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Abstract: In the application of autoregressive models the order of the model is
often estimated using either a sequence of likelihood ratio tests or a likelihood based
information criterion. The consistency of such procedures has been discussed exten-
sively under the assumption that the characteristic roots of the autoregression are
stationary. It is shown that these methods can be used regardless of the assumption
to the characteristic roots.

1 Introduction

Order determination for stationary autoregressive time series has been discussed ex-
tensively in the literature. The two prevailing methods are either to test whether the
last lag is redundant using a likelihood based test based on the y?-distribution or to
estimate the lag length consistently using an information criteria. It is shown that
these methods can be used regardless of the assumption of stationarity.

The statistical model is given by a p-dimensional time series (X;) satisfying a kth
order vector autoregressive equation

k
Xt:ZAlthl‘l',U/Dt_‘_gta t = 1,...,T, (11)
=1
Here the innitial values Xg,..., X;_ are fixed, the component D; is a vector of
deterministic terms such as a constant, a linear trend, or seasonal dummies, while
the innovations, (g;), are assumed to be independently, identically normal, N, (0, £2),
distributed.
The aim is to determine the largest non-trivial order for the time series, kg say,
so A, # 0 and A; = 0 for j > ko. Two approaches are available of which the first is
based on a likelihood ratio test for Ay = 0. The log likelihood ratio test statistic is

LR (A = 0) = T'logdet Q1 — T'log det )y,
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and this will be proved to be asymptotically x2. The second approach is to estimate
ko by minimising the penalised likelihood
f(T)

CI)jzlogdetQj—i—jT, j=0,... k (1.2)

In the literature there are several candidates for the penalty function f. Akaike has
f(T) = 2p*, Schwarz (1978) has f(T) = p?logT while Hannan and Quinn (1979)
and Quinn (1980) have f(T) = 2p*loglog T. For stationary processes without deter-
ministic components it has been shown that the estimator ky is weakly consistent if
f(T) =o(T) and f(T) — oo as T increases, while Hannan and Quinn show that
strong consistency is obtained if and only if limsup,_, . f(T') > 2. In other words
the estimators of Hannan and Quinn and of Schwarz are consistent whiles Akaike’s
estimator is inconsistent. Some generalisations to non-stationary processes have been
given by for instance Paulsen (1984), Potscher (1989) and Tsay (1984). In the fol-
lowing some further generalisations are made with a view towards abandoning the
stationarity condition altogether and including deterministic components.

The following notation is used throughout the paper: For a matrix « let a®? = oo/
and let ||a|| be the Euclidean norm. When « is symmetric then A, () and Apayx (@)
denote the smallest and the largest eigenvalue respectively. While E (g,|F—;) is a
conditional expectation the notation (Y;|Z;) denotes the residual of the least squares
regression of Y; on Z;. The abbreviations a.s. and P are used for properties holding
almost surely and in probability, respectively.

2 Results

The asymptotic analysis is to a large extent based on results of Lai and Wei (1985)
with appropriate modifications presented by Nielsen (2001). Following the precedence
of Lai and Wei the assumptions to the innovation process can be relaxed so the
sequence of innovations (g;) is a martingale difference sequence with respect to an
increasing sequence of o-fields (F;), that is g, is Fi-measurable with E(gy|F; 1) =0
a.s. and is assumed to satisfy the conditions

a.s.

sup E (HetHQH ].7-},1) oo for some y > 2, (2.1)

a.s

li%n inf \uinE (5064 F1) > 0. (2.2)
The deterministic process will be assumed to satisfy the assumption
Dy =DD;_q4, leigen (D)| = 1, rank (D, ..., Dgmp) = dim D. (2.3)

This condition ensures that the deterministic regressors are not collinear and is in-
spired by Johansen (2000).



In the analysis it is convenient to introduce the companion form

<§2)2<?S><}1§21)+<%> (2.4)

where X, = (X{,...,X] ,.1) and

B:{Al"'Ak_l fék}7 L:{O IP }’ H:LMDa e = L&y,
(

Ip(kfl) k—1)pxp

The process X can be decomposed using a similarity transformation. Following
Herstein (1975, p. 308) there exists a regular, real matrix M which transforms B
into a real, rational canonical form. In particular, M can be chosen so MBM~! =
diag (U, V, W) is a block diagonal matrix where the absolute values of the eigenval-
ues of U, V and W are smaller than one, equal to one and at least one, respectively.
The process X; can therefore be decomposed as

