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Abstract

In this paper we study the detailed distributional properties of integrated non-Gaussian
OU (intOU) processes. Both exact and approximate results are given. We emphasise the
study of the tail behaviour of the intOU process. Our results have many potential applica-
tions in financial economics, for OU processes are used as models of instantaneous volatility
in stochastic volatility (SV) models. In this case an intOU process can be regarded as a
model of integrated volatility. Hence the tail behaviour of the intOU process will determine
the tail behaviour of returns generated by SV models.

Keywords: Background driving Lévy process; Chronometer; Co-break; Econometrics; Inte-
grated volatility; Kumulant function; Lévy density; Lévy process; Option pricing; OU processes;
Stochastic volatility.

1 Introduction

In the stochastic volatility (SV) model for log-prices of stocks and for log exchange rates a basic

Brownian motion is generalised to allow the volatility term to vary over time. Then the log-price

y∗(t) follows the solution to the stochastic differential equation (SDE),

dy∗(t) = {µ+ βτ(t)}dt+ τ1/2(t)dw(t), (1)

where τ(t), the instantaneous or spot volatility, is going to be assumed to (almost surely) have

locally square integrable sample paths, while being stationary and stochastically independent

of the standard Brownian motion w(t). Over an interval of time of length ∆ > 0 returns are

defined as

yn = y∗ (∆n)− y∗ ((n− 1)∆) , n = 1, 2, .... (2)

which implies that whatever the model for τ , it follows that

yn|τn ∼ N(µ∆+ βτn, τn), (3)
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where

τn = τ∗(n∆)− τ∗ {(n− 1)∆} , and τ∗(t) =
∫ t

0
τ(u)du.

In econometrics τ∗(t) and τn are called integrated volatility and actual volatility, respectively.

Both definitions play a central role in the probabilistic and statistical analysis of SV models. Of

course τ∗(t) can be thought of as a generalised subordinator, or “chronometer”, for Brownian

motion with drift; more specifically, y∗(t) is representable as µt + bβ(τ∗(t)) where bβ denotes

Brownian motion with drift β and is independent of τ∗ (cf. Barndorff-Nielsen and Shephard

(2001)). Reviews of the literature on SV models are given in Taylor (1994), Shephard (1996)

and Ghysels, Harvey, and Renault (1996), while statistical and probabilistic aspects are studied

in detail in Barndorff-Nielsen and Shephard (2001).

As a result of (3), SV models can deliver returns which are stationary, serially dependent so

long as τn is dependent, while the marginal distribution of returns will be thicker tailed than

normal due to the mixing over the random τn. However, when ∆ is large the dependence is

mild, while the distribution of returns is close to normality. The latter result holds so long as

τ(u) is ergodic for then, as t → ∞,

t−1τ∗(t) = t−1

∫ t

0
τ(u)du a.s.→ ξ = E(τ(t)),

implying, for the SV model, that (e.g. Barndorff-Nielsen and Shephard (2001))

∆−1/2 {yn − µ∆− βτ∗(∆)} L→ N(0, ξ)

as ∆→ ∞. This result is called “aggregational Gaussianity.”
Aggregational Gaussianity has been much discussed in the econometric literature (e.g. in

the ARCH literature it goes back to Diebold (1988, pp. 12-16)). Here we use an exchange rate

dataset kindly made available to us by Olsen and Associates to empirically verify this. It records

every five minutes the most recent quote to appear on the Reuters screen from 1st December

1986 until 30th November 1996. This data, together with various adjustments we have made to

it, is discussed extensively in our data Appendix. Here we focus on the Dollar/Deutsch-Mark

series. We report in Figure 1 non-parametric estimates of the log-density of returns recorded

over intervals of length five minutes (∆ = 1, T = 705, 313), 20 minutes (∆ = 4, T = 176, 325),

1 hour (∆ = 12, T = 58, 775), 6 hours (∆ = 72, T = 9, 775), one day (∆ = 288, T = 2, 440)

and one week (∆ = 1440, T = 488). Also plotted is the fit of the generalised hyperbolic

(GH) distribution, which is a five parameter flexible mixture of normals model discussed by, for

instance, Barndorff-Nielsen (1977), Barndorff-Nielsen (1997) and Eberlein and Prause (2000).

Its parameters were chosen using maximum likelihood methods. The non-parametric estimator

2



-.25 0 .25

-5

-2.5

0

2.5
5 minutes

Fitted GH model
Non-parametric estimator

-.5 0 .5

-5

-2.5

0

2.5
20 minutes

Fitted GH model
Non-parametric estimator

-1 0 1

-5

-2.5

0

1 hour

Fitted GH model
Non-parametric estimator

-2 0 2

-7.5

-5

-2.5

0

6 hours

Fitted GH model
Non-parametric estimator

-2.5 0 2.5

-6

-4

-2

0
1 day

Fitted GH model
Non-parametric estimator

-5 0 5

-6

-5

-4

-3

-2

-1
5 days

Fitted GH model
Non-parametric estimator

Figure 1: Log-densities based on the five minute Olsen group data. Movements on the US
Dollar against German DM from December 1986 to November 1996 over various intervals of
time. Drawn log-densities are computed using a non-parametric estimator as well as the ML
estimation of a generalised hyperbolic model. File name is boll brown.in7.

of the log-density is constructed by using the log of Gaussian kernel estimator coded in Applied

Statistics Algorithm AS 176 by Bernard Silverman, which is available at StatLib and NAG, as

well as in many statistical software environments such as Ox (Doornik (2001)). The bandwidth

is chosen to be 1.06σ̂T−1/5, where T is the sample size and σ̂ is the empirical standard deviation

of the returns (this is an optimal choice against a mean square error loss for Gaussian data).

