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1 Introduction

Social scientists use repeated games as metaphors to study many environments such
as investment decisions, buyer-supplier and employee-employer relationships, public
goods and common pool resource problems, the nuclear arms race, trench warfare
and voting (e.g., Ostrom (1998) and Axelrod (1984)). Although theoretical analysis
of repeated games is extensive, empirical analysis of the strategies people use in
them has been limited due to a lack of data and a lack of a strategy inference
method. Experimental techniques have developed to provide repeated game data
(e.g., Selten and Stoeker (1986) and Van Huyck, Battalio, and Walters (1997)).
This paper presents a method to infer strategies that people use in repeated games.
The method allows researchers to develop an empirically based strategy model that
grounds the core game theoretic concept of a strategy in observed behavior. The
method is a step toward better understanding decision-making in repeated games. A
better understanding can result, for example, from being able to empirically identify
a subset of equilibria in an environment where there are many.

Our empirical method maps observed actions in a repeated game to unobserved
strategies. The need for a method to infer strategies from actions exists because
strategy choices are not observed, and cannot be directly recovered, in most field
settings. For example, researchers can observe Federal Reserve actions (raise, main-
tain or lower the discount rate), union actions (go on strike or don’t go on strike)
or a firm’s actions (increase or decrease orders), but cannot observe the underlying
strategy choices that generate the actions.

Inferring strategies from actions involves overcoming the problem that any ob-
served history of actions can be the outcome of many strategies. For example, if we
wish to understand someone’s plan (i.e., strategy) as to when to carry an umbrella,
we would have had a difficult time inferring the plan if we observed that the person
always carried an umbrella in Oxford in the fall of 2001 (when it rained constantly).
Is the plan to always carry an umbrella regardless of the weather? Is the plan to

only carry one whenever it rains in the morning? Is the plan to carry one whenever



it is cloudy? We reduce the severity of this problem by running experiments to
observe behavior in many repeated games, thus inducing potentially many game
histories. Continuing the example, by examining potentially many histories, we
hope to observe actions on rainy, cloudy and sunny days.

This paper uses the inference method to study strategies used in repeated play
of a trust game. In the stage game, two players move sequentially. The first player
may trust by relinquishing ownership of an endowment to the second player. If the
first player trusts, then the second player receives the first player’s endowment plus
a surplus and must decide whether to return part of the gains or to keep everything.
In finitely repeated games (henceforth finite games), two players play the stage game
exactly five times. In indefinitely repeated games (henceforth indefinite games), two
players play each stage game knowing that there is a chance that the stage game
will be the last they will play together.

Using the strategy inference method, we find that subjects play trigger strategies
in indefinite games that are consistent with equilibria, and play strategies with end-
game effects in finite games. In the finite game we also find that the strategies
we infer evolve over time in a manner consistent with unraveling behavior. Almost
all inferred strategies can be justified as best responses to the strategies of the
opponents. Thus, the analysis shows the robustness of the methodology to find
intuitive and theoretically justified results.

Strategy inference complements existing approaches to study repeated game
strategies. One approach, called the strategy method, creates an environment where
the researcher can directly observe subjects’ strategy choices. In this environment,
players choose strategies that are then played against each other by the researcher
(Selten and Mitzkewitz (1997)).! In our method, strategy choices are unobserved so
that the decision process subjects face more closely reflects decision-making in field
settings. Another approach is to assume a priori that people use only a few strate-
gies or a specific class of strategies (e.g., Selten and Stoeker (1986)). Our method

imposes fewer a priori assumptions regarding the number and types of strategies

! Slonim (1994) and Brandts and Charness (2000) compare the strategy and direct method.



that researchers can investigate.

Strategy inference can be thought of as part of a more general line of research
that seeks to understand decision rules that people use in games (e.g., Costa-Gomez,
Crawford, and Broseta (2001), El-Gamal and Grether (1995), Engle-Warnick (2001),
Slonim (1999), Stahl (2000)). Similar to this research, we infer unobserved strategies
from observed actions, but unlike it our context is repeated games.

The remainder of the paper describes the strategy model, the method of inference
and the application to the trust game experiment. Section 2 presents the strategy
model. Section 3 shows how we infer strategies from observed actions. Section 4
describes a new trust game experiment. The experiment shows the robustness of the
method to infer strategies in both indefinite and finite games and across two player
types. Section 5 presents the logical and distinct strategies inferred. The conclusion

offers directions for future research and extensions to field research.

2 The Strategy Model

Empirical analysis of repeated game strategies requires identifying an empirically
manageable number of strategies to examine from the theoretically large set of
repeated game strategies. Since the set of theoretically possible strategies increases
in size exponentially with the number of rounds in repeated games, this set must
be reduced for the purpose of strategy inference. The first part of our methodology
thus involves a sequence of steps that reduces the theoretically large set. The second
part uses data to assess the fitness of the strategies in the reduced set in order to

find a best fitting set of strategies.

2.1 Modelling Strategies with Finite Automata

We model strategies with finite automata. Finite automata are one of several ways
to model repeated game strategies. A finite automaton is an algorithm that receives
a sequence of actions taken by an opponent in a repeated game, one round at a

time, and produces an action to play each round. We use finite automata to model



repeated game strategies for several reasons: (1) they are well suited to recognize
patterns in data, (2) they can represent interpretable behavior (e.g., reciprocity),
(3) their theoretical properties are well understood in economics (e.g., Abreu and
Rubinstein (1988) and Binmore and Samuelson (1992)) and (4) they are useful as
inputs to computational economic models (Miller (1996)).

