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Abstract

While there has been a great deal of interest in the modelling of non-linearities and regime shifts in
economic time series, there is no clear consensus regarding the forecasting abilities of these models.
In this paper we develop a general approach to predict multiple time series subject to Markovian
shifts in the regime. The feasibility of the proposed forecasting techniques in empirical research is
demonstrated and their forecast accuracy is evaluated.
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1 Introduction

In recent years the importance of structural breaks in explaining forecasting failures has become evident.
Consequently, for an econometric theory of forecasting to deliver relevant conclusions about empirical
forecasting, it must be based on assumptions that adequately capture this aspects of the real world. A
theory of economic forecasting applicable to time series subject to deterministic breaks has been presen-
ted in Clements and Hendry (1999). For breaks that recur in a systematic, stochastic pattern, modelling
the regime-switching nature of economic processes might result in forecast devices superior to time-
invariant linear models and traditional robustifying methods like differencing, intercept correction and
multistep estimation.

While there has been a great deal of interest in modelling non-linear features of economic time
series, there appears to have been little attempt to investigate statistical forecasting using regime-
switching models, and it is that lacuna this paper seeks to fill. One of the puzzles associated with
the forecasting performance of non-linear times series models in general, and regime-switching models
in particular is that, when compared to linear models, a superior in-sample fit does not result in superior
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forecasts (see,inter alia, Clements and Krolzig, 1998, and Dacco and Satchell, 1999). Another fea-
ture found in empirical investigations and simulation studies is that the relative forecast performance of
regime-switching models depends on the regime present at the time the forecast is made (see,inter alia,
Clements and Smith, 1999, and Pesaran and Potter, 1997) .These issues will be addressed in this paper
and theoretical explanations will be offered.

We propose an econometric theory of predicting economic time series when the data generating
mechanism incorporates endogenous structural change by being linear conditional on a particular re-
gime, but subject to shifts in the deterministic factors. Thus the focus is on the predictability of Markov-
switching vector autoregressive (MS-VAR) processes as the property of a stochastic process in relation
to an information set. We derive the optimal predictor, we show that its properties depend on (i) the
significance of regime shifts, (ii) the persistence of the regime generating process, (iii) the asymmetry
of the regime generating process and (iv) the interaction with the autoregressive dynamics. The results
obtained allow to derive parametric conditions under which the optimal predictor shrinks to a linear
prediction rule.

The paper proceeds as follows: In section 2 the Markov-switching (MS) model is introduced as
the framework for the following analysis and the general approach to predict MS processes is laid
out. We will discuss the central concepts of prediction density, optimal predictor, unpredictability and
Granger causality of regimes. The optimal predictor of MS regression models is derived in section 3. In
section 4 we discuss the prediction of MS time series processes. The concepts of unpredictability and
Granger causality of regimes are found to be crucial for the information value of the statistical regime
inference. The illustrative examples in the second part of the paper demonstrate the feasibility of the
proposed forecasting facilities. Their forecast accuracy is evaluated and compared to those of linear and
non-linear alternatives. In section 5 we consider the Hamilton (1989) model of the US business cycle
which allows us to exemplify the derived forecasting techniques and to test the forecast performance of
the exact model specification that spearheaded the recent interest in MS-AR models relative to linear
and non-linear alternatives. Two methods of analysis are presented: an empirical forecast accuracy
comparison of the Hamilton model with linear autoregressive models, and a Monte Carlo study. We
then show that the forecasting performance of the MS model can be hugely improved by allowing for
a third ‘high-growth’ regime, and simultaneously modelling US output and employment growth in an
MS-VAR.

2 The Framework

2.1 Markov-Switching Models

By allowing for changes in regime of the process generating the time series, the MS-VAR model has
been proposed as an alternative to the constant-parameter, linear time-series models of the earlier Box
and Jenkins (1970) modelling tradition. The general idea behind this class of regime-switching models
is that the parameters of a, say,K-dimensional vector time series process{yt} depend upon anunob-
servableregime variablest ∈ {1, . . . ,M}, which represents the probability of being in a particular state
of the world.

p(yt|Yt−1,Xt, st) =


f(yt|Yt−1,Xt; θ1) if st = 1

...
f(yt|Yt−1,Xt; θM ) if st = M.

(1)

whereYt−1 = {yt−j}∞j=0 denotes the history ofyt andXt are strongly exogenous variables;θm is the
parameter vector associated with regimem.
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A complete description of the statistical model requires the formulation of a mechanism that governs
the evolution of the stochastic and unobservable regimes on which the parameters of (1) depend. Once
a law has been specified for the statesst, the evolution of regimes can be inferred from the data. In MS
models the regime-generating process is an ergodic Markov chain with a finite number of states defined
by the transition probabilities:1

pij = Pr(st+1 = j|st = i),
M∑

j=1

pij = 1 ∀i, j ∈ {1, . . . ,M}. (2)

More precisely, it is assumed thatst follows an ergodicM -state Markov process with an irreducible
transition matrix

P =

 p11 . . . p1M
...

...
pM1 . . . pMM

 .
Thus, the probability which regime is in operation at timet conditional on the information at timet− 1
only depends on the statistical inference onst−1, Pr(st|Yt−1,Xt, St−1) = Pr(st|st−1). As the MS
model also nest models with once-and-for-all structural breaks, it might be used to detect permanent
breaks. In this case the matrix of transition probabilities could look as follows:

P=



1 − p12 p12 0 · · · 0 0
0 1 − p23 p23 0 0

. . .
. . .
. . .

. . .

0 0 0 1 − pM−1,M pM−1,M

0 0 0 · · · 0 1


.

A major advantage of the MS model is its flexibility in modelling time series subject to regime
shifts. Theoretically all parameters of the conditional model can be made dependent on the statest

of the Markov chain. In this paper we consider different specifications of the conditional processes
p(yt|Yt−1,Xt, st). The focus, however, is on stochastic processes exhibiting shifts in the deterministic
factors:

TheMarkov-switching regression modelis defined as

yt =


Xtβ1 + ut, ut|st ∼ NID(0,Σ1) if st = 1

...
XtβM + ut, ut|st ∼ NID(0,ΣM ) if st = M

(3)

whereXt is a (K × R) regressor matrix of exogenous variables such thatvt andut are innovation
processes.

The most general form of aMarkov-switching vector autoregressive (MS-VAR) processis given by

yt = ν(st) +A1(st)yt−1 + . . .+Ap(st)yt−p + ut, ut|st ∼ NID(0,Σ(st)), (4)

1There is evidence that in some instances the assumption of fixed transition probabilitiespij should be relaxed, and models
with time-varying and duration-dependent transition probabilities have been considered (see, for example, Diebold, Rudebusch
and Sichel, 1993, Diebold, Ohanian and Berkowitz, 1994, Filardo, 1994, Lahiri and Wang, 1994, and Durland and McCurdy,
1994). The former are modeled as logistic functions (to bound the probabilities between0 and1) of economic variables.
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where the presample valuesy0, . . . , y1−p are fixed. The parameter shift functionsν(st),
A1(st), . . . , Ap(st), and Σ(st) describe the dependence of the parameters on the realized regime
st, for example:

ν(st) =


ν1 if st = 1,

...
νM if st = M.