The figures show some interesting features. At low levels of aggregation the “pine tree”

feature of the log of the density of price changes in the exchange rate hold. This can be seen

even at 6 hour returns. However, for daily data the log-density is a more linear in the tails.

At the weekly level the tails seem heavier than linear and the quadratic approximation of the

Gaussian seems to be closer to the mark. These observations also appear if we study the

moments of the changes data. Table 1 shows the first four moments for the changes at different

levels of aggregation. The big feature of the table is that as the level of aggregation increases

so the kurtosis falls. At the weekly level the kurtosis is still above three, indeed this value is

statistically significant, however it is not massively so. An interesting feature of the Table is

the skewness statistics, which are all positive. However, these statistics do not really yield a
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Mean Variance Skewness Kurtosis

5 minutes -0.0000256 0.001847 0.146 44.2
20 minutes -0.000102 0.006803 0.0628 27.6
1 hour -0.000307 0.01929 0.263 21.3
6 hours -0.00184 0.1162 0.0959 9.47
1 day -0.00738 0.4903 0.00328 5.27
1 week -0.0369 2.427 0.144 3.77

Table 1: Raw mean, variance and standardised (by the standard deviation) third and fourth
moments of the aggregated versions of the Olsen exchange rate data.

consistent pattern which suggests the changes are mildly positively skewed but this is not a large

feature of the series. Closely similar features to those discussed here are observed in other areas

of study, particularly in turbulence, see for instance, Barndorff-Nielsen (1979).

As we saw above, if spot volatility is ergodic then SV models imply aggregational Gaussian-

ity. In this paper we try to refine this result. We study the situtation where spot volatility

follows a non-Gaussian Ornstein-Uhlenbeck (OU) process which is the solution to the stochastic

differencial equation (SDE)

dτ(t) = −λτ(t)dt+ dz(λt), λ > 0,

where z(t) is a subordinator — that is a process with non-negative, independent and stationary

increments (see, for example, Bertoin (1996) and Sato (1999)). Such models have been intro-

duced in this context by Barndorff-Nielsen and Shephard (2001), while we call the corresponding

τ∗(t) integrated OU or intOU processes. We will study the distribution of τn for these models

with ∆ fixed, which will imply the distribution of returns yn. In particular we will derive the

behaviour of the tails of actual volatility and so of returns from these SV models. This is of

considerable practical importance and quite some interest in the recent literature. Andersen,

Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2001a)

have recently used realised volatility estimators of τn to claim that actual volatility is typically

close to being lognormal for a wide range of ∆. This would imply returns are normal lognor-

mal. Can such a claim hold if volatility is of OU type? Barndorff-Nielsen and Shephard (2001)

have assumed τ(t) is distributed as an inverse Gaussian variable and then claimed that actual

volatility is close to being inverse Gaussian for all ∆, implying returns would be normal inverse

Gaussian. Can such claims be rationalised?

The outline of the paper is as follows. In section 2 we introduce the intOU processes, which

are integrals of OU processes. The theory for these processes will be developed in the first

case for general OU processes — not constraining ourselves to the non-negative case needed

for volatility. The Section continues with a discussion of the properties of predictions from

such models, as well as the behaviour of increments from intOU process. Section 3 gives more
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concrete results in the special case of non-negative OU processes. This Section will contain the

answers to the above questions. Section 4 looks at superposition extensions of our basic models,

while Section 5 concludes. Section 6 contains a discussion of the data used in this paper.

2 intOU processes

2.1 Basic model structure

This paper discusses analytic results on the distributional behaviour of the stochastic process

x∗(t) defined by

x∗(t) =
∫ t

0
x(s)ds,

where x(t) is a strictly stationary process on the real line which satisfies a SDE of the form

dx(t) = −λx(t)dt+ dz(λt).

Here the rate parameter λ is arbitrary positive and z(t) is a homogeneous background driving

Lévy process (BDLP) — that is it is a process with independent and stationary increments. The

x(t) process is said to be of OU type or an OU process (and is familiar in the Gaussian case

where the Lévy process is Brownian motion). Correspondingly, we say that x∗(t) is an intOU

process. The OU process is representable (in law) as

x(t) = e−λtx(0) + e−λt

∫ t

0
eλsdz(λs).

As indicated in the introduction, our main interest is where x(t) is a purely non-negative process.

In such cases we will often switch notation from x(t) to τ(t) in order to make this clear.

Barndorff-Nielsen and Shephard (2001) have studied some of the stochastic properties of x(t)

and the reader is referred there for a discussion of the associated literature. They established

the notation that if x(t) is an OU process with a marginal law D, then we say x(t) is a D-OU

process. Further, if z(1) has law D, then we say x(t) is an OU-D process. Typical choices of D

are the inverse Gaussian (IG) and gamma distributions.