We use a class of finite automata called Moore Machines (Moore (1956)). Each
Moore Machine M; represents a deterministic strategy. Fach machine 7 has a finite
number of states denoted qZ € ;. Each state j specifies an action, a{ , to take
(e.g., carry an umbrella, don’t carry one) when the machine enters the state, where
a{ € A; is an action available to the machine. The action specified in each state is
determined by an output function that maps each state to an action: X; : Q; — A;.
Each state also has a transition function, p; : A; X Q_; — @y, which directs the
machine to the next state contingent on every possible opponent action. A Moore
Machine also designates an initial state, qil € Q;, to begin play.

For a few examples of how Moore Machines model strategies, suppose there is a
repeated game with two Players, A and B, and assume each player has two actions
in every round of the game. Player A’s actions are S and D and Player B’s actions
are R and K. Figure 2 shows 26 Moore Machines for Player B. For every machine,
each circle represents a state, the notation inside each circle is the state’s output
function (action) and a double circle indicates the initial state. Arrows represent
state transition functions and notation next to arrows indicates the opponent action
that triggers the transition.

Strategy My, represents Player B’s strategy to play R in every round of the
game regardless of Player A’s actions. Strategy Mps is a permanent trigger strategy
for Player B. It plays R in the initial round and continues playing R in subsequent
rounds as long as Player A plays S. If Player A ever plays D, however, this action
triggers the machine to transition to its second state that specifies playing K. Once
the strategy enters this second state it remains there for all remaining rounds.

Selecting Moore Machines to model repeated game strategies reduces the set

of theoretically possible strategies. To see this, note that Moore Machines do not



provide a contingent plan of action in the event that they themselves make a mistake,
i.e., they make their state transitions based on opponent actions but not on their own
actions; thus they are a subset of the repeated game strategy space. Thus, selecting
Moore Machines to represent repeated game strategies is the first step we take to

reduce the set of theorctically possible strategies to an empirically manageable size.

2.2 Constructing the Candidate Strategy Set

We perform the second reduction in the strategy set by choosing a candidate set of
machines, N, that include strategies that satisfy some initial criteria. For example,
the criteria may be based on theory (e.g., equilibria), past empirical evidence (e.g.,
backward induction or unraveling), a set of machines with specific properties (e.g.,
a maximum number of states) and/or other priors held by the researcher (e.g.,
strategies which exhibit behaviors such as reciprocity, biases, heuristics or bounded
rationality).

In selecting the criteria, the finite automata machine representations are not
considered. Finite automata are simply tools to represent the behaviors of interest.
However, it is possible that the criteria selected may lead to multiple machine repre-
sentations that produce the identical sequence of actions for every possible sequence
of opponent actions. For example, suppose one criterion is to include strategic be-
havior that is not very complex, and to implement this criterion we define strategic
complexity as those strategies that can be represented by machines with two or
fewer states.? This set would include a machine with two states that takes the
same action in each state and the set would also include a machine with one state
that takes the same action. So, no matter what sequence of actions an opponent
takes, these two machines will always produce the same sequence of actions.

If multiple machines produce an identical sequence of actions for every sequence
of opponent actions, (henceforth referred to as behaviorally equivalent machines),

then no sequence of opponent actions can occur that would let us empirically dis-

% See Kalai and Stanford (1988) for an example of the use of minimal state representations in a
model of complexity.



tinguish between the machines. We thus perform the third reduction by eliminating
behaviorally equivalent machines. In particular, if multiple machines are behav-
iorally equivalent, we keep the machine with the fewest states.?

The modelling process results in a set of machines, M, that has the following
properties. First, M includes exactly one machine representation for each behavior
we wanted to examine when we selected the criteria. Second, since no machines in M
are behaviorally equivalent, realizations of actions can occur that allow us to identify
each machine from every other one. Third, since every behavior is represented using
a machine with a minimum number of states, behaviorally interpreting machines is
facilitated. Finally, the identical modeling approach can examine many criteria. To
demonstrate this flexibility, we examine several criteria that produce sets including

from 2 to over 1000 strategies.

3 The Estimation Procedure

This section describes our estimation procedure to find the best fitting subset of
strategies within the reduced set M. Since the fitness of a subset of automata weakly
increases with the number of machines in the set, we take great care not to over
fit the data. To avoid over fitting, we take two steps: (1) we include a fitness cost
that increases with the number of machines in a set, and (2) after finding the best
fitting subset of machines, we test this fitness on a hold-out sample of statistically

independent data.

3.1 Fitting the Data

The notion of fitness for finite automata is a simple one; a machine fits a repeated
game if, when it replaces the subject, it plays exactly the same actions the subject

played. The notion of fitness for a set of machines is similar; a set of machine fits a

3 See Engle-Warnick and Slonim (1999) for a formal presentation of the reduction process.
See Hopcroft and Ullman (1979) and Harrison (1964) for finite automata theory. In addition
to eliminating behaviorally equivalent machines, we examine each machine in our candidate set
to determine if there are any behaviorally equivalent machines with fewer states. If there are, we
replace the existing machine with the one with the fewest states. And if there are multiple machines
with minimal states, we arbitrarily choose one.



repeated game if any machine in the set, when it replaces the subject, plays exactly
the same actions the subject played. Our goal is to find a subset of machines in
M that fits the most data. The problem is that adding a machine to a set weakly
increases the set’s fitness (we loosely refer to the number of machines in a set as the
set’s complexity). Thus, our goal is to find a subset of machines in M that maximize
fitness subject to a cost for the set’s complexity.

