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Abstract

We propose testing for business cycle first-moment asymmetries in Markov-switching autore-
gressive (MS-AR) models. We derive the parametric restrictions on MS-AR models that rule out
types of asymmetries such as deepness, steepness, and sharpness, and set out a testing procedure
based on Wald statistics which have standard asymptotics. For a two-regime model, such as that
popularised by Hamilton (1989), we show that deepness implies sharpness (and vice versa) while
the process is always non-steep. We illustrate with two and three-state MS-AR models of US GNP
growth, and models of US investment and consumption growth. Our findings are compared with
those obtained from standard non-parametric tests, which are unable to distinguish between first-
moment asymmetries and heteroscedasticity.
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1 Introduction

‘ the most violent declines exceed the most considerable advances [. . .] Business contrac-
tions appear to be a briefer and more violent process than business expansions’

Mitchell (1927, p. 290)

There has been much interest in whether macroeconomic variables behave differently over the
phases of the business cycle. Sichel (1993, p. 224) defines an asymmetric cycle as ‘one in which some
phase of the cycle is different from the mirror image of the opposite phase’. McQueen and Thorley
(1993, pp. 342 – 343) and Sichel (1993, pp. 225 – 226 ) discuss the importance, from both theoretical
and empirical viewpoints, of establishing whether there are asymmetries in the business cycle. The
finding of asymmetry is compatible with a number of business cycle models, but would rule out linear
models with symmetric errors. Sichel notes that models of asymmetric price adjustment can generate

∗Financial support from the UK Economic and Social Research Council under grant L116251015 is gratefully acknow-
ledged by both authors. All the computations reported in this paper were carried with the MSVAR class for Ox: see Krolzig
(1998). Helpful comments were received from two anonymous referees, as well as seminar audiences at the Bank of Eng-
land, Cambridge, the 1999 Society of Economic Dynamics Conference at CRENOS, Sardinia, and the 1999 Meeting of the
European Economic Association, Santiago de Compostela.
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deepness (defined below), and references De Long and Summers (1988) and Ball and Mankiw (1994).
More recently, the ‘output-gap’ literature (see, e.g., Laxton, Meredith and Rose, 1995 and Clark, Laxton
and Rose, 1996) suggests that more of the adjustment in response to a negative demand shock falls on
output than prices, compared to the response to positive shocks. Finally, Sichel references models where
entry to an industry is more costly than exit, which could result in steepness asymmetries.

A number of types of asymmetry have been discussed in the literature. Primary ones are those of
steepness, deepness, and sharpness (or turning point asymmetry) (henceforth, SDS), which are typic-
ally tested for using separate non-parametric tests. Other types of asymmetries have been explored in
parametric models, such as asymmetric persistence to shocks (see Beaudry and Koop, 1993 and Hess
and Iwata, 1997a), and business cycle duration dependence (see, e.g., Sichel, 1991, Diebold, Rudebusch
and Sichel, 1993, Filardo, 1994 and Filardo and Gordon, 1998). Our aim in this paper is to analyse
the conditions under which the Markov-switching autoregressive model (MS-AR) class is capable of
generating SDS asymmetries. The conditions are expressed as restrictions on the parameters of the
MS-AR model which, if they hold, would rule out a particular type of asymmetry. We then derive tests
of these restrictions based on estimated MS-AR models, providing parametric tests as alternatives of
the non-parametric tests typically used in the literature. Our tests are able to detect asymmetries in the
propagation mechanisms of shocks, or first-moment asymmetries, while non-parametric tests are un-
able to discriminate between first-moment asymmetries and asymmetries in the shocks. Since Hamilton
(1989) the MS-AR model class has been extensively used in the empirical macroeconomics literature
to analyse business cycle phenomena, and good estimation and inferential procedures are available,
making it an obvious choice for the development of parametric tests of asymmetry.

The basic MS-AR model at the centre of our analysis is the following. A stationary time series{xt}
is assumed to have been generated by an AR(p) with M Markov-switching regimes in the Mean of the
process, which we label an MSM(M )-AR(p) process:

xt − µ(st) =
p∑

k=1

αk (xt−k − µ(st−k)) + ut, ut|st ∼ NID
(
0, σ2

)
. (1)

We can order the regimes by the magnitude ofµ such thatµ1 < . . . < µM . The Markov chain is ergodic,
irreducible, and there does not exist an absorbing state, i.e.,ξ̄m ∈ (0, 1) for all m = 1, . . . ,M , whereξ̄m

is the ergodic or unconditional probability of regimem. The transition probabilities are time-invariant:

pij = prob(st+1 = j|st = i),
M∑

j=1

pij = 1 ∀i, j ∈ {1, . . . ,M}, (2)

so that the probability of a switch between regimesi andj does not depend on how long the process has
been in regimei.1

The MS-AR framework can be readily extended to multivariate settings (see e.g., Ravn and Sola,
1995, Diebold and Rudebusch, 1996, Hamilton and Lin, 1996, Krolzig, 1997, Krolzig and Sensier, 2000,
and Krolzig and Toro, 1998), which is a distinct advantage given that business cycles were originally
viewed as consisting of co-movements in many economic variables (see, e.g., Burns and Mitchell, 1946).
In equation (1)xt can be a vector of variables. The extension of our tests to multivariate settings, and
models which include regime-dependent heteroscedasticity, and switches in intercepts, are discussed in
section 4.

1Dieboldet al.(1993), Filardo (1994) and Filardo and Gordon (1998) extend the Hamilton (1989) model to allow for time-
varying transition probabilities. Generally there appears to be positive duration dependence in contractions in the US post-War
period, so that the probability of moving out of recession increases with the duration of recession. Non-constant transition
probabilities would complicate the derivation of the SDS tests.
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As well as constructing tests of asymmetries, a related goal is to establish precisely which types of
asymmetries MS-AR models are in principle capable of generating, given the widespread popularity of
these models in applied research, and because some of the literature appears confused on this point2. Re-
cently Hess and Iwata (1997b) have investigated by simulation whether empirically-estimated models,
including MS-AR models, are able to replicate the ‘fundamental business cycle features’ of observed
durations and amplitudes of contractions and expansions. Our focus is different, since we ask whether in
principle MS-AR models can generate certain asymmetric features, in addition to whether empirically
estimated models possess these features.

Finally, because measures of economic activity exhibit secular increases, the asymmetries relate
to the de-trended log of output. For example, Speight and McMillan (1998) consider the de-trended
component (xt) of the variableyt, wherext = yt − τt. τt is a non-stationary trend component, andxt

is stationary, possibly consisting of cycle and noise components. Throughout the paper,xt refers to the
detrended series. We assume the non-stationarity can be removed by differencing, i.e.,xt = ∆yt. Trend
elimination by differencing is natural in our setup, because the MS-AR model is typically estimated
on the first difference of the log of output.3 However, none of the propositions on asymmetries in
MS-AR models that follow, nor the testing procedures, require this method of de-trending, and remain
valid whichever method is used. All we require is that a MS-AR model can be estimated for the de-
trended series, howsoever obtained. The sensitivity of the findings of asymmetries to the method of
trend elimination requires further research, and Gordon (1997) shows that in general the model of the
short-run fluctuations in output may depend on the treatment of the trend component.

The plan of the paper is as follows. In section 2 we review the literature on testing for business
cycle asymmetries and show how (the absence of) SDS asymmetries can be mapped into parameter
restrictions of MS-AR models, paying particular attention to the empirically relevant two- and three-
regime models. Then, section 3 derives the Wald tests of SDS hypotheses. Wald tests obviate the
necessity of estimating the restricted (null) MS-AR model and are attractive for that reason. Section
4 shows how the basic testing approach can be extended in a number of directions. Section 5 uses
Monte Carlo simulations to investigate the small sample properties of the tests, their performance in the
presence of heteroscedasticity, and their robustness to model mis-specification. Section 6 sets out the
empirical illustrations. Section 7 concludes.

2 Business cycle asymmetries

2.1 A brief review of the literature on business cycle asymmetries

2.1.1 Steepness and deepness

Sichel (1993) distinguishes two types of business cycle asymmetry: ‘steepness’ and ‘deepness’. The
former relates to whether contractions are steeper (or less steep) than expansions, the latter to whether
the amplitude of troughs exceeds (or is shallower than) that of peaks. The top left panel of figure
1 depicts a schematic business cycle that is non-deep and non-steep. The second panel in the first
column shows deepness of troughs (but non-steepness), the third panel steepness of expansions (but
non-deepness) and the last panel shows both properties.

2For example, Sichel (1993, p. 232, footnote 19) states that the Hamilton (1989) two-state model implies steepness in US
GNP. In fact, steepness (as defined formally below) can not arise in such a model.