A major feature of the intOU process x∗(t) is that (see Barndorff-Nielsen (1998))

x∗(t) = λ−1{z(λt)− x(t) + x(0)}
= λ−1(1− e−λt)x(0) + λ−1

∫ t

0

{
1− e−λ(t−s)

}
dz(λs), (4)

which has a simple structure. An interesting characteristic of this expression is that x∗(t) has

continuous sample paths when λ > 0, while z(λt) and x(t) have jumps (or breaks). Hence we

have produced a process with a continuous sample path by taking linear combinations of two

upward jumping processes. As a result z(λt) and x(t) co-break (Clements and Hendry (1999,
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Ch. 9) introduced the concept of a co-break, where components of a multivariate series exhibit

breaks but a linear combination of that series does not). Figure 2 shows this feature for a Γ-

OU process, that is a process with a gamma distributed marginal law Γ(ν, α) with probability

density
αλ

Γ(ν)
xν−1e−αx.

For the simulated process we plot x∗(t) and z(tλ) against t. The intOU process has no jumps,

although the gradient of the process clearly changes over time. The BDLP has its familiar

upward jumps. Further, in the case of a non-negative process, τ∗(t) has a lower bound made up

0 10 20 30 40 50 60
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Figure 2: Γ−OU process with ν = 3, α = 8.5. Left: plot of x∗(t) against t . Right: plot of z(λt),
the BDLP, against t .

of λ−1(1− e−λt)τ(0).

The fact that z(λt) and x(t) co-break has deep implications for the use of this model. Suppose

we focus for a moment on the case where x∗(t) is a positive process. We can then use it as a

chronometer of Brownian motion with drift, implying the resulting process y∗(t) has continuous

sample paths. This contrasts with the usual case of subordination in the probability literature

where the Brownian motion plus drift is subordinated by a Lévy process, z(t). In that case the

resulting y∗(t) process must have jumps.

Although z(λt) and x(t) co-break, they do not co-integrate (Engle and Granger (1987) in-

troduced the concept of a co-integration, where components of a multivariate series exhibit

nonstationarity but linear combinations of that series do not). Instead, the long-run behaviour

of x∗(t) is dominated by z(λt). This is clear from rewriting (4) as

λx∗(t)− z(λt) = x(0)− x(t),

which means x∗(t) and z(λt) (rather than x(t) and z(λt)) co-integrate. So roughly, for large

λt, λx∗(t) will have the same distribution as z(λt) — the error in this approximation is a
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stationary process. The distribution of the error, for large t and x(t) being a D-OU process, is

approximately the difference of two independent random variables drawn from the distribution

D.

2.2 The problem of prediction

In this section we will calculate the cumulants of x∗(t), both unconditionally and conditionally

on x(0). The latter result is of fundamental importance in option pricing where analytically

calculating the conditional cumulant function is enough to be able to compute European style

options very rapidly. The former result will allow us to think about the unconditional distribu-

tion of returns.

The attractive feature of (4) is that the density of the future intOU process x∗(t)|x(0) is
determined by just

z(λt)− x(t)|x(0).

As both z(λt) and x(t) are linear we can see that this will be mathematically tractable. In

particular (4) implies we have only to study the stochastic properties of the innovations for the

intOU process

λ−1

∫ t

0

{
1− e−λ(t−s)

}
dz(λs) =

∫ t

0
ε(t− s;λ)dz(λs) (5)

L= λ−1

∫ λt

0

(
1− e−s

)
dz(s), (6)

where

ε(t;λ) = λ−1(1− e−λt). (7)

This allows us to compactly write

x∗(t) =
∫ t

0
ε(t− s;λ)dz(λs) + ε(t;λ)x(0) (8)

=
∫ t

0
ε(t− s;λ)dz(λs) + ε(t;λ)

∫ 0

−∞
esdz(s), (9)

the latter being entirely in terms of the BDLP z, here extended to be defined on the whole real

line. In this section we will show how to compute the cumulants of the x∗(t) process.

2.3 Notation

It will be helpful later to here define various pieces of notation which will be central to our

results. First we note that

ε(t;λ) = tε(1;λt)
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and

ε(t;λ) = λ−1{1− ε(t;λ)/t} (10)

or, equivalently,

ε(t;λ)/t = 1− λε(t;λ), (11)

where / in subscript position indicates differentiation. Further, we shall use the following nota-

tion for Laplace and cumulant transforms of a random variate x:

C{ζ ‡ x} = log E{eiζx}

and

K̄{θ ‡ x} = log E{e−θx},

where the latter notation is primarily used for positive variates x. Further, in the context of OU

processes we write

κ́(ζ) = C{ζ ‡ x(t)} and κ(ζ) = C{ζ ‡ z(1)}, (12)

ḱ(θ) = K̄{θ ‡ x(t)} and k(θ) = K̄{θ ‡ z(1)}, (13)

and note that (see Barndorff-Nielsen (2000b) and Barndorff-Nielsen and Shephard (2001))

κ́(ζ) =
∫ ∞

0
κ(e−sζ)ds and κ(ζ) = ζκ́′(ζ), (14)

while

ḱ(θ) =
∫ ∞

0
k(e−sθ)ds and k(θ) = θḱ′(θ). (15)

It then follows that if we write the cumulants of x(t) and z(1) (when they exist) as, respectively,

κ́m and κm (m = 1, 2, ...) we have that

κm = mκ́m, for m = 1, 2, ... .

