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Abstract

Limit distribution results on realised power variation, that is sums of absolute powers of
increments of a process, are derived for certain types of semimartingale with continuous local
martingale component, in particular for a class of flexible stochastic volatility models. The
theory covers, for example, the cases of realised volatility and realised absolute variation.
Such results should be helpful in, for example, the analysis of volatility models using high
frequency information.

Some key words: Absolute returns; Mixed asymptotic normality; Realised volatility; p-variation;
Quadratic variation; Semimartingale.

1 Introduction

Stochastic volatility processes play an important role in financial economics, generalising Brow-

nian motion to allow the scale of the increments (or returns in economics) to change through

time in a stochastic manner. We show such intermittency can be coherently measured using

sums of absolute powers of increments, which we name realised power variation. This paper

derives limit theorems for these measures, over a fixed interval of time, as the number of high

frequency increments goes off to infinity.

A referee has drawn our attention to an unpublished thesis by Etienne Becker (1998) that

develops a number of results that are closely related to those of the present paper. We outline

the relation to Becker’s work in the concluding Section of this paper.

This paper has six other sections. In Section 2 we establish our idea of realised power

variation as well as define the regularity assumptions we need to derive our limit theorems.

Section 3 contains our main results, while the proofs of them are given in Section 4. Section 5

gives some examples of the processes covered by our theory, while a Monte Carlo experiment

to assess the accuracy of our limit theory approximations is conducted in Section 6. Finally,
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Section 7 gives some concluding remarks including a discussion of the use of these ideas in other

areas of study, for instance turbulence and image analysis.

2 Models, notation and regularity conditions

We first introduce some notation for realised power variation quantities of an arbitrary semi-

martingale x. Let δ be positive real and, for any t ≥ 0, define

xδ(t) = x(�t/δ� δ),

where �a� for any real number a denotes the largest integer less than or equal to a. The process

xδ(t) is a discrete approximation to x(t). Further, for r positive real we define the realised power

variation of order r1 or realised r-tic variation of xδ(t) as

[xδ][r](t) =
M∑

j=1

|xδ (jδ) − xδ((j − 1)δ)|r

=
M∑

j=1

|x (jδ) − x((j − 1)δ)|r (1)

where M = M(t) = �t/δ�. Then, in particular, for M → ∞, realised quadratic variation

[xδ][2](t)
p→ [x](t),

where [x] is the quadratic variation process of the semimartingale x. Note also that,

[xδ][2] = [xδ].

Henceforth, for simplicity of exposition, we consider only a fixed t and take δ so that M =

�t/δ� is an integer (and then δM = t). However, our results can undoubtedly be generalised to

provide functional limit statements, and we hope to discuss that elsewhere.

Our detailed results will be established for the stochastic volatility (SV) model where basic

Brownian motion is generalised to allow the volatility term to vary over time and there to be a

rather general drift. Then the y∗ follows

y∗(t) = α∗(t) +
∫ t

0
σ(s)dw(s), t ≥ 0, (2)

1The similarly named p-variation, 0 < p < ∞, of a real-valued function f on [a, b] is defined as

sup
κ

∑
|f(xi) − f(xi−1)|p ,

where the supremum is taken over all subdivisions κ of [a, b]. If this function is finite then f is said to have
bounded p-variation on [a, b]. The case of p = 1 gives the usual definition of bounded variation.

This concept has been studied recently in the probability literature. See the work of, for example, Lyons (1994)
and Mikosch and Norvaisa (2000).
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where σ > 0 and α∗ are assumed to be stochastically independent of the standard Brownian

motion w. Throughout this paper we will assume that the processes τ = σ2 and α∗ predictable

and pathwise locally Riemann integrable (hence, in particular, pathwise locally bounded). Thus

y∗ is a semimartingale, more precisely a Brownian semimartingale. We call σ the spot volatility

process and α∗ the mean or risk premium process. (For some general information on processes

y∗ of this type from the viewpoint of financial econometrics, see for example Ghysels, Harvey,

and Renault (1996) and Barndorff-Nielsen and Shephard (2001)). By allowing the spot volatility

to be random and serially dependent, this model will imply its increments will exhibit volatility

clustering and have unconditional distributions which are fat tailed. This allows it to be used

in finance and econometrics as a model for log-prices. In turn, this provides the basis for option

pricing models which overcome some of the major failings in the Black-Scholes option pricing

approach. Leading references in this regard include Hull and White (1987), Heston (1993) and

Renault (1997). See also the recent work of Nicolato and Venardos (2001).

For the price process (2) the realised power variation of order r of y∗ is, at time t and

discretisation δ, [y∗δ ]
[r](t). Letting

yj(t) = y∗(jδ) − y∗((j − 1)δ)

we have that

[y∗δ ]
[r](t) =

M∑
j=1

|yj(t)|r .

