlation of the residuals. In that
case the conditions (i)-(iii) concern k parameters corresponding to the k lags which
are eliminated by regression in the first step of the analysis. In the multivariate case
a p-dimensional model of order (k+ 1) is analysed. This is analysed as before by first
regressing on k lagged differences and then finding the sample canonical correlations
of the residuals. Now the conditions (i)-(iii) concern kp+r characteristic roots, where
r is the number of cointegrating relations. The first step of the statistical analysis
only eliminates kp roots, whereas the remaining r roots relate to the cointegrating
relations. In general the cointegrating relations are not necessarily stationary and
this feature adds considerably to the complexity to the proof.

Section 2 presents the statistical model along with the statistical analysis and the
results. Robustness with respect to martingale difference innovations is also discussed.
The proofs follow in an Appendix and are based on ideas of Johansen (1988, 1996),
Lai and Wei (1982, 1983, 1985) and Chan and Wei (1988).

The following notation is used: for a (p X r)-matrix o where p > r the {px (p—r)}-
dimensional orthogonal complement is denoted « | , whereas @ = a(a/a) ! and a®? =
aco/. For a symmetric square matrix « let Ayin(@) and Apax(«) denote the largest
and the smallest eigenvalues respectively. The norm ||«|| is the Euclidean norm, so
l|a||* = Amax (/@) for a (p x r)-matrix a. The abbreviations a.s., D, P indicate that
results hold almost surely, in distribution or in probability, respectively.

2 Model, analysis and results

In the following the statistical model, the statistical analysis and the asymptotic
results are discussed. Initially a Gaussian vector autoregressive model without de-
terministic components is considered and subsequently generalisation to cases with a
constant level or a linear trend and some robustness issues are discussed.



2.1 A model without deterministic terms

Consider the statistical model for a p-dimension time series, X g, ..., Xo,..., Xp
given by the (k + 1)-th order autoregressive equation

k
AXt = HXt_l + ZPjAXt—j + &4, (21)
j=1
where the initial values, X_,, ..., Xj, are fixed and the innovations, 1, ..., ep, are in-

dependently, identically normal, N (0, 2), distributed. The parameters, IT,T'y,..., T,
are (p x p)-matrices and vary freely so that 2 is positive definite.

When IT has reduced rank r it can be written as II = a3 for some (p X r)-matrices
«, 3. The cointegration parameter 3 can often be associated with long-run economic
equilibria since the cumulative effect of the innovations is of less importance for the
cointegrating relation 3’ X, and the differenced process AX, than it is in general for
the process X;. In particular if X; has p — r + ¢ unit roots then 3'X; and AX; have
a most ¢ unit roots while the common stochastic trends 3 X, have at least p — r
unit roots. The other parameter « or rather o, is associated with the composition
of the common stochastic trends. It is therefore of interest to determine the number
of cointegrating relations and to test restrictions on « and £3.

The hypothesis of at most r cointegrating relations is given by

H(r): rankIT < r or II=af for a, 8 € RP*".

If H(r — 1) is rejected while H(r) is accepted then the cointegration rank is found to
be r . Once the rank is determined linear restrictions can be tested on o and (3,

H, (r): o= Ay,
Hg(r): B = He,

where A, H are known matrices with full column rank and dimensions (p x m) and
(p X s) respectively.

2.2 Statistical analysis

In the presence of the rank restrictions the likelihood function can be analysed using
Hotelling’s (1936) canonical correlations. For a classical regression model the rank
hypothesis was analysed by Bartlett (1938) whereas Anderson (1951) studied the
hypothesis H, (7). The same procedure was introduced in the cointegration context
by Johansen (1988, 1996).

The likelihood is maximised in two steps. First, AX; and X;_; are corrected for
the remaining terms of equation (2.1) by least squares regression giving the residuals

(RO,t; Rl,t) - (AXt, thl‘ Athl, e ,AXt,k.) (22)
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Secondly, the squared sample canonical correlations, 1 > 5\1 > > 5\p > 0, of Ry,
and R, are found. This is done by computing the sample product moments

S0 Sor | _ 1 i Roy \ ( Ros )
S0 S T =\ Ry Ry
and then solving either the eigenvalue problem 0 = det()\é’n — 5’105&)1501) or the

“dual” problem 0 = det(ASpy — So1517 S10) for eigenvalues A;. The likelihood ratio
test statistic for H(r) against the unrestricted model H(p) is then

p A
LR{H (r)|H(p)} =T Y log(1-4;).
j=r+1

The parameters «, § can be estimated in terms of the eigenvectors associated with
the eigenvalue problems. One set of eigenvectors v, satisfy \;S11v;, = 5108&)18011)]-
and the parameter [ is estimated by those corresponding to the r largest eigenval-

~t A~
ues and identified through the restriction 3 S1;6 = I, whereas « is estimated by
~A Al A ~
So13(8 S118) . Another set of eigenvectors satisfy A;Spow; = 5018;11810wj and the
parameter o, can be estimated by those related to the p — r smallest eigenvalues and
identified by CAV/J_SO()@J_ = Ip,,,a.

Some further notation is useful when it comes to analysing the hypotheses on «
and . The residuals R, are often pre-multiplied with matrices such as @,« |, A or
A, whereas R; is pre-multiplied with 3,3, H or H,. Thus in the notation for the
sample product moments “0” and “1” will often be replaced by these symbols, such as
Sag = A/S(HH, Saa, = A'SpoA, and correspondingly 44, = A'QA, . The notation
Sar.a, =S —Saa, SATiAL Sa,1 1s used for partial sample product moments.

Under Hg(r) the likelihood is maximised in terms of the squared sample canonical
correlations, 1 > 5\/18 > . > 5\/58 > 0, solving 0 = det(ASyy — SwoSe Sox); see
Johansen (1996, Theorem 7.2). The likelihood ratio test statistic for Hg(r) against
H(r) is

p
~ ﬁ ~
LR{Hs;(")|H(r)} =T 3 log { (1 - Aj>/ (1- Aj)} .
j=r+1

For the analysis of H,(r) it is convenient to consider the dual eigenvalue problem.
Following Johansen (1996, Theorem 8.4 and Section 8.3) the likelihood is maximised
in terms of the squared sample canonical correlations, 1 > j\fﬁ > e 2 5\:;5 > 0,
solving 0 = det(ASaa.a, — Sama, ‘SVIZ,}{_AL Spa.a, ). The likelihood ratio test statistic
for H,(r) against Hg(r) is

LR{H, (r)| Hs(r)} =T Xp: 1og{(1—X§"ﬁ>/<1—ﬁ\f>}.

j=r+1



2.3 Representation theorems

While the autoregressive representation (2.1) is convenient for formulating the sta-
tistical analysis an interpretation of the process is provided by its moving average
representation. For that purpose the characteristic polynomial of the process is con-
sidered. Under the hypothesis H(r) this is

A(z)=1,(1—2)—afz—Y Iz (1-2),

=1

and the characteristic roots solve the {p(k + 1)}-th order polynomial equation 0 =
det A(z). Under H(r) there are at least p — r unit roots whereas the remaining pk +r
roots are the characteristic roots of the vector (X] ;8,AX] |,...,AX] ;). Three
conditions are necessary to achieve asymptotic stationarity of 3'X; and AX;

() rank IT = r,

(72) the number of unit roots, z = 1, equals p — rankIlI,

(¢43) the remaining roots are stationary roots, |z| > 1.
The condition (ii) can be formulated algebraically as a full rank condition for the
(p—r)-dimensional square matrix o/, U3, where ¥ = I —Y°*_, T';. It then follows that
the matrix (4, ¥« ) has full rank.

The Granger Representation can now be formulated.

Theorem 2.1 (Johansen, 1996, Theorem 4.2, 4.7) Suppose equation (2.1), the hy-
pothesis H(r) and the conditions (i), (i1), (iii) are satisfied. Then 3'X, and AX; can
be given stationary initial distributions while X; has the asymptotic representation

t

X, =C Z s + zero mean stationary process + 1.+ op (1) .
s=1

Here C =3, (!, ¥3,)7 '/, and 7. = CXo.

When the conditions (ii) or (iii) are violated the representation is harder to de-
scribe as it involves additional types of stochastic components. In empirical analysis
the residual processes are often plotted since they are rather stable. This applies
even in general cases as indicated in the next two Theorems. The first concerns the
“stationary” residuals §'R;; and Ry.

Theorem 2.2 Suppose equation (2.1), the hypothesis H(r) and condition (i) are sat-
isfied. If in addition either (a) k >0, &/T'y =0 or (b) k=0, @+ =0, then

ﬁ,RLt = (—a,6t_1| AXt_l, Ce ,AXt_k) 3 (23)
RO,t = (€t‘ Athl, R ,AXt,k) . (24)



The intuition of the condition o'T'y, = 0 is that the order of the characteristic
polynomial is reduced from pk + k to pk + p — r. These roots include p — r unit
roots as desired as well as pk other roots which are eliminated by regression on the
pk-dimensional vector given by the lagged differences. When adding an extra lag to
a well-specified model of order k£ say, then the additional parameter would be zero
['y, = 0 and the condition is trivially satisfied.

The following results describes “common trends” residuals 3’ Ry ;. This is related
to the representation given by la Cour (1998).

Theorem 2.3 Suppose equation (2.1), the hypothesis H(r) and condition (i) are sat-
isfied. Then there exists an ¢ > 0, dimensions si,...,5, > 0 so Zg-:l s;=p—r and
(p x s;)-matrices oy, 3; so ooy = B3, = 0 for j # 1, span(ay, ..., a,) = span(ay)
and span(By, ..., 3,) = span(B, ) and in particular

—ol L
(ﬁ;Rl,t) ﬁ/RLt) = { j'] Z 837153 + ajq ﬂ/Xt—lu AXiq,. .., AXt—k} )
© os=1

with max,<7 ||a;|| = o(T7=Y2). If in addition condition (ii) is satisfied then q = 1.

2.4 Asymptotic distribution for likelihood ratio test statistics

For the restrictive situation where the conditions (i), (ii), (iii) are satisfied Johansen
(1996) derives the asymptotic distribution of the above mentioned likelihood ratio
tests as T' — oo. In the following it will be shown the same asymptotic results hold
with less restrictive assumptions.

The first result concerns the squared sample canonical correlations.

Theorem 2.4 Suppose model (2.1), the hypothesis H(r) and condition (i) are satis-
fied. Then

~

~ L. X a.s.
Apy vy Arpl 220 and hTm inf A, > 0.
—00

The proof is based on an analysis of the dual eigenvalue problem. In general
the argument cannot be based on the other eigenvalue problem since the asymptotic
properties of Szg have only been described in part, see Lemma A.4 in the Appendix.

For the case where the conditions (ii), (iii) are satisfied the result is given by
Johansen (1996, Section 11.2). Related results have been found for I(2) models where
condition (ii) is violated, see Johansen (1995), and for seasonally integrated systems
where (iii) is violated, see Lee (1992). When (ii) and (iii) are indeed satisfied the r
largest eigenvalues converge to the solutions of 0 = det(A\Y35 — Y3005 L) Where
Y38, o0, 280 are the asymptotic covariance matrices for the processes B3 X, 1 and AX,



given past values. A result of this type actually holds whenever Sgs is convergent.
It seems reasonable to expect that in the case limy_ Sﬁ_ﬁ1 has reduced rank then

the {r—rank(limy_o Sz3)} largest eigenvalues A; converge to one whereas the next
{rank(limy_, o Sﬁ_ﬂl)} eigenvalues converge to numbers between zero and one.

The rank test is based on the (p—r) smallest canonical correlations. Their asymp-
totic behaviour depends on the number of unit roots and hence condition (ii) is needed.

Theorem 2.5 Suppose model (2.1), the hypothesis H(r) and the conditions (i), (ii)
are satisfied. Let W be a (p — r)-dimension standard Brownian motion. Then

LR{H () H (p)} gtr{/ol AW, W (/01 WUWL’Ldu>1 /01 WudWL’L}.

The proof resembles that of Johansen (1996, Theorem 6.1) who proves the result
using condition (iii). For the univariate case a proof is given by Nielsen (2000).

The necessity of the condition (i) is discussed by Johansen (1996, Chapter 12)
while the necessity of condition (ii) is observed in I(2) analysis, see Johansen (1995).

A consistent procedure for determining the cointegration rank can be derived
from Theorems 2.4 and 2.5. Following Johansen (1996, Chapter 12) the idea is to
test H(0), H(1),... sequentially against H(p). The first hypothesis to be accepted
determines the rank. If all these tests are conducted using (1 — ¢) quantiles of the
asymptotic distribution in Theorem 2.5 then the rank estimator 7 is consistent.

Corollary 2.6 Suppose model (2.1) is satisfied. Then

0 if rankIl > 7,
P(r=r)—¢ 1=9¢ if rankIl = r and condition (i) is satisfied,
<6 if rankIl < r and condition (i) is satisfied.

The tests on o and (3 are based on the r largest canonical correlations. A mixed
Gaussian argument is used in the asymptotic analysis of the test on 4. The mixing
parameter is related to (3| Ry ;|8 R1;) so Theorem 2.3 can be applied.

Theorem 2.7 Suppose model (2.1), the hypothesis Hz(r) and condition (i) are sat-
isfied. Then

LR{H(r)| H(r)} 5 x*{r(p—s)}.

When testing restrictions on « then 'R;; appears in the asymptotic argument
and Theorem 2.2 with its slightly stronger assumptions is needed. Thus consider a
fourth condition

(1v) Suppose either (a) k > 0 and /Ty, =0, (b) k=0 and @+ =0, or (c) the
conditions (1), (i77) are satisfied.



Theorem 2.8 Suppose model (2.1), the hypothesis H,(r) and the conditions (i), (iv)
are satisfied. Then

LR{Ha (r)| Hy (r)} = x*{r (p—m)}.

For the case where also condition (ii), (iii) are satisfied the two results follow from
Johansen (1996, Theorem 7.2, 8.2). Johansen (1995) also considers asymptotic theory
for B for I(2) models where condition (ii) is violated.

The proofs of Theorems 2.7, 2.8 have two main arguments. First the asymptotic
distribution of &, is found using the dual eigenvalue problem, see Lemma A.9 in
the Appendix. The likelihood ratio test statistics are then written as products of
a few likelihood ratio statistics relating the hypotheses to simple hypotheses on o |
and each of these are expanded in terms of (&, — «). This is a bit different from
Johansen’s proof in which the other eigenvalue problem is considered along with
simple hypotheses on (3.

When testing restrictions on « in the case k& = 0 the assumption (c) is really
necessary. This can be seen from the following example

01
0 0

The asymptotic distribution of the test for o/ = ¢'(0,1) against H(r) is then of the
same type as discussed in Theorem 2.5. Compare also with the test for o/, = (0, 1)
discussed in connection with Lemma B.1 in the Appendix B.

AX, = ( ) Xy + 20 (2.5)

2.5 A model with a constant term

For practical purposes the basic model (2.1) would be extended to allow for a non-zero
constant level as in the model given by

k

AXt = (H, HC) < thil > + ZFjAXt—j + &4, (26)
j=1

where II, is a p-vector.