A special case of this is that the means of x(t) and z(1) are identical, while the variance of the

former is twice that of the latter. Finally we introduce the notation

ḱ∗(θ) = K̄{θ ‡ x∗(t)},

for the integrated process.

Henceforth, for clarity, we shall refer to the quantities K̄{θ‡x}, k(θ), ḱ(θ) and ḱ∗(θ) as kumu-

lant functions, to distinguish them from the other cumulant functions C{ζ ‡ x}, κ(ζ) and κ́(ζ).
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Some examples of the structure of such kumulants are given in Table 2. The only troublesome

derivation is the OU-Γ case where we know that k(θ) = ν log (1 + θ/α) which implies

ḱ(θ) = ν

∫ ∞

0
log

(
1 +

θ

α
e−s

)
ds

= ν

∫ θ/α

0

1
t
log (1 + t) dt where t =

θ

α
e−s

= ν
∞∑

j=1

(−1)j (θ/α)
j

j2
for 0 ≤ θ/α < 1.

In this Table, P (ψ) denotes a Poisson distribution with parameter ψ, IG(δ, γ) is an inverse

Gaussian variable which has the density

δ√
2π

eδγx−3/2 exp
{
−1
2

(
δ2x−1 + γ2x

)}
, γ ≥ 0, δ, x > 0, (16)

and TS(κ, δ, γ) is the tempered stable. The tempered stable derives from the positive κ-stable

law S(κ, δ) which has the cumulant transform −(2δ2θ)κ, 0 < κ < 1 and density p(x;κ, δ). Then

the density of the tempered stable is defined by

e(δγ)2κ
p(x;κ, δ)e−

1
2
γ2x, κ ∈ (0, 1), δ > 0, γ ≥ 0, (17)

the IG(δ, γ) being the special case of TS(κ, δ, γ) determined by κ = 1
2 . The class of TS laws

was introduced by Hougaard (1986), for applications to survival modelling. However, the same

laws had been considered earlier, in an exponential family setting, by Tweedie (1984).

Model k(θ) = logE{e−θz(1)} ḱ(θ) = logE{e−θx(t)}
OU-Γ(ν, α) −ν log(1 + θα−1) ν

∑∞
j=1 (−1)j (θ/α)j j−2

OU-IG(δ, γ) δγ − δγ(1 + 2γ−2θ)1/2 Not known
OU-P(ψ ) −ψ

(
1− e−θ

) −ψ {E1(θ) + log θ + γ}
OU-TS(κ, δ, γ) (δγ)2κ − δ2κ(γ2 + 2θ)κ Not known
Γ(ν, α)-OU −νθ (α+ θ)−1 −ν log

(
1 + θα−1

)
IG(δ, γ)-OU −θδγ−1

(
1 + 2θγ−2

)−1/2
δγ − δγ

(
1 + 2θγ−2

)1/2

TS(κ, δ, γ)-OU −2δ2κκθ(γ2 + 2θ)κ−1 (δγ)2κ − δ2κ(γ2 + 2θ)κ

Table 2: Kumulant functions for common models. In the OU-P case, γ is Euler’s constant and
E1(x) =

∫ ∞
x y−1e−ydy, the exponential integral.

2.4 Conditional first two moments

Recalling we wrote the first two cumulants of z(1) as κ1 (which also equals E(x(t)) and κ2 (which

equals 2Var(x(t)), then

E
{
λ−1

∫ λt

0

(
1− e−s

)
dz(s)

}
= λ−1κ1

∫ λt

0

(
1− e−s

)
ds

= λ−1κ1

(
λt− 1 + e−λt

)
.
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The implication is that

E {x∗(t)|x(0)} = λ−1(1− e−λt)x(0) + λ−1κ1

(
λt− 1 + e−λt

)
(18)

= ε(t;λ){x(0)− κ1}+ κ1t (19)

which implies, of course, E {x∗(t)} = κ1t. The corresponding result for the conditional variance

is

Var {x∗(t)|x(0)} = λ−2κ2

∫ λt

0
(1− e−s)2ds

= λ−2κ2

(
λt− 2 + 2e−λt +

1
2
− 1
2
e−2λt

)
, (20)

while

Var {x∗(t)} = κ2λ
−2

{
e−λt − 1 + λt

}
.

2.5 Cumulant functions for x∗(t)|x(0) and x∗(t)

One of the main advantages of the OU process is that we are able to derive the conditional

cumulant function of x∗(t)|x(0). From (8) it follows that

C{ζ ‡ x∗(t)|x(0)} = C
{
ζ ‡

∫ t

0
ε(t− s;λ)dz(λs)

}
+ iζε(t;λ)x(0), (21)

where

C
{
ζ ‡

∫ t

0
ε(t− s;λ)dz(λs)

}
= C

{
ζ ‡ λ−1

∫ λt

0
(1− e−λt+u)dz(u)

}
=

∫ λt

0
C{ζλ−1(1− e−λt+u) ‡ z(1)}du

= λ

∫ t

0
C{ζε(t− s;λ) ‡ z(1)}ds

= λ

∫ t

0
κ(ζε(t− s;λ))ds

= λ

∫ t

0
κ(ζε(s;λ))ds. (22)