We use the notation τ(t) = σ2(t) and

τ∗(t) =
∫ t

0
τ(s)ds

and, more generally, we consider the integrated power volatility of order r

τ r∗(t) =
∫ t

0
τ r(s)ds.

Throughout the following, r denotes a positive number. Moreover we shall refer to the fol-

lowing conditions on the volatility and mean processes:

(V) The volatility process τ = σ2 is (pathwise) locally bounded away from 0 and

has, moreover, the property

lim
δ↓0

δ1/2
M∑

j=1

|τ r(ηj) − τ r(ξj)| = 0 (3)
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for some r > 0 (equivalently for all r > 0)2 and for any ξj = ξj(δ) and ηj = ηj(δ)

such that

0 ≤ ξ1 ≤ η1 ≤ δ ≤ ξ2 ≤ η2 ≤ 2δ ≤ · · · ≤ ξj ≤ ηj ≤ Mδ = t.

(M) The mean process α∗ satisfies (pathwise)3

lim
δ↓0

max
1≤j≤M

δ−1|α∗(jδ) − α∗((j − 1)δ)| < ∞. (4)

These regularity conditions are quite mild.4 Of some special interest are cases where α∗ is

of the form

α∗(t) =
∫ t

0
g(σ(s))ds,

for g a smooth function. Then regularity of τ will imply regularity of α∗.

Note that the assumptions allow the spot volatility to have, for example, deterministic diurnal

effects, jumps, long memory, no unconditional mean or to be non-stationary.

On the other hand, models for τ like the Cox-Ingersoll-Ross process, or more generally the

constant elasticity of variance process, do not satisfy (V). The same limit results do, however,

hold also for such processes (at least for r < 3) as verified in a forthcoming paper by Ole

Barndorff-Nielsen, Svend Erik Graversen and Neil Shephard.

3 Results

Our main theoretical result is

Theorem 1 For δ ↓ 0 and r ≥ 1/2, under conditions (V) and (M),

µ−1
r δ1−r/2[y∗δ ]

[r](t)
p→ τ r/2∗(t), (5)

and
µ−1

r δ1−r/2[y∗δ ]
[r](t) − τ r/2∗(t)

µ−1
r δ1−r/2

√
µ−1

2r vr[y∗δ ][2r](t)

L→ N(0, 1), (6)

2The equivalence follows on noting that for each j there exists an ωj with

inf
(j−1)δ≤s≤jδ

τ(s) ≤ ωj ≤ sup
(j−1)δ≤s≤jδ

τ(s)

such that
|τr(ηj) − τr(ξj)| = rωr−1

j |τ(ηj) − τ(ξj)|
and then using that τ is pathwise bounded away from 0 and ∞.

3This condition is implied by Lipschitz continuity and itself implies continuity of α.
4Condition (V) is satisfied in particular if τ is of OU type and condition (M) is valid if, for instance, α is a

intOU process plus drift.
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where µr = E {|u|r} and vr = Var {|u|r}, with u ∼ N(0, 1). �

This theorem tells us that, for δ ↓ 0, scaled realised power variation converges in probability

to integrated power volatility and follows asymptotically a normal variance mixture distribution

with variance distributed as

δµ−2
r vrτ

r∗(t),

which is consistently estimated by the square of the denominator in (6). Hence the limit theory

is statistically feasible and does not depend upon knowledge of α∗ or σ2.

Leading cases are realised quadratic variation, which is usually called realised volatility in the

finance and econometrics literature,

[y∗δ ]
[2](t) =

M∑
j=1

y2
j (t),

in which case ∑M
j=1 y2

j (t) − τ∗(t)√
2
3

∑M
j=1 y4

j (t)

L→ N(0, 1), (7)

and realised absolute variation

[y∗δ ]
[1](t) =

M∑
j=1

|yj(t)| ,

when √
π/2

√
δ
∑M

j=1 |yj(t)| − σ∗(t)√
(π/2 − 1) δ

∑M
j=1 y2

j (t)

L→ N(0, 1). (8)

In the case of r = 2 the result considerably strengthens the well known quadratic vari-

ation result that realised quadratic variation converges in probability to integrated volatility∫ t
0 σ2(s)ds — which was highlighted in concurrent and independent work by Andersen and

Bollerslev (1998a) and Barndorff-Nielsen and Shephard (2001). The asymptotic distribution of

realised quadratic variation was discussed by Barndorff-Nielsen and Shephard (2002) in the spe-

cial case where α∗(t) = µt+β
∫ t
0 σ2(s)ds. To our knowledge the probability limit of (normalised)

realised absolute variation has not been previously derived, let alone its asymptotic distribution.