Four types of hypotheses are of interest of which the first is the reduced rank
hypothesis H.(r): rank(II,1I.) < r or equivalently (IL,II.) = (8, 3.) for (p x r)-
matrices «, 3 and an r-vector 3.. Once the rank is determined it may be of interest to
test 3, = 0 so the model reduces to that discussed above H(r): rankll < r, II. = 0.
When J, is unrestricted linear restrictions on «, 3 can be tested using the hypotheses
H{ (r): a = Ay and H§(r): = He, (, € R". Test statistics for these hypotheses
are derived as in Section 2.2 replacing the residuals (2.2) by

{AXt, ( th—l )'Ath, . ,Ath}. (2.7)
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For the probabilistic analysis of this model an invariance property is useful.

Theorem 2.9 Suppose equation (2.6), the hypothesis H(r) and condition (i) are sat-
isfied. Define the p-vector 7. = —(303,. Then the process X{ = X, — 7. satisfies
X =pX,+0., 3 X =0,X, AX; = AX;, and

k
AXP = af' X7, + S T;AXE + e

J=1

The canonical correlations of the residuals (2.7) are the same as those of

{A)@( thl‘ ! )

by the invariance of canonical correlations with respect to non-singular linear trans-
formations. When Theorem 2.9 is satisfied it is therefore equivalent to consider the
canonical correlations of

s )

In other words, for the probabilistic analysis it suffices to assume 3, = 0 as long as
condition (i) is satisfied.

AX, 1. .. ,AXt_k}

AXD ... AX;’k} .

Theorem 2.10 Suppose model (2.6), the hypothesis H.(r) and condition (i) are sat-
isfied. Then

3 a.s. .. ~C a.s.
oy A1 — 0, and h%nlnf)\r >0
— 00

If in addition condition (i1) is satisfied then

LR{H, (") H. (p)} 2 tr /Oldwu ( VTU ) {/01 ( I/II/ >®2du}1/01 ( V¥ )Czwg

If in addition the hypothesis H (r) and condition (ii) are satisfied then
LR{H (r)| He (r)} 2 x* (r).
If in addition the hypothesis Hg(r) is satisfied then
D
LR{HS (r)| He (r)} 5 x* {r(p— 5)}-
If in addition the hypothesis HS(r) and condition (iv) are satisfied then
LR{H (r)| He (r)} = X {r (p—m)}

The necessity of condition (ii) when testing H(r) against H.(r) can be checked
from the example (2.5) and equation (B.10) in the Appendix.



2.6 A model with a linear term

When the data exhibit linear growth it may be of interest to include a linear trend
term as in the equation

X, k
AX, = (I, 11)) ( ; ! ) + pe + ZFjAthj + &t (2.8)
i=1

In this model a wide range of hypotheses are of interest. The rank hypothesis
is as before H;(r): rank(II,I;) < 7 or equivalently (II,I;) = «(f3',3;). Once the
rank is determined the model is reduced to the previous model by testing H.(r):
rank(Il, ) < r and II; = 0 whereas the linear trend is eliminated from the coin-
tegrating vector by H.(r): 5, = 0. Restrictions on «, 3 are formulated as above as
H.(r): a = Ay and Hy(r): = He.

This model has weaker invariance properties than the model with a constant.

Theorem 2.11 Suppose model (2.8), the hypothesis H(r) and condition (i) are sat-
isfied. If in addition condition (i) is satisfied, or more weakly a (p — r)-vector B, 7
can be chosen so O/J_‘I’ﬂLB/J_TZ = o/ (. + VB, then define p-vectors T.,7; so

6/7'[ - _6;7 O/L\IjﬂJ_B,LTl - O/L (/’Lc + \IJE(S’) ) Te = Ba, (/’Lc - \IITI) :

The process X; | = X;—1 — 7. — Tit then satisfies the equations AX; = AX; — 14,
BXP . =6(X{_1,t) — BT, and

k
AXP = af' X7, + S T;AXD + e

J=1

The interpretation of the assumption that o/, U/ LBIJ_TZ = o (p, + VB§) has a
solution is that the possibility of quadratic or higher order polynomial trends is elim-
inated. This was discussed for an I(2) model with linear trend by Rahbek, Kongsted
and Jorgensen (1999). As long as the above assumptions are satisfied the Theorem
2.10 is easily generalised.

The I(2) model with a quadratic trend is studied by Paroulo (1994). For that
model the assumptions of the above Theorem 2.11 are violated, but consistency of
the eigenvalues and asymptotic results for B are proved nonetheless. In the proof it
is noted that a quadratic trend dominates a cumulated random walk. The process
X, possesses terms of both types but it can be decomposed into components of each
type. The same strategy could presumably be applied more generally, but it would be
tedious since polynomials and integrated processes of higher order would be involved.
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2.7 Robustness

The above mentioned asymptotic results remain valid in the more general case of
innovations satisfying a Martingale Difference Sequence assumption.

Assumption 2.12 Let F; be an increasing sequence of o-fields and assume {ey, Fy} is
a martingale difference, so E(g|Fi_1) = 0 and E(g,8}|Fi_1) € Q. Further, assume
the innovations have bounded conditional moments sup,E(||e||*"|F, 1) € oo for
some v > 0.

Stronger assumptions are required for the tests on o and (.

Assumption 2.13 Suppose v > 4 in Assumption 2.12 or alternatively that v > 2
and condition (iv) is satisfied.

Theorem 2.14 Suppose the innovations satisfy Assumption 2.12. Then the asymp-
totic results given in Theorems 2.3, 2.4, 2.5 and Corollary 2.6 remain valid. If in
addition Assumption 2.13 is satisfied then Theorems 2.7, 2.8 remain valid. Theo-
rem 2.10 can be changed in a similar way so Assumption 2.13 is needed when testing
restrictions on o, 3, 3.

The assumption of bounded conditional moments excludes the autoregressive con-
ditional heteroscedasticity process suggested by Engle (1982), that is the univariate
process £; = htl / ?u; where u; are independently identically distributed with Fu; = 0,
FEuy =1 and hy = ap + a162 ;. When 302 < 1 this process has second moment and
E(?|Fi_1) = h; is time varying and unbounded. While the assumption could be
replaced with an unconditional moment condition when proving Functional Central
Limit Theorems, see Hansen (1992), it is harder to dispense with it in the proof of
equation (C.5) in Appendix C that a process d, = Dd; 1 + ¢, with |D| > 1 satisfy
ST D Td,_1| S oco. This fails for the above mentioned process when u, is Bernoulli
distributed on —1,1, ap = 0 and |y /D?| > 1.

The assumption of constant conditional variance would be easier to relax. While
it is indeed used by Chan and Wei (1988) it is not used by Lai and Wei (1982,
1983, 1985). For the consistency of the eigenvalues this assumption can therefore be
replaced by (a) T ST eie) % Q proved in Lemma A.1, and (b) the limes inferior
condition proved in Lemma C.2. To find the distribution of the rank test it would be
necessary to revise Lemmas A.10 and A.12 which are based on Chan and Wei (1988).
Finally for the tests on a and (3 it is necessary to make assumptions ensuring that
the Lemmas A.2, A.13, A.14 are valid.

11



APPENDIX: Mathematical Proofs

The appendix is organised as follows. First a series of Lemmas are stated in Section
A. Using these results proofs of the main theorems are given in Section B. The
Lemmas give convergence results holding with probability one, in probability and in
distribution and are proved in the subsequent Sections C-E.

A Some asymptotic results

It is convenient to introduce some notation. The differenced process will be multiplied
by the matrix

1/2
Al = Mg! o where My = lp—r O
T v & | T 0 Ss :

In the analysis of the levels of the process two different transformations are applied.
To prove the consistency of the eigenvalues the process is analysed using the basis
(8,8,). The distributional result for the rank test is derived under condition (ii) in
which case the matrix (5, ¥« ) has full rank and is used as basis. Thus define

, B I,r —ﬂ,S Sfl /
BT:MT1<pO J.ijﬁﬁ,@)(%#)’

I, —/ US5355} o, U
C,T _ MT1< pO LITLB ﬁﬁ)( g/ >
Finally, let Z,_; = (AX/_,,...,AX]_,).

A.1 Almost sure results

The results in this section are based on the work of Lai and Wei (1982, 1983, 1985).
Proofs are given in Appendix C. Note, that condition (ii), (iii) are not used.
The following strong law of large numbers is needed

Lemma A.1 Suppose {&;} satisfy Assumption 2.12. Then T~ &) “% Q.
A stronger version is used for the distributional analysis of 1.

Lemma A.2 Suppose {e;} satisfy Assumption 2.12. Then, for all £ < v/(24+7) and
¢ <min(¢,1/2)

1

Il

T
T ;gteg “ZQO+o (T’<> ,

k) a.s. 7C
get O(T )

=l
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The order of magnitude of the innovations can be derived from the conditional
Borel-Cantelli Theorem.

Lemma A.3 Suppose {e;} satisfy Assumption 2.12. Then, for all £ < v/(2+7)

as o o)
max | < o {7092}

It has not been possible to describe the distributional behaviour of the cointegrat-
ing relations in detail. For the proofs of the main theorems is suffices to show that
the limit of the sample covariance matrix is positive definite.

Lemma A.4 Suppose equation (2.1), the hypothesis H(r), condition (i), and As-
sumption 2.12 are satisfied. Then

a.s.

lim inf Ain (Ss) 0.

The asymptotic behaviour of the residual Ry, can be described using the next two
Lemmas. The first generalises Lemma A.3 of Nielsen (2000) whereas the second is
purely algebraic.

Lemma A.5 Suppose equation (2.1), the hypothesis H(r), condition (i), and As-
sumption 2.12 are satisfied. Then, for all § < ~v/(2+7)

—1/2
€12 )% )Z(tt_ll ) d )Z(:_ll
_ — — ; a.s.
T > % >| At e
t= t=
¢ ¢

Lemma A.6 Let (x4, y;, a;) be a sequence of three vectors and suppose

1/2

()} s e

T —1/2 T T —1/2 T
{Z (J:t|yt)®2} > (@|ye) a; — 0, {Z y{m} > ya; — 0.
=1 =1

t=1 t=1

Then

Asymptotic results for some of the sample product moment matrices can now be
derived. This result generalises Lemma 10.3 of Johansen (1996).
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Lemma A.7 Suppose equation (2.1), the hypothesis H(r), condition (i), and As-
sumption 2.12 are satisfied. Then, for all § < v/(2+7)

ApSooAr % AWQAL + (8 ? >+0(1), (A.1)
(0,1,) BpSioAr %% (0,1,), (A.2)
{(0,1,) BySwAr — (0,I,)} My %% 0. (A.3)

Suppose B = Hyp for some (p X s) matric H with full column rank. Then
A}SOHSI}}{SH()AT

( 8 2 ) +MT_1{< 2 )Sﬁe (ar,@) + ( %,% )Ssﬁ (O,IT)}MT—1+0<T—£)7

Q
o

as. (00 0<T7£) o (T4 A4
“\log )™ o(T*5/2> o (T2 (8.4
and
£ AXt I 2 e a.s
T2 Z ( c ) (UH'X; 1,7 1) {Z (UH' X, 1, Z 1) } — 0. (A.5)
t=1 ¢ t=1

A Corollary to Lemma A.7 generalising Johansen (1996, Lemma 10.1) is useful.

Corollary A.8 Suppose equation (2.1), the hypothesis H(r), condition (i), and As-
sumption 2.12 are satisfied. Let Soo = AlSeoAr, So1 = ALSo1Br. Then

1
- -~ 0 O 0 - -
N = SO_Ol — S()_()1S01 ( I ) {(O, Ir) 51050_01501 ( I >} (O, Ir) SlOSO_Ol
a.s. I —r / -1
2% ( p() > (o Qo) (Ip—r,0).

The consistency of &, can now be stated. Suppose a = Ay and § = Hep. For
some random {r x (m — r)}-matrix Uy let

~ ~ — A —1 — ~ e —

Vo=, (Vo)  =v +90'd, B ¢, +Ur. (A.6)
Lemma A.9 Suppose equation (2.1), the hypotheses Hy(r), Hg(r), condition (i), and
Assumption 2.12 are satisfied. Let A, = A — ALQ;&ALQALA. Then, for all £ <
v/(2+7)

SiiUr = o(T47), (A7)
v, g o (T, (A.8)
~SysUr 2 S5/ "Sp. Ay {140 (T77)} +0(T7). (A.9)
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A.2 A convergence in probability result

The asymptotic behaviour of the residuals R;; can be described by generalising Lem-
mas A.4 and B.1 of Nielsen (2000). It suffices to prove convergence in probability
since the common trends are not normalised by Sgg.

Lemma A.10 Suppose equation (2.1), the hypothesis, H(r), the conditions (1), (ii),
and Assumption 2.12 are satisfied. Then, for alln >0 and k =0,1, ...

T / ®2) ~1/2 T /
L X, BX,1 \ . P
Tk B X =1 )4k P
() S ()

t=1 t=1

T / ®2 _1/2T / t—1
ke X B X kP
k172 B X t—1 _ 2o
(7)) S ) g

If condition (i) is not satisfied the results only hold forn > 1/2.

A.3 Distributional results

The basic distributional result follows from Chan and Wei (1988, Theorem 2.2).

Lemma A.11 Suppose {e;} satisfy Assumption 2.12. Let W be a p-dimensional
Brownian motion with variance Q2. Then, for u € [0, 1],

1 [TU] 1 T t—1 . D 1 )
N , W, [ WvdW)
VT s:l€ T;s:Zlg A ( 0 °

on D|0, 17 x RP*P| where DI0,1] is the space of functions on [0,1] which are right-
continuous and have left-limits.

The distributional behaviour of the common trend components of the product
moment matrices can now be described.

Lemma A.12 Suppose equation (2.1), the hypothesis H(r), the conditions (i), (ii),
and Assumption 2.12 are satisfied. Then

, T2 . 0 , 721 0
{(Iprao) C’T81014Tj\4Ta ( 0 P I > CTSHCT ( 0 P I )}

1 1ol !
2 {al/ Wy dW, (a1, @), ( Lo WBWudUO& IO )}
0 T
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For the test for H, (r) the following version of the Brown’s (1971) Martingale
Central Limit Theorem is used.

Lemma A.13 Suppose equation (2.1), the hypothesis H,(r), condition (i), Assump-
tion 2.12 and E||g,||* < oo are satisfied. Then

T
TP LY eey @y B N {O’ IT(p—r)} ’
t=1

oy

Finally, for the test for Hg(r) a mixed Gaussian result is useful. Let w =
Qoa, U1, and @, =@ —wa/| so @, g and (R, ¢|Rs,) are approximately uncorre-

lated by Theorem 2.3.

Lemma A.14 Suppose equation (2.1), the hypothesis Hg(r), condition (i) and As-
sumption 2.12 are satisfied. Then

Veal O Sert, 1St = N{0, Ly )} -

aca) “w
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B Proofs of main Theorems

The main theorems are proved under the assumptions stated in Theorem 2.14.

B.1 Representation Theorems

Proof of Theorem 2.2. (2.3): Rearrange the model equation (2.1), pre-multiply
by @ to see that

k
X, =—de+ @ +0)AX, — > aT;AX,_;.