To operationalize the inference procedure, we need a few definitions. A repeated
game is henceforth referred to as a supergame. An observation o; € O consists of a
pair of sequences of actions by opposing players during a supergame. Machine M;
fits supergame o; if, when M; replaces the subject in the supergame, M; responds
to the sequence of actions of the subject’s opponent with the exact same sequence
of actions taken by the subject it replaced. Let the indicator function I(o;, M;) =1

if 0; is fit by M; and I(oj, M;) = 0 otherwise.

Definition 1 The fitness F(M;) of machine M; on the set of supergames O is the
number of observations o; € O that M; fits:
F(M;) =) I(oj, My).
0;€0
To address heterogeneity that may occur across time and players, we examine
the fitness of subsets of n machines, T;, C M. Let I(0;,T,) = 1 if o; is fit by at least

one machine in 7}, and I(o0;,T;,) = 0 otherwise.

Definition 2 The fitness F(T,,) of set T, on the set of supergames O is the number
of observations o; € O that T, fits:
F(T,) = Y 1(0j,Tn)-
0;€0
The best fitting set containing n machines, 3,, is found by maximizing the
fitness over every possible subset T}, of n machines in M. This is equivalent to
minimizing the sum of squared errors:

By, = argmax F'(T,).

Tn



Note that F(By1+1) > F(By), since By, .1 could always contain all the machines
in B,.* Thus the fitness of the best fitting set of machines is weakly increasing with
the number of machines in the set. To determine the number of strategies needed in
By, to fit the data and to reduce over fitting the data, we introduce a cost function,
C(n), and assume the cost is proportional to the number of strategies in the set.
We select the overall best fitting set B from the best fitting sets for each set size,

By, by maximizing fitness subject to the cost of the number of machines in B,:
B = argmax f(B,) — C(n).
n

For simplicity, we let C(n) = n-c-¢(O), where 0 < ¢ <1 and ¢g(O) equals the
number of observations in O, so that the marginal cost of including another strategy
in B is constant: C(n+ 1) — C(n) = c¢- g(O). To increase the number of strategies
in the set by one, the fitness of the best-fitting set must increase by at least the
minimum threshold of ¢- g(O) (e.g., with g(O) = 1000 observations and ¢ = 5%, an
additional 50 observations would need to be fit to increase the best fitting set size
by 1). The appropriate value of ¢ may depend on the number of data generating
machines (i.e., degree of heterogeneity), the number of and the actual machines in
M and noise in the data generating process. In general, the greater the value of
¢, the more likely the method will reject actual data generating behavior and the
lower the value of ¢, the more likely the method will spuriously accept non-data
generating behavior. We used computer simulations to find a conservative value for

¢ to avoid accepting non-data generating behavior.?

3.2 Refining the Model Selection: Out of Sample Fitness

As a second guard against over fitting, we infer the best fitting set in one sample (the
training sample) and test its fitness on an independent sample (the test sample).

We use a holdout sample to address the concern that when subjects play many

* Note also that B, is not necessarily a subset of B, 1.

5 The simulation results are reported in an earlier version of this paper and are available from
the authors. The simulation exercises varied the number of data generating machines and included
two error specifications.

5 For applications in pattern recognition see Devroye, Gyorfi, and Lugosi (1998).



supergames, observations are not independent since there are multiple observations
per game and since there is likely to be path dependence in which many players can
be affected by common opponents. By requiring the best fitting set of machines to
fit an independent sample of data, we mitigate these dependency concerns.

We proceed as follows. If the contribution of any machine in B to the fitness in
the test sample is not enough (defined below), we reject the strategy set and move
to the best fitting set from the training sample that contains one less strategy. We
continue the process until we fail to reject a best fitting set.

The following definition quantifies the contribution of machine M; to the fitness

of set T,,. Let T, _; denote set T}, excluding M;, where M; € T),.

Definition 3 The unique fitness U(T,, M;) of M; in the set T, is the number of

supergames o; that M; fits and that no other machines in T, fits:
U(T,, M;) = F(T,,) — F(Ty,—)-

It is easy to show that the unique fitness of each machine in B is at least the
threshold level in the training sample; i.e., for all M; € B, U(B, M;) > c¢- g(O).
We similarly require that the unique fitness of all machines M; € B be at least the
threshold level in the test sample: U(B, M;) > c-g(O™), where g(OT) is the number
of observations in the test sample. If the unique fitness of any machine in the test
sample falls below this cutoff level, we reject the model B = B,, and select the model
B = B,,_1. We repeat the test until we find a model B* where all M; € B* pass the

threshold criterion for the test sample.

4 The Trust Game Experiment

The experimental design is integral to determining what strategies people play in
repeated games. We specifically chose the trust game and its parameters to induce
actions to vary across rounds and to depend on opponent’s choices. We chose to
examine indefinite and finite supergames since theory predicts, and past evidence

and intuition suggests, the two institutions may induce different strategy choices.



We chose an extensive form game to explore the robustness of the inference method
to different degrees of information. And we chose a game that may induce behavior
(e.g., trust and reciprocity) that strategy inference can offer novel insights into.

”  Two players, Player A and B, are

Figure 1 shows the extensive form game.
each given an endowment of $0.40 to start each stage game. Player A chooses
between the action Send (S) and Don’t Send (D). If Player A chooses D, then both
players receive their endowment and the stage game ends. If Player A chooses S,
then Player A’s endowment is doubled and given to Player B (e.g., reflecting a return
on an investment). Player B then chooses between the action Keep (K) and Return

(R). If Player B chooses K, then Player B receives $1.20 and Player A receives $0.00.