If on the left hand side of the main result (6) we standardised by δ(1−r/2) rather than

by µ−1
r δ1−r/2

√
µ−1

2r vr[y∗δ ][2r](t) we would obtain a normal variance mixture as the limit law, as

follows from formula (5). Similar normal mixture results are known for standardised functions of

the increments of diffusion processes, see Delattre and Jacod (1997) and Florens-Zmirou (1993).

We also wish to point out that inspection of the proof of Proposition 1 in Section 4 below shows

that the joint distribution of

µ−1
r δ1−r/2[y∗δ ]

[r](t) − τ r/2∗(t)

µ−1
r δ1−r/2

√
µ−1

2r vr[y∗δ ][2r](t)
, µ−1

2r δ1−r[y∗δ ]
[2r](t)
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converges to the product of N(0, 1) and the law of an independent random variable distributed

as τ∗(t).

Taking sums of squares of increments of log-prices has a very long tradition in financial

economics — see, for example, Poterba and Summers (1986), Schwert (1989), Taylor and Xu

(1997), Christensen and Prabhala (1998), Dacorogna, Muller, Olsen, and Pictet (1998), Ander-

sen, Bollerslev, Diebold, and Labys (2001) and Andersen, Bollerslev, Diebold, and Ebens (2001).

However, for a long time no theory was known for the behaviour of such sums outside the Brown-

ian motion case. Since the link to quadratic variation has been made there has been a remarkably

fast development in this field. Contributions include Corsi, Zumbach, Muller, and Dacorogna

(2001), Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and

Ebens (2001), Barndorff-Nielsen and Shephard (2002), Andreou and Ghysels (2001), Bai, Rus-

sell, and Tiao (2000), Maheu and McCurdy (2002), Areal and Taylor (2002), Galbraith and

Zinde-Walsh (2000), Bollerslev and Zhou (2002) and Bollerslev and Forsberg (2002).

Andersen and Bollerslev (1998b) and Andersen and Bollerslev (1997) empirically studied

the properties of
∑M

j=1 |yj(t)| computed using sums of absolute values of intra-day returns on

speculative assets (many authors in finance have based their empirical analysis on absolute values

of returns — see, for example, Taylor (1986, Ch. 2), Cao and Tsay (1992), Ding, Granger, and

Engle (1993), West and Cho (1995), Granger and Ding (1995), Jorion (1995), Shiryaev (1999,

Ch. IV) and Granger and Sin (2002)). This was empirically attractive, for using absolute values

is less sensitive to possible large movements in high frequency data. There is evidence that if

returns do not possess fourth moments then using absolute values rather than squares would be

more reliable (see, for example, the work on the distributional behaviour of the correlogram of

squared returns by Davis and Mikosch (1998) and Mikosch and Starica (2000)). However, the

approach was abandoned in their subsequent work reported in Andersen and Bollerslev (1998a),

Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys

(2001) due to the lack of appropriate theory for the sum of absolute returns as δ ↓ 0, although

recently Andreou and Ghysels (2001) have performed some interesting Monte Carlo studies in

this context, while Shiryaev (1999, pp. 349–350) and Maheswaran and Sims (1993) mention

interests in the limit of sums of absolute returns. Our work provides, in particular, a theory for

the use of sums of absolute returns.
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4 Proofs

Since the mean and volatility processes α∗ and τ are jointly independent of the Brownian motion

w we need only argue conditionally on (α∗, τ). Define αj , τj and σj by

αj = α∗(jδ) − α∗((j − 1)δ),

τj = τ∗(jδ) − τ∗((j − 1)δ)

and

σj =
√

τj .

As a preliminary step we show

Lemma 1 For δ → 0,

δ1−r[τ∗
δ ][r](t) → τ r∗(t), (9)

pathwise. �

Proof By the boundedness of τ(t) we have that for every j = 1, ..., M there exists a constant

θj such that

inf
(j−1)δ≤s≤jδ

τ(s) ≤ θj ≤ sup
(j−1)δ≤s≤jδ

τ(s)

and

τj = θjδ, (10)

and using this and the Riemann integrability of τ r(t) we obtain

δ1−r[τ∗
δ ][r] = δ1−r

M∑
j=1

τ r
j

=
M∑

j=1

(τj/δ)rδ

=
M∑

j=1

θr
jδ

→
∫ t

0
τ r(s)ds

= τ r∗(t).

�
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It is now convenient to write y∗(t) as

y∗(t) = α∗(t) + y∗0(t),

where

y∗0(t) =
∫ t

0
σ(s)dw(s)

and to introduce

y0j = y∗0(jδ) − y∗0((j − 1)δ).