As most empirical forecast errors are due to shifts to the deterministic factors (see Hendry, 1999),we
will focus on models with shifts in the level of the process. From the class of MS-VAR processes,
these model allow an easy analytical access to the properties of the optimal multi-step predictor. This
is a great advantage when compared to other regime-switching models, where numerical integration or
simulations methods have to be used to calculate (e.g. see Clements and Smith, 1997, for the case of
SETAR models).

A VAR with regime shifts in themeanis called an MSM(M )-VAR(p) process:

yt − µ(st) =
p∑

k=1

Ak (yt−k − µ(st−k)) + ut, ut|st ∼ NID(0,Σ). (5)

If the regime shifts affect theinterceptof the VAR, this is called an MSI(M )-VAR(p) process:

yt = ν(st) +
p∑

k=1

Ak yt−k + ut, ut|st ∼ NID(0,Σ). (6)

The difference between these alternatives that after a shift in regime, the transition to the new (con-
ditional) mean is smooth in an MSI-VAR and once-and-for-all in an MSM-VAR. One special feature
of these models is the linearity of their state-space representation. Thus, MSM-VAR and MSI-VAR
processes represent the subclass of MS-VAR processes for which optimal predictor can be derived ana-
lytically and computationally effective algorithms can be constructed easily.

2.2 The Markov Property of MS-VAR Processes

The prediction of MS-VAR processes uses the isMarkovproperty of the joint process{(y′
t, st)′} of the

regime variablest and the stacked vector of observed variablesyt = (y′t, y′t−1, . . . , y
′
t−p+1)

′, i.e. the
relevant information concerning the evolution of the system output in the future(y′

t+h, st+h)′, h > 0 is
completely provided by the actual state(y′

t, s
′
t)
′, while the past reveals no additional information.

Conditional on the history of regimes,St = {st−j}∞j=0, the density ofyt entails the Markov prop-
erty,

p(yt|Yt−1;St) = p(yt|yt−1; st),

since it only depends on the distribution of the error termut which is independent ofYt−1. However,
the marginal processyt generally is not Markovian2

p(yt|Yt−1) =
M∑

m=1

p (yt|yt−1, st = m) Pr (st = m|Yt−1)
a.e.
6= p(yt|yt−1).

Former observations ofyt reveal information on the unobservablest which then affects the predictive
probability density ofyt:

Pr(st|Yt−1)
a.e.
6= Pr(st|yt−1).

2This suggests the existence of finite-order mixed VARMA representation of these processes (see Krolzig, 1997, chapter
3).
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Only if the regimes are not autocorrelated,Pr(st|st−1) = Pr(st), the Markov property ofyt would
be re-established asp(yt|Yt−1; st−1) = p(yt|Yt−1). In this case the regime variablest is said to be
unpredictable.

2.3 The Prediction Density

In contrast to Gaussian models where interval forecasts and forecast regions can be de-
rived on the basis of the conditional mean̂yt+h|t and the h-step MSPE matrixΣt+h|t =
E
[
(yt+h − ŷt+h|t)(yt+h − ŷt+h|t)′|Ωt

]
, the conditional first and second moments are not sufficient

to determine the conditional density ofyt+h given the information setΩt. The prediction density
p(yt+h|Ωt) is a mixture of normals,f(yt+h|st+h = j,Ωt), with weights given by the predicted regime
probabilitiesPr(st+h = j|Ωt) :

p(yt+h|Ωt) =
M∑

j=1

Pr(st+h = j|Ωt)p(yt+h|st+h = j,Ωt)

=
M∑

j=1

{
M∑
i=1

Pr(st+h = j|st = i) Pr(st = i|Ωt)

}
p(yt+h|st+h = j,Ωt) (7)

The predicted probability densities are non-normal and thus in general neither symmetric, homosce-
dastic, nor regime invariant. Properties which can be barely captured by linear time series models. Thus
researchers interested in density forecasts will even stronger benefit from using MS-VAR models (see
the discussion in Pesaran and Potter, 1997).

For example the one-step prediction density is given by

p(yt+1|Ωt) =
M∑

j=1

{
M∑
i=1

pij Pr(st = i|Ωt)

}
p(yt+1|st+1 = j,Ωt) (8)

where, in the case of an MS regression model,p(yt+1|st+1 = m,Ωt) is Gaussian with expectation
Xt+1βm and varianceΣm. Even if the variances are regime-invariant, the prediction density is condi-
tionally heteroscedastic as the weights,Pr(st+1 = j|Ωt) =

∑M
i=1 pij Pr(st = i|Ωt), of the mixture of

normals density are time-varying and predictable.
Although the preceding calculations have been straightforward, in practice it is rather complicated

to construct interval forecasts analytically. Therefore the following analysis focuses on optimal point
prediction.3

2.4 The Optimal Predictor

A forecasting rule is any systematic operational procedure for making statements about future events.
For the mean square prediction error (MSPE) criterion,

min
ŷ

Σt+h|t = min
ŷ

E
[
(yt+h − ŷ) (yt+h − ŷ)′

∣∣Ωt

]
,

the optimal predictor̂yt+h|t is given by the conditional mean for a given information setΩt :

ŷt+h|t = E[yt+h|Ωt]. (9)

3A forecasting tool which incorporates parameter uncertainty, non-normality of the prediction error, as well as non-
linearities of the process, is the Gibbs sampler proposed in Kim and Nelson (1998) and Krolzig (1998b). A main advantage of
the Gibbs sampler is the feasibility of generating forecasting intervals by producing the predicted density ofyt+h givenYt.
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In contrast to linear models, the MSPE optimal predictorŷt+h|t usually does not have the property
of being a linear predictor if the true data-generating process is non-linear. Unlike many non-linear
models, the conditional mean can easily be derived analytically if the autoregressive parameters are
regime-invariant.

From the conditional density (8), the MSPE-optimal one-step predictor results as follows:

ŷt+1|t = E[yt+1|Ωt] =
M∑

j=1

Pr(st+1 = j|Ωt)E [yt+1|st+1 = j,Ωt] . (10)

The prediction error̂et+h|t = yt+h − E[yt+h|Ωt] associated with the optimal predictorŷt+h|t is given
by:

êt+h|t = (yt+h − E[yt+h|st+h,Ωt]) + (E[yt+h|st+h,Ωt] − E[yt+h|Ωt])

= (yt+h − E[yt+h|st+h,Ωt]) + (E[yt+h|st+h,Ωt] − E[yt+h|st,Ωt]) + (E[yt+h|st,Ωt] − E[yt+h|Ωt])

Theh-step prediction error can be decomposed into three components reflecting three causes of uncer-
tainty: (i) the Gaussian innovationsyt+h − E[yt+h|st+h,Ωt] affecting the measurement equation, and
the regime prediction errors, which consists of (ii.a) the accumulated, unpredictable errors to the regime
generating process and (ii.b) the error in detecting the actual state of the Markov chain due to the signal-
extraction problem (filter uncertainty),E[yt+h|st,Ωt] − E[yt+h|. If parameters have to be estimated as
it is usually the case in practice, another term enters due to parameter uncertainty.