3An exception is Lam (1990) who allows for a general autoregressive process in the level of the log of output, rather than
imposing a unit root.
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A number of ways of testing for steepness and deepness have been proposed in the literature. Neftci
(1984) proposed a test of whether there are longer runs of increases than decreases in a series, indicating
that the length of expansions exceeds that of contractions, so that contractions are necessarily steeper
than expansions. He defines an indicator variableIt = 1 if xt > 0 (expansion) andIt = −1 if xt ≤ 0
(recession). SupposeIt can be represented by a second-order Markov process, thenp22 > p11 (where
p22 = prob[It = 1 | It−1 = 1, It−2 = 1] andp11 = prob[It = −1 | It−1 = −1, It−2 = −1])
implies a form of cylical asymmetry because the length of expansions exceeds that of contractions. A
possible problem with this procedure is its sensitivity to noise. If increases (decreases) are inadvert-
ently measured as decreases (increases), then the counts of transitions from which the estimates of the
transition probabilities are derived will be affected. Using this approach, Neftci found evidence of steep-
ness in post-War US unemployment during contractions. By way of contrast, Falk (1986) failed to find
evidence of steepness in other US quarterly macroeconomic series using Neftci’s procedure, and Sichel
(1989) suggested an error in Neftci’s work and indicated that the procedure might fail to find steepness
when in fact it is present. Rothman (1991) finds evidence of asymmetry in the quarterly unemployment
rate series using a modified version of Neftci’s test, and Sichel (1989) finds strong evidence of asym-
metry in annual unemployment, for which measurement error is presumably less important. Luukkonen
and Teräsvirta (1991) note that self-exciting threshold autoregressive models (see, e.g., Tong and Lim,
1980, Tong, 1995) and smooth transition autoregressive model (see, e.g., Luukkonen, Saikkonen and
Teräsvirta, 1988, Ter¨asvirta and Anderson, 1992) may imply cyclical asymmetry in this sense, in that
the probabilities of remaining in the regimes, once entered, may not be equal due to different dynamic
structures.

Sichel (1993) suggests a test of deepness based on the coefficient of skewness calculated for the
detrended series{xt}. Deepness of contractions will show up as negative skewness, since it implies
that the average deviation of observations below the mean will exceed that of observations above the
mean. Steepness (of expansions) implies positive skewness in the first difference of the detrended series,
{∆xt}: increases should be larger, though less frequent, than decreases. Figure 1 illustrates. The second
column depicts the histograms (and densities) for{xt} corresponding to the schematic business cycles
in the first column. The densities are symmetric for the first and third rows because the business cycles
are non-deep: those in the second and fourth rows exhibit negative skewness because of the deepness of
contractions. The third and fourth columns depict the times series of{∆xt} and their histograms (and
densities) for the schematic business cycles in the first column. The densities are symmetric for the first
and second rows because the business cycles are non-steep: those in the third and fourth rows exhibit
positive skewness because of the steepness of expansions.

On the basis of these tests, deepness is found to characterise quarterly post-War US unemploy-
ment and industrial production, with weaker evidence for GNP, while only unemployment (of the three)
appears to exhibit steepness. We also report these non-parametric tests based on the coefficients of
skewness (hereafter NP tests) in our empirical work.4 In addition, the concepts of non-deepness and
non-steepness are used to construct parametric tests based on the MS-AR model in (1), which we turn
to after discussing the third notion of asymmetry.

4These are calculated as in Sichel (1993, p. 227–8). That is, an asymptotically heteroscedasticity and serial correlation
consistent standard error is calculated for the coefficent of skewness using the Newey and West (1987) procedure. This is done
because the detrended series will not be i.i.d.
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2.1.2 Sharpness

Sharpness or turning point (TP) asymmetry, as introduced by McQueen and Thorley (1993), would
result if, e.g., troughs were ‘sharp’ and peaks more ‘rounded’. They present two tests. The first is
based on the magnitude of growth rate changes around NBER-dated peaks and troughs. The mean
absolute changes are calculated for peaks and troughs separately, and the test for asymmetry is based
on rejecting the null of the population mean changes in the variable at peaks and troughs being equal.
McQueen and Thorley (1993) find the null of equal turning point sharpness can be rejected for both the
unemployment rate and industrial production. Their second testing procedure is based on a second-order
three state Markov chain. They distinguish between contraction, moderate, and high (recovery) states.
The hypothesis in Hicks (1950), that troughs are sharper than peaks, corresponds to the probability of
jumping from the contraction to high growth state exceeding the probability of jumping directly from
high growth to contraction. ‘Complete’ TP symmetry requires that these switches are equally likely, and
in addition, that switches to moderate growth from contraction, and from high growth, are equally likely,
and that movements to high growth and contraction, from moderate growth, are also equally likely. They
again find evidence of sharpness asymmetry for post-War unemployment and industrial production, but
the susceptibility of the test to noise is evident when they consider pre-War industrial production and
post-War agricultural unemployment: in both cases quarterly volatility in the series interrupts runs of
ones and threes, reducing the number of sharp TPs and the power of the test. Their second approach can
be implemented directly in a MS-AR model.

2.2 Formal definition of asymmetries

For clarity, we formally define the concepts of steepness, deepness and sharpness (SDS).

Definition 1. Deepness. Sichel (1993). The process{xt} is said to benon-deep (non-tall) iff xt is not
skewed:

E
[
(xt − µ̄)3

]
= 0.

Analogously we can define steepness as skewness of the differences:

Definition 2. Steepness. Sichel (1993). The process{xt} is said to benon-steepiff ∆xt is not skewed:

E
[
∆x3

t

]
= 0.

The business cycle literature indicates the possibility of negative skewness ofxt and∆xt — thus
steep and deep contractions. The opposite case is oftall (E[(xt − µ)3] > 0) andsteep (∆xt positively
skewed) expansions.

Definition 3. Sharpness. McQueen and Thorley (1993). The process{xt} is said to benon-sharp iff
the transition probabilities to and from the two outer regimes are identical:

pm1 = pmM andp1m = pMm, for all m 6= 1,M ; andp1M = pM1.

In a two-regime model, for example, non-sharpness implies thatp12 = p21. In a three-regime model,
it requiresp13 = p31 and in additionp12 = p32 andp21 = p23. WhenM = 4 the following restrictions
on the matrix of transition probabilities are required to hold for non-sharpness:

P =


1 − a − b − c a b c

d ∗ ∗ d

e ∗ ∗ e

c a b 1 − a − b − c

 (3)
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2.3 Asymmetries in MS-AR processes

We now present the restrictions on the parameter space of the MSM-AR model that correspond to the
concepts of asymmetry. Proofs of these propositions are confined to an appendix. While the restrictions
implied by sharpness follow immediately, testing for deepness and steepness is less obvious.

According to definition 1, deepness implies skewness. Using the properties of the MS-AR defined
in equations (1) and (2), the following necessary and sufficient moment condition results:
Proposition 1. An MSM(M )-AR(p) process isnon-deepiff

M∑
m=1

ξ̄mµ∗3
m =

M−1∑
m=1

ξ̄mµ∗3
m +

(
1 −

M−1∑
m=1

ξ̄m

)
µ∗3

M = 0 (4)

with µ∗
m = µm − µx =

∑
i6=m (µm − µi) ξ̄i, whereξ̄m is the unconditional probability of regimem,

andµx is the unconditional mean ofxt.
The expression (4) is a complicated third-order polynomial in the regime-dependent parameters

of the processµ1, . . . , µM and the unconditional regime probabilities̄ξ1, . . . , ξ̄M−1, which are non-
linear functions of the transition parameterspij . Equation (4) is derived from the condition that thekth
moment ofµt (with k = 3) equals zero, whereµt is the Markov chain component of the process (see
the appendix):

E
[
µk

t

]
=

M∑
m=1

ξ̄m

(
µm −

M∑
i=1

ξ̄iµi

)k

=
M∑

m=1

ξ̄m

[
µm − µM −

M−1∑
i=1

(µi − µM) ξ̄i

]k

=
M−1∑
m=1

ξ̄m

[
(µm − µM ) −

M−1∑
i=1

(µi − µM ) ξ̄i

]k

+

(
1 −

M−1∑
m=1

ξ̄m

)[
−

M−1∑
i=1

(µi − µM) ξ̄i

]k

ForM = 2 the problem becomes more tractable analytically.