The joint law of y01, ..., y0M is equal to that of v1, ..., vM where

vj = σjuj

and u1, ..., uM are i.i.d. standard normal and independent of the process σ. It follows that

[y∗0δ]
[r](t) L=

M∑
j=1

τ
r/2
j |uj |r . (11)

The conditional mean and variance of [y∗0δ]
[r](t) are then

E{[y∗0δ]
[r](t)|τ} = µr

M∑
j=1

τ
r/2
j = µr[τ∗

δ ][r/2](t) (12)

and

Var{[y∗0δ]
[r](t)|τ} = vr

M∑
j=1

τ r
j = vr[τ∗

δ ][r](t). (13)

Hence, letting

D0 = µ−1
r [y∗0δ]

[r](t) − [τ∗
δ ][r/2](t)

we have

E{D0|τ} = 0

and

Var{D0|τ} = µ−2
r vr[τ∗

δ ][r](t).

By Lemma 1 as δ → 0,

δ1−rVar{D0|τ} → µ−2
r vrτ

r∗(t)

indicating the validity of

Proposition 1 For δ → 0,

δ(1−r)/2 µ−1
r [y∗0δ]

[r](t) − [τ∗
δ ][r/2](t)√

µ−2
r vrτ r∗(t)

L→ N(0, 1). (14)
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�

Proof To establish this proposition we recall Taylor’s formula with remainder term:

f(x) = f(0) + f ′(0)x + x2

∫ 1

0
(1 − s)f ′′(sx)ds. (15)

By (11) and (12) we find, using (15), that the conditional cumulant transform of D0 is of

the form

log E{exp(iζD0)|τ} = ζ2
M∑

j=1

τ r
j

∫ 1

0
(1 − s)κ′′

r (τ
r/2
j ζs)ds

= ζ2δr
M∑

j=1

θr
j

∫ 1

0
(1 − s)κ′′

r (δ
r/2θ

r/2
j ζs)ds,

where θj is given by (10) and κr denotes the cumulant transform of µ−1
r |u|r for u a standard

normal random variable. Consequently,

log E{exp(iζδ(1−r)/2D0)|τ} =
1
2
ζ2δR

where

R = 2
M∑

j=1

θr
j

∫ 1

0
(1 − s)κ′′

r (δ
1/2θ

r/2
j ζs)ds.

The boundedness of τ on [0, t] implies

lim
δ↓0

δ1/2 max
j

θ
r/2
j = 0

and hence, for δ ↓ 0,

δR → 2
∫ 1

0
(1 − s)dsκ′′

r (0) lim
δ↓0

M∑
j=1

θr
jδ

= κ′′
r (0)τ r∗(t) = −µ−2

r vrτ
r∗(t).

Therefore

log E{exp(iζδ(1−r)/2D0)|τ} = −1
2
ζ2µ−2

r vrτ
r∗(t) + o(1) (16)

and Proposition 1 follows. �

Lemma 1 uses only the local boundedness and Riemann integrability of τ . Invoking condi-

tion (V) we may strengthen the result (9) as follows.

Lemma 2 Under condition (V) we have

δ1−r[τ∗
δ ][r](t) − τ r∗(t) = op(δ1/2).
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Proof For each j there exists a number ψj such that

inf
(j−1)δ≤s≤jδ

τ(s) ≤ ψj ≤ sup
(j−1)δ≤s≤jδ

τ(s)

and ∫ jδ

(j−1δ)
τ r(s)ds = ψr

j δ. (17)

Using this and (10) we find

δ1−r[τ∗
δ ][r](t) − τ r∗(t) = δ1−r

M∑
j=1

τ r
j −
∫ t

0
τ r(s)ds

= δ
M∑

j=1

(θr
j − ψr

j ), (18)

and the conclusion now follows from assumption (V). �

Proposition 2 Under condition (V), for δ → 0,

δ1−r/2µ−1
r [y∗0δ]

[r](t) − τ r/2∗(t)

δ1/2

√
µ−2

r vrτ r∗(t)

L→ N(0, 1). (19)

�

Proof We may rewrite the left hand side of (14) as

δ1−r/2µ−1
r [y∗0δ]

[r](t) − δ1−r/2[τ∗
δ ][r/2](t)

δ1/2

√
µ−2

r vrτ r∗(t)
=

δ1−r/2µ−1
r [y∗0δ]

[r](t) − τ r/2∗(t)

δ1/2

√
µ−2

r vrτ r∗(t)

+
δ1−r/2[τ∗

δ ][r/2](t) − τ r/2∗(t)

δ1/2

√
µ−2

r vrτ r∗(t)

and Lemma 2 then implies the result. �

As an immediate consequence of Proposition 2 we have

Corollary 1 Under condition (V), for δ → 0,

δ1−rµ−1
2r [y∗0δ]

[2r](t)
p→ τ r∗(t).

�

10



In other words, when normalised, [y∗0δ]
[2r](t) provides a consistent estimate of τ r∗(t). Com-

bining this with (19) yields the conclusion of Theorem 1 for the special case where the mean

process α∗ is identically 0.