Jj=1

and exploit the regression on AX;_1,..., AX; .
(2.4): The result for Ry follows from the identity Ro; = «3’'Ri;+ R.+ ®

Proof of Theorem 2.3. An iterative argument is used. In the first step use
that AX; 1 — AX;_1_; =37 ; A%2X,_; and rearrange equation (2.1) as

k k k
af X1 = (Ip +af - er) AXi 1+ (Z rl) A*Xy j— e (B.1)

i=1 =1 \I=j

Introduce the notation s = r, By = 3, By, = B, a0 = a, ag; = ay, Cyg =
I+ af =35 T; and Co; = Y7, I'. Pre-multiplying (B.1) by (@, a,1 )" gives

BoXeer \ _ (@ ) [coax ALY B.2
0 =\ 00 t71+z 04 t—j —Et-1 | - (B.2)

0L j=1

To get to the n-th step define a function k,,, as 11y for n = 0 and s"'/n!
for n > 0, and let 6, be a function identical to zero for n = 0 and satisfying
max; <y |[6ns]| Z o(T71/274/2) for some € < v/(2 + ) and n > 0. Then, with n = 0,
equation (B.2) implies that
1

k
0= CY;LL (CHOAXt_l + Z anAQXt_j —

j=1 s=1

Rsn€s + 6n,t> . (BB)

A recursion formula for C,, is given by la Cour (1998). She uses the notation Cno =
F"(A)1(1) and parametrise IT as IT = —a/3". In (B.3) use the identity 1, = 337, 3,0+
B,,. ., and sum over ¢ so see that

- (a;ucnoﬁnﬁ ﬁ:uthl = (B.4)

n k t—1 t—1
CVLLL (Cno Zﬁjﬁ;‘Xt—l + Z anAXt—j - Z Hs,n—&-lgs + Z 6n,s + An) .
7=0 j=1 s=1 s=1
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For n = 0 then 3%~} d0,s = 0 and Ay is a linear combination of the initial values and
thus of order O(1). For n > 0 then max,<y || 242} 6,,.4]] € o(T"HY/278/2) | whereas A,
involves a term depending on initial values and is of order O(1). The boundedness of
the innovations stated in Lemma A.3 shows that A, “ o(T"1/2-¢/2),

Suppose the (p— Y7y s;)-dimensional square matrix o, | Criof3,, | has rank s, <
(p — Xj_¢s;). Then it can be written as (,n, for some {(p — >7_5;) X Spi1}-
dimensional matrices (,,, n,, with full column rank. Pre-multiplying equation (B.4) by
(€, ¢,y ) then gives

( —nizﬁiéLXt—l ) _ (B.5)

s t—1
(g? ) nL( nOZﬂﬁXt 1+ZCTLJAXt —J ZK5n+lgs+Zéns+A)

nl s=1 s=1

Introduce (pX $p+1)-matrices a1 = a1 Cpy, Brir = — By 1 My, and {px (p—X70 s5)}-
matrices Ont1,1 = anLCnJ_ﬂ ﬁnJrl,J_ = ﬂnj_nnJ_'

If Z?Jrol s; < p then in the 41, -component of equation (B.5), substitute ﬂ;Xt,l,
first for j =n,...,1 using the a,,;1-component and then for j = 0 using (B.2). This
results in an expression of the form (B.3) where 6,1, is a linear combination of
Ay, 3165 and st ks for j =1,...,n. By Lemma A.3 then max;<r ||0n11¢|| =
O(T”H/ >/ %) as required above. The 1terative step is repeated for n + 1.

When Z?*& s; = p the iteration stops and the «,,;1,_ -component in (B.5) vanishes.
The ay, 1 1-component shows

t—1
/ / !
(ﬂjJrlthl‘ B X1, Zt71> = (Oéjﬂ Z Ksj+1€s + Qjti1t
s=1

ﬂ/thlu Ztl)

for 0 < j < n with a;,1; = o/, (Cno Z{Zl B3 X1+ X165 + Aj). A sequential
argument for j = 0,...,n shows that max,<r ||a; 1| = o(T771/2).

Note that the iteration eventually comes to an end. Analysis of the characteristic
polynomial A(z) shows that p— "% s; unit roots are identified in each step and the
process only has a finite number of characteristic roots. m

B.2 The rank test

Proof of Theorem 2.4. The solutions to the dual eigenvalue problem, 0 =
det()\Soo - 50151_11510), equal those of 0 = det A/T {ASOO - 50151_11510} AT. By (Al),
(A.4) of Lemma A.7 it is equivalent to consider 0 2 det { P (\) 4+ o(1)} where

P(X) = AM;! (O(;i )Q(aL,a)MleL()\—l)(g ? )
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For A\ = 0 the matrix polynomial P()) satisfies (I,—.,0)P(\) = A(I,—,0) and there-
fore the p — r smallest eigenvalues converge to zero. The equation 0 = det P())
can be rewritten as 0 = det (Aa/, Qo ) det {()\ -1+ AS&;QQM.% ng;/Q} . Since

5561/2 2 0 by Lemma A.4 it follows that liminf;_, A, 0. m

Proof of Theorem 2.5. In order to analyse the smallest p — r eigenvalues
replace A by A/T in the eigenvalue problem. By multiplying with C7 this becomes
0 = det C (T’lASll — S10S50" 501) Cr, which is asymptotically equivalent to

A L. 0 I,,. O -
0 = det {? ( po 0 > CCIFSHCT ( po 0 ) - C"TSmSOOlSOlC’T} .
Using the matrix N defined in Corollary A.8 this determinant can be rewritten as

0 = det {— (0, 1,,) C4S10S50 Sor Cr ( ;) )}

(A 0
x det {(Ip_r, O) CT <?S11 — SloATNATS()l) CT ( I >}

The first term does not depend on A. Thus, using Corollary A.8 the asymptotic
distribution of the p — r smallest eigenvalues can be found from

! )\ -[ —7 — 0
0 = det l(IpT,O) CT {TSH — SlOAT ( pO ) Qaiou (IP,T,O) ATS(H} CT ( I )]

Lemma A.12 together with the Continuous Mapping Theorem, see Billingsley (1968),
shows that this expression is asymptotically equivalent to

1 1 1
0 = det o, {)\ / W, W du — / WodW! o, (o Qo) o, / quWL}OzL,
0 0 0

~1/2

where (¢, Qa, ) '/?a’, W is a standard Brownian motion. m

B.3 Test for simple hypothesis on o, when = Hyp and o = Ay

In the following the likelihood ratio test for a simple hypothesis on o is considered
when both H,(r): a = Ay and Hg(r): § = Hyp are satisfied. That is, the hypothesis

Heo (r): ay = (A L,Zz/fi) for some known ¢ is considered.

Lemma B.1 Suppose equation (2.1), ay = (AL, A), the hypotheses Ho(r), Hg(r),
condition (i), and Assumption 2.13 are satisfied. Then

LR{H,, (r)| Ho(r), Hs(r)} = tr {(?//LQAAAL%)*I T@DLZ;SE/BSEES&ZUJ%}%P (1).
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Proof of Lemma B.1. The model equation (2.1) concentrated with respect
to the lagged differences is given by Ro: = Ay H'R;; + &;. Pre-multiplication by
(A, A1) shows that A’ X, is weakly exogenous for 1, ¢. Thus likelihood inference can
be based on the partial system of A’ X, given A’ X,

ARoy =@ H'Ryy+ Qaa, Q3 4 AL Roy + AL,
Following Johansen (1996, p. 130) the concentrated likelihood function of ¢ is

[0 Sana, )]
V) Saama |

When @?} | denotes the unrestricted maximum likelihood estimator of ¢ | the likelihood
ratio test statistic can be expressed as

LT (1)) = ax LT (1,0, 9.T;) = [Sanma, |
@, QI ‘

og V7 Saan, ¥l
[0 Sanma, V7|

b Sanathy
LR { Ha; (r))Ha(r),Hg(r)}T{l v | }

IZ},LSAA-H,AL IZ}L)

Without changing the value of the test statistic ¢, can bereplaced by ¥, = ¢, (¥, 0, ).
Following Johansen (1996, Lemma A.8) an expansion around ¢, = 1] gives

- 3
LR{ He ()| Hao (), Hp (r)} = Ttr (Dy — D3) + O <Hm — | > .
where ¢, — 1, “% 0 by (A.8) in Lemma A.9 and
D, = (@/JlSAAAAﬂDL)il (% - %) SAA.AL,EpL (JJL - ¢L) )
Dy = (W Sannacs)” (o —¥0) Suama, ap, (Vo —¥1).
Using Lemma A.2 and (A.4) of Lemma A.7 it is seen that ¢/ Saaa, ¢, =
W Qana, vy +o(T742) and ¢ Saama, vy 2 ) Qana, b, +o(T74?). Applying
the definition ¢, — ¢, = ¥ Uy it follows
Dy — Dy = (¢ Qaaa, ) Upd (Sana, — Saasa,,) OUr {1 +0 (T—£/2>} ‘

Equation (A.4) shows that Syp.o, = Spr{l+o(T %)} while (A.1), (A.4) and Lem-
mas A.4, A.5, A.6 imply ng;ﬂwSAH.% S]}}ISHA.QLES@;/Q “ I, +0o(T¢/2) and there-
fore

T(Dy—Ds) = (¥, Qana, ) TUpSasUr {140 (T 4%)}
T, ALSpS 55 S A {140 (T42)} 4o (TV2 4y, A, 8.58,5")
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where equation (A.9) of Lemma A.9 has been used.

If v > 2 in Assumption 2.13 and either of the conditions (iv, a) or (iv, b) is satisfied
then ¢, A, S.585,"> = Op(T~/?) by Theorem 2.2 and Lemma A.14.

If v > 2 and condition (iv,c) is satisfied then 3'X; is asymptotically stationary
by Theorem 2.1 and the Central Limit Theorem for linear processes with exponen-
tially decreasing coefficients, see Phillips and Solo (1992), implies v LAwS&-gS o=
Op(T1/2).

If v > 4 then § can be chosen so £ > 2/3 and the result follows since S.555, 1/2 as.
o(T~¢/?) by the Lemmas A.5, A.6. m

B.4 Test for a = Ay when = Hp

Proof of Theorem 2.8. If condition (iv,c) is satisfied the result follows from
Johansen (1996, Chapter 8). Otherwise, if (iv,a) or (iv,b) is satisfied let L(a, ¢, )
denote the likelihood concentrated with respect to the lagged differences, under Hg(r):
B = Hyp. The hypothesis H,(r) can be formulated as o; = (A, A, ). Thus, the
likelihood ratio test statistic can be rewritten as

Q{Ha (r)| Hy (1)} = max L (41,70, .9) / max Lias,.9).

Extend this fraction by the maximised likelihood when o9 = (A, Av]) is known

max L(AJ_,A’(/JJ_,(,O, ) { rg%xL(aj,w,Q) }

_ ) vLel
Q{Ha (’I“)‘Hﬁ (’I")}_ maXL(AL,Z¢ia9079)
©,Q

max L (ag,p, Q)

ay ,p,82

Combine the result (2.3) in Theorem 2.2 with the Lemmas A.5, B.1 to see that
LR { Has (r)| Ha(r), Hy(r)}

®2
o tr{(Q/JLQAAAWL)‘”QT—V%/JLA DA 1/2} {1+o(1)}+0(1).

t=1

Noting that o (o/ Qo) ta, = wzpl(qplQAA.ALz/JL)’lz/JlZ; + AL (A QA )TTA it
follows that

®2
LR{H, (r)| Hs(r)} = {(A’ QA PTA thet \aqy 1/2} +o(1)
t=1
The Martingale Central Limit Theorem A.13 shows that this is asymptotically x?
distributed with dim(«/e;) dim(A’ ;) = r(p —m) degrees of freedom. =
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B.5 Test for = Hyp when o, is known

When a; = A, is known then o« = At for some r-dimensional square matrix . It
can be assumed without loss of generality that ¢» = I, and hence the concentrated
model equation can be written as Ry, = A¢’ H' Ry ;+¢,. Since a; = A, is known then
o'\ Ry, is weakly exogenous for 3 and likelihood inference about 3 can be performed
in the partial system

aIRO,t = ﬁlRl,t + LUOZILR()’t + a;ét (BG)
The hypothesis Hg can therefore be analysed using standard regression methods so
LR{Hs(r)|Ho (1)} = —T10g (Saata,Samsa.)
= —T lOg det (Ir - SC:;'H,CKLSOCHL'HyaLSﬁiHL'H,CMLSHLO“HyaJ_) 9

where it has been used that regression on Ry ; is equivalent to regression on (H' Ry ,, H| Ry ;).
The asymptotic distribution of this statistic is given as

Lemma B.2 Suppose equation (2.1), the hypothesis Hg(r), condition (i), and As-
sumption 2.12 are satisfied. Then

LR{Hp(r)| Has (r)} 2 X* {r(p = 5)}.

Proof of Lemma B.2. If it is argued that

—1/2 —1/2 a.s. —1/2 —-1/2
S,Bﬁ/ Saa'HyaLSﬁ,B/ - Sﬁﬁ/ Qaa.aL /Bﬁ/ + (6] (1) . (B?)
Suony e, = Smmon 2 Suiar#Sa;a, mSemm = 0(1)
—1/2 —1/2 a.s. —1/2__ —1/2
S St o S S S, S o (1) (B.9)

then the test statistic can be rewritten as
LR{Hy (r)| Hag (r)} = —Tlogdet (I, — Qpo, @Ser, .1Si i, .St e +0/(1)

and the result follows from the Mixed Gaussian Central Limit Theorem A.14.
(B.7): Rewrite Sopq-ma, as

—1/2 —1/2 -1 So?%? Soua
SOCOC‘H,OCJ_ = Soza - (San_SaLaLvsaHSHH ) Q Sil QSH
HH a

where

Q — SQLQL 0 o SO‘LQL SO‘LH Souou 0 e
0 S SHa, SHmb 0 S '
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The equations (A.1), (A.4) of Lemma A.7 show that Q “= I, _,.s+0(1) and hence
Saoz-H,ozL a.:S. (Soza-ou - SaHS];}{SHCJ {1 + (¢} (1)} + (6] (1) .

These equations also imply Sgﬁl 23, 1SS HaSgﬁl /2 as »+o(1) and Sgﬁl/ %S e N Sgﬁl/ 2 as
ngg/QQaa.aLSggm + I, + o(1) and (B.7) follows.

(B.8): This holds since Sy, a, .1 “% Qa,a, by (A1), (A4) and Se, 1, 5Sy" . .1r =
alSaHL.HS]}ﬁLH %% 0 by Lemmas A.5, A.6.

(B.9): The partial model equation (B.6) shows Sap, .1a, = @,S:n, 1.a, , hence

o]

— —-1/2
&, (SEHJ_‘HyaJ_ - SEHL'H) SHLHLH

1 _
- ai) (SEE - SEHS]?I}{SHE) o (Soqo& - SaLHS]ZT}{SHaL> SaLHL~HSH1/[—2[L.H7

It has to be argued that the right hand side of this expression converges to zero. First,

@ Sea, =@, S.cay = o(1) by Lemma A.1. Secondly, SEHS;IZQ 2 0(1) by Lemmas
A5, A.6. Thirdly, S L) by (A.1) whereas Su, 7S5 SHa, = o(1) by

[eAReAN [eAREAN

(A.4). Fourthly, Sa, s, .Sy, .5 % 0(1) by Lemmas A.5, A.6. Thus (B.9) follows
using that Sgﬁl /2 is finite by Lemma A.4. m

B.6 Test for 3= Hyp

Proof of Theorem 2.7. Let L(ay,3,)) denote the likelihood concentrated with
respect to the lagged differences. The likelihood ratio test statistic is then

Q{Hsz(r)|H(r)} = ar?,?p},&L(aL’ng’Q)/aT,%?&L(aL’ﬂ’Q)'

Extend this fraction by the maximised likelihood when o is known to see

max L (a i, Hp, Q) m%XL(oz‘i,Hgo,Q) mz%zXL(oz‘i,ﬁ, Q)
¥, ¥

H H — OCL,QD,Q
Q{Hp(r)[H (r)} max L (a5, Hip, Q) max L (a9, 3,9) max L (o, 3,Q)
0.0 ©,Q ay,B8,0

Lemma B.1 shows that asymptotically the tests for simple hypotheses on « | only
depend on H through 3 and therefore the first and the last term cancel. The Theorem
then follows from Lemma B.2. =

B.7 The model with a constant term

Proof of Theorem 2.9. Because of the full column rank of 8 a 7. can be found so

8. = —7.3. The invariance follows by substituting X; by X; in equation (2.6). m
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Proof of Theorem 2.10. The proof is obtained by minor modifications of the
previous proofs. A detailed proof can be obtained from the author.