The result for the conditional cumulant function allows us to easily calculate the uncondi-

tional cumulant function. From (8) and (22) it follows that

C{ζ ‡ x∗(t)} = C
{
ζ ‡

∫ t

0
ε(t− s;λ)dz(λs)

}
+ κ́(ζε(t;λ))

= λ

∫ t

0
κ(ζε(s;λ))ds+ κ́(ζε(t;λ)). (23)

It is sometimes helpful to express∫ t

0
κ(ζε(s;λ))ds =

∫ ε(t;λ)

0
(1− λr)−1κ(ζr)dr, (24)
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which implies (21) and (23) become

C{ζ ‡ x∗(t)|x(0)} = λ

∫ ε(t;λ)

0
(1− λr)−1κ(ζr)dr + iζε(t;λ)x(0)

and

C{ζ ‡ x∗(t)} = λ

∫ ε(t;λ)

0
(1− λr)−1κ(ζr)dr + κ́(iζε(t;λ)).

2.6 Cumulant functionals

At a more abstract level it is sometimes helpful to have generic results for the cumulant functions

of the x∗ process. A convenient way of doing this is via

f • x∗ =
∫ ∞

0
f(t)dx∗(t),

where f denotes an “arbitrary” function. We find that

f • x∗ =
∫ ∞

0
f(t)x(t)dt

=
∫ ∞

0
f(t)

{
e−λt

∫ t

0
eλsdz(λs) + e−λtx(0)

}
dt

=
∫ ∞

0
f(t)e−λt

∫ t

0
eλsdz(λs)dt+

∫ ∞

0
f(t)e−λtdtx(0)

=
∫ ∞

0

∫ ∞

s
f(t)e−λ(t−s)dtdz(λs) +

∫ ∞

0
f(t)e−λtdtx(0)

=
∫ ∞

0

∫ ∞

0
f(t+ s)e−λtdtdz(λs) +

∫ ∞

0
f(t)e−λtdtx(0)

=
∫ ∞

0

∫ ∞

0
f(t+ s)e−λtdtdz(λs) +

∫ ∞

0
f(t)e−λtdtx(0)

and hence

C{ζ ‡ f • x∗|x(0)} = λ

∫ ∞

0
κ

(
ζ

∫ ∞

0
f(t+ s)e−λtdt

)
ds+ iζ

∫ ∞

0
f(t)e−λtdtx(0).

The corresponding unconditional cumulant functional is

C{ζ ‡ f • x∗} = λ

∫ ∞

0
κ

(
ζ

∫ ∞

0
f(t+ s)e−λtdt

)
ds+ κ́(ζ

∫ ∞

0
f(t)e−λtdt). (25)

We note, in passing, that using (14), (25) may be given the alternative forms

C{ζ ‡ f • x∗} = λ

∫ ∞

−∞
κ

(
ζ

∫ ∞

0
f(t+ s)e−λtdt

)
ds (26)

= ζ

∫ ∞

0
f(s)κ́′

(
ζ

∫ ∞

0
f(t+ s)e−λtdt

)
ds, (27)

see Barndorff-Nielsen (2000b).

Formula (23) is recovered from (25) by choosing f(s) = 1[0,t](s). The joint cumulant function

of x∗(s) and x∗(t), for 0 < s < t, may be obtained by letting f = φ1[0,s] + ψ1[0,t], etc.
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3 Positive processes

3.1 Background

From now on we suppose that the OU process is positive and, correspondingly, we switch notation

from x and x∗ to τ and τ∗. We wish to investigate the nature of the intOU process τ∗ somewhat

more closely as this is of main concern in connection with the models introduced in Barndorff-

Nielsen and Shephard (2001).

3.2 Lévy densities

In order to study the tail behaviour of τ∗(t) we will study the tail behaviour of the Lévy density

in detail. We recall that knowledge of the Lévy density is enough to produce the characteris-

tic function via the Lévy-Khintchine formula, which obviously characterises the density of τ∗.

However, the connection between the probability density of τ∗ and the associated Lévy density

is more intimate than this indicates, particular when we are interested in explicitly studying the

tail behaviour of the density of τ∗(t). This is important, for the right hand tail will determine

the an essential part of the behaviour of returns when the intOU models are used for integrated

volatility in stochastic volatility models. More specifically, for the infinitely divisible laws there

are many useful relations and points of similarity between the probability measures and proba-

bility densities of the laws on the hand and their associated Lévy measures and Lévy densities

on the other.1 See Sato (1999, Corollary 25.8, Theorems 28.4, 53.6, 53.8) and Bingham, Goldie,

and Teugels (1989, p. 341) and references given there; cf. also Embrechts and Goldie (1981),

Sato and Steutel (1998) and Barndorff-Nielsen (2000a).

