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Abstract

We consider whether oil prices can account for business cycle asymmetries. We test for asym-
metries based on the Markov switching autoregressive model popularized by Hamilton (1989), using
the tests devised by Clements and Krolzig (2000). We select the transformation of the oil price of
Lee, Ni and Ratti (1995), based on a linear analysis of the relationship between output growth and
the oil price employing PcGets. We find overwhelming evidence against the conventional wisdom
that recessions are more violent than expansions: while some of violence of economic downturns
can be attributed to dramatic changes in the price of oil, post-War US economic growth is charac-
terized by the steepness of expansions.
JEL classification:E32, C32, E24.
Keywords:Oil prices, Business cycle asymmetries, Markov-switching models.

1 Introduction

A number of recent papers have explored the relationship between oil prices and the macroeconomy.
Hooker (1996) shows that the linear relationship between oil prices and output proposed by Hamilton
(1983) does not appear to hold from 1973 onwards. He also casts doubt on the asymmetric relationship
proposed by Mork (1989): that output responds negatively to oil price increases but is unaffected by
oil price declines. Hamilton (1996) suggests that output should be related to thenet increasein real oil
prices over the previous year, and constructs a variable that is the maximum of the percentage change in
the oil price in the current quarter over the previous year’s high, and zero. Thus, increases in the price
of oil which simply reverse previous (within the preceding year) declines do not depress output growth:
see figure 1. Recently, Hamilton (2000) has used a flexible approach to characterize the appropriate
non-linear transform of the oil price, and finds that the transformation that gives the net increase in the
oil price can not be rejected (but nor can a number of other transformations).

Raymond and Rich (1997) have investigated the relationship between oil prices and the macroe-
conomy by including the net increase in the oil price (NOPI) in the two-regime Markov-Switching
model of US output growth of Hamilton (1989) for the period 1952 – 1999. Of interest is whether the
recurrent shifts between expansion (high growth) and contraction (low growth, or declines in output)
suggested by the Markov-switching model remain a feature of post War US output once an allowance
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Krolzig, 1998, and Doornik, 1999) and PcGets of David F. Hendry and Hans-Martin Krolzig.
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has been made for the effects of oil price increases. A plausible hypothesis is that increases in the oil
price may explain (at least part of) the low trend growth states, so that the model with oil prices no
longer generates recessions that match the NBER dating. They conclude that‘while the behavior of
oil prices has been a contributing factor to the mean of low growth phases of output, movements in oil
prices generally have not been a principal determinant in the historical incidence of these phases. . .’
(p. 196). They also allow the oil price to affect the transition probabilities of the states directly, fol-
lowing the approach of Diebold, Rudebusch and Sichel (1993), Filardo (1994) and Filardo and Gordon
(1998), but find little support for this channel of influence.

Our approach follows that of Raymond and Rich (1997) but we ask a different question: are oil prices
responsible for business cycleasymmetries? Some authors appear to have assumed that the finding that
a non-linear model (as opposed to a linear model) characterizes the data of itself suggests business
cycle asymmetries: see e.g., Luukkonen and Ter¨asvirta (1991). The argument is that models such as
self-exciting threshold autoregressive models (see, e.g., Tong and Lim, 1980, Tong, 1995), and smooth
transition autoregressive model (see, e.g., Luukkonen, Saikkonen and Ter¨asvirta, 1988, Ter¨asvirta and
Anderson, 1992) have different dynamic structures across regimes so that the probability of remaining in
a regime, once entered, may not be equal across regimes. Different ‘exit’ probabilities suggest different
durations, and therefore asymmetry on the definition due to Sichel (1993, p. 224), that an asymmetric
cycle is ‘one in which some phase of the cycle is different from the mirror image of the opposite phase’.

Clements and Krolzig (2000) show Markov-Switching autoregressive (MS-AR) models are able to
generate symmetric cycles, or cycles that exhibit one (or more) of the different types of steepness, deep-
ness, and sharpness asymmetries discussed in the literature. These asymmetries are typically tested for
using separate non-parametric tests, but restrictions on the parameters of the MS-AR model can be de-
rived, which, if they hold, would rule out a particular type of asymmetry. Wald tests of these restrictions
are then formulated. The tests of Clements and Krolzig (2000) are able to detect asymmetries in the
propagation mechanisms of shocks, or first-moment asymmetries, while non-parametric tests based on
the coefficient of skewness of the (first-differenced) detrended series are unable to discriminate between
first-moment asymmetries and asymmetries in the shocks. The parametric tests can also be applied to
MS-AR models with exogenous variables, to see whether such variables account for asymmetries in the
observed output growth series.

We use the data set in Hamilton (2000)1. As well as NOPI (and a variant that calculates the max-
imum relative to the previousthreeyears, N3OPI), Hamilton also makes available three other oil price
series that have recently been used to explain US output growth. One is the growth rate of the real oil
price (DRoil), so that linear models employing this variable will not allow for asymmetric responses
to increases and decreases. The other two are a time series of exogenous supply shocks (Quant), and
a variable used by Leeet al. (1995) (LNR), that is, the real increase in the oil price adjusted for the
variability in the real oil price (see Leeet al., 1995, for details). We base a decision as to which trans-
formation of the oil price to use on the linear relationship between output growth and oil prices. This
can be done simply and efficiently using David F. Hendry and Hans-Martin Krolzig’s PcGets program,
as described in section 3. On the basis of this, we select the LNR variable to gauge the impact of oil
prices on business cycle asymmetries, though it turns out that the results are relatively robust to the
transformation.