If Player B chooses R, then both players receive $0.60.

4.1 FExperimental Procedures

Subjects were randomly assigned to be Player A or B for an entire session. At the
beginning of each supergame every Player A was randomly and anonymously paired
with a Player B.2 Each scssion began with 20 indefinite supergames and finished
with 20 finite supergames.

To play indefinite supergames, subjects were told that at the end of each round
(i.e., stage game) within every supergame there was a continuation probability of
p = 0.8. If the supergame continued, then subjects would play another round with
the same opponent. If the supergame ended, then subjects would be randomly and
anonymously paired with a new opponent to begin a new supergame. We randomly
drew sequences of supergame lengths (i.e., the number of rounds in each supergame)
prior to running the sessions. The average length per supergame was 5.1; the longest
was 14 rounds, and the shortest was 1 round. We ran two sessions with each sequence

of supergame lengths and used one for the training sample and the other for the

" This game is theoretically analyzed by Kreps (1990). Berg, Dickhaut, and McCabe (1994)
examine behavior when a similar game is played without repetition. See also Clark and Sefton
(2001) and Glaeser, Laibson, Scheinkman, and Soutter (2000) for trust experiments.

8 Instructions are available from the authors. Selten and Stoeker (1986) examine supergame
play in finitely repeated PD games. Van Huyck, Battalio, and Walters (1997) study indefinitely
repeated games using a similar stage game, with a continuum of actions.

10



test sample. Having the same sequence of lengths in the training and test samples
eliminates a potential source of variation between them.

After completing twenty indefinite supergames subjects were told that all future
supergames would last exactly five rounds. Twenty additional supergames were
played under these finitely repeated conditions. Similar to the indefinite treatment,
subjects were anonymously and randomly paired with a new opponent to begin
each finite supergame. We chose the finite supergames to last five rounds so that the
number of rounds in the finite condition would equal the expected number of rounds
of the indefinite supergames. Different expected supergame lengths, across the finite
or indefinite condition might cause variation in behavior between the treatments;
we eliminated this source of noise by choosing the same number of expected rounds
across treatments.

We chose the expected length of supergames to be five rounds to make strategy
inference more plausible. If supergame lengths are much shorter than five rounds
(e.g., one or two rounds), then there won’t be much opportunity to observe how
players react to opponent choices and thus identification among different strategies
will not be possible. On the other hand, with longer supergame lengths (e.g., twenty
or thirty rounds), the possibility of players changing strategies or making mistakes
during the course of the supergame increases. Also, the longer the length of each
supergame, the fewer the number of supergames we can observe. An average length
of five rounds appealed to us as long enough to observe players reacting to opponent
actions while short enough to minimize time-variance concerns.

Four sessions were run with 14 subjects in each. There were thus 560 supergame
observations per role in the indefinite condition (seven of each player type times four
sessions times twenty supergames) and an additional 560 supergame observations

9

per role in the finite condition.” The experiments were run at the University of

Pittsburgh. Subjects were paid a $5.00 participation fee plus their earnings from

® Due to a computer failure we lost 7 indefinite observations (one round) and 98 finite observa-
tions in one session (14 rounds). For this reason there are 553 indefinite and 462 finite observations.
We chose the session that experienced the computer failure to be one of the two sessions for the
test sample.

11



four supergames that were randomly selected at the end of the session.

4.2 Trust Game Equilibria

The unique subgame perfect equilibrium of the stage game is for Player B to play
K if Player A plays S and for Player A to thus play D. Backward induction leads
to the same equilibrium behavior for both players in every round of the finite game.

10 At one extreme, players may

For the indefinite game there are many equilibria.
play S and R every round and at the other extreme Player A may play D in every
round. Modeling repeated-game strategies with finite automata does not change the
characterization of equilibrium when strategy complexity is not taken into account
(see Abreu and Rubinstein (1988)).

The continuation probability was chosen to induce actions to vary in the exper-
iment. If the discount factor (i.e., the continuation probability) is less than 0.75,
then Player B’s expected payoff is maximized by always playing K, regardless of
Player A’s strategy. We thus chose a discount factor greater than 0.75 to permit
cooperative equilibria. However, we also chose the discount factor to be near the
0.75 to make cooperation difficult to achieve. Two paper and pencil pilot sessions

confirmed that the continuation probability of 0.80 induced considerable variation

in actions across supergames.

5 Results

Section 5.1 presents criteria for the candidate strategy set that include machines:
(1) with a maximum number of states, (2) consistent with past evidence on repeated
games and (3) consistent with post-experiment protocol responses. Section 5.2 shows
the fitness of these strategy sets and justification for our criteria. Section 5.3 shows
that a small number of inferred machines fit the vast majority of the data and
Section 5.4 presents these specific strategies and shows that they are consistent

with theoretical predictions and intuition. Section 5.5 examines strategies inferred

' This is a result from the Folk Theorem of Repeated Games, see Fudenberg and Maskin (1986).
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over time.

5.1 Selecting the Candidate Strategy Set

We use three criteria to select candidate strategy sets N4 and NP (superscripts
indicate the player type). Our first criterion is to include all strategies in N4 and
NP® that have no more than s = 2 states. Our motivation for this criterion is
primarily to avoid over fitting data, but also to reduce the computational burden
and to reflect bounded rationality and complexity.!!  Figures 2 and 3 show sets
M# and MP that are constructed from sets N4 and N using the criterion that no
machine has more than s = 2 states. There are more machines in M7 than in M
because whenever Player A plays D Player A’s next action is unconditional (since
Player A does not observe a Player B action in that round of the game) whereas
Player B’s action may always be conditional on the action of Player A.