U
U U o0 0 puy V’f ! evs
MX, =V, |=[0 V 0 pu M}*l + | evy
Wi 0 0 W puy 1;; Ew,t

Finally, there exists a constant fi;;, see Nielsen (2001, Lemma 2.1), so
Ut = Ut + ,aUDt where Ut = UUt_l + €ut- (25)

The likelihood ratio test statistic is known to be asymptotically x? as long as
leigen(B)| < 1, see Liitkepohl (1991, Section 4.2.2), but the result holds regardless
of the assumption to B. In order to use a Central Limit Theorem for the martingale
difference sequence Ut_lst it is necessary to assume that the innovations have fourth
moments and that

E(e52F 1) & Q. (2.6)

It can be proved along the lines of Chan and Wei (1988) that condition (2.6) ensures
a more technical condition

T
P (T—"—l S VER > o) — 1, (2.7)
t=1

for n = 1. In the proofs it actually suffices that (2.7) holds for some 7 > 0.

Theorem 2.1 Suppose Assumptions (2.1), (2.2), (2.3), (2.6) are satisfied. Then LR
is asymptotically x*(p?).



Turning to the information criteria Paulsen (1984) and Tsay (1984) prove weak
consistency for the case |eigen(B)| < 1. Once again the assumption to B is redundant.

Theorem 2.2 Suppose Assumptions (2.1), (2.2), (2.3) and (2.6) are satisfied. If
F(T) = o(T) and f(T) — oo then ko - k.

Strong consistency is harder to prove. In the case where |eigen(B)| < 1 Hannan
and Quinn (1979) and Quinn (1980) use a Law of the Iterated Logarithm to show
a necessary and sufficient condition for consistency. While I believe the assumption
to B is redundant that degree of generalisation has not quite been achieved. The
problem is to prove an almost sure version of (2.7) such as

T
.. —n—1 ®2 | @5
lliprrilg.}f (T tzzl‘/; > > 0, (2.8)
for some 1 > 0. This is essentially proved for n = 0 by Lai and Wei (1985, Theorem 3),
but in view of (2.7) it is not unreasonable that it should hold for an > 0. For the case
where V has distinct eigenvalues this can be proved using Donsker and Varadhan’s
(1977) Law of the Iterated Logarithm for the integrated squared Brownian motion,

Y

lim inf loglog T /T B2du = 1
T—00 T2 o
in conjunction with a Skorokhod embedding.

The first of the following three generalisations of Hannan and Quinn’s result avoids
the condition (2.8) at the cost of a strong condition to the penalty function. Pstscher
(1989, Theorem 3.1) proved the result for |eigen(B)| < 1, in which case it actually
suffices that v > 0 in Assumption (2.1), see also Lemma 3.2 below.

Theorem 2.3 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied. If f(T) = o(T)
and f(T)/logT — oo then ko — kg a.s.

Weaker conditions to the penalty function are sufficient under the condition (2.8).
This result was proved first by Potscher (1989, Theorem 3.4) for |eigen(B)| < 1.

Theorem 2.4 Suppose Assumptions (2.1), (2.2), (2.3), (2.8) are satisfied. If f(T) =
o(T) and f(T)/loglogT — oo then ko — ko a.s.

As in Hannan and Quinn (1979) a more precise statement can be made under the
additional assumption of stationarity and ergodicity of the innovations.

Theorem 2.5 Suppose Assumptions (2.1), (2.2), (2.3), (2.8) are satisfied and that
(1) 1is stationary and ergodic. If f(T) = o(T) then it holds that kg — ko a.s. if and
only if limsupy. . (2loglogT) 1 f(T) > 1 a.s.
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3 Proofs

The likelihood ratio test statistic can be expressed in terms of the sample partial
correlation of the residuals of X; and X;  corrected for the lags of the process X; 1
and the deterministic components D;. The main idea of the proof is to show that
this partial correlation is equivalent to the correlation of the innovation ¢; and a
component which is derived from the zero mean stationary component Ut,l. This
idea is developed in a first subsection and subsequently the main theorems are proved
along the lines of Hannan and Quinn (1979).

3.1 Partial correlations

Two expressions for the sample partial correlation are found in Lemmas 3.1, 3.5 with
slightly stronger assumptions to the innovation process in the latter result. Both
expressions involve a remainder term

T T

T -1 7 T -1 7
R ST (zv%) AT S (zv%) S Vel
t=1 t=1 t=1 t=1 t=1

t=1

which is discussed further in Lemma 3.6. Throughout this section it is assumed that
equation (1.1) holds with Ay = 0 for some k£ > 1.