The plan of the paper is as follows. Section 2 briefly reviews notions of business cycle asymmet-
ries, non-parametric tests of these features, and the parametric tests proposed by Clements and Krolzig
(2000): the latter paper gives a fuller discussion of the material in this section. Section 3 discusses the

1Freely available fromhttp://weber.ucsd.edu/˜jhamilto
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application of these tests to univariate and multivariate variants of the Hamilton model augmented with
LNR and other oil price transforms. Section 4 concludes.

2 Testing for business cycle asymmetries

2.1 Steepness, deepness and sharpness (SDS)

There has been much interest in whether macroeconomic variables behave differently over the phases
of the business cycle. The conventional wisdom as expressed by Mitchell (1927, p. 290) is that ‘the
most violent declines exceed the most considerable advances [. . .] Business contractions appear to be
a briefer and more violent process than business expansions’.

Sichel (1993) distinguishes two types of business cycle asymmetry: ‘steepness’ and ‘deepness’.
The former relates to whether contractions are steeper (or less steep) than expansions, the latter to
whether the amplitude of troughs differs from that of peaks. He suggests a test of deepness based on
the coefficient of skewness calculated for the detrended series. Deepness of contractions will show
up as negative skewness, since it implies that the average deviation of observations below the mean
will exceed that of observations above the mean. Steepness implies skewness in the first difference of
the detrended series. Positive skewness suggests steepness of expansions: increases should be larger,
though less frequent, than decreases. On the basis of these tests, deepness is found to characterize
quarterly post-War US unemployment and industrial production, with weaker evidence for GNP, while
only unemployment (of the three) appears to exhibit steepness.

Because the observations on the detrended series typically exhibit some dependence, Sichel (1993,
p. 227–8) calculates an asymptotically heteroscedastic and serial correlation consistent standard error
for the coefficient of skewness using the Newey and West (1987) procedure.

Sharpnessor turning point asymmetry(see McQueen and Thorley (1993)), results if, e.g., troughs
are ‘sharp’ and peaks more rounded. Sharpness can be tested by considering the magnitude of growth
rate changes around NBER-dated peaks and troughs. The mean absolute changes are calculated for
peaks and troughs separately, and the test for asymmetry is based on rejecting the null of the population
mean changes in the variable at peaks and troughs being equal. Alternatively, a testing procedure can
be based on the transition probabilities of a second-order three state Markov chain.

Formally, then steepness, deepness and sharpness (SDS) can be defined as follows, letting{xt}
denote the detrended series:

Definition 1. Deepness. Sichel (1993). The process{xt} is said to benon-deep (non-tall) iff xt is not
skewed:

E
[
(xt − µx)3

]
= 0.

Analogously we can define steepness as skewness of the differences:

Definition 2. Steepness. Sichel (1993). The process{xt} is said to benon-steepiff ∆xt is not skewed:

E
[
(∆xt)3

]
= 0.

Negative skewness ofxt and ∆xt indicates steep and deep contractions. The opposite case are
tall (E[(xt − µx)3] > 0) and steep (∆xt positively skewed) expansions, although all combinations are
possible.

Definition 3. Sharpness. McQueen and Thorley (1993). The process{xt} is said to benon-sharp iff
the transition probabilities to and from the two outer regimes are identical:

pm1 = pmM andp1m = pMm, for all m 6= 1,M ; andp1M = pM1,
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whereM denotes the number of regimes.
In a two-regime model, for example, non-sharpness implies thatp12 = p21. In a three-regime model,

it requiresp13 = p31 and in additionp12 = p32 andp21 = p23.

2.2 Asymmetries in MS-AR processes

We can write the MS-AR model as:

xt − µ(st) =
p∑

k=1

αk (xt−k − µ(st−k)) + ut, ut|st ∼ NID
(
0, σ2

)
. (1)

This formulation exhibits Markov-switching in theMean of the process (and which we label as
MSM(M )-AR(p)), so thatµ (st) takes on one of the valuesµ1 < . . . < µM , depending on which
of theM regimes the process is in. The Markov chain is ergodic, irreducible, and there does not exist an
absorbing state, i.e.,̄ξm ∈ (0, 1) for all m = 1, . . . ,M , whereξ̄m is the ergodic or unconditional prob-
ability of regimem. The findings of Raymond and Rich (1997) support the assumption of time-invariant
transition probabilities:

pij = prob(st+1 = j|st = i),
M∑

j=1

pij = 1 ∀i, j ∈ {1, . . . ,M}. (2)

Clements and Krolzig (2000) establish the following propositions concerning the restrictions on the
parameter space of the MSM-AR model that correspond to the concepts of steepness and deepness (the
restrictions implied by sharpness follow immediately):

Proposition 1. An MSM(M )-AR(p) process isnon-deepiff

M∑
m=1

ξ̄m (µm − µx)3 = 0 (3)

whereξ̄m is the unconditional probability of regimem, andµx =
∑

i µiξ̄i is the unconditional mean of
xt.

Example 1. Consider the case of two regimes. The MSM(2)-AR(p) process can be written as the sum
of two independent processes:xt − µx = µt + zt, whereE[µt] = E[zt] = 0. While the processzt =∑p

j=1 αjzt−j + ut is Gaussian,µt represents the contribution of the Markov chain,µt = (µ1 − µ2)ζt,
with ζt = ξ1t − ξ̄1, which equals1 − ξ̄1 if the regime is1 and−ξ̄1 otherwise. Invoking proposition 1,
the skewness of the Markov chain is given by:

E
[
µ3

t

]
=

2∑
m=1

ξ̄m (µm − µx)
3 = ξ̄1 (µ1 − µx)

3 + (1 − ξ̄1) (µ2 − µx)3

whereµx = ξ̄1µ1 + (1 − ξ̄1)µ2 and ξ̄1 = p21/(p12 + p21) is the unconditional probability of regime
one. Thus:

E
[
µ3

t

]
= ξ̄1(1 − ξ̄1)

[
1 − 2ξ̄1

]
(µ1 − µ2)

3 .