2.5 Predicting the Markov Chain

As we have seen in the preceding discussion, predicting future regime probabilities conditional on the
available information set is the major step in implementing optimal predictors for the time series of
interest. A useful framework to work with is the VAR(1) representation of the hidden Markov chain.
Let ξt be an(M×1) vector whoseith element is unity whenst = i and zero otherwise. Then the hidden
Markov chain can be written as (see Krolzig, 1997):

ξt+1 = Fξt + vt+1, (11)

wherevt+1 is a martingale difference sequence (MDS),ξt =
[
I(st = 1) · · · I(st = M)

]′
is the

unobservable state vector consisting ofM binary indicator variables andF = P′ is called the transition
matrix. This representation allows the application of the well-established theory of forecasting linear
systems to the problem of calculation future regime probabilities.

By using the linearity of the transition equation (11), the one-step prediction ofξt+1 follows as:

ξ̂t+1|t − ξ̄ = F(ξ̂t|t − ξ̄). (12)

whereξ̂t|t is the vector of filtered regime probabilities:

Pr(st|yt,Xt) =
p(yt|st, Yt−1,Xt) Pr(st|Yt−1,Xt)

p(yt|Yt−1,Xt)

In practice the vector of filtered regime probabilitiesξ̂t|t can be calculated recursively with the
filtering algorithm of Hamilton (1988, 1989):

ξ̂t|t =
ηt � ξ̂t|t−1

η′tξ̂t|t−1

=
1
L

t−1∏
j=0

diag(ηt−j)F

 ξ0



7

with ηt =

 p(yt|Xt,st = 1) = fu(yt −Xtβ1)
...

p(yt|Xt,st = M) = fu(yt −XtβM )

.

By using the adding-up restriction,1′Mξt = 1 for all t, we can reduce the dimension of the Markov
chain by one. Thus the state of the Markov chain at timet can be recorded by the([M − 1]× 1) regime
vector

ζt =

 ξ1t − ξ̄1
...

ξM−1,t − ξ̄M−1.

 .
The stochastic process of the regime vectorζt can again be represented as a VAR(1) process:

ζt = Fζt−1 + vt, (13)

where the([M − 1] × [M − 1]) transition matrixF has eigenvalues within the unit circle,

F =

 p11 − pM1 . . . pM−1,1 − pM1
...

...
p1,M−1 − pM,M−1 . . . pM−1,M−1 − pM,M−1

 ,
andvt is a non-Gaussian MDS.

According to (12) the optimal predictor is given by

ζ̂t+h|t = F ζ̂t|t. (14)

In the case of a two-regime model, the state vector is scalar andF = [p11 − p21] This is illustrated
further in the following example.

Example 1. Consider a two state Markov chain such that the unobservable state vector isξt =[
I(st = 1) I(st = 2)

]′
. Defineζt = ξ1t − ξ̄1 being1 − ξ̄1 if the regime is1 and−ξ̄1 otherwise.

ξ̄1 = p21/(p12 + p21) is the unconditional probability of regime1. Invoking the unrestricted VAR(1)
representation of a Markov chain

ζt = (p11 − p21)ζt−1 + vt. (15)

wherevt is a martingale difference sequence. Thus (15) is a non-Gaussian autoregressive process char-
acterized by its persistence parameterρ = p11 + p22 − 1. By using the law of iterated predictions, we
first derive the forecast ofζt+h conditional onζt.

ζt+h = ρhζt

Then, the expectation operator is again applied to the just derived expressions, but now conditional on
the sample informationYt. Then predictions of the Markov chain are given by:

ζ̂t+h|t = ρhζ̂t|t

whereζ̂t|t = E(ζt|Yt) = ξ̂1t|t − ξ̄1 is the mean-adjusted filtered probability of being in regime1 :

ζ̂t|t =
[
1 +

η2

η1

([
ζ̂t|t−1 + ξ̄1

]−1 − 1
)]−1

− ξ̄1.



8

0.2
0.4

0.6
0.8

rho

0.2
0.4

0.6
0.8

ergprob1

0

0.2

0.4

0.6

0.8

zeta(t+1|t) for Pr(s(t)=1|Y_t)=1

0.2
0.4

0.6
0.8

rho

0.2
0.4

0.6
0.8

ergprob1

–0.8

–0.6

–0.4

–0.2

0

zeta(t+1|t) for Pr(s(t)=2|Y_t)=1

0.2
0.4

0.6
0.8

rho

0.2
0.4

0.6
0.8

ergprob1

0

0.2

0.4

0.6

0.8

zeta(t+2|t) for Pr(s(t)=1|Y_t)=1

0.2
0.4

0.6
0.8

rho

0.2
0.4

0.6
0.8

ergprob1

–0.8

–0.6

–0.4

–0.2

0

zeta(t+2|t) for Pr(s(t)=2|Y_t)=1

0.2
0.4

0.6
0.8

rho

0.2
0.4

0.6
0.8

ergprob1

0

0.2

0.4

0.6

0.8

zeta(t+4|t) for Pr(s(t)=1|Y_t)=1

0.2
0.4

0.6
0.8

rho

0.2
0.4

0.6
0.8

ergprob1

–0.8

–0.6

–0.4

–0.2

0

zeta(t+4|t) for Pr(s(t)=2|Y_t)=1

Figure 1 Prediction of the unobserved state variable for0 < ρ < 1.

The predictive value of the regime inference, at the time when the prediction is made, depends
positively on the regime persistence, i.e. the eigenvalue(s) ofF , which isρ in the two-regime case. The
value is the higher, the less likely the reconstructed regime is. This is illustrated in figure 1 for the case
M = 2 and gives the value of the mean-adjusted predicted probability of regime1, ζ̂t+h|t, conditional
on probabilities of one for regime1 and2, respectively, as a function of the ergodic probability of regime
1 and the regime persistence parameterρ = p11 + p22 − 1.

2.6 Predictability and Granger Causality of Regimes

Based on our previous results, we can formally define the concepts of predictability and Granger caus-
ality of regimes. As we will show in the rest of the paper, these concepts are essential for whether
the information derived by modelling the regime switching nature of the DGP over the sample period
will matter for predictions, or whether we can stick to a linear prediction rule. We will also derive the
corresponding parameter restrictions on the MS-VAR.

Predictability is a property of a stochastic process in relation to an information set:

Definition 1. The regime generating process{st} is said to beunpredictable iff the regimes are serially
independent such that for allt andst+1, st = 1, . . . ,M :

Pr(st+1|st) = Pr(st+1).

In terms of the transition matrixF in (11), unpredictability follows fromF = ξ̄1′. Note that the
definition is formulated in terms of the unobservable, latent regime variablest. However this property
of the regime generating process affects immediately also the predicted inference which is based on
Pr(st+h|Yt−1) = Pr(st+h).
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Proposition 1. If the regime generating process{st} is unpredictable, detecting regime shifts has no
predictive value for future regimes

Pr(st+1|st) = Pr(st+1) ⇒ Pr(st+h|Ωt) = Pr(st+h).

Proof. From (7) follows that the predicted regime probabilities,Pr(st+h|Yt), are is a linear function of
the filtered regime probabilities,Pr(st|Yt) :

Pr(st+h = j|Ωt) =
M∑
i=1

Pr(st+h = j|st = i) Pr(st = i|Ωt).