By (23), the kumulant function of τ∗ is

K̄{θ ‡ τ∗(t)} = λ

∫ t

0
k(θε(s;λ))ds+ ḱ(θε(t;λ)). (28)

Let u and ú denote the Lévy densities of z(1) and τ(t), respectively. They are related by

u(x) = −ú(x)− xú′(x)

and

ú(x) = x−1U+(x),

where

U+(x) =
∫ ∞

x
u(y)dy

1There are also very intriguing differences, so that simple-minded guessing about similarities will often not
work.
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cf. (Barndorff-Nielsen and Shephard (2001). From (28) we may determine an expression for the

Lévy density v(y; t;λ) of τ∗(t). We have

K̄{θ ‡ τ∗(t)} = −λ

∫ t

0

∫ ∞

0
(1− e−θε(s;λ)x)u(x)dxds

−
∫ ∞

0
(1− e−θε(t;λ)x)ú(x)dx

and by the substitutions r = ε(s;λ) and y = rx, and using (11), this gives

K̄{θ ‡ τ∗(t)} = −
∫ ∞

0
(1− e−θy)v(y; t;λ)dy,

where

v(y; t;λ) = λ

∫ ε(t;λ)

0
{r(1− λr)}−1 u(r−1y)dr + ε(t;λ)−1ú(ε(t;λ)−1y). (29)

Recalling that ú(x) = x−1U+(x), the latter expression may be written as

v(y; t;λ) = λ

∫ ε(t;λ)

0
{r(1− λr)}−1 u(r−1y)dr + y−1U+(ε(t;λ)−1y). (30)

Letting δ(t;λ) = ε(t;λ)−1 and using the substitution q = r−1 we then obtain

v(y; t;λ) = λ

∫ ∞

δ(t;λ)
(q − λ)−1u(qy)dq + y−1U+(ε(t;λ)−1y) (31)

= λ

∫ ∞

0
(w + δ(t;λ)− λ)−1u((w + δ(t;λ))y)dw + y−1U+(δ(t;λ)y). (32)

Letting

ū(x) = xu(x) and v̄(y; t;λ) = yv(y; t;λ) (33)

the latter relation may be reexpressed as

v̄(y; t;λ) = λ

∫ ∞

0
{(w + δ(t;λ)− λ)(w + δ(t;λ))}−1ū((w + δ(t;λ))y)dw + U+(δ(t;λ)y) (34)

Thus, in particular, if u(x) ∼ x−1−a for an a ∈ (0, 1) and x ↓ 0 then

v(y; t;λ) ∼
{
λ

∫ ∞

δ(t;λ)
q−1−a(q − λ)−1dq + a−1ε(t;λ)a

}
y−1−a

for y ↓ 0.
More detailed calculations can be carried out in particular cases, as for the TS and Γ settings

that we discuss next.

Example 3.1 OU-TS case. In this model u is of the TS form

u(x) = x−1−ae−x,

with 0 < a < 1. Hence
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U+(x) =
∫ ∞

x
y−1−ae−ydy

= a−1x−ae−x − a−1

∫ ∞

x
y−ae−ydy (35)

= Γ(−a, x) (36)

and

ú(x) = x−1Γ(−a, x). (37)

Here

Γ(α, x) =
∫ ∞

x
ξα−1e−ξdξ

is the incomplete gamma function. We recall that

Γ(α+ 1, x) = αΓ(α, x) + xαe−x (38)

and, for α > 0 and x → ∞,

Γ(α, x) ∼ xα−1e−x
{
1 + (α− 1)x−1 + (α− 1)(α− 2)x−2 + · · ·} (39)

(cf. Abramowitz and Stegun (1970, formula 6.5.32)). This implies, in particular, that

Γ(−a, x) ∼ x−a−1e−x (40)

for x → ∞.
It follows, from (37) and (39), that

ú(x) ∼ a−1x−1−a for x ↓ 0,

while

ú(x) ∼ x−5/2e−x for x → ∞.

Combining (32) and (36) we moreover find

v(y; t;λ) = λy−1−ae−δ(t;λ)y

∫ ∞

0
(w + δ(t;λ))−1−a(w + δ(t;λ)− λ)−1e−wydw

+y−1Γ(−a, δ(t;λ)y). (41)

Here, for y → ∞∫ ∞

0
(w + δ(t;λ))−1−a(w + δ(t;λ)− λ)−1e−wydw ∼ ε(t;λ)2+aeλty−1, (42)

while, by (40),

y−1Γ(−a, δ(t;λ)y) ∼ ε(t;λ)1+ay−2−ae−δ(t;λ)y.
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Thus, all in all, for y → ∞

v(y; t;λ) ∼ c∞(t;λ, a)y−2−ae−δ(t;λ)y (43)

and for y ↓ 0, by (29) and (35),

v(y; t;λ) ∼ c0(t;λ, a)y−1−a, (44)

where

c∞(t;λ, a) = eλtε(t;λ)1+a

c0(t;λ, a) = λ

∫ ε(t;λ)

0
ra(1− λr)−1dr + a−1ε(t;λ)a.

�

Example 3.2 TS-OU case. In this case

ú(x) = x−1−ae−x, (45)

(0 < a < 1). Thus we have

u(x) = −ú(x)− xú′(x)

= ax−1−ae−x + x−ae−x

and, again with δ(t;λ) = ε(t;λ)−1,

δ(t;λ)ú(δ(t;λ)y) = ε(t;λ)ay−1−a exp{−δ(t;λ)y}.