The estimator ¢ is slightly different in the model H ¢(r) as compared to the model
H,(r). It involves additional terms of the type Sy HS;}IQQ which can be dealt with
using (A.5) of Lemma A.5. In connection with the expansion for S/%QUT in (A9) a
term S35 gf; /% arises. That term is discussed in Lemma A.10 and the modified version
of (A.9) therefore only holds in probability. These results are sufficient to ensure that
the Theorems 2.4, 2.5, 2.7, 2.8 can be modified.

By modifying Lemma B.2 the test statistic for H(r) against H.(r) is found to be

LR{H (r) [He (r)} =t { Q0. T, Sec 1 Sooly See. s } + 0 (1), (B.10)
where R, = (1|Z;—1). Lemma A.10 shows that when condition (ii) is satisfied this is

LR{H (r)|H, ()} = tr {1 T, S8 Sec b + 0p (1)

e 7o e}

which is asymptotically y*-distributed. When (ii) does not hold a Dickey-Fuller-type
distribution arises. m

B.8 The model with a linear term

Proof of Theorem 2.11. The model equation (2.8) can be re-arranged as
k J
\IJAXLL =« (ﬁ,Xt—l + ﬂ;t) + e — Z Fj Z AQXt_H_l + &¢.
j=1 =1

Replacing X;_; by X; ; + 7. + 7;t shows that it has to proved that 37, + 3, = 0
and g — ¥, + o7, = 0. The former follows immediately, whereas insertion of 7. in
the latter shows @, o, (1, — ¥r;) = 0. Replacing 7, by (3,5, + 38')7, completes the
proof. m

24



C Proofs of Almost Sure Results

Proof of Lemma A.1. It suffices to consider the univariate case. The sum
T-1yL (e2 — Q) is a martingale and converges to zero almost surely on the set
(>, E(|le2 — Q"% | F,_1) < oo}, see Hall and Heyde (1980, Theorem 2.17). This
set has probability one by Assumption 2.12. =

Proof of Lemma A.2. It suffices to consider the univariate case. The sum
TS (€2 — Q) “% 0 on the set {32, tPC~VE(||e2 — Q| |Fi1) < oo} for some
1 < p < 2, see Hall and Heyde (1980, Theorem 2.18). This set has probability one
if p<14+/2and p(¢ —1) < —1 by Assumption 2.12. These three restrictions are
satisfied when ¢ < min(1/2,¢). The statement for 37, ; follows likewise. m

Proof of Lemma A.3. The result follows if for any § > 0 then t=(1=9/2|||| > §

only finitely often with probability one, and in particular if 3°¢2; 1y, >s0-0/23 < 00
By the conditional Borel-Cantelli Theorem, see Freedman (1973, Proposition 32), this
sum is finite with probability one on the set [2°, P{||e/]| > t1=9/2|F,_1} < oal.
That set is included in {352, ¢t~ =90/ E(||n,||*7|F—1) < oo} by Chebychev’s
inequality. The latter set has probability one by the martingale difference assumption
212. =

An algebraic lemma is useful.

Lemma C.1 Consider a sequence of vectors, {x},y,}', t =1,...,T. Then

. , 1 T 2, ®2
A {;(ztwt) } = dim() + dim(y) ™" {; ( Z ) } ="

Proof of Lemma C.1. The inequality holds trivially if the matrix >/, { (2}, y})' }*2
is singular. Therefore assume it is positive definite. In particular the upper left block
of its inverse is given by {37, (z|y;)®2} !, hence

n [{i(xtm)@?} <tr {z ( i, )}

=1
Further, for a positive definite matrix A then Ayin(A) = {Amax (A7)} and A\pax(A) <
tr(A) < dim(A)Apax(A) which leads to the desired inequality. =

-1

The proof of Lemmas A.4 and A.5 are based on results by Lai and Wei (1982,
1983, 1985). The last of these papers discusses a multivariate stochastic difference
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equation x; = Gx;_; +e; and describes the asymptotic behaviour of x; and Zthl XX}
To apply those results define the stacked process x; = (Z;, X]_ .5, , X]_.5),

et:<%+>5t; G:<Ip0—r Ié‘g,a), fOI"k/’:O,

and
af +T'y -+ -+ af +T% 0 «
I, I, o --- 0 0 0
0 0 : S
e = R o G = . , for k£ > 0.
: : IR 0 0 0
0 0 e 0 o I, , 0
0 0 3 0 I

It has to be argued that the conditions (2.19), (3.11) of Lai and Wei (1985) concerning
the covariance structure of x; are satisfied.

Lemma C.2 Suppose Assumption 2.12 and condition (i) are satisfied. Then
k . N/ a.s.
E {ZGJeT+je’T+j (GJ) ]:T}] >0,
k (1 T NA XS
liminf A\, Z G/ (T Zeteg) (GJ) > 0.
=0 t=1

T—0o0

lim inf A,
T—o0

Proof of Lemma C.2. First the case k > 0. By assumption E(g&}|F_1) = Q
while 71 YT, eie; %% Q by Lemma A.1, so it suffices to show 5 GTuQu/ (G7) > 0
where u = (I,,,0,...,0)" is an {(pk + r) X r}-matrix. It is equivalently to argue that
span(u, Gu,..., Gku) = RP**7_ This holds since

(u, Gu, .. .,Gku) = ( ]\{)11 (ﬂ]\f};)/ )

where M;j; is a real upper triangular square matrix with ones in the diagonal and
since, by assumption, 3 has full row rank. For k = 0 the same argument can be
made with u = (5,,5). =

In the next lemma the asymptotic behaviour of the product moment matrix
ST {(x},1)'}%? is discussed. Following Herstein (1975, p.308) there exists a reg-
ular, real matrix M which transforms G into a real, rational canonical form. In
particular, M can be chosen so MGM ! = diag(D, V) is a bivariate block diagonal
matrix where the absolute values of the eigenvalues of D and V' are respectively larger
than one and bounded by one.
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Lemma C.3 Suppose Assumption 2.12 and condition (i) are satisfied. Define the
vectors X; = (Mx},1,t/T)" and its non-explosive part vy = (v;,1,t/T). Then

hTHimf Amnin { Zs&ti;} (C.1)
-1

T
lim max ¥, (Z Vs ~') T =0, (C.2)

T—oo t<T
s=1

T
T7"10g A pax (Z Tm?é) %0, for allm > 0. (C.3)

s=1

Sketch of Proof of Lemma C.3. Details of the proof can be obtained from
the author. It is based on results of Lai and Wei (1985). Note that their assumptions
(2.19), (3.11) are satisfied by Lemma C.2.

(C.1): In the proof of Lai and Wei (1985, Theorem 3) the case without a constant
term is considered. That proof can be used simply by extending their process with a
constant term and noting that >/_, e, 2 o(T) by a Law of Large Numbers.

(C.2): For the proof of their Lemma 4 Lai and Wei (1985) refer to the proof of
Lai and Wei (1983, Theorem 4). In the same way (C.2) can be proved.

(C.3): For simplicity omit the last element of ¥,. The definition of norms implies

T ®2 T
Uy Toimv 21 > v |1
(1) = B = )

=1
The result then follows by applying Theorem 1 and Corollary 1 of Chan and Wei
(1985), respectively, to the two terms on the right hand side. m

<

Proof of Lemma A.4. This follows by combining the Lemmas C.3 and C.1. =

The proof of Lemma A.5 can now be given along the lines of the proof of Lai and
Wei (1983, Theorem 1) who consider the case p = dim X = 1.

Proof of Lemma A.5. Define the vectors X, = (d}, v}, 1,t)" and o, = (v}, 1,t)’

and the normalisation matrix N = diag(D?*", 1 | %% )~1/2. It suffices to show

~1/2

T
TE-n2 (N >R N’)
t=1

It is first argued that N Y7 5% N’ ©% diag(Fpp, 1) where F > 0. The conver-
gence of the top left corner follows from Lai and Wei (1985, Corollary 2). The lower

T
Nzit—l (7721,1:: U@,t) = 0. (C4)
t=1
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right corner is an identity. For the off diagonal elements use that

T T —-1/2
<> D (Zﬁ;‘%)
t=1 s=1

T T -1/2
g )
t=1 s=1

This converges to zero by (C.2) of Lemma C.3 and since

é |D7Tdia]| < o0 (C.5)

by Lemma 4 and Corollary 4 of Lai and Wei (1985) using Assumption 2.12.
The second of the matrices in (C.4) has two elements. The first is

T T
HD_T Zdt—lﬁt < <rg1<aig( ||77t||> Z HD_Tdt—1 “o <T1_£/2> 0O(1),
t=1 = t=1

by Lemma A.3 and (C.5). For the second it suffices to prove that

_lT

T T
> i (Z ) S b, o (T7) (C.6)
t=1 s=1 t=1

Using (C.3) of Lemma C.3 the result (C.6) then follows from Lemma 1 of Lai and
Wei (1982). Their result is actually stated for the case where 7, is one-dimensional
but is easily generalised to the multivariate case. m

Proof of Lemma A.6. Define the matrix
—1
M — Igime  — X1 Lol (Z?:l 91?2) ]
0 Idimy

The result then follows from the identity
T CBt ®2Y) ~1/2 T 7 , T CBt ®2 / —1/2 T z )
BT B0 () v} vm ()
noting that the latter inverse matrix is block diagonal. m
Proof of Lemma A.7. (A.1): The concentrated model equation Rp; =

af' Ry + Re; shows that Spg = S.. + @Ss. + S-pa’ + aSgga’’. Pre- and post-multiply
this equation by Ap. The first term equals A,QAr 4+ o(1) by Lemmas A.1, A.5, A.6.
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For the second and third term use that |[|Az|| < oo by Lemma A.4 and Sepa Ap =
(0, 8.5555"%) “ {0,0(T~¢/?)} by Lemmas A.5, A.6. Finally, AaSss0’ A = diag(0, I,).
(A.2), (A.3): The concentrated model equation shows 'Sy = Sgga’ + Spe so
(0, 1) B.S10Ar = (0,1,) + Sgg/QSgEAT and the result follows as above.
A.4): Noting that span(H) = span(Hy, Hp, ) and § = Hep it follows that
L
SorrSiirSro = Somses (¢ Sumse)” ¢ SHos + SosSzsSs0-

By the concentrated model equation this equals

Serr 501 (¢ SrmspL) ™ ¢ Suep + (@ + SepSa3 ) Sos (S35 Spe + ) -

Pre- and post-multiply this by A; and use Lemmas A.4, A.5, A.6. The first term is of
order o(T %), whereas for the second term AyaSzsa/ Ay = diag(0, 1), ApraSs.Ap =
O(T_g/Q), A’TSEﬁSgﬁl;S’ﬁEAT = O(T_g).

(A.5): Again the concentrated model equation shows

T T
Z AX, (1|Xt717 thl) = Zéft (1|Xt—1; thl)

t=1 =1
and the formula follows from Lemmas A.5, A.6. m

Proof of Corollary A.8.
The inversion formula for (2 x 2)-block matrices implies that

~ ~ 0 ~ 0 -1 ~
S0 — S0 ( I ) {(M)S&f ( I )} (0, 1,) Spo'

() on (5 ) o e

It has to be shown that N and the left hand side of (C.7) have the same limit.
Lemma A.7 shows that (0,1,) S0 =3 (0,1,). It therefore suffices to argue that the
inverse matrices occurring on the left hand side of (C.7) are bounded with probability
one. The Lemmas A.4, A.7 show that Sy is positive definite in the limit while

-1
{(0, 1,) Syt ( ? ) } 4 S35 Qaaar Sz’ * +0(1) 2 L +0(1) +o(1).

Proof of Lemma A.9. It is convenient to define M, = (¢ L,@Sﬁ*ﬁl / 2). Equation

(A.1) of Lemma A.5 can be strengthened using Lemma A.2 instead of Lemma A.1,

0 0 )
M, Suaa, My = MyQana, My + ( 01 ) +o (T ¢7). (C.8)
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This formula together with (A.4) of Lemma A.7 imply
Sun {1+0(T7)}, (C.9)

0 0 o(T7¢) ofT¢?
(3 8)+{eh e e

T—¢/2
(A.7): The concentrated model equation (2.1) is
Roﬂg = AQ,DQD/H/RM + ét. (Cll)

Pre-multiplication by (A, A’ ) shows that A’ X; is weakly exogenous for 1, ¢. Thus
likelihood inference can be based on the partial system of A'X, given A’ X, that is

ARy =o' H Ryt +wA' Ry + ALz (C.12)

a.

i

Sum.A,

a.

i

M,Sam.a, Spia, Saaa, My

for A, = (A —wA) and w = Qaqu 504, The squared sample canonical corre-
lations for A'Ry, and H'Ry; solve 0 = det M), (ASaa.a, — Sar.a, Sitr.a, Stan,) My
or equivalently 0 2 det{P,()\) + o(T~¢?)} where (C.8), (C.10) have been used and
Py(N) = AM,Qua4, My + (A — 1)diag(0, I,). For A\ = 0 then (I_p,0)P4(A) = 0
which shows that

span {( SI%L?/J' > {pL} = span ( I”BT > +0 (T‘g/Q) : (C.13)

BB

Here @?} | can be replaced ) | since El{b | has full rank almost surely.
(A.8): By (A.6) it holds ¥ | =9 + @Sgﬁl/QSég@le and the result follows by
the boundedness of S gg / 2, see Lemma A 4.

(A.9): The partial likelihood given by (C.12) is differentiated with respect to ¢ in
the direction a following Johansen (1996, (13.9)) to obtain the likelihood equation

8 / !
70 log L (¢, ¢,$2) = Ttr {inmL (Sama, — ¥’ Sum.a,) pa } = 0.