As the Markov-switching model implies thatµ1 6= µ2 and ξ̄1 ∈ (0, 1), non-deepness,E[µ3
t ] = 0,

requires that̄ξ1 = 0.5. Hence the matrix of transition probabilities must be symmetric,p12 = p21. This
also implies that the regime-conditional meansµ1 andµ2 are equidistant to the unconditional meanµy.

Hence, in the case of two regimes we can test for non-deepness by testing the hypothesisp12 = p21.
This is equivalent to the test of non-sharpness. For processes withM > 2 we propose to test for
non-deepness conditional onµx and theξ̄m.
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Proposition 2. An MSM(M )-AR(p) process isnon-steepif the size of the jumps,µj −µi, satisfies the
following condition:

M−1∑
i=1

M∑
j=i+1

(
ξ̄ipij − ξ̄jpji

)
[µj − µi]

3 = 0. (4)

Symmetry of the matrix of transition parameters (which is stronger than the definition of sharpness) is
sufficient but not necessary for non-steepness.

In contrast to deepness, the condition for steepness depends not only on the ergodic probabilities,
ξ̄j, but also directly on the transition parameters.

Example 2. In an MSM(2)-AR(p) process, condition (4) gives:

E
[
∆µ3

t

]
=

(
ξ̄1p12 − ξ̄2p21

)
[µ2 − µ1]

3 .

This is necessarily equal to zero, so a two-regime Markov-switching model is always non-steep.
Sinceξ̄1/ξ̄2 = p21/p12, we have that̄ξ1p12 − ξ̄2p21 = 0 and henceE[∆µ3

t ] = 0.

Two-regime MS models are incapable of generating steepness asymmetries. In the next section this
is shown to have important implications for testing for business cycle asymmetries in MS models.

3 Oil prices and the US Business Cycle

3.1 Selecting oil price transforms under linearity

We select the transformation of the oil price that gives the best fit in an autoregressive-distributed lag
(ADL) model. Specifically, with the output growth as the dependent variable, we begin with a general
unrestricted model containing four of its lags, and lags from one to four on each of the five oil price
variables. We then test down, with the aim of arriving at a simple model, which might indicate that a
particular oil price variable is ‘best’. However, because the oil price variables are highly collinear, as is
apparent from figure 1, the final model may depend on the precise way in which the successive rounds of
simplifications are carried out, and on the order in which ‘insignificant’ variables (or groups of variables)
are deleted. We use David F. Hendry and Hans-Martin Krolzig’s PcGets to automate the simplification
procedure. By searching all the possible paths, and then comparing all the candidate models so obtained,
the problem of path-dependence is solved: see Krolzig and Hendry (2000) for details of the algorithms.

The program can be used in several modes. Initially, we employed the ‘outlier correction’ facility,
which automatically adds impulse dummies to the general model to correct for outliers, before simpli-
fying. Eight dummy variables were selected. The final model retained all the dummy variables, and
included lags 1 and 3 of the dependent variable, lags 1, 3 and 4 of LNR ,and lag 2 of Quant. The sig-
nificance of the eight dummies in the general model and the final specification could be interpreted as
suggesting the linear relationship is inadequate, possibly pointing toward a non-linear model, although
other explanations, such as omitted variables, are at least as plausible. Omitting the outlier dummies
from the general model resulted in a similar, though simpler final model, in which the second lag of
Quant dropped out:

xt =0.88
(8.39)

+ 0.21
(2.99)

xt−1− 0.42
(3.86)

LNRt−3− 0.47
(4.07)

LNRt−4,

wherext is output growth (the difference of the natural logarithm of the GNP series, multiplied by one
hundred). This is similar to eqn (3.6) of Hamilton (2000), who explains the interpretation of the LNR
coefficients.
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Figure 1 Oil price transforms.The panels show the quarterly growth rate in the real oil (DRoil) where the deflator

is the GDP deflator, Hamilton’s net real oil price variable (NOPI), Hamilton’s net real oil price variable relative to the previ-

ous three years (N3OPI), the Lee, Ni and Ratti (LNR) variable, and a time series of exogenous supply disruptions (Quant).

Overimposed are the NBER recessions..

The outcome of this exercise suggests using the LNR transformation of the oil price in the MS-AR
model of output growth, but because the ADL model findings are at best indicative – we cannot show
that the transformation that offers the best linear fit is the most appropriate in the MS-AR framework –
we also check the asymmetry results for oil price variables.