Though the number of machines in M4 and M?Z, 12 and 26, respectively, is small,
many behaviors are represented. My, My, My, and My, are the unconditional
strategies that play S or D for Player A and R or K for Player B. The remaining
strategies condition behavior on opponent actions and/or the round. M4 and M
include the non-cooperative equilibrium pair (Mge, Myz) for the finite and indefinite
games and many cooperative equilibrium pairs (e.g., {Mg3, M1}, {Mas, Mg }) for
the indefinite game. M* and MP include trigger strategies such as the extensive
form game analogue to the grim-trigger for both players (M,3, My3) and tit-for-tat
for Player B (Mps). There is no tit-for-tat analogue for Player A in this game.

Our remaining criteria are based on theory, past experimental evidence and
conjectures derived from protocols. Theory suggests different strategies may be
used in the finite and indefinite games. In finite games the unique subgame perfect
equilibrium is for Player A to never send, Mo, and for Player B to never return,

My,. Past evidence (e.g., Selten and Stoeker (1986)), however, shows that behavior

1 Bounded rationality suggests a player may not consider all feasible strategies but instead limits
himself to “less complex” strategies. The complexity of finite automata machines may be defined
in a number of ways (see Osborne and Rubinstein (1994)). One definition is that complexity is
positively related to the number of states.

13



unravels from cooperative behavior towards the non-cooperative equilibrium.'? To
examine this unraveling behavior, we create a set of strategies for each Player A
and B that allows unconditional permanent defection from cooperative behavior
after each round. Figures 4 and 5 show these strategies for Player A (Mo, Mgy,
M3, My and Myi5) and B (Mg, My11, Myar, Myss and Mygg), respectively.!
Protocols collected in pilot sessions of the indefinite game suggest a few addi-
tional strategies may be important to fit the data. Subjects indicated they would
“punish” an opponent who played his non-cooperative action. The “punishment”
involves playing the non-cooperative action for a finite number of periods. Figures
4 and 5 show these machines for Player A (My1, Mys, Maig, Ma17 and Mg1g) and
B (Myy, Myg, Mpzo, Myz1 and Myss), respectively. To analyze the data, we combine
the criteria motivated by the finite game unraveling hypothesis and indefinite game
protocols to form the “4” sets. We define s+ as the union of s (i.e., strategies in

M* and MP that have no more than s states) and +.

5.2 Fitness of the Candidate Sets

The top of each subsection of Table 1 shows the fitness for the candidate sets s and
s+ for s = 1,2, and 3. The four panecls show results for Player A and B in the finite
and indefinite games. In the finite games the fitness is much higher for set s+ than
s, holding the maximum number of states constant. For example, sets 1+ and 24 fit
over 30% more observations than sets s = 1 and s < 2, respectively, and set 3+ fits
over 17% more observations than set s < 3. Thus, the + strategies are important to
fit finite game data. In indefinite games the + sets have a smaller effect. Although
set 1+ fits almost 20% more observations than set s = 1, sets 2+ and 3+ fit on
average only 5% more observations than sets s < 2 and s < 3.

Table 1 provides motivation for examining the 2+ candidate set. Note that while

12 For example, Player A may play S all five periods and Player B may play R the first four
periods, but play K in the fifth period. With experience, Player A may anticipate Player B’s
behavior and so play S the first four periods, but then play D in the fifth period. Player B may
anticipate this behavior and respond by playing R for only the first three periods and then playing
K thereafter. And so on.

¥ For these strategies we assume during the cooperative faze that if an opponent plays his
non-cooperative action then the player responds by playing his non-cooperative action thereafter.

14



the number of strategies in M* increases by a factor of 10 from set 2+ to 3+ (18
to 180), set 3+ fits on average only 8% more of the data than set 2+ in finite or
indefinite games. Similarly, while the number of strategies in M? increases by a
factor of more than 30 from set 2+ to 3+ (32 to 1058), the 3+ set fits on average
only 4% more of the data than set 2+. We thus examine the strategies inferred in
the 2+ set; increasing the candidate set to include more strategies (sets 3 or 3+)
does not increase fitness enough to risk over fitting the data with the 10 and 30 fold

increases in candidate strategies.

5.3 Number of Strategies in the Data

The bottom of each subsection of Table 1 shows the fitness of each best fitting set
containing n = 1 to n = 6 strategies for each candidate set. For the most part, our
choice of the 2+ set has little effect on the set fitness, F'(B,); holding n constant,
the difference in fitness of the 1+, 24+ and 3+ sets is never greater than 6% (17 out
of 280 observations) and is often much less. For example, in finite games for Player
B, F(By) is 168, 168, and 171 observations for the 14, 2+ and 34 sets, respectively.
Also note that only a few strategies are necessary to fit a majority of observations.
For example, for the 1+, 2+ and 3+ sets F'(Bs) > 61% (i.e., the two best fitting
strategies fit over 61% of the observations) and F(Bs) > 71%.

Using our model selection criterion, Table 1 shows that more heterogeneity (i.e.,
more strategies) is inferred for Player B than A and more heterogeneity is inferred
in the finite than indefinite games. Examining the 2+ set at a complexity cost of
¢ = 5%, the best fitting sets contain six and three Player B strategies, and three and
one Player A strategies in the finite and indefinite games, respectively.!* Inferring
more Player B than A strategies may be because Player B has more behavioral
options; e.g., Player B can exploit Player A (by playing K), but Player A cannot
exploit Player B. In general, Player B has more options since he always observes

Player A actions whereas Player A does not always observe Player B actions.