As unpredictability implies thatPr(st+h = j|st = i) = Pr(st+h = j) , we have that all future
expectations are given by the ergodic regime probabilitiesPr(st+h = j) :

Pr(st+h = j|Ωt) = Pr(st+h = j)

{
M∑
i=1

Pr(st = i|Ωt)

}
= Pr(st+h = j).

The predictability of a regime generating process{st} relative to the available information will have
important implications for the predictability of the time series vectoryt. In the following the concept
of Granger (1969) causality is adapted for the prevailing non-Gaussian framework to measure the link
between the latent regime variablest and the observed variableyt.

Definition 2. The regime{st} is said to be non-causal for the observed times series vector{yt} in a
strict sense iff for allt

p(yt+1|Ωt;λ) = p(yt+1|Ωt, ξt;λ).

For well-specified models, causal information always can be shown to be useful, and can produce
better forecasts. Forecasting tends to focus on the optimal predictor. In this case it is sufficient to
consider weak non-causality which we define as non-causality in the mean:

Definition 3. The regime{st} is said to be non-causal for the observed times series vector{yt} in a
weak sense iff for allt

E[yt+1|Ωt;λ] = E[yt+1|Ωt, ξt;λ].

Under conditions of weak non-causality, the optimal predictor shrinks to a simple linear autoregress-
ive forecasting rule which could be estimated by OLS. Thus the forecast accuracy of a linear prediction
rule can not be beaten by the optimal predictor of the MS-VAR. However, if the focus is on the pre-
dicted densities and not on the optimal predictor itself, then modelling the MS-VAR can be important
for forecasting.

In the next section we will show that in the case of a Markov-switching regression models, unpre-
dictability of the regimes implies strong Granger non-causality. Thus a linear forecasting rule is optimal
and the predicted densities are mixtures of normals with time-invariant weights given by the ergodic
regime probabilities.

3 Prediction of Markov-Switching Regression Models

As the formal framework for the statistical analysis and prediction we work with the state-space repres-
entation of the Markov-switching model. The state-space representation consists of the measurement
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equation (16), which is the regression model, and the transition equation (17), which is the VAR(1)
representation of the Markov chain:

yt = XtBξt + ut, (16)

ξt+1 = Fξt + vt+1, (17)

whereut is Gaussian,vt+1 is an MDS. Note that ss-obs) follows straightforward from (3) by setting
B = [β1, . . . , βM ].

By ignoring the parameter estimation problem, the MSPE–optimal forecast can be generated by the
conditional expectation (9) of the of the state-space representation (16)/(17). Consider first the simplest
case of an MS-regression model, where the parameter matrixB is known and the regressor matrixXt

is deterministic. Then the expectation ofyt+1 conditional on the regimeξt+1 and the observationsYt is
given by:

E[yt+1|Xt+1, ξt+1] = Xt+1 B ξt+1, (18)

where we have used the unpredictability of the Gaussian innovation processut, i.e.
E[ut+1|Xt+1, ξt+1] = 0. Thus, in case of anticipation of regimem, the optimal predictor would
beXt+1βm.

Having forecasts for the predetermined variables, the major task is to forecast the evolution of the
hidden Markov chain which can be achieved by using (12). Inserting the predicted state vectorξ̂t+1|t
into equation (18) yields the one-step predictorŷt+1|t:

ŷt+1|t = E[yt+1|Xt+1] = Xt+1 B ξ̂t+1|t
= Xt+1β̄ +Xt+1 B F(ξ̂t|t − ξ̄). (19)

Starting with the one–step prediction formula (19), general predictions can be derived iteratively as long
as the elements ofXt+h are uncorrelated with the state vectorξt+h

ŷt+h|t = E[Xt+h|Yt] B ξ̂t+h|t

= E[Xt+h|Yt]β̄ + E[Xt+h|Yt]BFj
(
ξ̂t|t − ξ̄

)
(20)

whereβ̄ = E[B ξt+h] is the unconditional parameter vectorβt = B ξt+h.

Since the developed forecasting devices employ the MSPE optimal predictor, the problem of non-
Gaussian densities is not involved in the following analysis. However note that due to the non-normality
of the innovations of the regime-generating processvt+1, the inferenceŝξt|t and ξ̂t+1|t depend on the
information setYt in a non-linear fashion. Hence, in contrast to Gaussian state-space models, the one-
step prediction ofyt+1|t cannot be interpreted as a linear projection.

The size of the dynamic intercept correction depends on the significance of the regime shift, i.e. the
βm −βM collected in the matrixB, the persistence of regimes, i.e. the eigenvalues ofF and the filtered
state of the system when the forecast is made:

ŷt+h|t = E[Xt+h]β̄ + E[Xt+h]BF j ζ̂t|t (21)

Consider finally the implications of unpredictable regime on predicting MS regression models:

Proposition 2. In MS regression models, the regimes is Granger non-causal or the observed times
series vectory (in astrict sense) iff the regime is unpredictable:

ξ̂t+h|t = ξ̄ ⇒ ŷt+h|t = Xt+hβ̄
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The MS regression model can be represented by a time-invariantlinear model with heteroscedastic
non-Gaussian errorswt (mixture of normals):

yt = Xtβ̄ + wt, f(wt) =
M∑

m=1

ξ̄mfu

(
wt −Xt(βm − β̄)

)

4 Prediction of Markov-Switching Vector Autoregressive Processes

In a time series framework, where lagged endogenous variables are included in the regressor matrix
Xt+j , equation (20) does not hold in general. This results is due to the correlation of the lagged endogen-
ous variables contained inXt with the regime vectorξt in models with regime-dependent autoregressive
dynamics:

E[Xt+h B ξt+h|Yt] 6= E[Xt+h|Yt] B E[ξt+h|Yt].

However in MS-VAR with time-invariant autoregressive parameters, which are in the center of our
discussion, this problem does not occur. We will therefore consider these separately.

For clarity of exposition consider the MS(M )-VAR(1) model

yt = A(ξt)yt−1 + ut,

ξt = Fξt−1 + vt,

whereut is NID(0,Σ) andvt is an MDS. It follows that ξ1tyt
...

ξMtyt

 =

 p11A1 · · · pM1A1
...

...
p1MAM · · · pMMAM


 ξ1t−1yt−1

...
ξMt−1yt−1

+ εt,

or ψt = Πψt−1 + εt whereψt = ξt ⊗ yt andεt is an MDS. Hence the multi-step prediction ofψt is
given by:

E [ψt+h|ψt] = Πhψt. (22)

As yt =
∑M

i=1 ξityt we have that the conditional expectationyt can be derived based on the repres-
entation(22):

E [yt+h|Ωt] =
M∑
i=1

E [ξit+hyt+h|Ωt] = (1′
M ⊗ IK)E [ψt+h|Ωt]

= (1′
M ⊗ IK)ΠhE [ψt|Ωt] = (1′

M ⊗ IK)Πh (E [ξt|Ωt] ⊗ yt) .