In particular it holds that Sag.a, @ = $@'S.a, @. Since 9, = 0 and ¢ has full

column rank by condition (i) then 0 = @ZlS AH-A L(,AO’IZJI@. Following Johansen (1996,
N a1

p. 130) the maximum likelihood estimator for ¢ is ¢ = Sily.a, Swaa, ¥ (¢'¢) and

therefore 0 = {PlSAHAL SIZI}TMU SHA.&@(QL'QL)*%E. The consistency of ¢, given in

(A.7) implies {p(zb'zlz)*l{p@ 2 p{14+0(T4/%)}. Using the concentrated model equation
(C.11) it then follows that

0% ) (1/%0/5}1}1./1L + Z,SEHAAL) (801// + Sitra, SHE@LZ) ¥ {1 +o (Tﬁ£/2>} :
(C.14)
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A few convergence results are needed in order to rewrite (C.14) further. It follows

from (A.7), (A-8) that ¢, M;' = ¢ (b, ¥S5) % (In_r,0) + o(T~%/?). This in
combination with Lemma A.4, (C.8) and (C. 10) shows that

VL Sana bl W Qaaa, by +o(T7H3), (C.15)
O\ Satra, Sithya, Suaa, ¥ 2 o(T7), (C.16)
while the concentrated model equation (C.11) and Lemmas A.1, A.5, A.6 give

P Saca, 2 O(1). (C.17)

a.s.

Using (C.15)-(C.17) it is seen that Syp.a = Sym.a, {1+0(T7%)} and SHH ALSHE oy =
S]}}qQAL Stre.n, +o(T~4/%). Tt follows that (C.14) is equivalent to

0 a':S. ,JJ/L [<¢¢/SHH-AL +Z’S€H~AL) { I:T}{.ALSH&ALA—,@/J + SHZQA o (T_£/2>}
+hSpga, + A'S.s AJ {1 +o (T*&/z)}

The Lemmas A.1, A.5, A.6 show Sg1°Sy..a, = o(T~¢/2). Therefore using (A.8),
(C.8) and (A.1) of Lemma A7

VS =~ A, Ses {140 (T72) } 4 o(T7F). (C.18)

Finally, use that S;;’* is bounded by Lemma A.4. m
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D Proof of Convergence in Probability Result

As a first step towards the proof of Lemma A.10 define the process u;, = (X3, Z,)'.
Following the argument preceding Lemma C.3 a real, regular (pk + p)-matrix M can
be found so Mu, = (a,,b,,...,b,, ¢, d,), MGM~ = diag(A, By,...,B;,C, D), and
Mes = (N, Moyt -+ > Moye> Mot M)’ s Where A has roots only at one, B; has roots on the
unit circle at the complex pairs exp(i6;) and exp(—i6;) for some 0 < 6; < 7 while C
and D have roots with modulus smaller and larger than one, respectively. Moreover,
the innovations Me, satisfy the property described in Lemma C.2.
Two Lemmas are then needed.

Lemma D.1 Suppose equation (2.1), the hypothesis H(r), condition (i), and As-
sumption 2.12 are satisfied. Then there exist normalisations Ng, Ny, N., Ny so

T
Z {dlag (Na, Nbl, . 7Nbl7 Nc, Nd) Mut}®2 2) F = dlag (Fa, Fb17 ce Fb“ Fc, Fd) .

t=1

The limiting matriz F' is possibly random, but positive definite with probability one.

Sketch of Proof of Lemma D.1. This Lemma generalises results by Chan
and Wei (1988, Section 3). Details can be obtained from the author.

First the convergence S { Nya,}®2 B F, is considered. A real, regular similarity
transformation can be chosen so that A is transformed into a Jordan form, that is a
block diagonal matrix with Jordan blocks

1 1

1
1

see Herstein (1975, p. 302, 312). For simplicity suppose A is a Jordan block. As in
Lemma C.2 it follows that E{>*_g A, 7,175 (A)|Fr} 50, implying that the
conditional variance of the last element of 7, is positive. A suitable normalisation
matrix N, and a limit covariance matrix F, can then be found along the lines of Chan
and Wei (1988, Section 3.1).

For the component b; a corresponding argument is made. When the roots are
complex the Jordan matrix is complex so it is convenient to work with blocks of the
form

B I
’ where 5_ ( cosf sinf > .

—sinf cosf
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The cases where the roots are either smaller or larger than one are dealt with by
Lai and Wei (1985, Theorem 2 and Equation 3.9) and Lai and Wei (1985, Corollary
2) respectively. See also the proof of Lemma A.5.

The cross product terms involving the explosive roots are dealt with in the proof
of Lemma A.5. For the remaining cross product terms combine Chan and Wei (1988,
Theorem 3.4.1, 3.4.2) with the Jordan type decompositions used above. m

Lemma D.2 Suppose equation (2.1), the hypothesis, H(r), condition (i), and As-
sumption 2.12 are satisfied. Let y; be either (t/T)F or T-F-1/2 2Lt — s)ke, for
k=0,1,... If u; is given as either of the processes bjy, c,,d, then for all n >0

“1/2

T
— / r P
T (E ut_lut1> E U1y, — 0
t=1 t=1
whereas

T -1/2 p
2 (z ) S~ Nate_1yl — Op (1)
t=1

t=1

Sketch of Proof of Lemma D.2. For the first result the argument is essentially
the same as in the proof of Nielsen (2000, Lemmas A.4 and B.1) and is based on results
and ideas of Chan and Wei (1988). The second result follows using the Continuous
Mapping Theorem since T/ 2 N,airy and yry) converge jointly in distribution. Details
can be obtained from the author. m

Proof of Lemma A.10. Condition (ii) implies that the process u, = (X3, Z})’
has no unit roots. This is because the companion matrix for u; = (X]3,, X{53, Z;)’
is upper triangular, showing that (p — r) unit roots are associated with 3’| X; and at
the same time @, has at most (p —r) unit roots as argued in Johansen (1996, Section
4). The proof now follows from the Lemmas D.1, D.2 noting that

—1/2 T T

T T —1/2
(Zut_lu;_l> S w1y — (M’Zut_lu;_1M> MY ]
t—1 =1 t—1 t=1
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E Proofs of Distributional Results
Proof of Lemma A.11. See Chan and Wei (1988, Theorem 2.2). =

For the proof of Lemma A.12 it is convenient to introduce the notation S; =
Y _ges where e = o, WXy + X5 S8 o VAKX, .

Lemma E.1 Suppose equation (2.1), the hypothesis H(r) and the conditions (i), (i)
are satisfied. Then o/, VR, = o, (S| Zi-1).

Proof of Lemma E.1. Without loss of generality let £ = 1. The model equation
(2.1) is equivalent to VAX, = a3 X, | — [1A%X,; | + &;. Pre-multiplication with o/,
and summation gives o/, V.X; ; =/ S, 1 — o/, I'1AX, ; and the result follows. m

Proof of Theorem A.12. Using the Lemma E.1 and the model equation (2.1)
it follows that (I, ,,0)C5S10 = T~1SL, (o, Si 118 X1, Z; 1) ;. With the choice
0<n<é&<v9/(247) <1 the Lemmas A.5, A.10 imply ([, ” )C”SlOATMT =
T-1SL o Si_1e)+0p (1) . In the same way, C”TSHC’T =diag(T 'L, o/, SP3a, 1)
+o0p (1) . The result then follows from Lemma A.11. m

Proof of Lemma A.13. The result follows from Brown (1971, Theorem 2,
Lemma 2). It suffices to consider the univariate case. Define z; = ;5,1 and note
that the second moment of x; is finite since the fourth moment of &; is finite. Let
Si =Yg al, 0f = E(af|Fia) = Qefy, VP =3, 107 = QY el and s} =
EV? = tQ?. By the Law of Large Numbers given in Lemma A.1 it follows that
V2 /s? %, 1. Further a conditional Lindeberg condition has to be satisfied. To this
end note

2
Fr— 1} 2 Zgr 1 {67‘1(5%6%_1263%)

trl

Vt2 ZE {x 1(x2>6s ) rl}. (E.1)

r=1
By a Chebychev inequality type argument this is bounded for all 0 < n < v by
(V28" s) L0 ler | P E{] e ||* T F, 1} By Assumption 2.12 this is bounded by
some constant times (V7)1 32F_ |e, 1||**". As for the denominator of this expres-
sion note that t='V2 5 02 by the Law of Large Numbers given in Lemma A.1.
The numerator can be rewritten as the sum of the martingale ¢t~ St {]|e,||>H7 —
E(lle|**7|Fo21)} and ¢ 00 550 E(|[e,]|*7|F,—1). The first term converges to zero
by the same argument as in the proof of Lemma A.1 whereas the second converges
to zero by Assumption 2.12. This shows that the expression (E.1) converges to zero
almost surely. Brown’s result then implies that S,/s, = (Xt eie1)/(¢12Q) B
N(0,1). m
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Proof of Lemma A.14. First, consider the case where H = 3, H, = (3.
Theorem 2.3 is formulated in terms of 3,,...,,,. Together with Lemma A.10 and
Cauchy-Schwartz’s inequality it implies that, for 1 < j,1 < m,

1

;2L o 1 ! ‘
BiSubi = > <_j > s le| B X, Zt—l) (Tl Zsl_15s> +op (Tﬁl) )
s=1
T [ 1] |
= > (fj > 1€s> ( Zsl 165) + op (Tf“) :
Correspondingly, using Lemmas A.5, A.6 it also holds that

B S1e5 = z( 'zl >€;+op(w).

t=1 =1

Lemma A.11 in conjunction with the Continuous Mapping Theorem, see Billingsley
(1968) then shows

1 —1/2
_ —1/2 _

2, .S sSist 2 On2 [ g (W) [ [ {o @ W) g (!, W2 ]
where W is a p-dimensional Brownian motion with variance ) and ¢ is some continu-
ous function. The Brownian motions @, W and o/, W are independent. Therefore by
conditioning on o/, W this variable is seen to have a {r(p — r)}-dimensional standard

normal distribution.
In the general case where § = Hyp let 8, = (Hy,Hp,). Then (H| Ry4| H'Ry1;) =

{ s =S, 1891 (¢ Sunsp,)” }(ﬂlRLt\ﬂ/RLt) and the above approach can be
used. m
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F.1 Order of magnitude of YL | x;_1X,_,

Lemma F.1 (Lemma C.3) Suppose the martingale difference assumption 2.12 and
condition (i) are satisfied. Then

| x, | %
lim inf A\pin { = E 1 >0, (F.1)
e FiF\ yr

and further for the non-explosive part, for all n > 0

T Ut Ut
log Apax Z 1 1 = o(TM) (F.2)
s=1 t t
/ 7y —1
~ R SIERIE! Tle (F.3)
lim max | 1 = )
N AW t t

Proof of Lemma F.1. (F.1): By a linear transformation the last component
can be replaced by (t — S.7_, s/T)/T = t. The proof can be given along the lines of
Chan and Wei (1985, Theorem 3). That is, let

pk+k ’
det (Gr, — Lykip) = > a; AP

7=0
be the characteristic polynomial of x; with ag = 1. Define

pk+p

Yo =X+ Y a;xy t > pk +p.
=1

By the Cayley Hamilton Theorem Z];fgk angkﬂ’_j = 0 whereas by the model equa-
tion

php—j—1 .
xe ;= . Glerj i+ Gy Px iy, for j=0,...,pk+p—1,
1=0

and therefore

pk+p-1 [ j
Yy = Z (Za;G’;c) €.

§=0 \I=0
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Using this formula Chan and Wei (1985, Theorem 3) show that 7131 ) iy is

relatively compact with probability one and that liminf A (T S0 4 i1 %:4)) <.
Now, it will be shown that corresponding results hold for the extended vector y; =
(yi,1,£)'. Note, that T3 .4 (1,t/T) =2 o(1) since T 1YL L they &
o(1) by the Law of Large Numbers, see Hall and Heyde (1980, Theorem 2.18) and
therefore 7! Z'f:pk 4pr1YeY; has the same set of limit points as the diagonal matrix

diag (T~ Y espr1 Ye¥is 1, 1/12). In particular, lm inf X (T S s pir YeV7) <.
Therefore, following the remainder of the proof of Lai and Wei, it suffices to show
that

T pk4p T Xt “
/\min Z yty:f S (pk + p + 1) Z a? /\min Z 1
t=pk-+p+1 =0 t=1 t
Let u be vector with length one. Then
2 2
pk+p Xy pk—+p pk+p Xy
dy={ S [ 1< (S ) S |
J=0 t j=0 7=0 t
and therefore
2
T pk+p T pk+p Xt
Yoo dyyu <) a? > u' | 1
t=pk+p+1 =0 t=pk+p+1 j=0 f
®2
pkp pktp T Xt
< (Za?)(pk—}-p—l—l)ZZu' 1 u.
=0 =0 t=1 i
The result then follows by ordering of positive semi-definite matrices.
(F.2): Note that
(% S 1
i f _ ( Limv  >i—y ve (1,1) )
=\ 0 P
Zrirzl (7’t|1)®2 0 Lgimv 0
X 1 ¢ 1
0 Z?:l ( t t2 > Z?:l ( t )1)2 ‘[2
Thus by the definition of norms
T ®2
®2 ®2 (|1, 0
(v Liimv =y ve (1,1) X (w1 1)
> < s (1t
=1 1 O .[2 0 thl t t2
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For the first term on the right hand side

2|2 2
Limy S5 v (1,1) N < tr Limv S0 (1,1) ¢
0 .[2 - 0 _[2

T ®2
= 1+dimV +tr {th (1,t)} “ 0 <T2P1+4)

t=1

for some constant p; > 0 according to Lai and Wei (1985, Theorem 1) who prove that
||| 2 O(T*1). For the second term use that

ST (w1, t)®2 0 T
{ s (1t } < O(T%) + X (wl)™
0 Zt:l < t t2 > t=1

< O <T3) + ivfw

for some constant p; > 0 according to Lai and Wei (1985, Corollary 1). The desired
result then follows.
(F.3) The expression of interest can be decomposed as

/ ®2 -1
Ut T Vs Vg
Z 1 1
t =1\ s t

- G/T )I{iC/T)@Q}_l(i/T) + (v 1,2) {XT; (vs]1, )% }_l(vt\l,t).

The first term is deterministic and of order o(1) since

()

has positive, convergent eigenvalues.

The second term can be shown to be of order o(1) by modifying Lai and Wei
(1983, Theorem 4). That paper concerns a univariate autoregressive model without
deterministic terms. The argument is as follows.

First, the inequality (C.1) in combination with Lemma C.1 imply

N

- ®2 a.s.
h%nlnf mmT; (vs]1,8)°" > 0.
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This together with Lai and Wei (1985, Theorem 1) can replace Lai and Wei (1983,
Theorem 3) and Lai and Wei (1983, Lemmas 3-7) can then be modified.

Secondly, in the proof of Lai and Wei (1985, Theorem 4) use the modified Lemmas
together with the following property. As a consequence of Lai and Wei (1982, equation
1.4b) then

@2y 1 ®2
t Vg t+1 Vg

> |1 -2 1! >0,
s=1 S s=1 S
and pre- and post-multiplication with (Z4im v, 0,0) show

{Z(vs\l,s)m} —{Z(vs\l,s)m} > 0.

s=1 s=1
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F.2 Asymptotic results for > | x;_1x,_,
This Section gives the details of the proof of Lemma D.1.
Lemma F.2 (Lemma D.1) Suppose equation (2.1), the hypothesis, H(r), condition

(1), and Assumption 2.12 are satisfied. Then there exist normalisations Ng, Ny, , . . .,
Nbl; Nc, Nd SO

T
Z {dlag (Na, Nb17 ceey Nb“ Nc, Nd) kak}®2 g F = dlag (Fa, Fbl, ceey Fbl; Fc, Fd) .
t=1

The limiting matriz F' is possibly random, but positive definite with probability one.