1 Computer simulations replicating game conditions indicate that ¢ = 5% is conservative in the
sense that over fitting the data did not occur (see footnote 5 above). The simulations also validated
the ability to recover the known data gencerating machines in the presence of noise.



The results in Table 1 are based on the training sample. We now turn to the
test sample to guard against over fitting the data. With one exception we find
that in every case (i.e., in the finite and indefinite games for Players A and B) the
inferred strategies in the best fitting sets pass the out of sample selection criterion.
The exception is in the finite games for Player B; the unique fitness of at least one
strategy in the best fitting set in this case is less than ¢ = 5% out of sample. The
best fitting finite Player B model with the most strategies that passes the test sample
criterion has n = 3 strategies. Therefore, including our out of sample refinement,
we infer three Player A and B strategies to fit finite game data and one Player A

and three Player B strategies to fit indefinite game data.

5.4 Specific Strategies in the Data

Figure 6 shows the inferred strategies and Table 2 shows their unique and total
fitness in the training and test samples. Henceforth, we refer to each machine’s
fitness (i.e., the number of machines that it fits, recall Definition 1) as its total
fitness in contrast to its unique fitness (i.e., the number of machines that it fits that
no other machine in the best fitting set fits, recall Definition 3). In the figures and
tables we show the machines in order from the highest to lowest total fitness.

Four of the six inferred finite strategies (Mg14, Mg15, Myo7, Mpog) are on the
backward induction path. The remaining two finite strategies, M, and My, are
the two unconditional cooperation strategies. The strategies along the backward
induction path defect in the fourth or fifth round for Player A and in the third
or fourth round for Player B. The multiple inferred strategies along the backward
induction path are consistent with at least two hypotheses. First, there may be
heterogeneity across players; some players may backward induce one round while
others may backward induce two rounds. Second, players may initially backward
induce one round and then learn to backward induce two rounds. We examine
the second hypothesis below. The key insight is that the method is able to detect
heterogeneity although we did not « priori specify the model to look for possible

individual or learning cffccts.
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All inferred finite game strategies are easy to interpret and justify. Four of them
are best responses to an opponent’s inferred strategy. Player A’s unconditional co-
operation strategy (M,1) is a best response to Player B’s unconditional cooperation
strategy (Mp;). Player A’s 4th round defection strategy (M,14) is a best response
to Player B’s 4th round defection strategy (Myg). Player B’s 4th round defection
strategy (Mpog) is a best response to Player A’s 5th round defection strategy (Mg1s)
and Player B’s 3rd round defection strategy (Mjs7) is a best response to Player A’s
4th round defection strategy (Mg14).

The remaining two inferred finite game strategies are also easily justified. Al-
though Player A’s 5th round defection strategy (Mgi15) is not a best response to
any of Player B’s inferred strategies, it may reflect Player A anticipating Player B
playing K in the last round; Player B on average plays K 44% of the time in the
last round.'> Thus, M, 5 reflects a response to Player B behavior that was not
inferred. And although Player B’s unconditional cooperation strategy (Mp;) is also
not a best response to any of Player A’s inferred strategies, it reflects a preference
for fairness or equity consistent with utility functions proposed by Fehr and Schmidt
(1999)) and Bolton and Ockenfels (2000)). Thus, every inferred finite strategy is
understandable; four are best responses to inferred opponent strategies, one is a
best response to an action we did not infer and one reflects a utility function with
preferences for fairness.

In the indefinite game the only Player A strategy inferred, M,s, is the analogue to
the Grim Trigger strategy in the repeated Prisoner’s Dilemma game. Strategy M3
fits 72% and 67% of the observations in the training and test samples, respectively.
This strategy is a best response to Player B’s inferred strategy Mpg. In fact, M3
and Mpg form a cooperative equilibrium pair. The two other inferred Player B
strategies, My1 and Mpys, are not best responses to My3. However, given that 28%
of Player A observations are not consistent with the Grim Trigger (M,3), My, and

Myss may be justified in terms of profit maximization.

15 All best fitting strategy sets for Player B with more than 3 strategies include the 5th round
defection strategy Mpag.
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In sum, inferred strategies differ across conditions in behaviorally meaningful
ways. Four of the six inferred finite game strategies reflect end game effects on the
backward induction path while none of the inferred indefinite game strategies reflect
end game effects. Further, four of the six finite game strategies are best responses
to inferred opponent strategies and one more reflects preferences modeled by Fehr
and Schmidt (1999)) and Bolton and Ockenfels (2000)). Finally, two of the inferred

strategies in the indefinite game form a cooperative equilibrium pair.

5.5 Behavior Over Time

In this section we examine whether inferring multiple strategies is due to players
adapting different strategies over time. We address this question by inferring strate-
gies for the first and last 10 supergames. Figure’s 7 and 8 show the inferred finite
and indefinite game strategies, respectively, for the first and last 10 supergames and
Table 3 shows the fitness of the inferred strategies.