3.2 Two-regime models of the US Business Cycle

Within the class of Markov-Switching autoregressive models, there are a large variety of models that
could be used to investigate the role of oil prices. As well as combinations of the number of regimes and
lag order{M,p}, there is the choice of switching means versus intercepts (only equivalent forp = 0),
switching autoregressive parameters, and regime-dependent error variances (see e.g., Krolzig, 1997).
We use the simplest models that are capable of capturing the features of interest of the business cycle as
our benchmark univariate models, which include the ability to reproduce the NBER recession timings.
Formal model selection procedures are made difficult and unreliable by the well-documented problems
that affect inference in choosing between some of the variants. The relatively small number of cycles
in the post War period suggest to us that complicated models with switching autoregressive parameters
may be asking too much of the data, and in fact even the simplest models are capable of generating fairly
complex behavior, suggesting that erring on the side of parsimony may be without much cost. Raymond
and Rich (1997) appear to have followed this strategy: they setM = 2 andp = 0 in (1) (Hamilton,
1989, hadp = 4 ),

xt = µ(st) + εt, εt ∼ NID(0, σ2), (5)
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1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
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MSI(2)−AR(0), 1952 (1) − 1999 (4)

Mean 
Fitted 

DGDP 
OneStepPred 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5
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Probabilities of Regime 1

NBER 
Smoothed prob. 
filtered prob. 
predicted prob. 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5

1.0
Probabilities of Regime 2

Figure 2 MS(2)-AR(0) model of US output growth.The top panel the sold line is the actual series, the pointed

line is the one-step prediction, the dashed line is the fit of the model, and the bold gray line represents the contribution

of the Markov chain. In the lower two panels, the bares gives the filtered probabilities, dashed line the one-step predicted

probabilities, and the solid line the smoothed probabilities, of the ‘contraction’ and ‘expansion’ regimes, respectively..

and we begin by estimating this model for the period 1952 – 1999.
Figure 2 shows that such a model is able to capture the NBER recessions. The second and third

panels depict the probabilities of being in the contraction and expansion regimes, respectively, where
the mean growths are estimated to be -0.27 and 1.16 percent per quarter, and the expected durations
of expansions and contractions are 14 and 4 quarters. The filtered regime probabilities are shown with
a bar, the one-step predicted probabilities with a dashed line and the smooth probabilities are shown
with a bold line. The filtered probability can be understood as an optimal inference on the state variable
(whether the system is in a boom or recession) at timet using only the information up to timet, i.e.
Pr (st = m | Yt), wherem stands for a given regime. The smoothed probability stands for the optimal
inference on the regime at timet using the full sample information,Pr (st = m | YT ). In general the
differences between the two are small and unimportant. In the second panel of figure 2 we overimposed
the NBER Business Cycle to the inferred probability of a recession by the MS-AR. Comparing these
figures confirms the ability of Hamilton’s basic model to capture the phases of expansion and contraction
over this period.

The non-parametric (NP) tests are recorded in table 1. On the basis of the NP tests of steepness and
deepness there are no signs of asymmetries in the US output growth,∆yt, over this period. In contrast
the NP tests show evidence for deepness and steepness in employment growth,∆nt, and we will discuss
MS models involving employment in section 3.4.

The tests for SDS for the MSM(2)-AR(0) model are recorded in table 2. Below the table we note the
NBER Business Cycle reference dates. Although the NP tests do not indicated asymmetries, our tests
depict sharpness (becausep12 > p21) at the 1.1% level, and deepness of recessions, at the 2.3% level.
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Table 1 Non-parametric evidence for asymmetries in US output and employment growth.
∆yt ∆nt

Test asymmetry sign statisticp-value sign statisticp-value
Sample:1960 : 1 – 1999 : 4

Skewness ofx Deepness − 2.0732 [0.1499] − 31.2678 [0.0000]∗∗

Skewness of∆x Steepness + 1.2099 [0.2714] + 9.0880 [0.0026]∗∗

Sample:1952 : 1 – 1999 : 4

Skewness ofx Deepness − 3.9163 [0.0478]∗ − 29.4400 [0.0000]∗∗

Skewness of∆x Steepness + 1.1695 [0.2795] + 16.4541 [0.0000]∗∗

Next, we estimate the MSM(2)-AR(0) model allowing for four lagged values of the LNR oil price
variable. It is apparent from figure 3 that the shifts between states no longer correspond to the expan-
sionary and contractionary phases of the business cycle: in fact 39% of observations are in the lower
regime growth and the mean growth rate is positive in both states. The expected duration of the lower re-
gime is around 3.3 quarters, and of the upper 5.2. It is inappropriate to test for asymmetries within such
a model, because the results would not bear on the business cycle phases of expansion and contraction.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

−2

0

2

4
MSI(2)−AR(0) plus LNR, 1952 (1) − 1999 (4)

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5

1.0
Probabilities of Regime 1

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5

1.0
Probabilities of Regime 2

Figure 3 MSM(2)-AR(0) model of US output growth with lags 1–4 of the LNR oil price variable .

In table 2 the outcomes of the sharpness and deepness test are reported for MS(2) models with oil
price shock measures. The most striking fact is that for all six models the tests indicate the deepness
of recessions (positive skewness of∆yt). But only the models with DRoil and Quant show indications
of business cycle asymmetries. The failure of the models to detect any business cycle asymmetries
might be due to the lagged oil price variables largely mopping up the asymmetries in the output series.2

2Clements and Smith (2000) find that the non-linear terms in the Pesaran and Potter (1997) ‘ceiling and floor’ model of US
output growth become less important when lagged unemployment rate terms are added to the model; a similar phenomenon to
that alluded to here.
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Table 2 Tests for asymmetries in MSI(2)-ADL(0,4) models of US output growth, 1952:1 – 1999:4.
MS-AR MS-ARplusDRoil MS-AR plusLNR MS-AR plusN1DRoil MS-ARplusN3DRoil MS-AR plusQuant

Test sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value
NonSharpness 6.4071 [0.0114]∗ 5.7847 [0.0162]∗ 0.1163 [0.7331] 0.054 [0.8162] 0.8441 [0.3582] 8.2692 [0.0040]∗∗