Thus the optimal predictor is given by

ŷt+h|t = (1′
M ⊗ IK)Πh

(
ξ̂t|t ⊗ yt

)
. (23)

The properties of the optimal predictor depend on the properties of the matrixΠ. As forecast errors are
mainly due to shifts in the level and the drift of economic time series, we will focus in the following on
MS-VAR models with shifts in the mean or intercept.
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4.1 MSI–VAR Processes

If the variance parameters,Σ(st) = Σ, and the autoregressive parameters are regime-invariant,Aj(st) =
Aj for j = 1, . . . , p, there exists alinear state-space representation of MS-VAR models (see Krolzig,
1997, ch.2) This also implies that MSI(M )-VAR(p) and MSM(M )-VAR(p) processes possess alinear
time-invariant MA(∞) representation ofyt in its Gaussian and Markov chain innovations.

For the MSI-VAR model defined in (6), the state-space representation is the point to start with. For
example, we have in case of an MSI(M)-VAR(1):

yt = Mξt +Ayt−1 + ut, M = [ν1, . . . , νM ] . (24)

ξt+1 = Fξt + vt+1, (25)

such thatXt =
[
IK ⊗ (1, y′t−1)

]
andβm = [ν ′M , α

′]′ whereα =vec(A′).
MSPE-optimal forecasts can be derived by applying the conditional expectation to the measurement

equation,
yt − µy = Mζt +A1 (yt−1 − µy) + . . .+Ap (yt−p − µy) + ut,

where we used thatµy = (IK −A1 − . . .−Ap)
−1 (ν1, . . . , νM )ξ̄. Again, the lagged endogenous vari-

ablesyt−1 and the regime vectorζt enter additively. Thus, the optimalh-step predictor is given by

ŷt+h|t − µy = Mζ̂t+h|t +A1

(
ŷt+h−1|t − µy

)
+ . . . +Ap

(
ŷt+h−p|t − µy

)
, (26)

with M = (ν1 − νM , . . . , νM−1 − νM ) and ζ̂t+h|t follows from (12). To derive a closed form
solution for ŷt+h|t, we use the stacked VAR(1) representation of a VAR(p) process. Denotingyt =
(y′t, . . . , y′t−p+1)

′, equation (6) can then be rewritten as

yt − µy = H ζt + JA (yt−1 − µ̄) + ut, (27)

whereA =


A1 . . . Ap−1 Ap

IK 0 0
.. .

...
0 IK 0

 is a(Kp ×Kp) matrix,H =


M
0
...
0

 = ι1 ⊗M is a(Kp ×

[M − 1]) matrix andJ =
[

IK 0 · · · 0
]

= ι′1 ⊗ IK is a (K ×Kp) matrix. Furthermore denote

µ̄ =E[yt].
Proposition 3. Let yt be an MSI(M )-VAR(p) process as in (5). Then the optimal predictorŷt+h|t is
given by

ŷt+h|t − µy =

(
h∑

i=1

JAh−iHF i

)
︸ ︷︷ ︸

Kh

ζ̂t|t + JAh(yt − µ̄). (28)

Proof. The optimal predictors results as solution of the following system of linear difference equations:

ŷt+h|t − µ̄ = Hζ̂t+h|t + A(ŷt+h−1|t − µ̄) (29)

ζ̂t+h|t = Fhζ̂t|t, (30)

or in a compact notation:

ŷt+h|t = µ̄+
h∑

i=1

Ah−iHζ̂t+h−i|t + Ah(yt − µ̄). (31)
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Thus, the desired predictor̂yt+h|t = J ŷt+h|t is given by the solution of the linear difference equation
system (29)/(30).

In contrast to linear VAR(p) models, the optimal predictor̂yt+h|t depends not only on the lastp
observationsyt, but is based on the full sample informationYt through ξ̂t|t. This implies adynamic

intercept correctionKhζ̂t|t which depends on the persistence of the regimes:Kh → 0. The optimal
forecasting rule becomes linear in the limit as the regimes become completely unpredictable:

Corollary 1. Let yt be an MSI(M )-VAR(p) process,p > 0, as in (6). If the regimes is Granger non-
causal or the observed times series vectory (in astrict sense) iff the regime is unpredictable,ξ̂t+h|t = ξ̄.

Under this condition, the MSI-VAR model is observationally equivalent to alinear VAR model with
heteroscedastic, non-Gaussian errors (mixture of normals).

Proof. Unpredictability of the regime-generating processst implies thatFhζ̂t|t = 0M−1,1. From
proposition 3 follows that under this condition the optimal predictorŷt+h|t is given by

ŷt+h|t − µy = JAh(yt − µ̄)

Henceforth,̂ζt|t is Granger non-causal for the observed times series vectoryt.

Although the optimal predictor is linear in the vector of filtered regime probabilitiesξ̂t|t and the
lastp observations ofYt, ŷt+h|t is a non-linear function of the observedYt as the regime inferencêξt|t
depends onYt in a non-linear fashion. This is illustrated in the following simple example of a univariate
two-regime first-order-autoregressive MSI model:

Example 2. Let yt denote an MSI(2)-AR(1) model,yt = ν̄ + (ν1 − ν2)ζt + α1yt−1 + ut with ut ∼
NID(0, σ2

u). Using the AR(1) representation of the two-state hidden Markov chain,ζt = ρζt−1 +vt with
ρ = p11 + p22 − 1; we get as the optimalh-step predictor:

ŷt+h|t − µ̄ = αh(yt − µ̄) + (ν1 − ν2)

(
h∑

i=1

αh−iρi

)
ζ̂t|t. (32)

The dynamic intercept correction
(∑h

i=1 α
h−iρi

)
in (32) is plotted in the figures 2 and 5 for forecast

horizonsh = 1, 2, 4, 8, 12. Forh = 1 the corrections depends on the persistence of the regime variable,
ρ, but afterwards on the interaction with of dynamics of the regimes with the autoregressive dynamics.
This implies for high values ofρ andα, that intercept correction is greater that one, i.e. the impact effect
the (reconstructed) regime had on the last observation,(ν1 − ν2)ζ̂t|t. Obviously the regime is Granger
non-causal ifρ = 0.
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Figure 2 Dynamic Intercept Correction: MSI(2)-AR(1) with0 < α, ρ < 1.
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Figure 3 Dynamic Intercept Correction: MSI(2)-AR(1) with0 < |α|, |ρ| < 1.
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4.2 MSM–VAR Processes

Predictions of MSM(M )-VAR(p) processes can be based on their state-space representation:

yt − µy = Mζt + JK,Kpzt, (33)

zt+1 = Azt + ut+1, (34)

ζt+1 = Fζt + vt+1 (35)

whereµy is the unconditional mean ofyt, M =
[
µ1 − µM · · · µM−1 − µM

]
is (K × [M − 1]),

M = IP ⊗ M, JK,Kp = ι′1 ⊗ IK =
[

IK 0K · · · 0K

]
, ι′1 is the first row of a(K × K) unit

matrix,zt = yt − µy −Mζt
yt − µy −Mζt

yt−1 − µy −Mζt−1
...

yt−p+1 − µy −Mζt−p+1

 , ut =


ut

0
...
0

 , andA =


A1 . . . Ap−1 Ap

IK 0 0
.. .

...
0 IK 0

.