Example 1. Consider the case of the two regime MSM(2)-AR(p) process. Invoking proposition 1, the
skewness of the Markov chain is given by:

E
[
µ3

t

]
=

2∑
m=1

ξ̄mµ∗3
m = ξ̄1µ

∗3
1 + (1 − ξ̄1)µ∗3

2

whereξ̄1 = p21/(p12 + p21) is the unconditional probability of regime one,µ∗
1 = µ1 − µx = (1 −

ξ̄1)(µ1 − µ2) andµ∗
2 = µ2 − µx = (−ξ̄1)(µ1 − µ2). Substituting for̄ξ1, µ∗

1 andµ∗
2 we obtain:

E
[
µ3

t

]
= ξ̄1(1 − ξ̄1)

[
1 − 2ξ̄1

]
(µ1 − µ2)

3 .

As the Markov-switching model implies thatµ1 6= µ2 andξ̄1 ∈ (0, 1), it is apparent that non-deepness,
E[µ3

t ] = 0, requires that̄ξ1 = 0.5. Hence the matrix of transition probabilities must be symmetric,p12 =
p21. This also implies that the regime-conditional meansµ1 andµ2 are equidistant to the unconditional
meanµx.

Hence, in the case of two regimes non-deepness can be tested by testing the hypothesisp12 = p21.
This is equivalent to the test of non-sharpness. For processes withM > 2 we propose to test for
non-deepness based on theµ∗

m conditional onµx and theξ̄m.

Example 2. Consider now an MSM(3)-AR(p) process. Again, by invoking proposition 1, the skewness
of the Markov chainµt is given by:

E
[
µ3

t

]
=

3∑
m=1

ξ̄mµ∗3
m = ξ̄1µ

∗3
1 + ξ̄2µ

∗3
2 + (1 − ξ̄1 − ξ̄2)µ∗3

3
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whereµ∗
m = µm − µx = µm − ξ̄1µ1 − ξ̄2µ2 − (1 − ξ̄1 − ξ̄2)µ3 =

∑
i6=m ξ̄i(µm − µi). Thus:

E
[
µ3

t

]
=

3∑
m=1

ξ̄m

∑
i6=m

ξ̄i(µm − µi)

3

.

Non-deepness,E
[
µ3

t

]
= 0, requires that:

µ∗3
3 =

ξ̄1

(1 − ξ̄1 − ξ̄2)
µ∗3

1 +
ξ̄2

(1 − ξ̄1 − ξ̄2)
µ∗3

2 .

We now derive conditions for the presence of steepness which is based on the skewness of the
differenced series.

Proposition 2. An MSM(M )-AR(p) process isnon-steepif the size of the jumps,µj −µi, satisfies the
following condition:

M−1∑
i=1

M∑
j=i+1

(
ξ̄ipij − ξ̄jpji

)
[µj − µi]

3 = 0. (5)

Symmetry of the matrix of transition parameters (which is stronger than the definition of sharpness) is
sufficient but not necessary for non-steepness. A proof of this proposition appears in the appendix.

In contrast to deepness, the condition for steepness depends not only on the ergodic probabilities,
ξ̄j, but also directly on the transition parameters.

Example 3. In an MSM(2)-AR(p) process, condition (5) gives:

E
[
∆µ3

t

]
=
(
ξ̄1p12 − ξ̄2p21

)
[µ2 − µ1]3 = 0.

Example 4. For an MSM(3)-AR(p) process we get:

E
[
∆µ3

t

]
=

2∑
i=1

3∑
j=i+1

(
ξ̄ipij − ξ̄jpji

)
[µj − µi]

3

=
(
ξ̄1p12 − ξ̄2p21

)
[µ2 − µ1]3 +

(
ξ̄1p13 − ξ̄3p31

)
[µ3 − µ1]3 +

(
ξ̄2p23 − ξ̄3p32

)
[µ3 − µ2]3

While this is a complicated expression, the concept of steepness can be made operational by using
the sufficient condition, that is, the symmetry of the matrix of transition parameters, which implies
non-steepness. As noted above, this is stronger than the property of non-sharpness.

We close this section with a corollary characterizing the two-regime MS-AR model, which shows
the impossibility of the MS(2)-AR exhibiting steepness, and the equivalence of the concepts of deepness
and sharpness.

Corollary 1. A two-regime Markov-switching model is always non-steep. Non-sharpness implies non-
deepness and vice versa.

Non-steepness is evident fromExample 3. Sinceξ̄1/ξ̄2 = p21/p12, we have that̄ξ1p12 − ξ̄2p21 = 0
and henceE[∆µ3

t ] = 0. Further, non-sharpness (symmetric transition probabilities,p12 = p21) implies
non-deepness,E[(xt − µx)3] = 0, andvice versa. In particular, both concepts imply that the regime-
conditional meansµ1 andµ2 are equidistant to the unconditional meanµx.

3 Parametric tests based on the MS-AR model

Testing the MS-AR model against a linear null (or three regimes versus two) is complicated due to the
presence of unidentified nuisance parameters under the null of linearity (that is, the transition prob-
abilities) and because the scores associated with parameters of interest under the alternative may be
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identically zero under the null. These issues have been looked at by a number of authors (see e.g.,
Hansen, 1992, 1996), but are not of direct interest to us here, because the number of regimes remains
unchanged under all three asymmetry hypotheses, so that standard asymptotics can be invoked. But we
note that in practice they may complicate the identification of the appropriate model on which to carry
out the asymmetry tests.

Wald tests of the asymmetry hypotheses are computationally attractive, since the model does not
have to be estimated under the null. In general terms, we consider Wald (W ) tests of the hypothesis:

H0 : φ(λ) = 0 vs. H1 : φ(λ) 6= 0,

whereφ : R
n → R

r is a continuously differentiable function with rankr, r = rk
(

∂φ(λ)
∂λ′

)
≤ dim λ. As

thepij are restricted to the[0, 1] interval, the tests are formulated on the logitsπij = log
(

pij

1−pij

)
which

avoids problems if one or more of thepij is close to the border. It is worth noting that if1
T (π̃ij − πij)

d→
N(0, σ2

πij
), then 1

T (p̃ij − pij)
d→ N(0, p2

ij(1 − pij)2σ2
πij

) aspij =
eπij

1 + eπij
. If one of the transition

parameters is estimated to lie on the border,pij ∈ {0, 1}, then the parameter is taken as being fixed and
eliminated from the parameter vectorλ.

Let λ̃ denote the unconstrained MLE ofλ = (µ1, . . . , µM ;α1, . . . , αp, σ
2;π), andλ̂ the restricted

MLE under the null. Then the Wald test statisticW is based on the unconstrained estimatorλ̃, which is
asymptotically normal: √

T
(
λ̃ − λ

)
d→ N

(
0,Σλ̃

)
,

where, for the MLE,Σλ̃ = =−1
a is the inverse of the asymptotic information matrix. This can be

calculated numerically. It follows thatφ(λ̃) is also normal for large samples:

√
T [φ(λ̃) − φ(λ)] d→ N

(
0,

∂φ(λ)
∂λ′

∣∣∣∣
λ̃

Σλ̃

∂φ(λ)′

∂λ

∣∣∣∣
λ̃

)
.

Thus, ifH0 : φ(λ) = 0 is true and the variance–covariance matrix is invertible,

Tφ(λ̃)′
[

∂φ(λ)
∂λ′

∣∣∣∣
λ̃

Σ̃λ̃

∂φ(λ)′

∂λ

∣∣∣∣
λ̃

]−1

φ(λ̃) d→ χ2(r),

whereΣ̃λ̃ is a consistent estimator ofΣλ̃.