NonDeepness − 5.1413 [0.0234]∗ − 3.3721 [0.0663]+ − 0.1520 [0.6966] − 0.064 [0.7996] − 0.5697 [0.4504] − 3.6533 [0.0560]+

Ergodic prob.
Pr(s1 = 1) 0.2054 0.2118 0.3870 0.3374 0.1560 0.1349
Pr(s1 = 2) 0.7946 0.7882 0.6130 0.6626 0.8440 0.8651

Synchronization
NBER 0.8984 0.8924 0.6906 0.7522 0.8475 0.9047

Pr(s1 = 1| rec.) 0.8422 0.8431 0.7613 0.7971 0.5194 0.6326
Pr(s1 = 1| exp.) 0.0912 0.0985 0.3225 0.2561 0.0917 0.0449
AIC 2.7952 2.8196 2.6753 2.7671 2.7495 2.7862

The SD test statistics areχ2 with one degree of freedom under the null of symmetry.
∗∗ indicates significance at the1% levelp
∗ indicates significance at the5% level;
+ indicates significance at the10% level.

A ‘ +’ (‘ −’) in the columns headed ‘Sign’ indicates positive (negative) skewness.
Note: Non-steepness is a property of the 2-regime model.
‘Synchronization’ reports the frequency that the NBER dated cycle and the Markov chain are in the same state of recession or expansion. ‘Pr(s1 = 1| NBER
recession) ’ denotes the synchronization of MS and NBER recessions. It is measured as the average smoothed probability of beeing in regime 1 of the estimated
MS-model when the US economy is in a recession according to the NBER. Similarily ‘Pr(s1 = 1| NBER expansion) ’ reports the probability of a recession
infered from the MS-VAR when the US economy is in state of an expansion according to the NBER.
The NBER turning points over this period are 54:2(T), 57:3(P), 58:2(T), 60:2(P), 61:1(T), 69:4(P), 70:4(T), 73:4(P), 75:1(T), 80:1(P), 80:3(T), 81:3(P), 82:4(T),
90:3(P), 91:1(T), where T & P denote trough and peak, respectively
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But it is still premature to argue that oil prices account for the recurrent business cycle shifts between
expansion and contraction: rather the addition of LNR variable serves to highlight the fragility of the
two-state model noted by, e.g., Hess and Iwata (1997), Boldin (1996) and Clements and Krolzig (1998).

3.3 Asymmetry in three-regime models of the US Business Cycle

Sichel (1994) has argued convincingly that post-War business cycles typically consist of three phases:
contraction, followed by high-growth recovery, and then a period of moderate growth. Clements and
Krolzig (1998) capture this in a parametric model via a three-state heteroscedastic model with a switch-
ing intercept:

xt = µ(st) +
4∑

k=1

αkxt−k + εt, (6)

whereεt ∼ NID(0, σ2(st)) andst ∈ {1, 2, 3} is generated by a Markov chain.
When we do so in the absence of the oil price variable we obtain the characterization of the business

cycle given in figure 4. Panel 2 indicates that the dating of the recessionary periods are very close to
those given by the two-regime model and the NBER chronology. The trend growth rate in the lower
regime is -0.05, in the middle regime 0.9, and in the upper regime 1.35%. The forth panel indicates that
the rapid growth regime invariably follows the recession regime, as described by Sichel (1994). The
assumption of homogeneous error variances across regimes is clearly rejected in such a model, based on
a standard likelihood ratio test (which is asymptoticallyχ2 with M − 1 degrees of freedom, conditional
upon the number of regimes being the same in both models).

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

−2

0

2

4
MSIH(3)−AR(4), 1952 (1) − 1999 (4)

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5

1.0
Probabilities of Regime 1

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5

1.0
Probabilities of Regime 2

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5

1.0
Probabilities of Regime 3

Figure 4 MSIH(3)-AR(4) model of US output growth.

Suppose the US business cycle is best described by the three-regime process. When the number of
regimes is restricted to two, the model fails to capture the rapid growth periods, but picks up the recession
periods and normal growth (expansion) periods. The inclusion of the oil variable accounts for enough
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Figure 5 MSIH(3)-AR(4) model of US output growth with lags 1–4 of the LNR oil price variable .

of the dips in output for the optimization routine to cause the regimes to flip so that normal growth and
rapid growth are matched. The three-regime model is more robust in that a regime is assigned to each of
the three distinct phases: see figure 5. Though the inclusion of oil does affect the while it very precisely
detects the NBER recessions in 1953, 1960. 1982 and 1990 it misses the recessions in 1957/58, 1970
and 1980. Inspection of figure 1 reveals that the ‘non-detected’ recessions are preceded by peaks in
LNR. This should not be interpreted as a failure of the MS model: as the ‘non-detected’ recessions have
been can be ‘explained’ by LNR, regime one collects only those recessions which are not associated by
oil price shocks.

Table 3 records that all three-regime model tend to indicate steepness of expansions and deepness
of recessions, whether oil is included or not. While the signs of skewness implied by the MSIH(3)-
ADLs confirm the findings of the two-state models, the statistical evidence is much weaker. For the
MSIH(3)-AR(4) model, non-deepness cannot be rejected and the steepness of expansions is marginally
insignificant at the 10% level. For the MS-ARplusLNR, non-sharpness (p12 = p32) and non-deepness
can be rejected at the 5% and 1% level, respectively. The MS-AR is steep at 10% when DRoil is included
and at 5% in case of N1DRoil. All MS models including oil price transforms show reasonable business
cycle features, though in the case of N3DRoil and Quant the second regime is absorbing signaling the
current obsoleteness of the business cycle. The finding of steepness in the three-regime models appears
quite robust to whether we allow for heteroscedastic errors in the MS-AR model (see Clements and
Krolzig, 2000, for a discussion of the effects of heteroscedastic errors on tests for asymmetry) and on
which of the five oil price variables is used. For example, using the homoscedastic three-regime model
with either the NOPI, N3OPI, Quant or LNR variables, we found steepness of expansions at the 1%
level (and at the 10% level for the DRoil variables).