The linear state-space representation (33)–(35) implies that the Gaussian autoregressive process and
the regime vectorζtenter the system additively. Hence the problem of predicting the observed time
series vectoryt+h can be reduced to calculating the conditional expectation of the Markovian and the
Gaussian component of the state vector(z′t, ξt

′)′.
Proposition 4. Let yt be an MSM(M )-VAR(p) process as in (5). Then the optimal predictorŷt+h|t is
given by

ŷt+h|t = µy + MFhJM−1,(M−1)p ζ̂t|t + JK,KpAh(yt − µy −Mζ̂t|t)

= µy + JK,KpAh(yt − µy) +
(
MFhJM−1,(M−1)p −JK,KpAhM

)
ζ̂t|t.

Proof. By using the law of iterated predictions, we first derive the forecast ofζt+h conditional onζt and
of zt+h conditional onzt respectively:

E[zt+h|zt] = Ajzt,

E[ζt+h|ζt] = Fhζt.

Then, the expectation operator is again applied to the just derived expressions, but now conditional on
the sample informationYt

ẑt|t = E[zt+h|Yt] = AjE[zt+h|Yt] = Aj ẑt|t,

ζ̂t+h|t = E[ζt+h|Yt] = FhE[ζt+h|Yt] = Fhζ̂t|t,

where the filtered Gaussian componentẑt|t is delivered as a by-product of the filtering procedures for
the regimeŝzt|t = yt − µy −Mζ̂t|t. The optimal predictor of the observed time series vectoryt+h is
the sum of the conditional expectation of the Markovian and the Gaussian states:

ŷt+h|t − µy = ME[ζt+h|Yt] + JE[zt+h|Yt] = MFhζ̂t|t + JK,KpAj ẑt|t.

It needs no further clarification to verify that forh→ ∞ the forecastŝyt+h|t converge to the uncon-
ditional mean ofy, if the eigenvalues ofF andA are inside the unit cycle. In general we find that the
following result holds:
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Corollary 2. Let yt be an MSM(M )-VAR(p) process,p > 0, as in (5). Then the unpredictability of the
regimest does not imply weak Granger non-causality for the observed times series vectoryt.

Proof. Unpredictability of the regime-generating processst implies thatFhJK ,Mp ζ̂t|t = 0M−1,1 for
h ≥ 1. From proposition 4 follows that under this condition the optimal predictorŷt+h|t is given by

ŷt+h|t = µy + JK,KpAh(yt − µy −Mζ̂t|t) (36)

Henceforth,ζ̂t|t is Granger causal for the observed times series vectoryt iff there exists anh with
JK,KpAhM 6= 0K,M−1 which follows from the definition of an MSM(M )-VAR(p) process asAh 6=
0K,K andM 6= 0K,M−1.

We now illustrate proposition 4 with three examples. The first simplifies the previous result by
assuming that the lag-order of the VAR is equal to one:

Example 3. Supposeyt is an MSM(M )-VAR(1) process. Then the optimal predictorŷt+h|t is given by

ŷt+h|t = µy + MFhζ̂t|t +Ah(yt − µy −Mζ̂t|t)

= µy +Ah(yt − µy) +
(
MFh −AhM

)
ζ̂t|t.

Further simplifications result if the number of regimes is two which results in the scalar regime
generating process discussed before:

Example 4. Supposeyt is an MSM(2)-VAR(1) process. Then the optimal predictorŷt+h|t is given by[
ŷ1,t+h|t–µy1

ŷ2,t+h|t–µy2

]
=

[
µ11–µ12

µ21–µ22

]
(p11 − p21)hζ̂t|t +

[
a11 a12

a21 a22

]h([
y1t–µy1

y2t–µy2

]
−
[
µ11–µ12

µ21–µ22

]
ζ̂t|t

)

=

[
ah,11 ah,12

ah,21 ah,22

][
y1t–µy1

y2t–µy2

]
+

[
(µ11–µ12)

(
ρh − ah,11

)
+ (µ21–µ22)ah,12

(µ21–µ22)
(
ρh − ah,22

)
+ (µ11–µ12)ah,21

]
ζ̂t|t

whereρ = p11 + p22 − 1 reflects the persistence of the regime-generating process.

Finally, consider the following example of a scalar MSM-AR process:

Example 5. Consider the MSM(2)-AR(1) process,yt − µ(st) = α (yt−1 − µ(st−1)) + ut, ut ∼
NID(0, σ2),which can be rewritten as the sum of two independent processes:yt − µy = µt + zt,where
µy is the unconditional mean ofyt, such thatE[µt] = E[zt] = 0. While the processzt = αzt−1 + ut

is Gaussian, the other component represents the contribution of the Markov chain:µt = (µ1 − µ2)ζt
with ζt = ξ1t − ξ̄1 being1 − ξ̄1 if the regime is1 and−ξ̄1 otherwise. ξ̄1 = p21/(p12 + p21) is the
unconditional probability of regime1 determining the asymmetry of the process; andρ = p11 + p22 − 1
indicates its persistence. Invoking (12), predictions of the Markov chain are given byζ̂t+h|t = ρhζ̂t|t.
Thus the optimal predictor̂yt+h|t = µy + µ̂t+h|t + ẑt+h|t is given by:

ŷt+h|t = µy + (µ1 − µ2)ρhζ̂t|t + αh
[
yt − µy − (µ1 − µ2)ζ̂t|t

]
which can be rewritten as

ŷt+h|t = µy + αh (yt − µy) + (µ1 − µ2)
[
ρh − αh

]
ζ̂t|t. (37)

The first term in (37) is the optimal prediction rule for a linear model. The contribution of the Markov
regime-switching structure is given by the term multiplied byζ̂t|t, whereζ̂t|t contains the information
about the most recent regime at the time the forecast is made. Thus the contribution of the non-linear
part of (37) to the overall forecast depends on both the magnitude of the regime shifts,|µ2 −µ1| relative
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to σ2
u, and on the persistence of regime shiftsρ = p11 + p22 − 1 relative to the persistence of the

Gaussian process, given byα. This becomes obvious in the figures 4 and 5 which report the size of
the dynamic intercept correctionρh − αh in (37) for forecast horizonsh = 1, 2, 4, 8, 12. Suppose that
ρ = p11 + p22 − 1 = α, α 6= 0, then the regime is weakly Granger non-causal for the observed times
series vectory despite the predictability of the regime variable.

In the next section we illustrate our analysis by exemplifying the derived forecasting techniques
and evaluating the forecast performance of Markov-switching models of the US business cycle. We
start with Hamilton (1989), the exact model specification that spearheaded the recent interest in MS-AR
models. Two methods of analysis are considered: an empirical forecast accuracy comparison of the
MS-AR model with linear and nonlinear alternatives, and a Monte Carlo study. We then show that the
forecasting performance of the MS model can be hugely improved by allowing for a third ‘high-growth’
regime, and simultaneously modelling US output and employment growth in an MS-VAR.
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Figure 4 Dynamic Intercept Correction: MSM(2)-AR(1) with0 < |α|, |ρ| < 1.
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Figure 5 Dynamic Intercept Correction: MSM(2)-AR(1) with0 < |α|, |ρ| < 1.
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5 Forecasting Economic Time Series with MS-VAR Models – Illustrative
Examples

5.1 Hamilton’s Model of the US Business Cycle

The Hamilton (1989) model of the US business cycle fostered a great deal of interest in the MS–AR
model as an empirical vehicle for characterizing macroeconomic fluctuations, and there have been a
number of subsequent extensions and refinements (see the literature discussed in Krolzig, 1997). The
Hamilton (1989) model of the US business cycle is an MSM(2)-AR(4) of the quarterly percentage
change in US real GNP from 1953 to 1984:

∆yt − µ(st) = α1 (∆yt−1 − µ(st−1)) + . . .+ α4 (∆yt−p − µ(st−4)) + ut, (38)

whereut ∼ NID(0, σ2), and the conditional meanµ(st) switches between two states:

µ(st) =

{
µ1 < 0 if st = 1 (‘contraction’ or ‘recession’),
µ2 > 0 if st = 2 (‘expansion’ or ‘boom’).