3.1 Deepness

The Wald test for the null of non-deepness is based on:

φD(λ) = φD(π,µ; ·) :=
M∑

m=1

ξ̄m(µm − µx)3

whereξ̄m(π) is the ergodic probability of regimem andµx(π,µ) =
∑M

m=1 ξ̄mµm is the unconditional
mean ofxt. As ∂φ

∂λi
= 0 for λi ∈ {α1, . . . , αp, σ

2} the Wald test statistic for non-deepness is given by:

TφD(λ)′
[[

∂φ
∂µ′

∂φ
∂π′

] [ Σ̃µ Σ̃µπ
Σ̃πµ Σ̃π

][
∂φ
∂µ
∂φ
∂π

]]−1

φD(λ), (6)
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Example 5. Thus forM = 2, the null of non-deepness is based on

φ(π12, π21, µ1, µ2) = φ(ξ1(π12, π21), µ1, µ2)

= ξ1 (µ1 − ξ1 µ1 − (1 − ξ1) µ2)
3 + (1 − ξ1) (µ2 − ξ1 µ1 − (1 − ξ1)µ2)

3

Differentiating w.r.t.ξ1, µ1, µ2 gives:

∂φ

∂ξ1
= − (µ2 − µ1)

3 (1 − 6 ξ1(1 − ξ1))

∂φ

∂µ1
= −3 ξ1 (µ2 − µ1)2 (2 ξ1 − 1) (1 − ξ1)

∂φ

∂µ2
= 3 ξ1 (µ2 − µ1)

2 (2 ξ1 − 1) (1 − ξ1)

Using thatξ1 = p21

p12+p21
andπij = log(pij) − log(1 − pij), we have

∂φ

∂π21
=

∂φ

∂ξ1

∂ξ1

∂π21
= − (µ2 − µ1)

3 (1 − 6 ξ1(1 − ξ1)) ξ1 (1 − ξ1) (1 − p21)

∂φ

∂π12
=

∂φ

∂ξ1

∂ξ1

∂π12
= (µ2 − µ1)

3 (1 − 6 ξ1(1 − ξ1)) ξ1 (1 − ξ1) (1 − p12)

Because this test is difficult to implement forM > 2, for models with more than two regimes we use
a version of the deepness test withξ̄m andµx taken as fixed. This Wald test for the null of non-deepness
is based on:

φD2(λ) = φD2(µ; ·) :=
M∑

m=1

ξ̄m(µm − µx)3 (7)

where ∂φ
∂λi

= 3ξ̄m(µm − µx)2 for λi = µm, m = 1, . . . ,M , and ∂φ
∂λi

= 0 for λi ∈ [α1, . . . , αp, σ
2;π].

Example 6. Thus forM = 3, the null of non-deepness is tested byφD2(λ) = 0 so has the form:

T

[
3∑

m=1

ξ̄m(µ̃m − µx)3
]2

×
[ 3ξ̄1(µ̃1 − µx)2 3ξ̄2(µ̃2 − µx)2 3ξ̄3(µ̃3 − µx)2

]
Σ̃λ̃D

 3ξ̄1(µ̃1 − µx)2

3ξ̄2(µ̃2 − µx)2

3ξ̄3(µ̃3 − µx)2



−1

d→ χ2(1),

whereλ̃D = [µ̃1 µ̃2 µ̃3]′.

3.2 Steepness

A Wald test for the null of non-steepness can be based on:

φS(λ) = φS(µ; ·) :=
M−1∑
i=1

M∑
j=i+1

(
ξ̄ipij − ξ̄jpji

)
[µj − µi]

3
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where theξ̄m, pij andµy again are taken as fixed. Thus the test only concerns the vector of mean
parameters:

∇µ =



µ2 − µ1
...

µM − µ1
...

µM − µM−1


= Qµ, with Q =

∂∇µ

∂µ′ =



−1 1 0
...

. . .

−1 0 1
0 −1 1

−1 0 1

0

. . .

−1 1


,µ =

[
µ1 · · · µM

]′
.

Thus ∂φ
∂µ′ = ∂φ

∂∇µ′
∂∇µ
∂µ′ with ∂φ

∂∇µm
= 3

(
ξ̄ipij − ξ̄jpji

)
[µj − µi]

2 and ∂φ
∂λi

= 0 otherwise. The Wald
test statistic has the form:

φ(λ̃)′
[

∂φ

∂∇µ′Q
(

1
T Σ̃µ̃

)
Q′ ∂φ′

∂∇µ

]−1

φ(λ̃) d→ χ2(1).

In the case of a three-state Markov chain, for example:

Q =

 −1 1 0
−1 0 1
0 −1 1

 and
∂φ′

∂∇µ
=

 3
(
ξ̄1p12 − ξ̄2p21

)
[µ2 − µ1]

2

3
(
ξ̄1p13 − ξ̄3p31

)
[µ3 − µ1]

2

3
(
ξ̄2p23 − ξ̄3p32

)
[µ3 − µ2]

2

 .

3.3 Sharpness

The null of non-sharpness can be expressed as:

φTP (λ) = φTP (π; ·) := Φπ,

where the matrixΦ is defined such thatpm1 = pmM andp1m = pMm, for all m 6= 1,M , andp1M =
pM1. Let theπij be collected to the matrixΠ:

Π =

 π11 · · · πM1
...

. ..
...

π1M · · · πMM


the matrix of logit transition probabilities. Then the vectorπ is given byvecd(Π), defined asvec(Π)
with the diagonal elementsπij excluded. In the case of a three-state Markov chain, for example, we
have that:

π = (π12, π13, π21, π23, π31, π32)
′ and Φ =

 1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 −1 0 0

 .

For linear restrictions the relevant Wald statistic can be expressed as:

WTP = T (Φλ̃ − ϕ)′
[
Φ Σ̃λ̃ Φ′

]−1
(Φλ̃ − ϕ).

Thus under the null of symmetric transition probabilities the Wald statistic has the form:

WTP = π̃′Φ′
[
Φ
(

1
T Σ̃π̃

)
Φ′
]−1

Φπ̃.
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4 Extensions to testing framework

In this section we outline three extensions to the basic framework for testing for asymmetries in MS-AR
models. We deal with models in which the intercept, rather than the mean, switches between regimes;
models which display regime-dependent heteroscedasticity; and consider multivariate settings.

4.1 Switching intercepts

The MSI(M)-AR(p) model is characterised by switching in theIntercept, rather than theMean(MSM-
AR):

xt = µ(st) +
p∑

j=1

αjxt−j + ut, (8)

whereut ∼ NID(0, σ2) andst ∈ {1, . . . ,M} is generated by a Markov chain.
As before for the MSM-AR process, the MSI(M )-AR(p) process can be written as the sum of two

independent processes:
xt − µx = µt + zt (9)

whereµx = α−1 (1)
∑M

m=1 ξ̄mµm, α (L) = 1 − α1L − . . . − αpL
p, soα (1) = 1 −∑p

i=1 αi, and
E[µt − µx] = 0. {zt} is a gaussian process,α(L)zt = ut, andE[zt] = 0, so thatµt represents the
contribution of the Markov chain, andE [µt] = 0. To derive an expression forµt, first rewrite (8) as:

α(L) (xt − µx) = νt + ut. (10)

whereνt is defined as

νt = µ(st) − µ̄ =
M∑

m=1

µm

(
ξmt − ξ̄m

)
,

andµ̄ = α−1 (1) µx. In the case of a two-regime model we have thatνt = (µ1−µ2)ζt with ζt = ξ1t−ξ̄1,
which equals1−ξ̄1 if the regime is1 and−ξ̄1 otherwise. As (9) has to be equivalent to (8), the following
expression forµt is obtained:

µt = α−1 (L) νt. (11)

Thus in contrast to the MSM-AR model, considered so far, where a shift in regime causes a once-and-
for-all jump in the level of the observed time series, the MSI-AR model implies a smooth transition in
the level of the process after a shift in regime.

Tests for asymmetries in MSI(M )-AR(p) models can be based onνt, which can be seen to be
equivalent to theµt in MSM(M )-AR(p) models. Wald tests for deepness and steepness can be easily
constructed by applying the procedures developed in section 3 to parametric tests for the skewness ofνt

and∆νt, respectively.
A potential problem arises when the roots ofα (L) are close to the unit circle, and in the extreme,

for the first-order polynomial,α (L) = 1 − αL, α = 1. Thenνt = ∆µt, and testingνt for deepness
leads to conclusions for the deepness of∆xt (rather thanxt). In other words applying the conditions
derived for deepness in the MSM-AR model toνt provides a test of steepness of the MSI-AR model.
In our examples, the roots ofα (L) are a long way from unity as we are modelling first differences, and
these exhibit little dependence relative to models in levels. Furthermore, the extreme case of a unit root
implies the data have not been differenced a sufficient number of times prior to modelling.
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4.2 Regime-dependent heteroscedasticity

In the original Hamilton model the variance of the disturbance term does not depend on the regime.
However, regime-dependent heteroscedasticity is often manifest when the model is applied to financial
data, and perhaps, albeit to a lesser extent, to macroeconomic data5, so that the assumption thatut|st ∼
NID

(
0, σ2

)
in (1) may need to be replaced byut|st ∼ NID

(
0, σ2 (st)

)
, where, in a 2-regime model,

for example,σ2 (st) = σ2
1 whenst = 1 andσ2 (st) = σ2

2 whenst = 2. In such a model, asymmetries
in the observed variable can arise either from asymmetries in the model’s propagation mechanism, or
from asymmetries in the innovations. Failure to allow for heteroscedasticity in the MS-AR model when
it is present in the data may affect the properties of the SDS tests, as shown in section 5. Luukkonen and
Teräsvirta (1991) test for cyclical asymmetry by testing whether a linear autoregressive model can be
rejected in favour or a smooth transition auotoregression, and are concerned that asymmetry may result
simply because of regime heteroscedasticity. Consequently, they also test for autoregressive conditional
heteroscedasticity (ARCH). The SDS tests can be calculated within a model which explicitly allows for
heteroscedasticity.