Univariate Markov-switching models are only able to capture some of the stylized facts of the busi-
ness cycle as they do not reflect the idea of comovement among economic time series which is essential
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Table 3 Tests for asymmetries in MSIH(3)-ADL(4,4) models of US output growth, 1952:1 – 1999:4.
MS-AR MS-ARplusDRoil MS-AR plusLNR MS-AR plusN1DRoil MS-ARplusN3DRoil MS-ARplusQuant

Test sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value
NonSharpness 1.2424 [0.7429] 1.1810 [0.7576] 4.6961 [0.1954] 1.3197 [0.7245] 0.7931 [0.8511] 3025.3 [0.0000]∗∗

p12 = p32 0.0124 [0.9112] 0.0119 [0.9131] 4.4610 [0.0347]∗ 0.0127 [0.9104] 0.0378 [0.8458] 1673.7 [0.0000]∗∗

p13 = p31 1.1810 [0.2772] 1.1738 [0.2786] 0.2658 [0.6062] 1.3068 [0.2530] 0.3796 [0.5378] 1.3055 [0.2532]
p21 = p23 0.0141 [0.9056] 0.0477 [0.8270] 0.0111 [0.9162] 0.0519 [0.8197] 0.3743 [0.5407] 0.0111 [0.9163]

NonDeepness − 0.4433 [0.5055] − 0.5109 [0.4747] − 40.0960 [0.0000]∗∗ − 0.5632 [0.4530] − 0.0189 [0.8906] − 0.0703 [0.7909]
NonSteepness + 2.6289 [0.1049] + 3.5325 [0.0602]+ + 0.6998 [0.4028] + 4.2426 [0.0394]∗ + 0.6170 [0.4322] + 0.8409 [0.3591]

Ergodic prob.
Pr(s1 = 1) 0.2315 0.2219 0.0566 0.2228 0.0000 0.0000
Pr(s1 = 2) 0.3766 0.4042 0.4992 0.4118 1.0000 1.0000
Pr(s1 = 3) 0.3920 0.3739 0.4443 0.3653 0.0000 0.0000

Synchronization
NBER 0.8740 0.8723 0.8889 0.8773 0.8416 0.8622

Pr(s1 = 1| rec.) 0.8983 0.8973 0.3331 0.9244 0.5444 0.6755
Pr(s1 = 1| exp.) 0.1305 0.1323 0.0082 0.1314 0.1034 0.1033
AIC 2.7153 2.7169 2.5945 2.7004 2.6441 2.6411

Under the null of symmetry, the SDS test statistics areχ2 with one degree of freedom; the NonSharpness has three degrees of freedom.
∗∗ indicates significance at the1% level;
∗ indicates significance at the5% level;
+ indicates significance at the10% level.

A ‘ +’ (‘ −’) in the columns headed ‘Sign’ indicates positive (negative) skewness.
‘Synchronization’ reports the frequency that the NBER dated cycle and the Markov chain are in the same state of recession or expansion. ‘Pr(s1 = 1| NBER
recession) ’ denotes the synchronization of MS and NBER recessions. It is measured as the average smoothed probability of beeing in regime 1 of the estimated
MS-model when the US economy is in a recession according to the NBER. Similarily ‘Pr(s1 = 1| NBER expansion) ’ reports the probability of a recession
infered from the MS-VAR when the US economy is in state of an expansion according to the NBER.
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to the notion of a business cycle. In the following we generalize the MS-AR models considered so
far to a cointegrated Markov-switching vector autoregressive model (MS-VAR) of US output and em-
ployment. If the business cycle is a common feature of many macroeconomic time series, modeling
the system improves the statistical inference of the Markov process in extracting the common ‘business
cycle’ component from the group of economic time series. Hopefully this will sharpen our judgment of
the effects of oil price shocks on the asymmetry of the business cycle.

3.4 Oil price shocks in a model of US output and employment

The Krolzig and Toro (1998) model of post-war US employment and output data is a cointegrated vector
autoregressive Markov-switching process, where some parameters are changing according to the phase
of the business and employment cycle. Employment and output are found to have a common cyclical
component, and the long run dynamics are characterized by a proportional cointegrating vector between
employment and output, with a trend (t) included as a proxy for technological progress and capital
accumulation.

More formally, the long-run relationship between (the logs of) output,yt, and employment,nt, is
given by the cointegration vectorβ′ = (1 : −1) and the regime-dependent deviation from the trend in
per-capita outputµ(st) = E[yt−1−nt−1−γ(t−1)]. Then each regimem is associated with a particular
attractor(µm, δ∗m) given by the equilibrium growth rateδ∗m and the equilibrium meanµm:[

a11(L) a12(L)
a21(L) a22(L)

][
∆yt − δ∗(st)
∆nt − δ∗(st)

]
=

[
α1

α2

]
(yt−1 − nt−1 − γ(t − 1) − µ(st))+

[
u1t

u2t

]
, (7)

whereut|st ∼ NID(0,Σ(st)). Thus the regime-dependent drift termδ∗(st) is the equilibrium growth
rate, and shifts in theδ∗(st) map out changes in the business cycle state (e.g., expansion, contraction).
The equilibrium meanµ(st) gives the state-dependent equilibrium level of labour productivity: shifts in
µ(st) reflect changes in equilibrium per-capita output. As in the univariate MS models, the unobservable
regime variablest is governed by a Markov chain with a finite number of states defined by the transition
probabilitiespij .