Consequently

v(y; t;λ) = aλy−1−a

∫ ∞

0
(w + δ(t;λ))−1−a(w + δ(t;λ)− λ)−1e−wydwe−δ(t;λ)y

+λy−a

∫ ∞

0
(w + δ(t;λ))−a(w + δ(t;λ)− λ)−1e−wydwe−δ(t;λ)y

+ε(t;λ)ay−1−a exp{−δ(t;λ)y}. (46)

It follows from (42) that for y → ∞

v(y; t;λ) ∼ c∞(t;λ, a)y−1−ae−δ(t;λ)y, (47)

whereas for y ↓ 0
v(y; t;λ) ∼ c0(t;λ, a)y−1−a (48)

and here

c∞(t;λ, a) = eλtε(t;λ)a
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c0(t;λ, a) = aλ

∫ ∞

0
(w + δ(t;λ))−1−a(w + δ(t;λ)− λ)−1dw + ε(t;λ)a.

Thus, in particular, for the IG-OU process τ , for any t > 0 the Lévy density of τ∗(t) has

asymptotically the same upper and lower tail behaviour as for IG laws, so that the law of τ∗(t)

is close to being IG. This follows as the Lévy density of an IG(δ, γ) is

δ√
2π

x−3/2 exp
(
−γ2

2
x

)
,

which implies ú(x) in (45) results from the IG special case IG(
√
2π,

√
2). The implication is

that the distribution of τ∗(t) is close to an IG(
√
2πc∞,

√
2δ(t, λ)) in the upper tail and to

IG(
√
2πc0(t;λ, a), 0) in the lower tail. A similar conclusion holds in general for the TS-OU

processes. �

Example 3.3 OU-Γ case. For this model u is of the form

u(x) = x−1e−x

and proceeding as in Example 3.1 we find

U+(x) = E1(x),

where E1(x) is the exponential integral. Further

v(y; t;λ) = λy−1e−δ(t;λ)y

∫ ∞

0
{(w + δ(t;λ))(w + δ(t;λ)− λ)}−1e−wydw

+y−1E1(δ(t;λ)y). (49)

Since

E1(x) ∼
{

x−1e−x for x ↓ 0
− log x for x → ∞ , (50)

(see, for example, Abramowitz and Stegun (1970, pp. 229 and 231)) it follows that

v(y; t;λ) ∼
{

eλty−1e−δ(t;λ)y for y → ∞
y−1 log y−1 for y ↓ 0.

�

Example 3.4 Γ-OU case. With

ú(x) = x−1e−x

we have

u(x) = U+(x) = e−x
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and

v(y; t;λ) = λ

∫ ∞

δ(t;λ)
(q − λ)−1e−qydq + y−1 exp{−δ(t;λ)y}.

Here, by (50), ∫ ∞

δ(t;λ)
(q − λ)−1e−qydq = e−λy

∫ ∞

δ(t;λ)−λ
s−1e−sdq

= e−λyE1((δ(t;λ)− λ)y)

∼
{

eλte−δ(t;λ)y for y → ∞
e−λy log y−1 for y ↓ 0

implying

v(y; t;λ) ∼


eλty−1e−δ(t;λ)y for y → ∞

y−1 for y ↓ 0.
Thus the conclusion is similar to that for the TS-OU processes. �

Example 3.5 LN -OU case. The lognormal (LN) distribution is known to be selfdecomposable,

see Bondesson (1982, p. 18, Theorem 3.1.1, p. 48: Notes). However, an explicit expression for

the Lévy density of LN is not known. Bondesson (2000) dicusses this open problem and notes

that, based among other things on results in Embrechts, Goldie, and Veraverbeke (1979), the

Lévy density u corresponding to the standard lognormal LN(0, 1) must, in all likelihood, satisfy

ū(x) ∼ 1√
2π

e−
1
2

log2 x (51)

for x → ∞. Based on this assumption we find for the intOU process, derived from the LN -OU

process with standard LN marginal, that for y → ∞

v̄(y; t;λ) ∼ 1√
2π
(log y)−1e−

1
2

log2(δ(t;λ)y) = (log y)−1ū(δ(t;λ)y) (52)

In particular, then, the tails of the marginal distributions of the int(LN -OU) process do not

behave as do LN laws.

The verifiication of (52) is as follows. By the substitution r = log(w+δ(t;λ)), for the integral

in (34) we obtain, as y → ∞,∫ ∞

log δ(t;λ)
(er − λ)−1ū(yer)dr ∼ 1√

2π

∫ ∞

log δ(t;λ)
e−re−

1
2
(r+log y)2dr

∼
√

e√
2π

elog y

∫ ∞

log δ(t;λ)
e−

1
2
(r+log y+1)2dr

=
√

eelog y{1− Φ(log(δ(t;λ)y) + 1)}
∼

√
e√
2π

elog y(log y)−1e−
1
2
(log y+log δ(t;λ)+1)2

=
ε(t;λ)√
2π

e−
1
2

log2 δ(t;λ)(log y)−1e−
1
2

log2 y−(log(δ(t;λ)+1) log y

= o((log y)−1e− log2 y) (53)
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Furthermore, (51) implies

U+(x) ∼ 1√
2π
(log y)−1e−

1
2

log2 y (54)

and combining (34), (53) and (54) we find (52). �

3.3 IG-OU case

We use the expression we have already seen, that

K {θ ‡ τ∗(t)|τ(0)} = −θε(t;λ)τ(0) + λ

∫ t

0
k(θε(s;λ))ds

= −θε(t;λ)τ(0) +
∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du, (55)

recalling that the kumulant function k(θ) = log E [exp {−θz(1)}]. Determining the expression
for K {θ ‡ τ∗(t)|τ(0)} in particular cases has been carried out in the context of option pricing
based on OU volatility by Barndorff-Nielsen and Shephard (2001) and subsequently Nicolato

and Venardos (2000) and Tompkins and Hubalek (2000). Here we discuss only the IG-OU case

which was independently derived by Nicolato and Venardos (2000) and Tompkins and Hubalek

(2000). From Table 2 we have that

k(θ) = −θδ

γ

(
1 + 2θγ−2

)−1/2
.