Our tests are designed to detect asymmetries in the model’s propagation mechanism, while the non-
parametric (NP) tests are unable to discriminate between the two sources of asymmetry.

4.3 Multivariate models

The tests we have outlined apply equally to a vector process with a single state variable. Models of
this sort arise when the variables share a common cyclical component, as in the MS-AR model of post-
war US employment and output of Krolzig and Toro (1998), or the dynamic-factor model with regime
switching of Diebold and Rudebusch (1996). Note that the test of sharpness is intrinsically a system-
based test as it evaluates the transition probabilies of the common latent regime variable. In contrast,
the tests for deepness and steepness (forM > 2) focus on variable-specific asymmetries. It is therefore
possible to test each variable for asymmetry.

In some instances it may be appropriate to allow more than one state variable, as in the bivariate
model of stock returns and output growth of Hamilton and Lin (1996), where each variable responds to
a specific state variable. The procedures developed in section 3 can then be applied in the same way,
using the regime means, and ergodic and transition probabilities, relevant for each pairing of variable
and state variable.

5 Properties of testing procedures

In this section, we explore by Monte Carlo (i) the size and power properties of our parametric tests
relative to non-parametric tests, (ii ) the impact on our testing procedures of ignoring regime-dependent
heteroscedasticity, and (iii ) their properties under model mis-specification, by which we mean applying
the MS-AR model-based tests when the process was generated by an alternative model.

5.1 Size and power

Table 1 reports the empirical sizes and powers of the tests from a Monte Carlo (based on1000 replica-
tions) in for two data generating processes based on:

5As an example, Koop, Pesaran and Potter (1996) find evidence of regime-dependent error variances in a non-linear model
of output growth and unemployment rate changes.
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xt = µ(st) + εt, whereεt ∼ NID(0, σ2) and st ∈ {1, 2}. (12)

For the first process, labelled ‘Symmetric MSM’ in the table,µ1 = −µ2 = −1.5, σ2 = 1, andp11 =
p22 = 0.85, so that from the propositions stated in section 2.3, it is apparent that the values ofµ (st)
andξ1 satisfy the conditions forµt, and thusxt, to exhibit non-deepness (non-steepness is a property
of the model, and non-deepness implies non-sharpness in this model). The parameter values for the
second process, labelled ‘Asymmetric MSM’, are the same except thatp11 = 0.65, and the conditions
for non-deepness do not hold.

Because the data generating process consists of two-regimes, there are no entries for our steepness
test (CK:Steepness) in table 1 – such processes can not exhibit steepness. The non-parametric test rejec-
tion frequencies for steepness (NP:Steepness) are close to the nominal sizes for all the data generating
processes. The test for sharpness has size close to nominal even forT = 100, and power of nearly60%
at a5% size. The parametric deepness test (CK:Deepness) is correctly-sized asymptotically and only a
little too large forT = 100. Moreover, it has good power for the asymmetric process forT = 100.

5.2 Robustness under heteroscedasticity

Our tests are designed to detect asymmetries in the Markov chain component,µt, which we have termed
first-moment asymmetry, while the non-parametric tests would be expected to reject the null of asym-
metry in the presence of regime-dependent variances of the shocks (‘heteroscedasticity’). The data
generating processes chosen to explore these issues is a simple extension of (12) to allow for heterosce-
dasticity:

xt = µ(st) + εt, whereεt ∼ NID(0, σ2(st)) andst ∈ {1, 2}. (13)

To illustrate, each panel of figure 2 plots the density ofxt generated by (13), and the density conditional
on being in a regime. In the first panel,µ1 = −µ2 = −1.5, σ2

1 = σ2
2 = 1, andprob(st = 1) = 0.5.

From the propositions stated in section 2.3, it is apparent that the values ofµ (st) andξ1 satisfy the
conditions forµt, and thusxt, to exhibit non-deepness (non-steepness is a property of the model).
The density exhibits skewness in the top right panel because the condition for non-deepness is not
satisfied byµ1 = −µ2 = −1.5 and prob(st = 1) = 0.3. In the bottom left panel the condition
for non-deepness is satisfied, becauseµ1 = −µ2 = −1.5 andprob(st = 1) = 0.5, but nonetheless
heteroscedasticity,σ2

1 = 1 andσ2
2 = 2, induces skewness inxt. The final panel is akin to the top

right but now with heteroscedastic errors. In the bottom left panel, then, the contribution of the Markov
process is symmetric but the unequal variances result in asymmetry in the marginal distribution ofxt.

PanelA of table 2 reports the properties of the testing procedures for heteroskedastic MS-AR pro-
cesses, when the estimated model allows for regime-dependent error variances. The non-parametric
test rejection frequencies for steepness (NP:Steepness) are close to the nominal sizes for all the data
generating processes (DGPs), so the presence of heteroscedasticity does not inflate the size of the test.
The test for sharpness has size close to nominal even forT = 100. The power approximately halves
when the DGP is heteroscedastic (compare the ‘Asymmetric MSMH’ columns in panelA of table 2
with the ‘Asymmetric MSMH’ columns of table 1), but as the entries forT = 1000 confirm, this is a
small-sample effect. The parametric deepness test (CK:Deepness) is correctly-sized asymptotically and
only a little too large forT = 100. Moreover, it has good power for the asymmetric DGP forT = 100.
By contrast, the non-parametric (NP:Deepness) test is less powerful, has a size that approaches one
asymptotically for the symmetric MSMH, and a power approximately equal to size for a5% test for the
asymmetric MSMH whenT = 1000.
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The second aspect the Monte Carlo explores is the effect of using homoscedastic models when the
DGP is heteroscedastic. PanelB of table 2 shows that the sizes of the parametric sharpness and deepness
tests are a little inflated forT = 100, and are25 to 30% for a nominal size of5% for the large sample.
Finally, the failure to model the heteroscedasticity reduces the power of the asymmetry tests for the
DGP considered.

That regime-dependent variances can affect the skewness of the observed variables empirically is ap-
parent from our results for the MSIH(3)-AR(4) model for 1948 – 90 (see table 6). The observed growth
rates (xt) display negative skewness (deepness of contractions) but the NonDeeepness test, though not
significant, indicates positive skewness. In these models the third regime (high-growth) is partly asso-
ciated with the Korea boom in 1951-1952, and induces positive skewness of the hidden Markov chain.
However, the variance is much higher in regime 1 (recession), so that the observed variable is overall
negatively skewed (but not significantly).

5.3 Robustness under model mis-specification

In the literature alternative regime-switching models have been proposed to explain business cycle phe-
nomena. Because these models may in some instances provide a better characterisation of the data than
the MS-AR model, a relevant question is how well the parametric tests perform when the model on
which they are based (the MS-AR model) is not the model that generated the data. In this section we
report Monte Carlo simulations designed to investigate the properties of the proposed testing procedures
under model mis-specification. Results are recorded in table 3 for a self-exciting threshold autoregress-
ive (SETAR) DGP and a smooth transition autoregressive (STAR) DGP.

In both models, the regime-generating process is not assumed to be exogenous, but is directly linked
to a transition variable. For the SETAR model6, the transition variable is a lag of the endogenous
variable, say,xt−d:

xt =

(
µ1 +

p∑
i=1

α1ixt−i

)
(1 − I (xt−d; c)) +

(
µ2 +

p∑
i=1

α2ixt−i

)
I (xt−d; c) + εt (14)

whereεt ∼ IID(0, σ2), I (xt−d; c) = 1 if xt−d > c, and zero otherwise, andc is the threshold at which
the switching between regimes occurs.

In the STAR model7 the weight attached to the regimes depends on the realization of an exogenous
or lagged endogenous variableszt, so that the transition between regimes is ‘smooth’:

xt =

(
µ1 +

p∑
i=1

α1ixt−i

)
(1 − G (zt; γ, c)) +

(
µ2 +

p∑
i=1

α2ixt−i

)
G (zt; γ, c) + εt (15)

whereεt ∼ IID(0, σ2), and the transition functionG (zt; γ, c) is a continuous function, usually bounded
between 0 and 1. We consider the LSTAR model, where the transition function is given by:

G (zt; γ, c) =
1

1 + exp {−γ(zt − c)} .

γ is the smoothness parameter, and the transition variablezt is taken to be the lagged endogenous
variable (zt = xt−d). Forγ > 0, aszt → −∞, G (·) → 0, and forzt → ∞, G (·) → 1.