The remaining task is to show that, to the order concerned, α∗ does not affect the asymptotic

limit behaviour, provided conditions (V) and (M) hold. For this it suffices to show that, under

(V) and (M),

δ(1−r)/2
{

[y∗δ ]
[r](t) − [y∗0δ]

[r](t)
}

= op(1),

cf. Proposition 1.

We shall in fact prove the following stronger result.

Proposition 3 Under conditions (V) and (M),

δ−r/2
{

[y∗δ ]
[r](t) − [y∗0δ]

[r](t)
}

= Op(1).

�

Proof Let

τ = inf
0≤s≤t

τ(s) and τ̄ = sup
0≤s≤t

τ(s)

and

γj = δ−1αj

and note that (pathwise for (α∗, τ)), by assumption,

0 < τ ≤ τ̄ < ∞,

implying

0 < min
j

θj ≤ max
j

θj < ∞,

while, due to assumption (M), there exists a constant c for which

max
j

|γj | ≤ c,

whatever the value of M .

We have

[y∗δ ]
[r](t) − [y∗0δ]

[r](t) =
M∑

j=1

(|αj + y0j |r − |y0j |r)

=
M∑

j=1

(
|δγj + δ1/2θ

1/2
j uj |r − |δ1/2θ

1/2
j uj |r

)

= δr/2
M∑

j=1

θ
r/2
j

{∣∣∣(γj/θ
1/2
j

)
δ1/2 + uj

∣∣∣r − |uj |r
}
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and hence

δ−r/2
{

[y∗δ ]
[r](t) − [y∗0δ]

[r](t)
} L=

M∑
j=1

θ
r/2
j hr

(
u0j ; γj/θ

1/2
j

)
where

hr(u; ρ) =
∣∣∣ρδ1/2 + u

∣∣∣r − |u|r.

The conclusion of Proposition 3 now follows from Lemma 3 below. �

Lemma 3 For r ≥ 1/2, u a standard normal random variable and ρ constant,

E{hr(u; ρ)} = O(δ)

and

Var{hr(u; ρ)} = O(δ).

�

Proof With ϕ denoting the standard normal density we obtain

E{|ρδ1/2 + u|r} =
∫ ∞

−∞

∣∣∣ρδ1/2 + x
∣∣∣r ϕ(x)dx

=
∫ ∞

−∞
|x|rϕ(x)eρδ1/2xdxe−ρ2δ/2

=
∫ ∞

−∞
|x|rϕ(x)eρδ1/2xdx + O(δ)

= E{|u|r} +
∫ ∞

−∞
|x|rϕ(x)

(
eρδ1/2x − 1

)
dx + O(δ),

i.e.

E{hr(u; ρ)} = δ1/2

∫ ∞

−∞
x|x|rϕ(x)

eρδ1/2x − 1
δ1/2x

dx + O(δ)

= δ1/2

∫ ∞

−∞
x|x|rϕ(x)

eρδ1/2x − 1 − ρδ1/2x

δ1/2x
dx + ρδ1/2

∫ ∞

−∞
x |x|r ϕ(x)dx + O(δ)

= O(δ).

Furthermore,

E{hr(u; ρ)2} = E{h2r(u; ρ)} + 2E
{
|u|r
(
|u|r − |ρδ1/2 + u|r

)}
= O(δ) + 2E

{
|u|r
(
|u|r − |ρδ1/2 + u|r

)}
(20)

by the previous result. Here

E{|u|r|ρδ1/2 + u|r} =
∫ ∞

−∞
|x|r|ρδ1/2 + x|rϕ(x)dx

12



=
∫ ∞

−∞
|x2 − 1

4
ρ2δ|rϕ(x)e

1
2
ρδ1/2xdxe−

1
8
ρ2δ

=
∫ ∞

−∞
|x2 − 1

4
ρ2δ|rϕ(x)e

1
2
ρδ1/2xdx + O(δ)

=
∫ ∞

−∞
|x|2rϕ(x)e

1
2
ρδ1/2xdx + O(δ)

+
∫ ∞

−∞

(∣∣∣∣x2 − 1
4
ρ2δ

∣∣∣∣r − |x2|r
)

ϕ(x)e
1
2
ρδ1/2xdx. (21)

Now, for a and b nonnegative numbers we have the inequality

|br − |b − a|r| ≤


ar for 0 ≤ b ≤ a

rbr−1a for b > a.
(22)

Using this and r ≥ 1/2 we find that∣∣∣∣∫ ∞

−∞

(
|x2 − 1

4
ρ2δ|r − |x2|r

)
ϕ(x)e

1
2
ρδ1/2xdx

∣∣∣∣
≤
(r

4
ρ2δ
)r
∫
|x|≤ρδ1/2/2

ϕ(x)e
1
2
ρδ1/2xdx +

r

4
ρ2δ

∫ ∞

−∞
|x|2(r−1)ϕ(x)e

1
2
ρδ1/2xdx (23)