The proof is given in the following sub-sections. First the Lemma C.2 is generalised
to this situation in Section F.2.1. The convergence to Fj is discussed in Section F.2.2,

to Fy, in Sections F.2.3 and F.2.4, to F. in Section F.2.5 and to Fy in Section F.2.6.
The cross product terms are discussed in Section F.2.7.
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F.2.1 Generalising condition (2.19)

Lemma F.3 Suppose equation (2.1), condition (i) and Assumption 2.12 are satisfied.
Then there exists a reqular, real (pk + r) X (pk + r)-matriz, M, so that

MV, = (MGM ) MV, y + Mp,

has the form

ag A0 T 0 ] Nat
b1t 0 B b1t—1 Moyt
: _ : i : ’
bi : . B bri—1 Moyt
Ct C 0 Ci—1 Neyt
d, 0 .. 0 D di—q Na

where A has roots at one, B; has roots on the unit circle at the complex pairs exp(if,)
and exp(—ib;) where 0 < 8; < w, C' has roots with modulus smaller than one and D
has roots with modulus larger than one. Moreover,

i : A/ ] a.s.
limTinf E { ZOA]%,TH%,TH (AJ) fT} > 0, (F.4)
J= J
k : A/ ] a.s.
lim inf | E 'X;)Bﬂnbjﬂjngﬂﬂ (B7)|Frp| =0, (F.5)
J= J
k . N/ | a.s
lim inf | E 'Ooﬂncﬂjn;’w (Co)|Frp| =0, (F.6)
J= J
k : A/ ] a.s.
lim inf | E ;‘)Dﬂnﬂ wllarys (D7) | Fr 0. (F.7)
J= J

Note, that the sequence {Mn,} is a Martingale Difference.

Proof of Lemma F.3. There exists a regular, real matrix which transforms Gy
into a real, rational canonical form, see Herstein (1975, p.308). The rational canonical
form is a special case of the suggested block diagonal matrix form MG, M~!. Further,
in the Lemma C.2 it is proved that

k i N\ a.s.
E {ZG#?TH??ITH (ch) |fTH > 0.
7=0

The results (F.4)-(F.7) then follow since M is regular and real. m

lim inf
T
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F.2.2 Roots equal to one.

In this subsection the process
ag = Aag_1 + 1,

is considered, where A is a real square matrix and all its eigenvalues are equal to one.
Further n, satisfies the martingale difference Assumption 2.12 and the property (F.4)
of Lemma F.3. First, the case where A is a Jordan block is considered and next the
general result is given.

Lemma F.4 Suppose A is a Jordan block of the form

1 1 0 ---0
0
0 | (F.8)
o
0 0 1
and that .
ZOAjE (UT+j77£F+j) }—T) (Aj)/ =, (F.9)
=
Define the normalisation matriz
dim A -1
N, =
T

Then Zthl Nyay 1a;_ N, LA F,, where F, is a stochastic matriz which is positive
definite with probability one.

Proof of Lemma F.4. Partition a; as (ddim A, - - -, @1,¢) and 10, a8 (Mg Aty - - - 5 M1.t)
so that

t
ary = aipo + Z M,a,s
s=1

¢ t
aj¢ = ajo+ an’s + Z aj_1,5-1 for j > 1.
s=1 s=1
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The j-power of the jordan block, A, is upper triangular with ones in the diagonal. It
therefore follows from (F.4) of Lemma F.3 that also

k
ZOE (771,T+j77,1,T+j) fT) 0.
=

Since 7, , has constant variance it must be the case that E(n3,|F;—1) is positive and
constant. In general, the other elements of 7, need not have positive variance.
An example is the bivariate case

E (771,T+j77/17T+j"7:T) - ( 8 (?2 )

in which case

)G ) ) )= ()7

is positive definite as assumed. Let Wj(u) be a univariate Brownian motion, with
variance E(17 , ,|Fi-1) and define recursively

Wio) = [ Wimi(wdu.
Since 7); ,; is a martingale difference sequence with constant positive variance then

[Tu]
_ D 5
T 12 Z MNiat = W1 (U)

s=1
on D[0, 1], see Chan and Wei (1988, Theorem 2.4). Further for j > 1

[T
T2 Z Mjat 0
s=1

on DI0,1] for all n > 0. Thus using the Continuous Mapping Theorem, see Billings-
ley (1968), repeatedly for the function from DI0,1] into D[0,1] defined by z(v) +—
Jo x(u)du it follows that

T2 Noazg > { W a(w), ..., Wi ()} W ()
on D0, 1]4m4 and

T 1 N
> Noay 101N, Do = / W (u) W' (u) du.
0

t=1

The stochastic matrix F, is symmetric and positive definite with probability one, see
Chan and Wei (1988, Lemma 3.11). =
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Lemma F.5 Suppose A is a real square matriz with eigenvalues equal to one, and

that the matriz i
! a.s.

S"AE (npg ey Fr) (A7) 5 0. (F.10)

§=0

Then there exists a normalisation matriz, N,, so that Zthl Nyay 1a;_ N, A F,, where
F, is a stochastic matrixz which is positive definite with probability one.

Proof. Since A has real roots there exists a real regular matrix, M,, so that
M,AM,* is a real Jordan canonical form, see Herstein (1975, p.312). Thus M, AM,*
is a block matrix and for each block, A4, say, and conformable blocks of Ny Mot SAY,
it holds that

a.s.

k
ZA%E (7~7n,t+j7~7;z,t+j‘ fT) (/HZ)/ 0.
§=0

The result then follows from Lemma F.4. =
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F.2.3 Roots equal to minus one

Consider the process
by = Bby_1 + 1,

where B is a real square matrix with all eigenvalues in minus one. The argument for

the convergence 7, Nybi_1b,_, N} 2, F, > 0 is parallel to that of section F.2.2. See
also Chan and Wei (1988, Section 3.2).

F.2.4 Roots equal to exp(if;) for 0 < §; < 2m.

In this subsection the process
by = Bb;_1 + 1,

is considered, where B is a real square matrix with all its roots in pairs, exp(if) and
exp(—if) for 0 < 6 < w. Further n, satisfies the Martingale Difference Assumption
2.12 and the property (F.5).

Suppose the roots come in pairs exp (i) and exp (—if) for some 0 < 0 < .
Before discussing the properties of the process in general, consider the case where b
is a bivariate process, first in a lemma concerning the asymptotic properties of the
process and next of the product moment matrix.

Lemma F.6 Suppose the process by,

cosf sinf
B = ( —sinf cos# > : (F.11)

and that rankFE (nTﬂ-n'Tﬂ-) fT) > 1. Noting that

¢ cos (t6)  sin (t6)
B :{ sin (t8) cos (t6) } (F.12)

it follows that for u € [0, 1]

1 [ cos{(int (Tu) §)} —sin{(int (Tu)0)}
VT | sin{(int (T'u) #)}  cos{(int (T'u) 0)}

on D[0,1]* where W is a standard bivariate Brownian motion and

0’ =F {tf (77T+j77£f+3'> ‘ fT} '

2
]btﬂ %W(u)
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Proof. First, the identity (F.12) follows since

1 i\ [ exp(if) 0 1)
BZ(il)( po exp(—i@))(il) ’
. (1 i\ [ exp(if) 0 r1 i\
BZ(il)( po exp(—i@))(il) '

Using this expression and the definition 7, = by, the process, b;, can be written as

and hence

S cos (t0)  sin (t0) | <~ [ cos(sf) —sin (sh)
by = S;JB s = { —sin (t0) cos (t6) }SZ{ sin (s#)  cos (s0) }775 (F.13)

0

Secondly, to prove the asymptotic result partition n, as (15,7, ). The cases when

E (nT T +j) ]-"T) has rank one and two are treated separately.

Suppose that E (nTﬂ-n’Tﬂ») ]-"T) = ). Using Chan and Wei (1988, Theorem 2.2)
and the Cramér-Wold theorem, see Billingsley (1968, p.49), it is seen that
2 [T . . . . . . "' D
23 {nasin (76) 750 (16) 1305 (16) 7008 (56) ) 2 Vi
j=1

where V' is a four dimensional Brownian motion with variance
Q 0
0 Q)
The Continuous Mapping Theorem, see Billingsley (1968), then implies that
2 T4 cos(j0) —sin(j0) \ [ oy \ D [ Viu—Viu
25 st . T2g ) 2 Vau— Vi)
T = | sin (j0)  cos (j0) 1. Vou + Vau
The limiting Brownian motion can be represented as oW since

-1

-1 0 01 Q 0 0
0 110 0 Q 0
1

= IQtI‘Q.

O~ —~ O
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Lemma F.7 Suppose the process b; is bivariate and that B is given by

( cosf sind ) ‘ (F.14)

—sinf cos®

and that rank F/ (nTﬂ-n'Tﬂ-) fT) > 1. Let W be a standard bivariate Brownian motion
and

The product moment matriz then converges to positive definite matrix proportional to
the identity matriz,

1 & 1 D o [t /
- ;btbt 23 /O W Wodu b L. (F.15)
Proof of Lemma F.7. Define the process
Syt \ [ cos(sf) —sin(s0)
( S1t ) N S;) sin (s0) cos(s0) [
using the convention 7, = by. Thus by (F.12) it then follows that

b _{ cos (t0)  sin (t6) }( S 515, >{ cos (t0) —sin (t0) }
T —sin (t0) cos (t6) S1Sy 5% sin (t0)  cos(t0) [~

By multiplying out it is seen that

;o 53 515, 5 S =518\ L,
bb, = <8182 52 )cos (t0) + 58, S sin” (t6)
25,5, SP— 8% .
( S_ 52 —25,5, sin (t0) cos (t0) .

Further, by the trigonometric identities cos(20) = 2cos’§ — 1 = 1 — 2sin?6 and
2sinf cosf = sin 20 it follows that

) S3—-SF S8
20,b, = (512 + S§) I + ( 25182 1 52 " %22 ) cos (2t0)

( 2815, S?—S2

S2_ 52 _25,5, > sin (2t6) . (F.16)

The normalised sum of the first term on the right hand side of this equation, (F.16),
converges in distribution to (F.15), using Lemma F.6 and the Continuous Mapping
Theorem for the integral of the outer product of a bivariate continuous function.
Following Chan and Wei (1988, Lemma 3.3.6) the remaining terms are of order smaller
than T2 and can be ignored for asymptotic purposes. =
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Lemma F.8 Suppose
cosf sind I
—sinf cosf 2

(F.17)
I

cosf) sinf
—sinf cos@

k ! a.s.
S"BE (g Fr) (B) 50,

=1

and that

Define the normalisation
Tdim B/QI2
N, =
TI,
Then Y1 NpbE%4 N, L B where Fy 2 0.

Proof of Lemma F.8. The proof corresponds to that of Lemma F.4.
Partition b, as (bgim B,t5 - - - b1,)" and 0, as (Ngympgs - - -»M1¢)'- Then

byt \ _ ( cos® sind ! ba o N i cosf sinf \' M2.s
b4 —sinf cos6 b1,0 =\ - sinf cosé Mg
and for 1 < j
bgj,t - cos 6 sin d ! b2j70
ij—l,t N —sinf cos6 b2j—1,0
t . t—s
cosf siné Nojs baj_2.s-1
+S; ( —sinf cos6 ) {( Moj 1.5 + baj_351
It follows that

cos sinf \ " boj _t cosf sinf \ ° boj—2.s-1 1/2
(—sin& cos@) (bgj_u =2 —sinf cosf boj—3 -1 +OP<T )

s=1

Therefore let ; be a standard bivariate Brownian motion and for j > 1



Then
p [0? (= = ! def =
Tl/QNbb[TU] —\ e {WéimB/z (u),....,W; (U)} = ?W (u)

on D[0,1]" " and

0.2

T 1 _
> NN B By = T / W (u) W (u) du.
t=1 0

Lemma F.9 Suppose B is a real square matriz with eigenvalues equal to exp(if) and
exp(—if) for some 0 < 0 < m, and that the matriz

k
: A\ a.s.
S BE (g, Fr) (B) 50,
=0
Then there exists a normalisation matrix, Ny, so that - | Nybi_1b,_ N} 2 Fy, where
F, %00
Proof of Lemma F.9. There exist a regular matrix, M,, so that M,BM, ' is

block diagonal with blocks of the form (F.17). Since M,BM, " is real then M, can
be chosen as a real matrix, see Herstein (1975, p.312). For each block, B,, say, of

M,BM, " and comformable 7,,, it holds

a.s.

iéﬁbE (ﬁn,Tﬂ%,Tﬂ)fT) (Bfl), > 0.
§=0

and the Lemma F.8 can be applied. m
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F.2.5 Roots with modulus smaller than one

The result follows from Lai and Wei (1985, Theorem 2, equation 3.9) using the mar-
tingale difference assumption and the Lemma C.2. They show that the normalisation
can be chosen as N, = T~'/2. The limit, F,, is deterministic.

F.2.6 Roots with modulus greater than one

The result follows from Lai and Wei (1985, Corollary 2) using the martingale difference
assumption and the Lemma C.2. They show that the normalisation can be chosen as
Ny = D~" and that N; >}, d,_d,_, N/, converges with probability one to a random,
prositive definite matrix, Fy.

F.2.7 Cross product terms

This section contains three Lemmae. The first covers cross products between two
terms with distinct roots on the unit circle, the next discusses cross products between
terms with roots on the unit circle and terms with stationary roots, and finally cross
products between explosive and non-explosive terms are discussed.

Lemma F.10
a P
Ny Yo b (6N, by NG ) 20 for j# k.
t=1
Proof of Lemma F.10. Chan and Wei (1988, Theorem 3.4.1) prove the result
for a univariate process, dim X; = 1. Combining that result with the Jordan type

decompositions in the Sections F.2.2-F.2.4 show that the multivariate results also
holds. m

Lemma F.11
d P
Ned-ero (4N, by NG, ) 55 0.
t=1
Proof of Lemma F.11. The argument correspond to that in the proof of

Lemma F.10 with the only difference being that Chan and Wei (1988, Theorem 3.4.2)
is used. m

Lemma F.12 Define
/
U = (a;, Vigr-- by cg) and Ny, = diag(Ny, N, , ..., Ny, Ne).
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Then .
Ny Zdt_lu;_lNu 20.

t=1

Proof of Lemma F.12. This follows from the proof of Lemma A.5. That is,
by Lai and Wei (1985, Lemma 4 and Corollary 4)

-1

7 T
S5, . a.s.
max u; (Z ut1u2_1> u 50, and Tlgrolog | Nady|| < 0.

1<¢<T -

Thus following the proof of Lai and Wei (1983, Theorem 1)

~1/2

T /T
/ ! !/
Z ( Ut—lut1> u—1dy 1Ny
1

s=

T —1/2
/
(Z utlut_1) U1
s=1

T

> |[Nadt
=1

“ ),
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F.3 Asymptotic results for (XL u,_qu,_)"V2 ST w9
This section gives the details of the proof of Lemma D.2

Lemma F.13 (Lemma D.2) Suppose equation (2.1), the hypothesis, H(r), condi-
tion (i), and Assumption 2.12 are satisfied. Let u, be given as either of the processes
bjt,ce, dy while y, is either (t/T)* or T-F="Y2 01 (t — s)*e, for k =0,1,... Then, for
alln >0
T 1z p
T (z uu> Syl 20,
t=1 t=1

whereas

T —1/2
T2 (Z at—lah) > a1y, =Op (1).
t=1

t=1

The proof for the cases b;;, ¢, d; is essentially given in Nielsen (2000). That
paper deals with a univariate autoregressive process, however, there are no substantive
changes when generalising to the multivariate case.