The variance of the disturbance term,σ2, is assumed to be the same in both regimes. Thus, contractions
and expansions are modeled as switching regimes of the stochastic process generating the growth rate
of real GNP. The transition probabilities are constant:

p21 = Pr( contraction int | expansion int− 1),

p12 = Pr( expansion int | contraction int− 1).

For a given parametric specification, probabilities are assigned to the unobserved regimes ‘expan-
sion’ and ‘contraction’ conditional on the available information set which constitute an optimal infer-
ence on the latent state of the economy. Regimes reconstructed in this way are crucial for predicting the
probability of future recessions.

5.2 Empirical Forecast Accuracy

The empirical study aims to compare to forecast accuracy of the MS-AR model relatively to linear and
non-linear alternatives: the linear autoregressive model and the self-exciting threshold autoregressive
(SETAR) model. The SETAR model is another popular non-linear extension of the Box and Jenkins
(1970) time-series modeling tradition, applied in the literature to modelling US GNP (see Tiao and
Tsay, 1994 and Potter, 1993). The SETAR and MS-AR models differ as to how they model the move-
ment between regimes, and thus the changes in the parameter values of the difference equations that
govern the series. While in the MS-AR model the movements between regime are unrelated to the
past realizations of the process, and result from the unfolding of an unobserved stochastic process, the
SETAR model moves between regimes depending on the past realizations of the process.

For the empirical study, each model is formulated and estimated on a sub-sample of the historical
data, and its forecasts of the observations held back at the model specification stage are then evaluated.
The forecast accuracy comparison is based on series of ‘rolling’ forecasts. The Markov-switching, self-
exciting threshold and linear autoregressive models of US GNP are estimated once and for all on the
sample period considered by Hamilton, 1952:2 - 1984:4 (less observations lost at the beginning of the
sample from taking lags). The ML estimation of the MS-AR models used the EM algorithm proposed
in Hamilton (1990). Then a sequence of1 to 8-step ahead forecasts is generated. The forecast origin
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Figure 6 Empirical Forecasting Performance of the Hamilton Model.

is rolled forward one period, and another sequence of1 to 8-step ahead forecasts is generated. The
procedure is then repeated until we have46× 1-step forecasts, down to39× 8-step forecasts. This
enables root mean squared forecast errors (RMSEs) to be calculated for each forecast horizon. For long
horizons the smaller number of forecasts mean that the RMSE calculations are less reliable.

The results of the exercise for the forecast periods 1985:1-1996:2 (succeeding the Hamilton, 1989,
sample) and 1992:1-1996:2 are illustrated in figure 6. The lesson to be drawn from these empirical
comparisons is that the MS-AR model does not always forecast better. Overall the linear AR model is
to be preferred, but records rather small gains. Remarkable is the drop in the forecast uncertainty for the
1992-1996 period.

The failure to improve on the forecast performance of linear models is a finding that warrants further
investigation. It may be the case that although non-linearities are a feature of the DGP they are not large
enough to yield much of an improvement to forecasting (see Diebold and Nason, 1990). The non-
linearities present in the estimation period might not persist in the forecast period due structural breaks
occuring after the forecast is made (see Clements and Hendry, 1998). In order to control for factors
that might cause the disappointing empirical forecast performance of the MS-AR model, a Monte Carlo
(MC) study can be useful.

5.3 Monte Carlo Study

The aim of the Monte Carlo is to learn the systematic gain of the MS model for forecasting purposes.
The results of the MC depend on the particular design. In the case of Hamilton (1989), however, the
importance of the specificity of the design seems to be a less serious problem as we use an empirical
model as the DGP, rather than an artificial DGP whose relevance for actual economics data may be
questionable.

We generate data using the Hamilton model as the DGP, then estimate the MS-AR and benchmark
models and compare their forecasts. Except for the MSM(2)-AR(4), the linear AR, two-regime MS-AR
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and SETAR models are selected data-dependent, so thatp (and the delay and threshold for the SETAR)
are chosen on each iteration of the Monte Carlo to minimize AIC. The SETAR forecasts are calculated
by Monte Carlo using500 iterations. On a small number of iterations the SETAR model forecasts
explode. This only affects longer horizons, and we report RMSEs for the full1000 replications, but also
consider quantiles of the probability distribution of the absolute forecast errors that exclude the errant
ones.

The results are summarized in the three figures. Figure 7 shows that the MS-AR is clearly best at
short horizons on RMSE when Hamilton’s MSM(2)-AR(4) is the DGP. The improvement in the forecast
performance is relatively small and occurs only at short horizons. The cost to using the SETAR is greater
than those of using the linear AR.

This result is quite independent of the metric used to evaluate the forecast errors, Figure 8 reports
RMSEs and mean absolute error (MAE) measures, as well as selected quantiles of the distribution of
absolute forecast errors. The legend is as follows: the solid line refers to the DGP, the solid boxes are
the MSM(2)-AR(4), the boxes the MSM(2)-AR(p), the circles the AR, and the pluses the SETAR. The
Monte Carlo results show that the optimal prediction rule developed in this paper provides a relatively
robust forecasting device which can be very close to a linear forecasting rule.

Figure 9 plots the estimated forecast error densities with super-imposed Gaussian densities, for
selected horizons. The models have in common that the prediction error densities are clearly non-
Gaussian. This implies that a linear Gaussian model is not an preferable forecasting device if forecast
intervals are of interest for the researcher despite that the optimal predictors are very close to each other.

Indeed, compared to results of the Monte Carlo, where we controlled for all possible disturbing
factors, the empirical forecasting performance of the MS-AR model is disappointing. This suggests
that the a structural break occuring after the estimation period might be responsible for this observation.
Clements and Krolzig (1998) conclude that the structural instability of two-regime business cycle mod-
els is the reason of the little uniformity to the rankings of MS-AR, SETAR and linear models in their
empirical forecast accuracy comparison and in their Monte Carlo.
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Figure 10 Empirical Forecasting Performance of the Three Regime Model.

We investigate this issue by looking at three-regime models.

5.4 Three-Regime Models of the US Business Cycle

A serious problem associated with the Hamilton model (38) is that for more recent samples (i.e. beyond
1984) Boldin (1996) and Clements and Krolzig (1998) found that an adequate ‘business-cycle’ model
of US GNP (in the sense of generating regime durations consonant with estimates based on the NBER
chronology, for example) requires the introduction of a third regime and a regime-dependent error vari-
ance. We consider an MSIH(3)-AR(4) model:

∆yt = ν(st) +
4∑

j=1

αj∆yt−j + ut (39)

whereut ∼ NID(0, σ2(st)) andα2 andα3 being restricted to zero.
Our theory predicts that the differences between the optimal and the linear forecasting rules are

strongest if the forecasts are made in the regime which is unlikely to prevail, i.e. during recessions.
Therefore we are focusing in our forecasting experiment on the 1990/91 recession. The model are
estimated using data until 1990:2 (and further up to 1992:1) and then used for forecasts of∆yt for the
periods 1990:3-1996:4 up to 1992:2-1996:4. Figure 10 gives the cumulated forecasts of the MSIH(3)-
AR(4) model (bold line) the nested AR(4) model (dashed line) and compares them with the actual
output data. The improvement in the forecasts with the MSIH-AR models over this recessionary period
is striking.