Then ∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du = − δθ

γλ

∫ 1−e−λt

0
(1− u)−1u (1 + κu)−1/2 du, (56)

where κ = 2γ−2λ−1θ. Now∫
(1− u)−1u (1 + κu)−1/2 du = −2

√
1 + κu

κ

+
2arctanh

{√
1+κu√
1+κ

}
√
1 + κ

.

Having derived K {θ ‡ τ∗(t)|τ(0)} it is straightforward to calculate C {ζ ‡ τ∗(t)} via (23).
This cumulant function can be inverted to give the exact density of τ∗(t). Recall that for a

random variable Y the distribution function can be obtained via the characteristic function

using the Fourier inversion:

Pr(τ∗(t) > y) =
1
2
+
1
2π

∫ ∞

0
Im exp{−iζy +C {ζ ‡ τ∗(t)} ζ−1dζ.

Here we use this result to compute the density of τ∗(t) for the IG-OU case, written p∗(x; δ, λ).

This is given, for three different choices of λ, in Figure 3. Together with this we have also plotted

a right hand tail approximation IG(
√
2δ(t, λ)E (τ∗(t)) ,

√
2δ(t, λ)), which makes the mean of the

process correct as well as the right hand tail. We also plot these densities on the log scale. We

can see from (16), that the tail approximation works very well for small values of λ and less well

when λ is large.
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Figure 3: The density p(x) (top graphs) and logp(x) (bottom graphs) of τ∗(1), where the OU
process τ(t) is distributed as IG(

√
2π,

√
2). The dotted line is the upper tail approximation

IG(
√
2δ(t, λ)E (τ∗(1)) ,

√
2δ(t, λ)). The left hand graphs have λ = 0.01, the middle 0.1 and the

right hand graphs have λ = 1.

4 Superposition of two intOU processes

In practical application it is often helpful to allow for more flexible dynamic structures. A simple

and mathematically tractable way of doing this is by adding together two (or more) independent

OU processes, see Barndorff-Nielsen and Shephard (2001).

It is helpful in thinking about this issue to work with the IG-OU case, with

τ(t) =
2∑

j=1

τ j(t), where τ j(t) ∼ IG(δwj , γ)-OU,

where the weights {wj} are strictly positive and sum to one, while the corresponding damping
values are {λj}. Again, the tail behaviour of τ∗(t) will be as for the IG laws.

5 Conclusion

In this paper we have carefully studied some of the properties of integrated OU processes. The

main focus has been on studying cumulant functions of x∗(t) unconditionally and conditionally

on x(0). The results have important implications for their use in, for example, option pricing
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models. Our main analytic conclusion is that if x(t) is TS-OU or Γ-OU then while x∗(t) is not

distributed exactly as TS its tails do have this behaviour. A special case of this analysis are

the important inverse Gaussian based models. Further, this type of result carries over to the

Γ-OU process. These results are potentially important for it means that stochastic volatility

models built out of OU processes with gamma or inverse Gaussian marginals will have tails

which behave like normal gamma or normal inverse Gaussian distributions.
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6.1 Data appendix

The Olsen group have kindly made available to us a dataset which records every five minutes the

most recent quote to appear on the Reuters screen from 1st December 1986 until 30th November

1996. When prices are missing they have interpolated them. Details of this processing is given

in Dacorogna, Gencay, Muller, Olsen, and Pictet (2001). The same dataset was analysed by

Andersen, Bollerslev, Diebold, and Labys (2001b). We follow the extensive work of Torben

Andersen and Tim Bollerslev on this dataset, who remove much of the times when the market

is basically closed. This includes almost all of the weekend, while they have taken out most US

holidays. The result is what we will regard as a single time series of length 705,313 observations.

Although many of the breaks in the series have been removed, sometimes there are sequences

of very small price changes caused by, for example, unmodelled non-US holidays or data feed

breakdowns. We deal with this by adding a Brownian bridge simulation to sequences of data

where at each time point the absolute change in a five minute period is below 0.01%. That

is, when this happens, we interpolate prices stochastically, adding a Brownian bridge with a

standard deviation of 0.01 for each time period. By using a bridge process we are not effecting

the long run trajectory of prices. Code to carry out this interpolation is in mult data.ox. It is

illustrated in Figure 4, which shows the first 500 observations in the Dollar/DM series together

with another series on the Yen/Dollar. Later stretches of the data have less breaks in them,

however this graph illustrates the effects of our intervention. Clearly our approach is ad hoc.
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Figure 4: Top line of graphs are the raw and interpolated data using a Brownian bridge in-
terpolator. Bottom line of graphs is the corresponding returns. The x-axes are marked off in
days.

However, a proper statistical modelling of these breaks is very complicated due to their many

causes and the fact that our dataset is enormous. And a more refined approach is unlikely to

change the conclusions.
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