The case a; is not discussed in Nielsen (2000) but is a rather straightforward
consequence of the analysis in Section F.4.5.

The details are given in the following subsections.

F.3.1 When u has unit roots

Lemma F.14 Suppose equation (2.1), the hypothesis, H(r), condition (i), and As-
sumption 2.12 are satisfied. Let y; be either (t/T)* or T=F=1/2 321 (¢ — s)key for
k=0,1,... Then

T -1/2 p
12 (z ) S a1y, = Op (1).
t=1

t=1

Proof of Lemma F.14. It follows from the arguments in Section F.4.5 that
a normalisation N, can be found so that T%2N,a; p, converges in distribution to a
continuous function of a Brownian motion. Likewise 1 converges in distribution to
either a polynomial or a continuous function of a Brownian motion. It can be argued
that the two Brownian motions converge jointly and the result then follows using the
Continuous Mapping Theorem. =
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F.3.2 When u has roots on unit circle, but no roots at one

In this case the proof is based on a modified version of Chan and Wei (1988, Theorem
2.1, subsequent remark).

Lemma F.15 Let {X,} be a sequence of random vectors so

(i) E||X:|| = O(t*) for some oo > 0,

(i) there exist random variables A;(t), B;(s,t) and constants p;,v
Xol] < 35521 Aj(t) By (s, 1),

(iti) EA*(t) = O(t¥3) and EB? = O{t%i(t — s)} fort > s.

If2a = @; +; + 1 for all j and exp(if)) # 1 then for all n >0

and ¢ with || X;—

J

T
> exp (i0s) X,

t=1

sup

= op (Ta+77+1/2> .
1<t<T

Proof of Lemma F.15. The result follows by careful reading of Chan and Wei
(1988, Theorem 2.1, subsequent remark). m

Lemma F.16 Suppose equation (2.1), the hypothesis, H(r), condition (i), and As-
sumption 2.12 are satisfied. Let y; be either (t/T)* or T-F=1/2 171 (t — s)ke, for
k=0,1,... Then, for alln >0

-1/2 o

T
T (Z bj,tlb;,t_l) ij,tflyi‘ 0.
t=1 t=1

Proof of Lemma F.16. Find the Jordan forms as outlined in Sections F.2.3,
F.2.4 and the corresponding normalisations Np. It then suffices to prove

T
TN, > bse 1y, 2 0.

t=1

A typical element is the following. Let k = 0 and consider

T 1 t—1 . ! 1 t—1 / 1 T 1
i ) ( ) LSy,
where
t—1 1
Xe=> (=1)"n, > e,
m=1 n=1
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Note that for ¢t > s then
t—1 t—1 t—1 s
n=1

m*l n—=s+1 m=s—+1
AL (t) By (5,8) + Ba (5,£) As (1)

Here E||X,|| = O(t), EA3 = O(t), EB? = O(t — s) showing a = 1, ¢; = 1, ¢; = 0
and 2a = ¢; + 1, + 1 = 2. Therefore Lemma F.15 show as desired that

sz (-1)"? XtH = op (T**7).

t=1

sup
1<¢<T

Another typical element is
T

T 1t71 t . tk tl
I E O T e e

where .

o+

t—1
—1)" 0ty L
m=1 n=1

Here E||X;|| = O(t*1/2), EA? = O(t), EB? = O{t*2(t — s)?}, EAZ = O(t*),
EB2 = O(t — s) showing a = k+1/2, p; = 1, ¢, = 2k — 1, p, = 2k, ¥, = 0, and
2a = p; +9; + 1 =2k + 1. Therefore Lemma F.15 show as desired that

T
(_1)1‘—1 Xt

t=1

sup =op (THH”) .

1<¢<T
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F.3.3 When u has stationary roots

In this case the proof is based on a modified version of Chan and Wei (1988, Lemma
3.4.3).

Lemma F.17 Assume {g;} and {h;} are two sequences of random vectors in R® such
that g; and hy are F;-measurable. Suppose there exists an (s X s) constant matriz M
such that g = Mg;_1 + hy, where gg = hy = 0. Further, suppose EXL | ||g||? =
O(T%) and EXL | ||h|[? = O(T*7Y) for some a > 2. Next, let ¢, satisfy Assumption
2.12 and let ¢, be given by ¢, = Ccyq + 1, as specified in Section F.2. Then for any
fixed integer j and for all n > 0,

T
Z gtCQ

t=1

T
!/
B> g,
t=1

=0 (1*?), E

=0 (Ta/ 2+’7)

Proof of Lemma F.17. The proof follows by careful reading of the proof of
Chan and Wei (1988, Lemma 3.4.3). m

Lemma F.18 Suppose equation (2.1), the hypothesis, H(r), condition (i), and As-
sumption 2.12 are satisfied. Let y; be either (t/T)* or T=F=1/2 21 (¢ — s)ke, for
k=0,1,... Then, for alln >0

“1/2

T
- P
T (E ct_lc;1> g ci_1y, — 0.
t=1

t=1

Proof of Lemma F.18. As discussed in Section F.2.5 then T7' "L ¢, ¢} LA

F, where F, "5 0. Thus it suffices to argue that T-12=15T ¢, 19! Z0.

The case where y; = T+ 1/2 5 1 (+ — s)ke,. Use Lemma F.17 with g, = 3424 (¢ —
s)"z, and o = 2k+2. Then it follows that 7, gz, 2 o(T*+*7) and hence "%, gz, Z
o(T*111) as desired.

The case where y;, = (t/T)*. The process ¢; is a linear process with exponentially
decreasing coefficients. For k = 0 the result then follows from the Central Limit
Theorem for linear processes with martingale difference innovations, see Phillips and
Solo (1992, Theorem 3.16). For general k the result follows by partial summation
and the Central Limit Theorem together with the invariance principle also given in
Phillips and Solo (1992, Theorem 3.16). =
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F.3.4 When u has explosive roots

Lemma F.19 Suppose equation (2.1), the hypothesis, H(r), condition (i), and As-
sumption 2.12 are satisfied. Let y; be either (t/T)* or T=F=1/2 321 (¢ — s)ke, for
k=0,1,... Then, for alln >0

T —1/2

T (Z dt—ld;f—l) Zdt—ly;, % 0.
t=1 =1

Proof of Lemma F.19. As in the proof of Lemma A.5 then

-1/2 p

T
(Z dt—1d21> Z di—1y;
t=1 t=1

= (max e ) O (1)

and it therefore suffices to prove that max;<7 ||y:|| = Op (1).

The case where y, = T —k-1/2 Zi;ll(t — s)’“as. In this situation yr, converges
in distribution on D[0,1]” but has continouous paths. The maximum function is
continuous on C[0, 1] on therefore max;<r ||y:|| = Op (1) .

The case where y;, = (¢/T)*. Then max,<r ||y:|| =1. =

99



F.4 Generalisation to the model with constant term

Throughout this Section it is assumed that 3, = 0 in the probabilistic analysis fol-
lowing Theorem 2.9, whereas 3, € R" in the statistical analysis.

F.4.1 Consistency of eigenvalues

This argument generalises the proof of Theorem 2.4. The argument is simply extended
drawing on (A.5) of Lemma A.7.

Lemma F.20 Suppose the model is given by the equation (2.6), the Assumption 2.12,
the hypothesis H.(r) and the condition (i) are satisfied. Then

L C ~C

a.s. e . N
oo A1 — 0, hTHi}O%f)‘r>0‘

Proof of Lemma F.20. For notational simplicity it is assumed that & = 0. In
this case the dual eigenvalue problem is

d X
0 = det [AZAX?Q ZAXt< “)

t=1

T ®2) !
X Xi1
AR) S ) e
T T
= det l)\SOO—SmSHlSm—ZAXt 1\Xt 1 {Z 1]Xt 1 }Z(I\th)AXt]
t=1 t=1

Using (A.5) of Lemma A.7 and the boundedness of S5 given by Lemma A 4 it follows
that

A’TXT:AXt (1) X;-1) {XTJ (1\Xt1)2} XT: (11X;-1) AX; Ap %% 0.

t=1 t=1 t=1

The argument then follows as in the proof of Theorem 2.4. m
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F.4.2 Asymptotic distribution of rank rest

This argument generalises the proof of Theorem 2.5.

Lemma F.21 Suppose equation (2.6), the Assumption 2.12, hypothesis H.(r) and
the conditions (1), (i1) are satisfied. Then

LR{H,(r)| H:(p)} / ;o1
[ (VUL ) () ()

Proof of Lemma F.21. For notational simplicity assume that k£ = 0. Replace
the matric Cp by Cr. = diag(Cr, 1). Then the eigenvalue problem is

A xon\® & X ,
0 = detC’T7c{?Z< t11| ) = t11| AX,

t=1 t=1

x (szAxg@?) ZAXt ( Xiall ) }CT#,

D
— tr

Because of the positive definiteness of 37, (3 X;_1|1) then

<1

{i(ﬂ'Xt—l)@}_l/Qi(ﬂXt e {z F X }/

t=1 t=1

and it is equivalent to considet

I, T ®2 I,
)\ p—r p—r
0 = det{T ( 0 )C&CZ(thll > CT7C( 0 )
1 t=1 1

T T
—C’T,CZ< X’fil'l ) AX; (; AX,?Q) ZAXt ( Xl ) }CT,C.

t=1

Using Corollary A.8 in the same way as in the proof of Theorem 2.5 this leads to

1 ®2 1 1
0 = det o, {,\/ ( V?u ) du—/ ( ”{u )CzwmL (o Q) a;/ aw, ( V‘lfu )}m.
0 0 0

and the result follows. =
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F.4.3 Consistency of {p 1

The Lemma A.9 has to be generalised. Let @7} | be estimated under the model with a
constant (2.6). Suppose a = Ay and 5 = He. For some random {r x (m —r) }-matrix
UT let

D=9, (Th))  =w 0w, €y, + U

Lemma F.22 Let ¢, be estimated under the model with a constant (2.6). Suppose
equation (2.1), the hypotheses H,(r), Hg(r), condition (i) and Assumption 2.12 are
satisfied. Let A, = A— A1 Q4 4 Qa,a. Then, for all € <~/(2+7)

SiiUr 2 o(T79?), (F.18)
U = g 4o (T, (F.19)
Ur = S5 SpAvy {1+ 0p (T-2)} +0p (TF). (F.20)

Proof of Lemma F.22. It is convenient to define My = (¢ ,¥S gﬁl / ?) and recall
the statements (C.8)-(C.10)

a.s. 0 0 _
MySana My =" MyQaaa, My + ( ) +o (T/2)(F.21)

0 I,
SHH~AL = H{1+O<T 6)}, (F22)
y -1 a.s. 0 (o) (T—E) o) T_£/2
M SanaSupa, SuaaMy = | I o (T*w) o (T2 (F.23)
Further, by Lemmas A.5, A.6 and (F.21)
Sera, Sy = o (T74?), (F.24)
(A.4), (A.5) of Lemma A.7
Seett a2 Seerr +0(T7F), (F.25)

and by Lemma A.4 and (A.1), (A.4), (A.5) of Lemma A.7
MZASAC'HALSCCIIQQ - M{p (ZI - SAALHSZiAL.HAIL) S()OHL 8;1142 s fe) (T*£/2) .
(F.26)
(F.18): The concentrated model equation (2.6) is

Roy =AY (¢'H'Ry 4+ B.Rey) + &4 (F.27)
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Pre-multiplication by (A, A’ ) shows that A’ X; is weakly exogeneous for 1, ¢, 3,.
Thus likelihood inference can be based on the partial system of A X, given A Xy,
that is

ARy = (¢ H Ry, + B.Rey) + WA Roy + A, (F.28)

for A, = (Z’ —wA')and w = Qa4 Q;& A, - The squared sample canonical correlations
for A' Ry and (R} H, R.;) solve

0 = det M,, (>\SAA.AL — Sam.A, Sﬁ}q‘AL Suaa, — SacHA, 5;.115(7/;L ScAAH,AJ_) M,

The equations (F.25), (F.26) show that equivalently

vl

0= det M:/, {ASAAAL — SAH.AL»S'I:&T{,ALSHA.AL +o0 (T_g)} M,/,
= det {Py(\) +o (T2}

where (C.8), (C.10) have been used and

0 0
Pwo\):)\M{/)QAA.AJ_Mip-f-()\—l)(0 I )

For A = 0 then (/,,—,0)P4(X) = 0 which shows that
al 5 a.s. Im—r _
span { ( S%QLW Y, ¢ = span 0 +o (T 5/2) . (F.29)

Since E,ﬁl} | has full rank almost surely then it also holds that

span {( S;ZQLW > 'QZJL} “ span ( I"(L)_T > +o0 (ng/g) )

(A.8): By (A.6) it holds JJJ_ =1, + @SQE/QSEQQWLQZJL and the result follows by
the boundedness of S gg / 2, see Lemma A 4.

(A.9): The partial likelihood given by (F.28) is differentiated with respect to
in the direction a following Johansen (1996, equation 13.9). This gives the likelihood
equation

0
0 = @IOgL(@/J,(p,Q)

= Thtr [QAAAAL {(SAHAAL7SACAAL) - 'l/} (Solvﬁlc) ( SHH.AL SHC.AL >} ( g ) CL/‘| .

SCH‘AL SCC'AL
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In particular it holds that

© N _ o [ Suma, Suea, @
SAH~AL ( /60 > - 110 ((p 750) ( SCH~AJ_ SCC.AJ_ ﬁc .
Since ﬂjlﬂj = 0 and 1 has full column rank by condition (i) then

0=10" (Sama,sSaca.) ( g ) V.