6A number of authors have estimated SETAR models for US output growth, including Tiao and Tsay (1994) and Potter
(1995): Tong (1995) provides a statistical analysis of the model.

7STAR models have been popularised by the work of, e.g., Luukkonenet al. (1988) and Ter¨asvirta and Anderson (1992).
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To simplify matters, in our simulations we setα1i = α2i = 0 for all i, d = 1, σ2 = 1, µ1 = −µ2 =
−1.5, and varyc to give symmetric and asymmetric models.

The results in table 3 demonstrate the excellent performance of the Markov-switching model-based
sharpness test. Even for the small sample size ofT = 100 it has approximately the correct size under
model mis-specification. It also has good power in small samples for both the asymmetric SETAR and
LSTAR DGPs. In contrast, the parametric and non-parametric non-deepness tests work less well in
small samples, but for large samples the parametric non-deepness tests (CK:Deepness) is only slightly
oversized, and clearly better behaved than the non-parametric one.

Overall, the Monte Carlo results support the use of the proposed tests for business cycle asym-
metries: the tests (i) behave as expected for correctly specified Markov-switching models, they are (ii)
robust against skewness due to heteroscedasticity and (iii) the sharpness test has been found to be a very
reliable test for business cycle asymmetries even if the underlying DGP is different from the empirical
model. The tests proposed in this paper enhance the role of the Markov-switching model as a flexible
tool for empirical modelling.

6 Empirical illustrations

The SDS tests are illustrated on a number of data set. Specifically, we apply the parametric tests dis-
cussed in section 3 to the MS(2)-AR(4) model of output growth of Hamilton (1989) for his original
sample period of 1953-1984, to the MS(3)-AR(4) model of Clements and Krolzig (1998) on more re-
cent data, and to a variety of models of US investment and consumption growth. In each case, the
outcomes of the tests for asymmetries are compared with non-parametric tests of skewness.

6.1 The Hamilton (1989) model of US output growth

MS-AR models have been used in contemporary empirical macroeconomics to capture certain features
of the business cycle, but the formal testing of asymmetries has been largely confined to non-parametric
approaches. The seminal paper by Hamilton (1989) fit a fourth-order autoregression (p = 4) to the
quarterly percentage change in US real GNP,xt, from 1953 to 1984:

xt − µ(st) = α1 (xt−1 − µ(st−1)) + . . . + α4 (xt−p − µ(st−4)) + εt, (16)

whereεt ∼ NID(0, σ2) and the conditional meanµ(st) switches between two states, ‘expansion’ and
‘contraction’:

µ(st) =

{
µ1 < 0 if st = 1 (‘contraction’ or ‘recession’)
µ2 > 0 if st = 2 (‘expansion’ or ‘boom’)

with the variance of the disturbance term,σ2(st) = σ2, assumed the same in both regimes. This is an
MSMean model, with the autoregressive parameters and disturbances independent of the statest.

The maximization of the likelihood function of an MS-AR model entails an iterative estimation
technique to obtain estimates of the parameters of the autoregression and the transition probabilities
governing the Markov chain of the unobserved states: see Hamilton (1990) for an Expectation Max-
imization (EM) algorithm for this class of model, and Krolzig (1997) for an overview of alternative
numerical techniques for the maximum likelihood estimation these of models.

The results of testing for asymmetry based on the original Hamilton model and data set (1952:2 –
1984:4) are recorded in Table 4. The non-parametric test for skewness indicates significant negative
skewness in output growth (i.e., deepness of contractions) at the5% level. Our parametric test of non-
deepness also indicates negative skewness, but is only significant at the20% level. There is evidence of



16

sharpness at the10% level with the probability of switching from contraction to expansion exceeding
the probability of movement in the reverse direction.

6.2 The 3-regime heteroscedastic model of US output growth

Sichel (1994) argues that post-War business cycles typically consist of three phases: contraction, fol-
lowed by high-growth recovery, and then a period of moderate growth. To capture this in a parametric
model, we consider the three-state MS-AR model of Clements and Krolzig (1998)8, where there is a
shifting intercept term and a heteroscedastic error term (denoted as an MSIH(3)-AR(4) model — where
the H flags the heteroscedastic error term, and3 and4 refer to the number of regimes and autoregressive
lags, respectively):

xt = µ(st) +
4∑

k=1

αkxt−k + εt, (17)

whereεt ∼ NID(σ2(st)) andst ∈ {1, 2, 3} is generated by a Markov chain.
Figure 3 and table 5 (reproduced from Clements and Krolzig, 1998) summarize the business-cycle

characteristics of this model. The figure depicts the filtered and smoothed probabilities of the ‘high
growth’ regime3 and the contractionary regime1 (the middle regime2 probabilities are not shown).
The expansion and contraction episodes produced by the three-regime model correspond fairly closely
to the NBER classifications of business-cycle turning points. In contrast to the two-regime model, all
three regimes are reasonably persistent.

While Hess and Iwata (1997b) find their three-state MS-AR model estimated for 1949-92 fails to
generate contractions of sufficient duration or depth, their estimatedp11 is only0.1267, while the lowest
value in the MSIH models recorded in table 5 is over0.78, which directly translates into a longer dura-
tion of the recession regime, and so we conjecture that the MSIH model may not have this shortcoming.

The tests for asymmetries in MSIH(3)-AR(4) models are recorded in tables 6 and 7 for various
historical periods. For the first sample period (1948 –90), the NP skewness and model-based tests both
indicate steepness of expansions, with the MS-AR model test permitting rejection of the null at the1%
level. Moreover, there is clear evidence of asymmetric turning points (or sharpness), which results from
a rejection ofp21 = p23, because moving from moderate to low growth is more likely than moving from
moderate to high growth. The three-state model permits rejection of the non-sharpness hypotheses at a
higher confidence level than the two-state model.

For the later sample period (shown in table 7), the MS-model test continues to reject non-steepness
at the5% level, in contrast to the NP test that now flags deepness of recesssions rather than steepness
of expansions. The major change in inference using the parametric tests is that there is no evidence of
sharpness in the later period.

6.3 Models of US investment and consumption growth

To further illustrate the method of testing for asymmetries, we apply the tests to US investment and
consumption growth using a number of MS models. These models contain either two or three regimes,
and either allow the error variance to depend upon the regime or restrict it to be heteroscedastic. In all
cases we consider models without lags, so that MSI and MSM models are equivalent.

8A number of authors, including Boldin (1996) and Clements and Krolzig (1998), have found that the 2-regime MS-AR
model does not yield a particularly good representation of the business cycle when fitted to periods outside that in Hamilton
(1989). For example, Clements and Krolzig (1998) find an average duration of contraction (1) of 2–3 quarters for the period
1947–90, and of less than 2 quarters for 1959–96.
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The first four panels of figure 4 depict the recession regime probabilities for investment growth (DI).
The allocation of observations to the recession regime is more dependent on whether or not the errors
are allowed to be heteroscadastic than on whether there are two or three regimes. The main difference
between the two and three regime models with heteroscedastic errors is that there is some evidence
of a recession in the investment series around 1990 in the former but not in the latter. Table 8 shows
that the model-based steepness tests (CK NonSteepness) reject the null at the 5% level in both the
homoscedastic and heteroscedastic three-regime models, and indicate steepness of expansions, while
the non-parametric tests suggest ‘tallness’ of expansions.

The last four panels in figure 4 give the recession probabilities for consumption growth. Here
the estimates of the ‘recession’ regime for the two and three regime heteroscedastic models are quite
different, and from table 8 the homoscedastic model indicates tallness and steepness of expansions, in
line with the non-parametric tests, while both features are absent in the heteroscedastic model.

These examples suggest a number of points. The results of testing for asymmetries based on para-
metric models may be sensitive to the model specification employed. Specifically, it is likely to matter
whether the model allows for heteroscedastic errors. The findings here confirm the Monte Carlo results
in section 5.2. The regime categorization in models that allow heteroscedastic disturbances will reflect
shifts in both the mean and the variance of the series, and so will not necessarily coincide with that
in homoscedastic models if, for example, the shifts in mean and variance are not in line. Thus, it is
important to adequately capture the business-cycle features of the series: we argued in section 6.2, fol-
lowing Sichel (1994), that for modelling US output growth a three-regime model with heteroscedastic
errors appears to be required. In the case of the investment and consumption series, a closer examination
of the individual models would reveal which is the most appropriate: the results in table 8 are simply
illustrative.