In the finite game, the same strategy sets that are inferred for all 20 supergames
for Player A and Player B are inferred for the first 10 supergames (see Figure
7a for Player A and Figure 7b for Player B). However, for Player A for the last
10 supergames the five-round counter (Mg15), which was not a best response to
any inferred opponent strategy, and the always send (M,;) machines are no longer
inferred. On the other hand, the four-round counter (M,14), which is a best response
to the Player B four-round counter (Mysg), fits increasingly more of the data over
time. This change in behavior likely reflects Player A backward inducing to a
greater degree. For Player B, all three inferred strategies for the first 10 supergames
are replaced with two new strategies for the last 10 supergames. First, Player B
may be replacing the always return strategy (Mp;) with a similar strategy (Mpsg)
that returns so long as Player A plays S but plays K for two rounds if Player
A plays D, and then starts over again. (Subjects in the pilot sessions articulated a
similar strategy). In other words, Player B appears to be substituting unconditional
reciprocity for a two round trigger punishment strategy. Second, Player B may be

replacing the three and four round conditional counters (Mpyo; and Myog) with a
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strategy (My7) that plays R the first time Player A plays S, no matter which round
Player A plays S the first time, and then plays K any time Player A plays S
thereafter.

In the indefinite games (see Figure 8a for Player A and Figure 8b for Player
B) we continue to only infer the Grim Trigger strategy for Player A (M,3). Over
time Player A increasingly makes choices consistent with this strategy; its fitness
rises from an average of 656% in the first 10 to 74% in the last 10 supergames.
Likewise, Player B increasingly makes choices consistent with machine Mg, fitting
44% in the first 10 and 58% in the last 10 supergames. Thus, the inferred equilibria
pair (M,s, Mpg) over all 20 supergames is inferred in both the first and last 10
supergames and these strategies increasingly fit the data over time. In the last ten
indefinite games the four-round counter (Myg) is also inferred and fits over 40%
of the supergames. This behavior may reflect a form of gambler’s fallacy in which
Player B incorrectly anticipates that the supergame relationship is increasingly likely
to end after the fourth round. The other Player B strategies we infer in the first and
last 10 supergames, My s and Mpoy, respectively, play K in the first round. Note
that we also infer a Player B strategy that plays K in the first round using all 20
supergames (Mpa5). Thus, it appears that to describe Player B’s behavior, we must
include a strategy that plays K in the first round, but it is not clear what behavior
occurs once he plays K.'6

In sum, behavior in the finite and indefinite games evolves in a logical manner.

In the indefinite game, both players increasingly play strategies consistent with a

'8 We may infer different behavior for Player B after he plays K across the first and last ten
supergames as well as across all 20 supergames because we rarely observe this path of play. To see
this, recall Player A’s Grim Trigger strategy (Mas) fits 72% of all supergames, so in only 28% of the
supergames in which Player B plays K do we observe him taking another action. And since Player
B only plays K in the first round in 11% of the supergames, we only observe Player B’s behavior
after he plays K in 3% of the supergames. The lack of observations to distinguish between strategies
because certain paths of play rarely occur is addressed in Engle-Warnick and Slonim (1999). To
address this concern, they proceed as follows. First, they find, for each inferred machine, sets of
machines that contribute to the best fitting set’s fitness as well, or almost as well, as the inferred
machine. Second, they find the common component behaviors of the machines within these sets,
and conclude that the common components are the important behaviors to fit the data. This
procedure guards against attributing too much meaning to a strategy if other strategies could have
fit the data almost as well. For example, there are many similar fitting machines to the inferred
Player B machines that play K in round 1, and the only common component of these machines is
in fact to play Keep in round 1.
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cooperative equilibrium. In the finite game Player A increasingly backward induces
and Player B adapts a two-round trigger punishment strategy. Thus, the heterogene-
ity observed over all 20 supergames may be partially explained by players adapting

different strategies over time.

6 Conclusion

This paper combines a strategy model, an inference procedure and experimental
observations to examine unobserved repeated game strategies from observed actions.
Inference on specific repeated-game strategies is vital to bridge the gap between
theory and behavior because it allows researchers to form and examine hypotheses
regarding strategies based on empirical observation.

To demonstrate the inference method, we examine finitely and indefinitely re-
peated trust games. In finite games we find evidence of players using strategies with
end-game effects. In indefinite games we find substantial evidence for a harsh trigger
strategy for Player A; the punishment phase of the trigger strategy is harsh enough
that it may be included in the construction of repeated-game equilibria. Further,
in the finite and indefinite games the inferred Player A and B strategies are best
responses to the inferred strategies of their opponent and the inferred strategies
evolve in a logical (best response) manner.

For both types of repeated games and both types of players we use the saine
inference procedure and candidate strategy sets. To the extent that the same pro-
cedure produces distinct but intuitive and theoretically justified results across the
two conditions, the inference method is robust.

We simplified the environment in several ways to overcome the difficulty that
strategies are unobserved. For example, we limited the stage-game strategy space to
two actions for each player and we examined relatively short supergame lengths to
limit noise in the data-generating process. To distinguish between different strate-
gies, we collected over 500 supergame decisions in order to observe many different

realizations of actions. To safeguard against over fitting, we introduced a cost func-
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tion that penalized inferred strategy sets proportionally to the number of strategies
in the set, and checked out of sample predicted fitness of inferred strategies. The
out of sample test also guards against spuriously fitting data due to dependencies
of many observations per subject and possible path dependencies of play. To make
the results easily interpretable we examined deterministic strategies and used finite
automata to model the decision rules players may use.

Once strategies are identified, they can be used to address many important ques-
tions. For example, what are the intermediate and long-term convergence properties
of games in which players use the inferred strategies? Theory and computational
models of learning can address these questions (i.e., the method can be used in con-
junction with any model requiring strategy inference (e.g., Camerer and Ho (1999);
Roth and Erev (1995)). The method can also be used to study other repeated games
(e.g., public goods and social dilemma problems).