Lemma 3.1 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied. Then

T -1

T -1 7 T T T
TSuSiS0 = S el (Z Ut_22> S 01l — S il (Z Ut@;a) S 0,12,
t=1 t=1 t=1 t=1 t=1 t=1

T T
+> ey (Z 6;?_21> Zet 18, +0(1) + Ry.
t=1 t=1

For the asymptotic analysis a series of results by Nielsen (2001) are needed. This
work is to a large extent based on Lai and Wei (1985) as well as Wei (1985, Lemma
2).

Lemma 3.2 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied.
If (Y4, Z,) is either of the pairs (U, Vi), (U, We), (Vi, Wy) then

{é (Y2 Dy)® }_I/QET:(WDL‘ ) (Z:| D)’ {i (Zi|Dy)® }_1/2'1'25'0(1). (3.1)

t=1 t=1

If leigen(B)| < 1 and j > 1 then

T —1/2
{Z Xt‘Dt } (Xt‘Dt) €;f+j = O (log T) . (32)
t=1

t=1



It holds
T 1z p
(Z Ut®2> Y Ui ; £ 0 {(log log T)"/ } (3.3)

=1 t=1
lim mf 5®2 & 0, lim su 5®2 <z 0, 3.4
T
li%n inf T log Ain (Z I/Vt®2) %2 2log min |eigen (W)], (3.5)
e t=1
1 & a.s
liminf — Y~ (X¢|D,)¥* > 0. (3.6)
T—o0 T —

172
{i (Xt’Dt)m} XT: (Xe| Do) gy, =0 (T1/4) ;o forj=>1 (3.7)

t=1 t=1
For the results (3.1) — (3.6) it suffices that v > 0 in Assumption (2.1).

Proof of Lemma 3.2. The results follow from Nielsen (2001). In particular,
(3.1) follows from Example 8.4, (3.2) and (3.7) from Theorem 9.1, (3.3) from Theorem
7.7, (3.4) from Theorem 5.1, (3.5) from Corollary 6.2, and (3.6) from Corollary 8.5.
n

The Lemma 3.1 is now proved in a few steps. The first is an algebraic result
showing that a k-th order partial correlation can be rewritten as the sum of two
correlations and a first order partial correlation.

Lemma 3.3 The statistic T'So1S1,' S0 can be written as

T T -l
Z (Xi- 2|Dt {Z (Xi- 2|Dt } Z(Xt—2|Dt)5:5
t=1

t=1 t=1

T T -1 p
— (X1 | Dy {Z (X;_o| D) } > (Xy—o|Dy)e

t: t=1 t=1
T

+Z (5t—1|Xt—27Dt) {Z(gt—1|Xt—2u Dt)®2} Z (5t—1|Xt—2u Dt) 52

t=1 t=1 t=1

Proof of Lemma 3.3. By the formula for partitioned inversion 7'Sy; S5 S1o
equals

T T
S e (X #Xi1, Dy) {Z th\th,Dt)@} ST(X 1 X1, Dy)E,
t=1 t=1

t=1
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t=1

/ T ®2Y " T
X1 X 1
) {E( X))} (%

S IRIEEA AL I olE T NE

t=1

Noting that (X} 1, X[ ) = (X[_;,X}_,) arepeated use of the formula for partitioned
inversion leads to

T -7
Z&f (X¢—2|Dy) {Z (X 2|Dt } Z(Xt—2|Dt)5;§

t=1 t=1 =1
T -1 7

—Z5t (Xt—1|Dt {Z Xt 2|Dt } Z(Xt—2|Dt) 52
t=1 t=1 =1

+Z5t Xt 1|Xt 27Dt) {Z(Xt—1|Xt—2th)®2} Z(Xt—1|Xt—27Dt) 52
t=1 t=1 t=1

The desired result now follows since (X; 1|X; 2, D;) = (6¢-1|X¢ 2, D;) by the model
equation (1.1) and the property D, = DD, ;. m

The uncorrelatedness of the sample correlations mentioned in (3.1) in Lemma 3.2
implies that the first two terms in Lemma 3.3 can be rewritten as

S e (Xes D)) {gmt_ﬂm)@?}lfyxt 4D <,

t=
T ) 17
Z&: (Ue—5| Do) {Z (U4 D0)* } > (U glDi)e

t=1 t=1 t=1

8
)

+ ¢ (Viei | Dy’ { Vij\Dt)@Q} > (Vis|Dy) e

t= t=1

T -1 7
£ e (Wi Dy ZWM!D»@?} S (WD) +0(1)  (38)
t=1 t=1

t

The next step is to see that the components involving W cancel each other.