7 Conclusions

We have set out the parametric restrictions on MS-AR models for the series generated by those models
to exhibit neither deepness, steepness or sharpness business-cycle asymmetries. For the popular two-
state model first proposed by Hamilton (1989) we have shown that deepness implies sharpness and vice
versa, and that the model (at least with gaussian disturbances) can not generate steepness. For three-
state models, which arguably afford a better characterisation of the business cycle, the three concepts are
distinct. We have shown how the parameter restrictions can be applied as Wald tests, and to illustrate,
report the results of testing for asymmetries in Hamilton’s original model of US output growth, and
in two and three-state models US investment and consumption growth. The tests detect first-moment
asymmetries, and are not affected by regime-dependent heteroscedasticity, provided this is modelled.

A comparison of the empirical results for our tests with the non-parametric outcomes suggests
our tests have reasonable power to detect asymmetries. This was confirmed by a Monte Carlo study
which showed that our tests have good size and power properties, and perform well relative to the non-
parametric tests. The latter are adversely affected by regime-dependent heteroscedasticity, and can give
misleading inferences concerning first-moment asymmetries. Moreover, our tests work reasonably well
when the data are generated from other classes of regime-switching models.
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8 Appendix

Proposition 1. An MSM(M )-AR(p) process isnon-deepiff:

M∑
m=1

ξ̄mµ∗3
m =

M−1∑
m=1

ξ̄mµ∗3
m +

(
1 −

M−1∑
m=1

ξ̄m

)
µ∗3

M = 0 (18)

with µ∗
m = µm − µx =

∑
i6=m (µm − µi) ξ̄i and whereξ̄m is the unconditional probability of regime

m.
Proof. MSM(M )-AR(p) processes can be rewritten as the sum of two independent processes:xt−µx =
µt + zt. µx is the unconditional mean ofxt:

µx = E [xt] =
M∑

m=1

ξ̄mµm,

and bothzt andµt are zero mean,E[µt] = E[zt] = 0. The processzt =
∑p

j=1 αjzt−j + ut is gaussian
and hence symmetric. The component,µt, is potentially asymmetric, and represents the contribution of
the Markov chain:

µt =
M∑

m=1

ξmt (µm − µx) =
M∑

m=1

ξmtµ
∗
m = µ∗

M +
M−1∑
m=1

ξmt (µ∗
m − µ∗

M )

with µ∗
m = µm − µx andξmt = 1 if the regime ism at periodt, and is0 otherwise.

Thus thek-th moment ofµt is given by:

E
[
µk

t

]
=

M∑
m=1

ξ̄m (µm − µx)
k =

M∑
m=1

ξ̄mµ∗k
m ,

whereξm = E [ξmt], andE
[
ξk
mt

]
= ξm ∀k.

Using the adding-up restriction,
∑M

m=1 ξ̄m = 1, we have:

E
[
µk

t

]
=

M−1∑
m=1

ξ̄mµ∗k
m +

(
1 −

M−1∑
m=1

ξ̄m

)
µ∗k

M = µ∗k
M +

M−1∑
m=1

ξ̄m

(
µ∗k

m − µ∗k
M

)
.

Proposition 2. An MSM(M )-AR(p) process isnon-steepif the size of the jumps,µj − µi, satisfies the
following condition:

M−1∑
i=1

M∑
j=i+1

(
ξ̄ipij − ξ̄jpji

)
[µj − µi]

3 = 0. (19)

Proof. Write µt = Mξt, whereM = [µ1 · · ·µM ] andξt = [ξ1t · · · ξMt]′. ξmt = 1 if the periodt regime
is m, and zero otherwise. Then∆µt = µt − µt−1 = M∆ξt = Mξt − Mξt−1. Clearly,E[∆µt] = 0.
We now introduce∇M = [M′ ⊗ 1M − 1M ⊗ M′]

′
andξ

(2)
t = ξt ⊗ ξt−1, such that:

∆µt = ∇Mξ
(2)
t =

M∑
i=1

M∑
j=1

ξi,t−1ξj,t [µj − µi] .

Using thatµj − µi = 0 for i = j, we can simplify to:

∆µt =
M∑
i=1

∑
j 6=i

ξi,t−1ξj,t [µj − µi] .
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The third moment is then given by:

E
[
∆µ3

t

]
=

M∑
i=1

∑
j 6=i

ξ̄ipij [µj − µi]
3

=
M−1∑
i=1

M∑
j=i+1

{(
ξ̄ipij − ξ̄jpji

)
[µj − µi]

3
}

,

where the last line uses[µj − µi]3 = −[µi − µj]3.
Symmetry of the matrix of transition parameters (which is stronger than the definition of sharpness)

is sufficient for non-steepness as it implies that, for alli, j = 1, . . . ,M , we have that̄ξipij − ξ̄jpji = 0.
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Figure 1 Schematic of Business Cycle Asymmetries. The figures in each row depict: (i) time paths for
detrended outputxt, (ii ) histograms and densities forxt, (iii ) time paths for∆xt, (iv) histograms and
densities for∆xt. Gaussian curves are super-imposed on the densities. The top row corresponds to the
non-deep and non-steep case. Deepness of contractions (row 2) shows up in negative skewness inxt,
and steepness of expansions (row 3) in positive skewness of∆xt. Row 4 shows the two together.
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Table 1 Empirical Size and Power.

Homoscedastic MS-AR DGPs
Symmetric MSM Asymmetric MSM

α 0.10 0.05 0.01 0.10 0.05 0.01

CK:Sharpness 0.107 0.055 0.012 0.696 0.585 0.280
NP:Deepness 0.162 0.098 0.029 0.587 0.440 0.195

T = 100 CK:Deepness 0.212 0.153 0.084 0.762 0.691 0.525
NP:Steepness 0.138 0.081 0.020 0.112 0.061 0.021
CK:Steepness 0 0 0 0 0 0
CK:Sharpness 0.087 0.045 0.010 1.000 1.000 1.000
NP:Deepness 0.154 0.088 0.027 1.000 0.999 0.999

T = 1000 CK:Deepness 0.098 0.051 0.016 1.000 1.000 1.000
NP:Steepness 0.167 0.100 0.030 0.116 0.063 0.015
CK:Steepness 0 0 0 0 0 0

Design of the Monte Carlo:

Symmetric MSM : µ1 = −1.5, µ2 = 1.5, σ1 = σ2 = 1, p11 = p22 = 0.85;

Asymmetric MSM :µ1 = −1.5, µ2 = 1.5, σ1 = σ2 = 1, p11 = 0.65, p22 = 0.85.

According to the propositions in section 2.3 the processes have the following properties:

Symmetric MSM : non-sharp, non-deep, non-steep.

Asymmetric MSM : non-steep.
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Figure 2 Asymmetries due to regime-dependent heteroscedasticity. The figure depicts densities (con-
ditional on the regime, and unconditional) ofxt constructed for two-regime MS-AR models. In the top
left panel, the MS-AR model satisfies the conditions for a symmetric propagation mechanism, and the
process is homoscedastic. The unconditional density (the solid line) is symmetric. The top right panel
is drawn for a homoscedastic process with an asymmetric propagation mechanism. The unconditional
density is skewed. The process in the bottom left panel has a symmetric propagation mechanism but
has regime-dependent heteroscedasticity. The unconditional density is skewed. The bottom right has
asymmetric innovations and an asymmetric propagation mechanism.
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Table 2 Empirical Size and Power: Effects of Heteroscedasticity.

Heteroskedastic MS-AR DGPs
A. MS-AR models match the MS-AR DGPs B. Homoscedastic MS-AR models

Symmetric MSMH Asymmetric MSMH Symmetric MSMH Asymmetric MSMH
α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

CK:Sharpness 0.099 0.051 0.013 0.411 0.271 0.099 0.150 0.082 0.028 0.238 0.136 0.021
NP:Deepness 0.361 0.249 0.115 0.043 0.020 0.002 0.361 0.249 0.115 0.043 0.020 0.002

T = 100 CK:Deepness 0.173 0.120 0.059 0.493 0.417 0.255 0.222 0.171 0.093 0.273 0.184 0.044
NP:Steepness 0.119 0.072 0.024 0.096 0.044 0.014 0.119 0.072 0.024 0.096 0.044 0.014
CK:Steepness 0 0 0 0 0 0 0 0 0 0 0 0
CK:Sharpness 0.073 0.044 0.010 1.000 1.000 0.995 0.394 0.263 0.091 0.983 0.965 0.879
NP:Deepness 0.986 0.974 0.914 0.112 0.053 0.006 0.986 0.974 0.914 0.112 0.053 0.006

T = 1000 CK:Deepness 0.078 0.056 0.013 1.000 1.000 0.997 0.408 0.294 0.118 0.984 0.967 0.893
NP:Steepness 0.141 0.085 0.017 0.082 0.043 0.006 0.141 0.085 0.017 0.082 0.043 0.006
CK:Steepness 0 0 0 0 0 0 0 0 0 0 0 0

Design of the Monte Carlo:

Symmetric MSMH: µ1 = −1.5, µ2 = 1.5, σ1 = 1, σ2 = 2, p11 = p22 = 0.85;

Asymmetric MSMH: µ1 = −1.5, µ2 = 1.5, σ1 = 1, σ2 = 2, p11 = 0.65, p22 = 0.85.