Following Johansen (1996, p. 130) the maximum likelihood estimator for (¢, 3.) is

. 1
¥ — SHH‘(SCL SHc@L SHA@L A gatan—1
( BC > a ( SCH‘@L Sccléu ) ( SCAA@CL )1/} (¢ ¢)
and therefore

-1
0 = & (Sama,, Saen,) ( SHi-a, SHea, ) ( SHA;&L )¢ (2//2/}) Ry

ScH-dL Scc-c‘u

{DIL (SAH'ALNS'AC-AL) ( SHH@L SHc@L >_1 ( SHA;@J_ )E{l +0 (T_g/g)}’

8
w

SCH‘(SéL Scoéu

where the consistency of 1]} | given in (F.19) has been used. Using the concentrated
model equation (F.27) this implies

ScH-dL Scc-éu
(s Yot (G (a0 (r o))

which is equivalent to

as. 5/ / ! Sun.a, SHea o
0 = djj‘ {¢¢ (SHH'AL’SHC'AL)+A (SEH'AL7SEC‘AL)}< . 3 L)

(=)
Q
Iz

~ , — I _S]}}LI@ SHoéu
O {09 (Surray s Suea) + A (Serra, Seea) | .

o Swwar O - I 0
0 Scc-H,dL _SCHfKL S;[}{.&L 1

(G Yo (S At ),
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and

b

0 % {Pl (¢SDISHH~AJ_ + ZISeH.AJ Shtra, (SHHdJ_QO + SHadLA_l/})

X {1 +0 (T‘ﬁ/Q)}
+{DIL¢90/ (SHOAL — Sum.A, Sﬁ}q.@ SHc-m)
XSciolH,dJ_ (0+ Seerra, ) AY {1 +o0 (T’5/2> }
+0\ A (Sect, — Serr.a, Sirbra, Sea, )
XSeerma, (0+ Seerra,) A {1 +o (T 2)} (F.30)

Now, (F.18), (F.19) show

O (M) =0 (B, 085)  (Ter 0) + o(T42) (F.31)

This in combination with Lemma A.4, (F.23) shows that

U Sana by = W Qana, by +o(T72), (F.32)
U\ Sarra, Sirtra, Suaahy = o(T°F), (F.33)
while the concentrated model equation (F.27) and Lemmas A.1, A.5, A.6 give
O\ Saca, 2 O(1). (F.34)
Using (F.32)-(F.34) it is seen that

SHH-d = SHH-AL {1 + O(T_g)} s (F35)
Sinia, Suear = Synia, Suea, +o(T74?), (F.36)

and S;I}—;'QAJ_SH"E'dL = EI}HéQALSHa-AL + o(T~¢/2).
Further, (A.1), (A.4), (A.5) in Lemma A.5 imply that

Seetta, = Seen {140(T7)}, (F.37)
(F.31), (F.32) imply
U\ Sanma, UL 0 Sana, by 0 (T76) 2 0(1), (F.38)
(A.1), (A4), (A.5) in Lemma A.5 imply
SecH,AL S;,lff 0 (T’g/Q) , (F.39)
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(F.31) and (A.1), (A.4), (A.5) in Lemma A.5 imply
V. Sacta, Sett =0 (T74?), (F.40)
(F.37), (F.38), (F.40) imply
Seetta, = Seert {140 (T7¢)} (F.41)
(F.38), (F.40) and (A.1), (A.4), (A.5) in Lemma A.5 imply
Soett Seettger, = Seott Seetr = o(T /). (F.42)
and by combining Lemmas C.3 and C.1
liminf Sy <. (F.43)
It then follows that with probability one (C.14) is equivalent to
0% S o (T G140 (7 )
') {0 (T72) Syf®} (Sea, — Snea,) o (T72) + o (T4|F.44)

where (C.18) in Lemma A.9 has been applied to the first term and (F.24), (F.35),
(F.41), (F.39), (F.42), (F.43) have been used for the second term.
Finally, the term Spc.a, — Suea, 1s studied. To this end note that for all n > 0

O\ Sacar = U0 (A = San, S3la, A)) (AU S+ Se)
= U 0SS5 Spe+ U (A — Sua, Sala, AL) Sec
— op (T¥20) (F.45)
since Sgﬁl/ ?Sse = op (T") by Lemma A.10 and this together with (F.18) show the

first term is op (T‘5/2+’7> while Lemma A.2 together with (F.31) and (A.1) show the

second term is o(T~¢/2) with probability one. Therefore using (F.32), (F.33), (F.45)
it follows that

Sunt” (Stea, — Stear) = Sun Suaat. (@LlSAAAALQLILSAoAL>71 U\ Saea,
= op {T*G"} .
Therefore using (F.18), (F.19) then (F.44) can be rewritten as
02 {§, s+ 0 AL + 0 (T) } {1+ 0 (T72)} + op {7727} 40 (T7F)

as desired. m
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F.4.4 Test for simple hypothesis on o, when 3= Hp, a = Ay and 3, € R"

This result generalises that found in Section B.3. The argument is simply extended
drawing on (A.5) in Lemma A.7.
The following the likelihood ratio test for a simple hypothesis on « is considered

Haq () : o = (AL,Z?/JD

for some known matrix ¢ .
The following result modifies Lemma B.1.

Lemma F.23 Suppose equation (2.6), ay = (AL, AYY), the hypotheses HS(r), H5(r),
condition (i) and the Assumptions 2.12, 2.13 are satisfied. Then

LR{HS (r)| H(r), H(r)} = tr{ (0 Quaa, 1) T\ A, 8685440, J+op (1).

Proof of Lemma F.23. As in the proof of Lemma B.1

_ T{l T Saan, ]| log )@LLSAA.AJLL) }

og / - ~T ~
(VTS an e, VT V| SAAHeAL ?/u’

= tr(TDY) —tr(TDS)+ O (H% - ?/’LH3>

LR{ Has ()| Ha (), Hs ()}

where ¢, — 1), %3 0 by the same argument as that of (A.8) in Lemma A.9 and
_ ~ / ~
Df = (@/JlSAAAﬂDL) ' (?/u - ¢L) SAA.AL,EpL <¢L - %) )
— ~ ! ~

Dg = (@/JlSAA-H,c,AN/JL) ' <¢L - ﬂu) SAA~H,c,AJ_,Zz/;L <¢L - z/u) .
Using Lemma A.2 and (A.4) of Lemma A.7 it is seen that 1/, Saa.a, ¥ | = | Qana, ¥, +
o(T~4/2) whereas v/, S e, 1 % ¥, Qara, v, +0(T¢2). Thus applying the def-
inition ¢, — ¢ | =, Uy it follows

Df = D5 (4 Q1) Upd (Sanay — Sansea, ) PUr {1+0(T7)}.
Equations (A.4), (A.5) of Lemma A.7 show
ScoH,OéL = ScoH {1 +o0 (Tﬁ£>}

while (A.1), (A.5) of Lemma A.7 show

M Sucta, Secti 0 (T42) .
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It then follows from (F.18) in Lemma F.22 that

U}E,Saa-H,c,aL@UT = U}alsaa-H,aL@UT +o0 (T_g)

and therefore
D{—D§ = (4 Qana, 1) Uit (Sana, — Sanma,,)0Ur {1+ 0 (T7) 40 (T7).

The remainder of the proof of Lemma B.1 can then be followed using (F.20) in
Lemma F.22 rather than (A.9) in Lemma A.9. =
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F.4.5 Test for a = Ay when = Hyp, 3, € R"

This result generalises Theorem 2.8.

Corollary F.24 Suppose equation (2.6), the hypothesis HE(r), the conditions (i), (iv)
and the Assumptions 2.12, 2.13 are satisfied. Then

LR{HS ()| Hy(r)} 2 X {r (m =)}

Proof of Lemma F.24. Follow the proof of Theorem 2.8 by combining the
result in (2.3) in Theorem 2.2 with Lemmas A.5, F.23 =
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F.4.6 Test for §.=0 when o, is known and = Hyp

This result generalises that found in Section B.5. In particular the concentrated model
equation is
a/Ro,t = QDIHIRLt + ﬁ/c (1|Zt,1) + CUO/J_R(M + a;ét (F46)

Thus the likelihood ratio test statistic for 5, = 0 is given by
LR{H ()| Hg, (r)} = —Tlogdet (I, = S sr.0, Sactas Secrtta, Seatos ) -

For the asymptotic distribution it is necessary that condition (ii) is satisfied. The
result is discussed in two Lemmas. First, the test statistic is rewritten without using
condition (ii) and next the asymptotic result is given

Lemma F.25 Suppose equation (2.6), o, = af, the hypothesis H(r), condition (i)
and Assumption 2.12 are satisfied. Then

LR{H (r)| Hes (1)} tr (ko T0,Seen Socly Seeri@) +0(1)

oo

Proof of Lemma F.25. First, as in (B.7) in Lemma B.2
S53"* Sacttor 53" 2 S35 Qe Sza’” +0(1).
Secondly, by Lemma A.5 and (A.1) of Lemma A.7

S S et Sott = 1= S S S0t 1Saser St 1 +0(1).  (F.47)

[e AR eAN
Thirdly, Since it is tested that 3, = 0 the partial model equation (F.46) shows

=
SacHa, = ®,Scc.H,a, - Further,

a/ (Sec-H,aL - Sac-H) SC_CIIQQ - a;sea-HaLS_l AHalj_Ssc-HSc_c.lérQ (l-:& o (1) 9

w aj oy

by Lemmas A.5, A.6 and the result follows. m
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F.4.7 Test for (.= 0.

Corollary F.26 Suppose equation (2.6), the hypothesis H(r), the conditions (i), (i)
and the Assumptions 2.12, 2.13 are satisfied. Then

LR{H (r)| H(r)} 5 x* (r).

Proof of Corollary F.26. As in the proof of Theorem 2.7 let L(a , 3, 3., €2) de-
note the likelihood concentrated with respect to the lagged differences. The likelihood
ratio test statistic is then

QUH ()] He ()} = max L(a1,6,0,0) [ max L(as,5,6.9).
ay,8,0 ayr,B,8..8
Extend this fraction by the maximised likelihood when « is known to see

Q{H (r)| He (r)}
ar?%?gzL(aJ_vﬁaoag) I[IBI%XL(CVi,ﬁ,O,Q) gé?’?éL(ai_vﬂvﬁc?Q)

L 07 707Q L 07 ) C?Q a" L b ) C?Q
max (1,8,0,9) max (3,8, 5.,9) o Jnax (a1, 5,6,,9Q)

The Lemmas B.1, F.23 show that asymptotically the tests for simple hypotheses on
a depend on the same statistic, which does not depend on (3. and therefore the first
and the last term cancel. Using the Lemma F.25 it is therefore seen that

LR{H (r)| He ()} = tr (0740, T, See.1 Sl Seer@) + 0p (1)

aca
Under condition (z7) the Lemma A.10 shows that for some n > 0
Serr Sty Se = op (T"71)
and the Lemmas A.5, A.6 then show that
Seern = 1+o0p(1),

TS0y = TV2S.. 4 op (T”‘f) = T/2 sz &+ op (T”‘f) .

t=1

Since 7 can be chosen 7 < £ it follows that

LR{H (r)| H.(r)} = tr {Q;;,% (T—ma; 25t> } +op(1).

The desired result then follows from Brown’s (1971) martingale Central Limit Theo-
rem, see the proof of Lemma A.13. m
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F.4.8 Test for 3 = Hp when o, is known and 3, € R’

Following the proof of Lemma B.2 in Section B.5 the partial model equation is
@'Roy = ' Ris+ B, (11 Z;-1) + wa!, Ry + @24

where w = Qu0, 05!, , - The likelihood ratio test statistic for hypothesis Hp is therefore

ooyt
LR{Hﬁ( )) HC ( )} - _Tlog det (IT - (;oaH,c,ozLSO&HJ_'H7C70£J_SITIJ1_HL~H,C,04LSHLQ'H#CU_) :
The followmg result modifies Lemma B.2

Lemma F.27 Suppose equation (2.6), the hypothesis Hg(r), condition (i), and As-
sumption 2.12 are satisfied. Then

LR{ H ()| Hee (1)} 5 X2 {r (p— )}

Proof of Lemma F.27. First, from Lemma A.2 and (A.4) of Lemma A.5 it
follows that

Seettos = Seerr {140 (T74)},
which together with Lemma A.4 and (A.1), (A.5) of Lemma A.5 imply
Sis’* Sactton St = 0 (T75?).
This again, together with (A.1), (A.4) shows that
S53"* Sacrtrear Sas - S35 Qacvar Sgp’ " + 0 (1)
Secondly, it is argued that
Sty tear = S e{l1+0(1)},

since Slgi/l?IL-H,cSHL(XL'H,C %% 0 by Lemma A.5 and Sy, o, .me — by Lemma A.5

and (A.1) of Lemma A.7.
Thirdly, by the partial model equation Sop | .pea, = ®,Ser, -1 e, and therefore

1o o]

— —1/2
@, (Serty-Heoy — Serr, ) St ity 11,
_ — -1/2 a.s.
= Oé(/u {SEE - SE(ch)S(I},c)(H,c)S(Hyc)E} aJ-S ajog- HCaLSEHL HCSHLHL He — O (1)

by Lemmas A.1, A.5 and (A.1) of Lemma A.5. In particular by Lemma A.4
Sggl/QSaHL-H,c,aLSI}LHL Hc - Sﬁ 1/2 ! SeHL HCSHi/I-QIL H,c +o0 (1)
Finally, in combination
LR{HS ()| H ()} 2 =Tlogdet (T, — O3k e, 1.0, 1.0SH e )40 (1).
the result follows by extending the Mixed Gaussian Central Limit Theorem A.14 to

include regression on a constant. m
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F.4.9 Test for = Hyp

The following result is a modified version of Theorem 2.7.

Corollary F.28 Suppose equation (2.6), the hypothesis H(r), condition (i), and the
Assumptions 2.12, 2.13 are satisfied. Then

LR{HS (r)| He (r)} 5 x* {r(p— 5)}

Proof of Corollary F.28. Follow the proof of Corollary F.26 using Lemmas
F.23, F.27. m
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F.5 Counter Examples

Consider the probability measure given by the equation (2.5), that is

01
AXt:<0 0>Xt—1+5t

where £, has a standard normal distribution. Suppose Xy = 0. Define for j = 1,2
t t s—1

gi=a, = el S5 =3"3 .

s=1 s=1r=1

Define univariate standard Brownian motions V, W and let

— 1 -~ 1 U 1
W= / Wydu, W = / / W,dtdu, / W2 = / W2du,
0 0 JO 0

D:/W?/W?—(/WW)2

Then
_ Sy + &4 . SSs + 55
e ()
and
T—1/2 S T—1/2 2) fw2 0
1 )°% 1 0o 1)
T-! o (T D TWW  [WdW
1 )= 1 [W? [WdwW |’
(T T-1 D W2 [WW
1
() s (T2 (e T ),
T 1! D 0%
() ()
1 C Wl 9
T-1/2 ( r ) Sie 2 @1
1 W, ’

[WdV [ WdW
[TWdV  [WdW



F.5.1 Necessity of assumption (c) for LR{H,(r)|Hs(r)}
The expression in Lemma B.1 gives
-1 (f WdWw)?
LR{Hyg (r)[H(r)} = 3 e, X (3 X3) Y. Xara ~ e
F.5.2 Necessity of (ii) when testing ., =0

The expression in Lemma F.25 gives

LR % —Tlogdet ([r — @801, Scalaw) +o(1).

cc-1

Below it will be argued that
™ S, B / FdV — / WdaWw / FdW,
Scc-l g / F Qdu.

where le_ﬁlm—mm'
f<ﬁ7)w) f(W’W>

It then follows that LR has a non-standard distribution

LR 2 (7deV _/deideW )2

Now,
o = N1 ( w2 W\ (W
Scol = Scc - 8018111810 e <W1’W1> 5 ( _IWW J‘WQ IWll
=2 —~ = = 17
2
= 1- ,KVI 7 W1~2+2W1W11)fWW:/F2
J(wiw)" g (ww)

This is because

[ () (i) = [ (wiiw) - L8 [ ()

_ Ww{lw_Wf}




so that

W, (W) (WIW) 0w, fww

and further
W / (W] w)

W1/<W|W)

fww) s wwys b
= I,/Iz/l (ﬁl ffmtgflg/wl>:ﬁ/i—fflg/g/wlﬁh
_ W (WI _J VKW:I) —w - LW,
w2 Jwz

Now,

T2 (1,0) Seer =

D
—

Similarly

Finally,

T2 (1,0) (See — 5157 5hc)

1 [~ w2 —ww (W
| p— (W,W)dV(_ffWW ffWQ )(%)

/dV—%{I/I::/l</I7I7dV/W2—/I7I7W/WdV>
o o)

TYV2(0,1) 8.0y 2 / FdW.

- Saou 1 D 1 0
@, =a— < aL—><O>—/WdW<1).

[CAREAN
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