The maximum likelihood (ML) estimation of the model using data from 1960:1 to 1999:4 is based on
a version of the Expectation-Maximization (EM) algorithm discussed in Hamilton (1990) and Krolzig
(1997), and follows the two-stage procedure suggested by Krolzig (1996). The cointegration properties
of the system are analyzed within a linear VAR(4) representation using the ML method of Johansen
(1995): The trace test supports cointegration rank one and the cointegrating vector is identified as trend-
adjusted productivity:

ynt = yt − nt − 0.244t, (8)

which is interpreted by Krolzig and Toro (1998) as a labour-based measurement of capacity utilization.
Productivity grew at an average rate of about 2.4% per year and deviations from this trend are station-
ary. Short-run and long-run dynamics are jointly estimated in a Markov-switching vector-equilibrium-
correction (MS-VECM) model with three regimes representing recession, growth and high growth. The
ML estimation results for a first-order model estimated are presented in table 4, for the model paramet-
erized as:[

∆yt

∆nt

]
=

[
ν1(st)
ν2(st)

]
+

[
a11 a12

a21 a22

][
∆yt−1

∆nt−1

]
+

[
α1

α2

]
ynt−1 +

[
u1t

u2t

]
, (9)

with ν (st) = δ (st) − αµ (st).
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Table 4 ML Estimation Results for the MSIH(3)-VECM(4) Model, 1960:1 - 1999:4.
∆yt ∆nt

Regime-dependent intercepts
ν1 -0.4297 (0.2025) -0.2244 (0.0906)
ν2 0.7692 (0.1139) 0.2473 (0.0436)
ν3 1.3161 (0.1946) 0.4348 (0.0718)

Short-run dynamics
∆yt−1 -0.0512 (0.0924) 0.0030 (0.0327)
∆nt−1 0.2279 (0.1636) 0.5679 (0.0584)

Equilibrium correction
ynt−1 -2.5337 (4.1919) 3.0889 (1.4884)

Standard Errors
Regime 1 0.7834 0.3408
Regime 2 0.4592 0.1362
Regime 3 0.7855 0.3086
Correlation
Regime 1 0.6165
Regime 2 0.3572
Regime 3 0.6128

Fitting MS-VECM linear VECM
logLik -141.5922 -183.2934
AIC 2.1207 2.4439
HQ 2.3323 2.5302
SC 2.6418 2.6563

pij st−1 = 1 st−1 = 2 st−1 = 3 Duration
st = 1 0.7713 0.0449 0.0412 4.37
st = 2 0.0256 0.9551 0.0608 22.27
st = 3 0.2030 .000003 0.8981 9.81

Notes: The numbers in brackets represent the standard errors of
the estimated coefficients. MSIH-VECM denotes the estimated
VECM with regime shifts in the (I)ntercept and regime-dependent
(H)eteroskedasticity.
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Figure 6 The US Business Cycle in output and employment.

The resulting regime probabilities are plotted in the lower three panels of figure 6. As in the uni-
variate case, the smoothed probabilities assign each observation to a particular state using all the sample
information; the filtered use information available only up to that observation. The findings confirm
the conventional wisdom of a business cycle which can be separated in three stages: recession, growth,
and high growth. It can be seen that regime 1 depicts very precisely the NBER recessions of 1970,
1973/74, 1979/80 and 1990. Regime 2 represents normal growth episodes; while regime 3 characterizes
high-growth episodes mainly occurring after recessions. Note that regime 3 is observed until 1985 only,
which might indicate a structural change in the phase structure of the business cycle. Expansions after
1985 (regime 2) are characterized by a lower mean growth rate and reduced volatility of macroeconomic
fluctuations. This structural break in the volatility of US output growth coincides with the findings of
McConnell and Quiros (1998). They found a substantial reduction in the volatility of durable goods
production beginning with the first quarter of 1984, which appears to be correlated with a decline in the
share of durable goods accounted for by inventories. The upper two panels show how the inferred re-
gime probabilities are translated into shifts in the mean growth rate of output and employment: Thus the
bold gray line represents the contribution of the hidden Markov chain to the fluctuations in the variables
of the system, the thin line gives the fit and the line with the points gives the one-step prediction.

Figure 7 shows the results when the MS-VECM of output and employment (9) is conditioned on
the first four lags of LNR. When compared to the bivariate MS-VECM, the reconstructed recessions are
shorter and more pronounced. Particularly the 1973/74 recession is traced back to the peaks in the LNR
regressor and, hence, it is not recognized as classical recessions.