According to the propositions in section 2.3 the processes have the following properties:

Symmetric MSMH: non-sharp, non-deep, non-steep.

Asymmetric MSMH: non-steep.

Table 3 Empirical Size and Power: SETAR and LSTAR DGPs .

MS-AR model applied to data from SETAR and LSTAR models
Symmetric SETAR Asymmetric SETAR Symmetric LSTAR Asymmetric LSTAR

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

CK:Sharpness 0.116 0.053 0.010 0.529 0.429 0.161 0.114 0.048 0.010 0.505 0.404 0.158
NP:Deepness 0.398 0.313 0.169 0.485 0.428 0.314 0.390 0.296 0.158 0.383 0.313 0.211

T = 100 CK:Deepness 0.306 0.261 0.193 0.212 0.137 0.074 0.324 0.272 0.192 0.192 0.113 0.047
NP:Steepness 0.057 0.025 0.007 0.062 0.027 0.005 0.067 0.035 0.008 0.081 0.038 0.008
CK:Steepness 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CK:Sharpness 0.077 0.034 0.004 0.999 0.998 0.998 0.062 0.026 0.003 0.993 0.992 0.992
NP:Deepness 0.410 0.333 0.186 0.997 0.993 0.987 0.384 0.295 0.183 0.972 0.958 0.935

T = 1000 CK:Deepness 0.113 0.071 0.020 0.974 0.926 0.644 0.096 0.054 0.017 0.943 0.854 0.475
NP:Steepness 0.073 0.033 0.010 0.105 0.046 0.010 0.089 0.045 0.016 0.287 0.160 0.045
CK:Steepness 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Design of the Monte Carlo:

Symmetric SETAR: µ1 = −1.5, µ2 = 1.5, σ1 = σ2 = 1, d = 1, c = 0.

Asymmetric SETAR:µ1 = −1.5, µ2 = 1.5, σ1 = σ2 = 1, d = 1, c = −0.75.

Symmetric LSTAR: µ1 = −1.5, µ2 = 1.5, σ1 = σ2 = 1, d = 1, c = 0, γ = 10.

Asymmetric LSTAR:µ1 = −1.5, µ2 = 1.5, σ1 = σ2 = 1, d = 1, c = −0.75 , γ = 10.
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Figure 3 MSIH(3)-AR(4) model of US output growth: Smoothed and filtered probabilities of the high
growthH and ‘recession’L regime.
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Figure 4 MS models of US investment and consumption growth: the estimated probabilities with
which each observation falls in the recession regime for a variety of models.
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Table 4 Tests for asymmetries using the MSM(2)-AR(4)model of US output growth, 1952:2 – 1984:4.
Test φ(λ) Test statistic value p-value

NonSharpness test: 2.7714 [0.0906]∗

NonDeepness test: -0.2971 1.7354 [0.1877]
Skewness (x): -0.4900 5.2025 [0.0226]∗∗

Skewness (∆x): -0.0015 0.0000 [0.9945]
The NP and SD(S) test statistics areχ2 with one degree of freedom under
the null of symmetry.∗ indicates significance at10% level and∗∗ signi-
ficance at the5% level. A positive (negative) value ofφ(λ) flags positive
(negative) skewness.
Note: Non-steepness is a property of the 2-regime model: see Corollary 1.

Table 5 MSIH(3)-AR(4) models of US output growth.

Sample 48:2-90:4 60:2-96:2
Meanµ1 -0.081 -0.050
Meanµ2 1.413 0.838
Meanµ3 3.430 1.406

α1 -0.102 0.016
α2 0.109 0.022
α3 -0.172 -0.100
α4 -0.191 -0.098
σ2

1 0.816 0.796
σ2

3 0.018 0.406
p12 0.187 0.021
p13 0.021 0.128
p21 0.093 0.075
p23 0.000 0.000
p31 0.000 0.000
p32 0.162 0.091
p1 0.298 0.231
p2 0.663 0.447
p3 0.038 0.322

Duration1 4.814 6.745
Duration2 10.701 13.089
Duration3 6.145 10.946

Observations 171 145
µi, σi

2 and pi denote the intercept, disturb-
ance variance, and ergodic probability of re-
gime i. Theαj are the autoregressive paramet-
ers, which are constant across regimes, and the
pij are the transition probabilities.
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Table 6 Tests for asymmetries using the MSIH(3)-AR(4) model of US output growth, 1948:2 – 1990:4
.

Test φ(λ) Test statistic value p-value
NonSharpness test: 31828.7577 [0.0000]∗∗

p12 = p32 : 0.0225 [0.8808]
p13 = p31 : 0.0417 [0.8382]
p21 = p23 : 31701.5198 [0.0000]∗∗

NonDeepness test: 0.1271 0.1820 [0.6696]
NonSteepness test: 0.1966 17.7305 [0.0000]∗∗

Skewness (x): -0.1587 0.7055 [0.4010]
Skewness (∆x): 0.3451 3.3736 [0.0662]∗

The NP and SDS test statistics areχ2 with one degree of freedom under the
null of symmetry.∗ indicates significance at10% level and∗∗ significance
at the5% level. A positive (negative) value ofφ(λ) flags positive (negative)
skewness.
Note: Asp31 andp23 are close to zero, the matrix of second derivatives used
for the calculation of parameter covariance is singular and the generalized
inverse has been used, which explains the magnitude of the test statistics for
non-sharpness.

Table 7 Tests for asymmetries using the MSIH(3)-AR(4) model of US output growth, 1960:2 – 1996:2
.

Test φ(λ) Test statistic value p-value
NonSharpness test: 0.7539 [0.8605]

p12 = p32 : 0.7271 [0.3938]
p13 = p31 : 0.0225 [0.8809]
p21 = p23 : 0.0045 [0.9462]

NonDeepness test: -0.0839 0.4681 [0.4939]
NonSteepness test: 0.0649 4.2702 [0.0388]∗

Skewness (x): -0.6412 9.8659 [0.0017]∗∗

Skewness (∆x): 0.1874 0.8426 [0.3587]
The NP and SDS test statistics areχ2 with one degree of freedom under the
null of symmetry.∗ indicates significance at10% level and∗∗ significance
at the5% level. A positive (negative) value ofφ(λ) flags positive (negative)
skewness.
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Table 8 Tests for asymmetries using MS-AR models of US investment and consumption growth.

DI DC

MSM(2)
NonSharpness 0.0187 [0.8914] 7.6712 [0.0056]**
CK NonDeepness 3.6811 [0.0550] 4.2533 [0.0392]*
CK NonSteepness ——— ———

MSMH(2)
NonSharpness 2.1796 [0.1398] 0.2571 [0.6121]
CK NonDeepness 0.1213 [0.7276] 0.3191 [0.5722]
CK NonSteepness ——— ———

MSM(3)
NonSharpness 1.5690 [0.6664] 3.8275 [0.2807]
p12 = p32 0.3339 [0.5633] 0.0309 [0.8605]
p13 = p31 1.1252 [0.2888] 3.0928 [0.0786]
p21 = p23 0.1455 [0.7029] 0.7363 [0.3908]
CK NonDeepness 0.7933 [0.3731] 6.7898 [0.0092]**
CK NonSteepness 7.6104 [0.0058]** 9.1463 [0.0025]**

MSMH(3)
NonSharpness 1.0429 [0.7909] 1.7330 [0.6296]
p12 = p32 1.0057 [0.3159] 0.1231 [0.7257]
p13 = p31 0.0066 [0.9353] 1.6853 [0.1942]
p21 = p23 0.0077 [0.9302] 0.0049 [0.9440]
CK NonDeepness 1.3505 [0.2452] 0.1335 [0.7149]
CK NonSteepness 4.7713 [0.0289]* 0.4420 [0.5062]

Non-parametric tests
NP NonDeepness 14.3245 [0.0002]** 19.1923 [0.0000]**
NP NonSteepness 0.1256 [0.7230] 7.1955 [0.0073]**
The data are taken from the FRED database (see
http://www.stls.frb.org/fred/data/gdp.html) and cover the period 1960:4
to 1999:2. DI is the first difference of the log of investment (FRED
database mnemonic GPDIC92), andDC is the first difference of the
logarithm of consumers’ expenditure (mnemonic PCEDGC92).