= O(δ). (24)

Thus, combining (20), (21) and (24), we have

E{hr(u; ρ)2} = 2
{∫ ∞

−∞
|x|2rϕ(x)dx −

∫ ∞

−∞
|x|2rϕ(x)e

1
2
ρδ1/2xdx

}
+ O(δ)

= 2
∫ ∞

−∞
|x|2rϕ(x)

(
1 − e

1
2
ρδ1/2x

)
dx + O(δ)

= 2δ1/2

∫ ∞

−∞
x|x|2rϕ(x)

1 − e
1
2
ρδ1/2x

δ1/2x
dx + O(δ)

= O(δ),

as was to be shown. �

5 Examples

The following two examples show that conditions (V) and (M) are satisfied for OU models

used by Barndorff-Nielsen and Shephard (2001) in the context of SV models.

Example 1 Volatility process τ of OU type. Without loss of generality we suppose that τ

satisfies the equation

τ(t) = e−λtτ(0) +
∫ t

0
e−λ(t−s)dz(λs),

where z is a subordinator, i.e. a positive Lévy process, which is referred to as the BDLP

(background driving Lévy process).
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The number of jumps of the BDPL z on the interval [0, t] is at most countable. Let z1 ≥
z2 ≥ ... denote the jump sizes given in decreasing order and let u1, u2, ...be the corresponding

jump times. Then, for any s ∈ [0, t],

τ(s) = τ(0)e−λs +
∞∑

n=1

zne(s; un),

where

e(s; u) = e−λ(s−u)1[u,t](s)

and we have
M∑

j=0

|e(jδ; u) − e((j − 1)δ; u)| ≤ 2.

Hence
M∑

j=0

|τ(jδ) − τ((j − 1)δ)| ≤ 2

{
τ(0) +

∞∑
n=1

zn

}
= 2 {τ(0) + z(λt)} ,

showing that condition (V) is amply satisfied. �

Example 2 OU volatility and intOU risk premium In this particular case the volatility

process τ is as in the previous example and the mean process is of the form

α∗(t) = µδ + βτ∗(t),

where µ and β are arbitrary real parameters.

We then have

αj = δ{µ + βθj},

implying

max
1≤j≤M

δ−1|α∗(jδ) − α∗((j − 1)δ)| ≤ |µ| + |β|τ̄ < ∞,

so that condition (M) is indeed satisfied. �

6 A Monte Carlo experiment

6.1 Multiple realised power variations

We have stated the definition and results for realised power variation for a single fixed t. It

is clear that the theory can also be applied repeatedly on non-overlapping increments to the

process. Let us write ∆ > 0 as a time interval and focus on the n-th such interval. Then define

the intra-∆ increments as

yj,n = y∗
(

(n − 1) ∆ +
∆j

M

)
− y∗

(
(n − 1) ∆ +

∆ (j − 1)
M

)
, δ = ∆M−1,

14



which allows us to construct the n-th realised power variation

[y∗δ ]
[r]
n =

M∑
j=1

|yj,n|r .

The implication is that[
µ−1

r

(
∆M−1

)1−r/2 [y∗δ ]
[r]
n

]
− ∫ n∆

(n−1)∆ σr(s)ds

µ−1
r (∆M−1)1−r/2

√
vr
µ2r

[y∗δ ]
[2r]
n

L→ N(0, 1).

An important observation is that the realised power variation errors{
µ−1

r

(
∆M−1

)1−r/2 [y∗δ ]
[r]
n

}
− σ[r]

n , (25)

where σ
[r]
n , the actual power volatility, is defined as

σ[r]
n = σr∗ (n∆) − σr∗ ((n − 1) ∆) , where σr∗(t) =

∫ t

0
σr(s)ds,

will be asymptotically uncorrelated through n, although they will not be independent.

6.2 Simulated example

6.2.1 Realised power variation and actual power volatility

The above distribution theory says in particular that realised power variation error will converge

in probability to zero as δ ↓ 0. To see the magnitude of this error we have carried out a simulation.

This will allow us to see how accurate our asymptotic analysis is in practice. Throughout we

have set the mean process α∗(t) to zero. Our experiments could have been based on the familiar

constant elasticity of variance (CEV) process which is the solution to the SDE

dσ2(t) = −λ
{
σ2(t) − ξ

}
dt + ωσ(t)ηdb(λt), η ∈ [1, 2],

where b is standard Brownian motion uncorrelated with w. Of course the special cases of η = 1

delivers the square root process, while when η = 2 we have Nelson’s GARCH diffusion. These

models have been heavily favoured by Meddahi and Renault (2002) in the context of SV models.