Test results for asymmetries in the models of the vector process are reported in table 5. The left
column is the MS-VECM of Krolzig and Toro (1998). As in the tables reporting the univariate models,
we compare the MSIH(3)-VECM(1) with conditional models involving the first four lags of the five oil
price transforms. We find not only evidence of steepness in both output and employment growth but
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Table 5 Tests for asymmetries in MSIH(3)-VECM(1) models of US output and employment growth, 1960:1 – 1999:4.
MS-VECM MS-VECMplusDRoil MS-VECM plusLNR MS-VECM plusN1DRoil MS-VECMplusN3DRoil MS-VECMplusQuant

Test sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value sign statisticp-value
NonSharpness 3.4984 [0.3210] 2.3609 [0.5010] 6.1185 [0.1060] 2.5155 [0.4725] 3.1720 [0.3659] 0.3340 [0.9535]

p12 = p32 0.2471 [0.6191] 0.0710 [0.7899] 0.0033 [0.9539] 0.1563 [0.6926] 0.0993 [0.7527] 0.3195 [0.5719]
p13 = p31 3.4747 [0.0623]+ 2.1939 [0.1386] 6.1078 [0.0135]∗ 2.3434 [0.1258] 3.0620 [0.0801]+ 0.0135 [0.9077]
p21 = p23 0.0100 [0.9203] 0.0026 [0.9592] 0.0085 [0.9266] 0.0007 [0.9789] 0.0133 [0.9082] 0.0005 [0.9813]

NonDeepness (∆yt) − 1.5833 [0.2083] − 2.0707 [0.1502] − 3.4789 [0.0622]+ − 2.4720 [0.1159] − 2.1612 [0.1415] − 3.2081 [0.0733]+

NonSteepness(∆yt) + 5.4891 [0.0191]∗ + 4.7949 [0.0285]∗ + 4.3867 [0.0362]∗ + 6.0498 [0.0139]∗ + 5.4029 [0.0201]∗ + 6.4975 [0.0108]∗

NonDeepness (∆nt) − 1.5652 [0.2109] − 1.2038 [0.2726] − 4.2876 [0.0384]∗ − 1.3800 [0.2401] − 2.5327 [0.1115] − 3.1078 [0.0779]+

NonSteepness(∆nt) + 4.3341 [0.0374]∗ + 3.1728 [0.0749]+ + 4.1180 [0.0424]∗ + 4.0938 [0.0430]∗ + 4.6269 [0.0315]∗ + 5.8674 [0.0154]∗

Ergodic prob.
Pr(s1 = 1) 0.1598 0.1609 0.1329 0.1586 0.1304 0.1231
Pr(s1 = 2) 0.5219 0.5010 0.4966 0.5162 0.5217 0.5087
Pr(s1 = 3) 0.3183 0.3380 0.3704 0.3252 0.3478 0.3681

Synchronization
NBER 0.9513 0.9420 0.9536 0.9435 0.9588 0.9419

Pr(s1 = 1| rec.) 0.9186 0.9627 0.8249 0.9793 0.8317 0.7337
Pr(s1 = 1| exp.) 0.0429 0.0617 0.0235 0.0628 0.0186 0.0211
AIC 2.1207 2.1782 2.1589 2.1746 2.1539 2.1166

Under the null of symmetry, the SDS test statistics areχ2 with one degree of freedom; the NonSharpness has three degrees of freedom.
∗∗ indicates significance at the1% level;
∗ indicates significance at the5% level;
+ indicates significance at the10% level.

A ‘ +’ (‘ −’) in the columns headed ‘Sign’ indicates positive (negative) skewness.
‘Synchronization’ reports the frequency that the NBER dated cycle and the Markov chain are in the same state of recession or expansion. ‘Pr(s1 = 1| NBER
recession) ’ denotes the synchronization of MS and NBER recessions. It is measured as the average smoothed probability of beeing in regime 1 of the estimated
MS-model when the US economy is in a recession according to the NBER. Similarily ‘Pr(s1 = 1| NBER expansion) ’ reports the probability of a recession
infered from the MS-VAR when the US economy is in state of an expansion according to the NBER.
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Figure 7 The US Business Cycle in output and employment when conditioned on LNR.

also sharpness. For all six models considered, the steepness of business cycles is confirmed at a 5%
significance level. For some of the models, there is also indication of sharpness due top31 < p13. When
the MS-VECM is conditioned on LNR, recessions are found to be deep in output (at the 10% level) and
employment (at the 1% level).

A major advantage of the MS-VECM when compared to the MS-AR is that its regime classification
is close to the NBER cycle dating with or without an oil variable: The synchronization of the MS-
VECM with the NBER benchmark is for all models greater than 0.94. Hence, it is justified to interpret
the outcome of our SDS tests as measures for the effects of oil shocks on the asymmetry of the business
cycle.

4 Conclusions

The relationship between oil and the macroeconomy has received much attention in the recent liter-
ature. In this paper we argued that a three-state Markov-Switching model that distinguishes between
contractions, and divides expansions into ‘normal’ and rapid recovery growth, is the appropriate model
in which to explore the explanatory power of oil prices for business cycle phases, especially recessions,
and to investigate the role of oil in generating business cycle asymmetries. We tested the parameter re-
strictions that rule out SDS asymmetries, and could show that the outcomes are unaffected by allowing
oil prices to affect the conditional mean of output growth. Our findings are broadly in line with those
of Raymond and Rich (1997): oil prices do not appear to be the sole explanation of regime-switching
behavior. Furthermore, the asymmetries detected in the business cycle do not appear to be explicable by
oil prices.

While some of violence of economic downturns can be attributed to dramatic changes in the price
of oil, the findings of the asymmetry tests consistently is that post-War US economic growth is charac-
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terized by steepness of expansions. Thus, whether with or without allowing for the effects of oil price
shocks, the violence of business cycle transitions from the state of recession to an expansion is greater
than when an expansion ends in a recession. The overwhelming evidence is strongly against the conven-
tional wisdom (as in the definition of Burns and Mitchell) that recessions are more violent (i.e. steeper)
than expansions.
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