Lemma 3.4 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied. Then

T T
S e (We sl {z (Wio|Dy)® }
t—1 t=1

L
> (Wi 2|Dy) g
=

T T -1
—ZEt (I/thlyDt) {Z I/Vt I‘Dt } Z(WH!Dt) 62 = 0(1)-
t=1 =1 t=1



Proof of Lemma 3.4. It is first argued that

T T T
> (W[ D) = 3 (ewimr + WWio| D) 2 3 (WD) {140 (T712) .
t=1 t=1

=1

The model equation gives the first equality. Next, (3.5) together with (3.7) imply
{(SF ) (WWoo| D)}y 1 SF (WW,s|Dy) €yyryy = o(T~Y?) a.s., whereas (3.5) and
(3.4) imply {50, (WWoro| D)™} S €,y = op(T12).

In the same way, using first the model equation and then (3.4) together with (3.2)
for dim D = 0 show

T T
WialD) 2 % S (W, D) o (177).

t=1 t=1

In combination, these two results together with (3.5), (3.7) give

p
p

—1/2 ¢
{Z (Wt—2|Dt)®2} t_zl (Wi_a|Dy) e} + 0 (T_1/2> .

t=1

M=

) ~1/2
(Wi | D) } S (Wia| D)) <]

t=1

Il
—

a.

M=

~1/2
Wi i) | S Wl o (1) (1o (1)

S

Il5

Squaring this expression and using (3.7) gives the desired result. m

The proof of Lemma 3.1 can now be given.

Proof of Lemma 3.1. In combination the above Lemmas 3.3, 3.4 show that
for asymptotic purposes 7'.Sp1.511 St equals

_lT

T T
Z Ut Q‘Dt {Z Ut 2’Dt } Z(Ut—Q\Dt)EQ
t=1 t=1

t=1

t=1

T -1 p

—Z5t Ut 1|Dt {Z Ut 1|Dt } Z(Ut—1|Dt)5;
t=1 t=1

-1

T T
+ Z&f (et-1]Xi—2, Dy)’ {Z (e-1] X2, Dt)®2} Z (e1-1|Xi—2, Dy) i + Ry +0(1) .
=1

t=1 t=1

In the first two terms (U,_;|D;) can be replaced by (U;|D;) because of (2.5). The
regressions on Dy in the first two equations and on D,, V; and W; in the last equation
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can be ignored for asymptotic purposes because of (3.7). The result then follows using
Lemma 3.3. =

A more compact version of the result in Lemma 3.1 can be proved under an
additional assumption to the innovations.

Lemma 3.5 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied and T—' 1, £¥% —
Q a.s. Then there exists an {(p+ dimU) x p}-matriz C with full column rank so
Y, =C'(e},Ul_y) and

T T
TS(nSﬂlSlo = th}/;Ll (Z Y;@%) Z}/;:flé?; + Rpr+o (1) .
t=1 t=1

t=1

Proof of Lemma 3.5. The additional condition 77 3L ¢%? — Q a.s. ensures
that the exists a positive definite F' so

L (e 0 Nas [(Q 0
?;( 0 UF%):<0 F>{1+o(1)}, (3.9)

see Nielsen (2001, Theorem 5.1). Recall that the innovation for U, is found by
M (;,0)" = (efy, €l €)', where M is some real, full rank matrix. Introducing
the notation M,, for the top left (dim U x p)-block of M it then holds

-~ -~ €
Uy =UU;_1 + eyy = (M, U) ( [jtt ) ) )

where (M,,,U) is {dimU x (p 4+ dimU)} and has full row rank. By (3.7) it follows
that

P ?ZTj €2 16 (1) % (M, U) {%i( Uil )®2} ( ]\é”i,f? ) +o(1)

t=1

T ®2 !
s o A (E) 0w

t=1

Now, choose a {(p+dim U) x p}-matrix C' with full column rank, so {C, (M, U)’)}

is regular, and
(M, U) Q0 M, ol _ F 0
C’ 0 F u )’ L0 G )



for some positive definite matrix G, defined as the limit of T1'3T  Y®* where Y; =
C'(e;,U;_;)". Using the full rank linear transformation {C, (M,,, U)'} and the above
results (3.9), (3.10) it is then seen that

r h(r ®2 -l
€11 e 0 Et-1 /
T ' -1 7
as. U1 F 0 U1\
pa(i ) (0 a) p(in)aeow,

t=1

Il

-1
The desired result follows by subtracting S, £,U!_, (ZL Uﬁ%) ST U6} m
The order of magnitude of the remainder term Ry is given in the following Lemma.