Instead of this we will work with the non-Gaussian Ornstein-Uhlenbeck process, or OU process

for short, which is the solution to the stochastic differential equation

dσ2(t) = −λσ2(t)dt + dz(λt), (26)

where z is a subordinator cf. Examples 1 and 2 above. These models have been developed in

this context by Barndorff-Nielsen and Shephard (2001). In Figure 1(a), (c), (e) we have drawn a

curve to represent a simulated sample path of σ
[2]
n from an OU process where z(t) has a Γ(t4, 8)
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Figure 1: Simulation from an OU-Γ(4, 8) process. Drawn is σ
[2]
n and σ

[1]
n against time, together

with their associated realised power variation estimators. Graph is computed for M = 12, 48
and 144.

marginal distribution, λ = − log (0.99) and ∆ = 1, along with the associated realised quadratic

variation (depicted using crosses) computed using a variety of values of M . It is helpful to keep

in mind that

E
(
σ2(t)

)
= E (z(1)) =

1
2

and Var
(
σ2(t)

)
=

1
2
Var (z(1)) =

1
32

.

The corresponding results for σ
[1]
n and realised absolute variation is given in Figure 1(b), (d),

(f). We see that as M increases the precision of realised power variation increases, while Figure

1 shows that the variance of the realised power variation increases with the level of volatility.

This is line with the prediction from the asymptotic theory, for the denominator increases with

the level of volatility.
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6.2.2 QQ plots

To assess the finite sample performance of the asymptotic distributions of the realised quadratic

and absolute variation we have constructed some QQ plots based upon the standardised errors

(7) and (8). Our main focus will be on the absolute variation case, leaving the quadratic case to

be covered in detail in a follow up paper by Barndorff-Nielsen and Shephard (2003). However,

to start off with we give both cases, in order to allow an easy comparison.

0 250 500
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0

1

Figure a: M=12 with real quad
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Figure b: M=12 with real abs var

−2.5 0.0 2.5

−10

−5

0

real quad  
real abs 
45 degrees 

0 250 500

−0.25

0.00

0.25

0.50 Figure c: M=48 with real quad

0 250 500

−0.2

−0.1

0.0

0.1

0.2

0.3 Figure d: M=48 with real abs var

−2.5 0.0 2.5

−5.0

−2.5

0.0

2.5
real quad 
real abs 
45 degrees 

0 250 500

−0.2

0.0

0.2

Figure e: M=144 with real quad

0 250 500

−0.1

0.0

0.1

Figure f: M=144 with real abs var

−2.5 0.0 2.5

−2

0

2

real quad 
real abs 
45 degrees 

Figure 2: Plots for the realised quadratic variation error and the realised absolute variation error
plus twice their asymptotic standard errors. (a) and (b) have M = 12, while (c) and (d) has
M = 48 and while (e) and (f) has M = 144. Corresponding QQ plots are on the right hand
side, based on the standardised realised quadratic variations and the realised absolute variations.

Figure 2 gives QQ plots based on the simulation experiment reported in the previous sub-

section, with a sample size of 10, 000. Again we vary M over 12, 48 and 144. The left hand side

graphs give the realised quadratic variation errors [y∗δ ]
[2]
n − σ

[2]
n as well as plus and minus two

times the asymptotic standard errors. The plot is based on the first 600 simulations. This graph
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shows how much the standard errors change through time. This continues to happen with large

values of M and reflects the stochastic denominator in the limit theory.

The middle graphs of Figure 2 give the corresponding realised absolute variation errors√
πδ

2

M∑
j=1

|yj,n| − σ[1]
n ,

together with twice standard error bounds. The conditional standard errors are more stable

through time, especially when M is small. The unconditional variance of the errors is approxi-

mately

δ
(
µ−2

1 − 1
)
∆E
{
σ2(t)

}
.

The right hand side of Figure 2 gives the associated QQ plots for the standardised residuals

from the realised quadratic and absolute variation measures. These use all 10, 000 observations.

The results are clear, in comparison with the asymptotic limit laws both random variables

are too fat tailed in small samples, with this problem reducing as M increases. The realised

absolute variation version of the statistic has much better finite sample behaviour, while the

realised quadratic variation is quite poorly behaved.

6.2.3 Logarithmic transformation

The realised power variation [y∗δ ]
[r](t) is the sum of non-negative items and so is non-negative. It

would seem sensible to transform this variable to the real line in order to improve its finite sample

performance. Hence we use the standard logarithmic transformation (that is for a consistent

estimator θ̂ of θ we approximate log(θ̂) by log(θ)+
(
θ̂ − θ

)
/θ, hence the asymptotic distribution

of θ̂ − θ can be used to deduce the asymptotic distribution of log(θ̂) − log(θ)). For the general

realised power variation this implies

log
[
µ−1

r δ1−r/2[y∗δ ]
[r](t)
]− log

∫ t
0 σr(s)ds

µ−1
r δ1−r/2

√
vr
µ2r

[y∗
δ ][2r](t)