This paper’s goal is to take a step toward inferring repeated-game strategies, a
core part of game theory, in natural environments. We believe that a simple strategy
model like the one used in this paper can be extended to the field since there are
many instances where limiting the action space to two or three actions may be
reasonable. Examples include union decisions regarding whether to go on strike and
Federal Reserve Board decisions regarding whether to increase, decrease or maintain
interest rates. Experiments enable researchers to examine many instances of play
of repeated games; no such luxury exists in the field. As such, extensions to field
work may include relaxing the assumption of deterministic machines. The goal is

to advance game theory as an empirical science.
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Table 1: Fitness of All and Best Fitting Machines in the Training Sample

FINITE GAMES
A Players B Players
No of Observations O: 280 *No of Observations O: 275
No. of No. of
Al Machines Fitness % of O All Machines Fitness % of O
1 state 2 70 25.0% 1 state 2 142 51.6%
2 state 12 171 61.1% 2 state 26 174 63.3%
3 state 176 206 73.6% 3 state 1054 208 75.6%
1 state + 10 255 91.1% 1 state + 10 265 96.4%
2 state + 18 256 91.4% 2 state + 32 268 97.5%
3 state + 180 278 99.3% 3 state + 1058 274 99.6%
No. ini__Fitness of Best Fitting Sets from: No. ini _Fitness of Best Fitting Sets from:
Bn 1 2 3 1+ 2+ 3+ Bn 1 2 3 1+ 2+ 3+
1 65 145 145 145 145 145 1 121 124 126 124 124 126
2 70 156 169 197 197 205 2 142 153 157 168 168 171
3 na. 162 182 227 227 239 3 N/A 172 183 196 196 199
4 na. 167 189 239 239 253 4 N/A 174 203 222 223 225
5 na. 170 194 245 245 259 5 N/A 174 205 246 247 249
6 na. 171 197 250 250 264 6 N/A 174 206 265 266 269

*Note - Five observations are missing since the A Player did not send for five entire supergames

INDEFINITE GAMES

A Players B Players
No of Observations O: 280 No of Observations O: 280
No. of No. of
Al Machines Fitness % of O All Machines Fitness % of O
1 state 2 170 60.7% 1 state 2 187 66.8%
2 state 12 227 81.1% 2 state 26 225 80.4%
3 state 176 249 88.9% 3 state 1054 244 87.1%
1 state + 10 224 80.0% 1 state + 10 240 85.7%
2 state + 18 237 84.6% 2 state + 32 251 89.6%
3 state + 180 255 91.1% 3 state + 1058 261 93.2%
No. ini __Fitness of Best Fitting Sets from: No. ini __Fitness of Best Fitting Sets from:
Bn 1 2 3 1+ 2+ 3+ Bn 1 2 3 1+ 2+ 3+
1 170 202 202 193 202 202 1 158 161 162 161 161 162
2 170 211 212 206 211 212 2 187 192 194 188 192 194
3 na. 218 222 213 218 222 3 na. 212 218 208 212 218
4 na. 222 227 216 222 227 4 na. 217 230 221 224 231
5 na. 224 231 218 225 231 5 na. 221 237 230 233 243
6 na. 226 235 220 227 237 6 na. 222 240 236 239 249




Table 2: Inferred Strategies and Their Fitness

Training Sample Test Sample
Unique Total Unique Total
Machine  Fitness Fitness Fitness Fitness
M.1s 20% 40% 15% 42%
Finite Player A Ma14 17% 38% 8% 35%
M.+ 23% 23% 9% 9%
M1 20% 44% 12% 29%
Finite Player B Myos 15% 41% 13% 43%
M7 10% 19% 17% 38%
Indef. Player A Mas 2% 72% 67% 67%
Mys 43% 57% 32% 46%
Indef. Player B Mp11 7% 22% 5% 21%
My2s 11% 11% 15% 17%

1. Based on ¢ = 5% threshold




Table 3: Inferred Strategies and Their Fitness Over Time

FIRST TEN SUPERGAMES

LAST TEN SUPERGAMES

Training Sample Test Sample Training Sample Test Sample
Unique Total Unique Total Unique Total Unique Total
Machine  Fitness Fitness Fitness Fitness Machine Fitness Fitness Fitness Fitness
M.15 28% 42% 21% 47%
Finite Player A Ma1a 15% 29% 10% 36% Ma1s 46% 46% 34% 34%
M, 26% 26% 13% 13% | M5 27% 27% 6% 6%
M1 24% 43% 15% 31% > Mp3o 41% 46% 25% 34%
Finite Player B Mpos 20% 42% 18% 44% Mp7 17% 21% 7% 15%
M, 7 1% 17% 15% 30% |V
Indef. Player A M, 67% 67% 62% 62% M3 7% 7% 71% 71%
My 54% 54% 62% 62% Mg 28% 61% 17% 55%
Indef. Player B Mp16 14% 14% 20% 20% 1> Mpoa 9% 9% 13% 15%
Mpas 9% 42% 1% 51%

1. Based on ¢ = 5% threshold

2. Arrows P reflect similar machines that they have almost identical structure accept for one or two transitions




Figure 1: Trust Game Extensive Form
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Figure 5: Player B, Set “+”
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Figure 6a: Inferred Strategies In All Finite Supergames
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Figure 6b: Inferred Strategies In All Indefinite Supergames
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Figure 7a: Inferred Player A Strategies In Finite Supergames
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Figure 7b: Inferred Plaver B Strategies In Finite Supergames
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Figure 8a: Inferred Player A Strategies In Indefinite
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Figure 8b: Inferred Player B Strategies In Indefinite
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