It is worth investigating whether the multiple time series approach discussed earlier in this paper is
able to improve the forecasts further.
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Figure 11 The US Business Cycle.

5.5 Three-Regime Models of US Output and Employment growth Business Cycle

In the following we consider a bivariate, three-regime model of post-war US employment growth,∆nt,
and output growth,∆yt, in the tradition of Krolzig and Toro (1998). The model is a vector autoregressive
Markov-switching process, where some parameters are changing according to the state of common
latent regime variable,st which represents the phase of the business and employment cycle:[

∆yt

∆nt

]
=

[
ν1 (st)
ν2 (st)

]
+

[
a11 a12

a21 a22

][
∆yt−1

∆nt−1

]
+

[
u1t

u2t

]
, (40)

whereut ∼ NID(0,Σ(st)).
The resulting regime probabilities are plotted in Figure 11. The filtered regime probabilities are

shown with a dashed line and the smooth probabilities are shown with a bold line. The filtered probab-
ility can be understood as an optimal inference on the state variable (whether the system is in a boom or
recession) at timet using only the information up to timet, i.e. Pr (st = m | Yt), wherem stands for a
given regime. The smoothed probability stands for the optimal inference on the regime at timet using
the full sample information,Pr (st = m | YT ). It can be seen that regime 1 depicts very precisely the
recessions of 1970, 1973/74, 1979/80 and 1990. Regime 2 represents normal growth episodes; while
regime 3 characterizes high-growth episodes after recessions. Note that regime 3 is observed until 1985
only, which might indicate a structural change in the phase structure of the business cycle. Expansions
after 1985 (regime 2) are characterized by a lower mean growth rate and reduced volatility of mac-
roeconomic fluctuations. This structural break in the volatility of US output growth coincides with the
findings of McConnell and Quiros (1998). They found a substantial reduction in the volatility of durable
goods production beginning with the first quarter of 1984, which appears to be correlated with a decline
in the share of durable goods accounted for by inventories.

Figure 10 reports the results from the replication of the forecasting experiment during the 1990/91
recession. The MSIH(3)-VAR(1) in (40) and the corresponding linear VAR(1) are estimated using
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Figure 12 Empirical Forecasting Performance of the US Output and Employment Model.

samples from 1962:1 to 1990:2 (further up to 1991:1). The parametrized models are then used to
forecast output and empoyment in the periods 1990:3-1996:4, 1990:4-1996:4 and so on up to 1991:3-
1996:4. The MSIH(3)-VAR(1) model (bold line) is again consistently outperforming the linear VAR(1)
model (dashed line) provided evidence for an enhanced forecast performance by modelling the regime-
switching nature of the DGP with MS-VAR models.

6 Conclusions

One major objective of time series analysis is the creation of suitable models for prediction. In this paper
we have developed a general approach to the prediction of multiple time series subject to Markovian
shifts in the regime, which is based on the conditional expectation of MS-VAR processes.

In sharp contrast to other non-linear models, an attractive feature of MS-VAR models is the ease with
which multi-step forecasts can be obtained when the autoregressive parameters are regime-invariant.
This feature allowed us to analyze the implications of the predictability and Granger-causality of regimes
on the optimal prediction rule for MS-VAR model. If the autoregressive parameters are regime-invariant,
the optimal predictor is linear in the information set and the vector of filtered regime probabilities.
However, due to non-linearity of filter, the optimal predictor has generally not the property of being a
linear predictor: In general there does not exist a purely linear representation of the optimal predictor
in the information set. Conditions have been worked out under which by the conditional expectation
coincide with a linear projection. It was shown that this is related to the predictability of the regime-
generating Markov chain.

The feasibility of the proposed forecasting technique in empirical research was demonstrated. Em-
ploying the Hamilton (1989) model of the US business cycle and its modern contenders, we presen-
ted empirical forecast comparisons over three historical periods, and a simulation-based comparison
aimed at controlling for certain factors that might influence the outcome of the empirical comparison.
While the Monte Carlos provided evidence for an enhanced forecast performance by modelling the
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regime-switching nature of the DGP, we conjecture that structural breaks in the forecast period made
the Hamilton model less powerful in the empirical forecast experiment. It has been shown that models
allowing for three regimes deliver superior forecasts during recessions.

In practice some of the assumptions made have to be relaxed. For example,unknownparameters
might be replaced by unbiased estimators. The present analysis can easily be extended to integrated-
cointegrated mechanisms (see Krolzig, 1996). Despite these limitations, the research results provided
in this paper let conclude that, for economic time series affected by changes in regime in the stochastic
process generating the data, Markov-switching models can yield some improvements compared to the
constant-parameter, linear time-series models of the earlier tradition. Our results are also highlighting
limitations and possible extensions to forecast Markov-switching vector autoregressive processes which
can be summarized to the following points:

(i) Detecting recent regime shifts is essential to predict MS-VAR processes.
(ii) The predictability of regimesand theirGranger causalityfor the observed time series are critical

for the possible contribution of uncovering regime shifts to forecasting.
(iii) MS-VAR can be approximated relatively well with linear models. This is reflected by a spe-

cial property of MSI(M)-VAR(p) and MSM(M )-VAR(p) processes: their finite-order mixed
VARMA( p∗, q∗) representation.

(iv) MS-VAR processes haveshort memorydue to the stationary VAR(1) representation of an ergodic
Markov chain. The longer the forecast horizon, the better the linear approximation of the optimal
predictor and the greater the potential unpredictability of (detrended) economic time series.

(v) Forecastabilityrequires the structural stability of MS-VAR models: potential structural breaks in
the pattern of regime shifts result in a disappointing forecast performance.

While the exposition was focusing on the predictability of MS-VAR processes as the properties of
class of stochastic processes conditional on a given information set, forecasting is a complex process.
Forecasting is a process undertaken for a specific purpose, so its evaluation depends on how well it
achieves that intent. Consequently, it is extremely difficult to judge the success the forecasting rules
proposed in this paper will have in practice, when the data generating mechanism is unknown and pos-
sibly subject to structural change unobserved in the estimation period. In this spirit, we have just laid
out the basic step in developing a theory of statistical forecasting using formal estimated econometric
models in the face of structural change. But we believe that a deep understanding of the statistical prop-
erties of MS-VAR processes is fundamental for the use of this class of econometric model in statistical
forecasting. For example, the theory developed in this paper enables researchers to predict the potential
gain from using the optimal predictor. Parametric conditions have been derived under which simple
linear prediction rules are optimal even under presence of regime shifts. The parametric condition for
the Granger non-causality of regimes provide a useful, nuisance-free test for the informative value of
regime-switching models.
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