[µ−1
r δ1−r/2[y∗

δ ][r](t)]2

L→ N(0, 1). (27)

Referring to the denominator we should note that

µ−1
2r δ1−r[y∗δ ]

[2r](t)[
µ−1

r δ1−r/2[y∗δ ][r](t)
]2 L→

∫ t
0 σ2r(s)ds{∫ t
0 σr(s)ds

}2 ≥ 1,

by Jensen’s inequality. In the realised absolute variation case (27) simplifies to

log
{√

πδ
2

∑M
j=1 |yj(t)|

}
− log

∫ t
0 σ(s)ds√√√√δ

(
π
2 − 1

) ∑M
j=1 y2

j (t){√
πδ
2

∑M
j=1|yj(t)|

}2

L→ N(0, 1). (28)
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Figure 3: Plots for the log transform of the realised absolute variation. Left hand plots are the
errors plus and minus twice their asymptotic standard errors. Corresponding QQ plots are on
the right hand side, based on the standardised log realised absolute variations.

Using the same simulation setup as that employed in the previous subsection, we plot in

Figure 3 the log version of the realised absolute variation error

log


√

πδ

2

M∑
j=1

|yj,n|
− log σ[1]

n ,

plus and minus twice the corresponding standard errors using (28). The standard errors have

now stabilised, almost not moving with n. This is not surprising for t times

t−1
∫ t
0 σ2(s)ds{

t−1
∫ t
0 σ(s)ds

}2

is empirically very close to one for small values of t while for large t it converges to

E
{
σ2(t)

}
[E {σ(t)}]2 ,
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so long as the volatility process is ergodic and the moments exist.

The corresponding QQ plots in Figure 3 have also improved, with the normality approxima-

tion being accurate even for moderate values of M . This result carries over to wider simulations

we have conducted.

Barndorff-Nielsen and Shephard (2003) have studied the effect of taking log-transforms in

the case of r = 2. That paper used simulation and some theory to show the beneficial effect of

taking a log and comparing its effectiveness with other transformations.

7 Conclusions

This paper has introduced the idea of realised power variation, which generalises the concept

of realised volatility. The asymptotic analysis we provide, for δ ↓ 0, represents a significant

extension of the usual quadratic variation result. Further, we provide a limiting distribution

theory which considerably strengthens the consistency result and allows us to understand the

variability of the difference between the realised power variation and the actual power volatility.

We have seen that when we take a log transformation of the realised power variation then the

finite sample performance of the asymptotic approximation to the distribution of this estimator

improves and seems to be accurate even for moderate values of M .

Our motivation for the study reported in this paper came originally from mathematical

finance and financial econometrics where volatility is a key object of study. However, stochastic

models in the form of a ‘signal’ α∗ plus a noise term e where e is (conditionally) Gaussian with

a variance that varies from ‘site’ to ‘site’ are ubiquitous in the natural and technical sciences,

and we believe that results similar to those discussed here will be of interest for applications in

a variety of other fields, for instance in turbulence and in spatial statistics (in this connection

see Guyon and Leon (1989)).

Finally, the thesis of Becker (1998), briefly referred to in the Introduction, consists in a

comprehensive study of the limit behaviour as M → ∞ of processes of the type

yM (t) =
[Mt]∑
j=1

f

[
j − 1
M

,
1√
M

{
x

(
j

M

)
− x

(
j − 1
M

)}]

where f is function of two variables and x denotes a Brownian semimartingale (of a certain

kind, see below). The diffusion case is especially important. Extensions to general continuous

or purely discontinuous semimartingales and even combination of the two are presented. The

thesis is partly based on an earlier report by Jacod (1992), see also Delattre and Jacod (1997)

and Florens-Zmirou (1993). Both x and f may be multidimensional, and generalisations to

20



cases where not only the increment of x over the j-th interval but the whole trajectory over that

interval occur in the second argument of f are also considered.

We shall not here attempt to indicate the precise results and the accompanying regularity

conditions of Becker’s thesis in any detail, but we wish to underline that the setting of his study

is extremely general. Of immediate interest in connection with the present paper are his results

when x is a Brownian semimartingale. More specifically, Becker considers the case where x is of

the form

x(t) =
∫ t

0
c(s)ds +

∫ t

0
σ(s)dw(s)

where w is Brownian motion and c and σ are predictible and subject to restrictions on their

variational behaviour. He shows, in particular, that yM (t) after a suitable centering converges

to a stochastic process which is representable as a certain type of stochastic integral where the

integration is with respect to a ‘martingale-measure tangential to x’. A key point of our present

work is that for the kind of functions f we consider, i.e. absolute powers, we are able to identify

the limit behaviour as mixed Gaussian and, crucially for the statistical applicability, from this to

establish a standard normal limit statement using random rescaling by observable scale factors.
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