Lemma 3.6 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied.
(i) It holds Ry = O (logT) a.s.

(1) If Assumption (2.8) holds then Ry = o(1) a.s.

(13i) If Assumption (2.6) holds then Ry = op(1).

Proof of Lemma 3.6. (i) The property (3.2) in Lemma 3.2 immediately shows
Ry =0 (logT) a.s.

(i7) as in the proof of Lemma 3.4 with (3.5), (3.7) replaced by (2.8), (3.2), respec-
tively, it can be proved that

I 2

> (Via|Dy)™ =
t=1

T

M=

(Vi D) {140(T ")},

H
I

1

M=

(Vi Do) gp =

t=1

(VViea|Dy) &) + 0 (T"/?).

o~
Il

1

The argument is then finished as in the proof of Lemma 3.4.
(i77) follows as (i7) using (2.7) instead of (2.8) =
3.2 Proofs of main results

Theorem 2.1 is a consequence of Lemma 3.5 and a Central Limit Theorem.

Proof of Theorem 2.1. The condition 77! 7 | % — Q in Lemma 3.5 is
satisfied because of Assumption (2.6), see Nielsen (2001, Theorem 9.5). By Lemma
3.6,i7i it holds Ry = op(1). The result then follows from Brown’s (1971) Central Limit
Theorem, see Nielsen (2001, Theorem 10.2). =

The Theorems 2.2, 2.3, 2.5 follow from the final two Lemmas, of which the first
gives lower bounds for f(7) and the second gives an upper bound for f(7T).
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Lemma 3.7 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied.

(i) If Assumption (2.6) holds and f (T) — oo then P(ky > ko) — 0.

(ii) If f(T)/1logT — oo then limsup, . ko < ko a.s.

(iii) If Assumption (2.8) holds and f(T)/loglogT — oo then limsup,_ ko < ko
a.s.

(iv) If Assumption (2.8) holds and &, is stationary and ergodic then limsup,.___ ko
ko a.s. if and only if limsupy_, . (2loglog T) "' f(T) > 1.

Proof of Lemma 3.7. Let j > kq. It then holds that
®; ., — O, = logdet (QjHQ;l) + T f(T)=~-T*LR (A1) +T'f(T).

The order of magnitude of LR(A, ) therefore has to be evaluated.

(¢) Theorem 2.1 with k replaced by j + 1 shows that LR(A;41) = Op (1).

(#7) Lemmas 3.1, 3.6, and (3.2) of Lemma 3.2 show LR(A;11) = O (logT) a.s.

(#77) Lemma 3.6,i¢ implies that Ry = o (1) a.s. and (3.3) then shows LR(A;11) =
O (loglogT) a.s.

(iv) The Ergodic Theorem shows T7' Y/, ef? — Q a.s. and therefore Lemma
3.5 applies with Ry = o(1) because of Lemma 3.6,ii. The desired result then follows
from the Law of Iteraterated Logarithms by Heyde and Scott (1973, Corollary 2) and
Hannan (1980, p. 1076-1077). See Quinn (1980) for details. m

IN

Lemma 3.8 Suppose Assumptions (2.1), (2.2), (2.3) are satisfied. If f(T) = o(T)
then liminfr_, o kg > ko a.s.

Proof of Lemma 3.8. Let j < kg. The condition f (7') = o (7T") shows that
®; — &y, = logdet {T+ (2 — O, ) O} +0(1).
By (3.4) in Lemma 3.2 it holds that Q,zol = O(1) a.s. Thus it suffices to argue that
lim inf Apax (€ — Qi) > 0. Defining Yi=(X, ,..., X} ;)" it holds

~

R 1T T -1 7
Q= = T ZXt (Y1 X1, Dt)/ {Z (Y1 X1, Dt)®2} Z (Y 1|Xi1, Dy) X,

=1 =1 =1
Define A = A;44, ..., Ay, which is non-zero since Ay, # 0 and note that

_1/2

1 T T

T1/2 {Z (Yt—l‘Xt—l, Dt)®2} E (thl‘Xt—l, Dt) th
t =1

I
—_

) ~1/2
(Yt—1|Xt—lth)® } Z(Yt—1|Xt—1th) 52

t=1

1
T1/2

Il
i

o~
Il
—_

1/2
(Yo 1/Xe 1, Dt)®2} Al

+
—N—
Nl =
M=

ir
I
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The first of these terms is of order o (1) a.s. by (3.7), whereas the second term has a
positive or infinite limes inferior because of (3.6), see also Nielsen (2001, Lemma 8.7).
L
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