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Abstract

This paper reviews and puts in context some of our recent work on stochastic volatility
modelling for financial economics. Here our main focus is on: (i) the relationship between
subordination and stochastic volatility, (ii) OU based volatility models, (iii) exact option
pricing, (iv) realised power variation and realised variance, (v) building multivariate models.
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1. Introduction

This paper reviews and puts in context our recent work on stochastic volatility (SV). Some of
the ideas are based on general SV models, while other pieces focus on the Lévy process based
Ornstein-Uhlenbeck (OU) driven volatility models we have been developing in the last few years.
The points we will make about general SV models will be based around two issues. First

we will give a discussion of the relationship between subordination and stochastic volatility.
We feel that having these connections spelt out clarifies a number of issues which arise in the
modern modelling of univariate and multivariate processes. Second, and more originally, we
review some of our work on “realised power variation”, defined as the sum of powers of absolute
high frequency returns. This statistic generalises the well known realised volatility or variance
concept used in financial econometrics. Our analysis provides the asymptotic distribution of
realised power variation as the number of high frequency observations goes off to infinity.
Our recent work on OU based SV models has focused on two issues. The first is the de-

velopment of exact option pricing formulae based on these models. The work has provided the
first example of such exact results outside the CIR based models which have dominated this
literature. Second we have made considerable progress on various multivariate modelling issues
using OU based volatility models. The advances will be discussed here.
The structure of this paper is as follows. In Section 2, we talk about the relationship between

SV models and time change models. Section 3 will study derivatives written on OU based SV
models. Section 4 will review the work on realised volatility, while Section 5 looks at some recent
results on the new idea of realised power variation. Section 6 discusses various multivariate SV
models and their uses and Section 7 collects short discussions of a number of interesting other
issues. Finally, Section 8 concludes.

2. SV models and chronometers

2.1. SDE and time change models

There are several ways of introducing stochastic volatility into the Samuelson-Black-Scholes
framework for the log-price of an asset

y∗(t) = βt+ σw(t), (2.1)

where w is Brownian motion and β (the drift) and σ (the volatility) are parameters.
One approach is by changing clock time t to a random time τ∗, which is any non-decreasing

process with τ∗(0) = 0, so that (2.1) becomes

y∗(t) = βτ∗(t) + w(τ∗(t)),

where we have dropped σ as this may be incorporated in τ∗(t). Here τ∗ is called a chronometer
(in our work we reserve the name subordinator for a Lévy process with non-negative increments).
It is then natural to add an extra drift term so as to obtain a process of the form

y∗(t) = µt+ bβ(τ∗(t)), (2.2)

where bβ denotes a Brownian motion with drift β, i.e.

bβ(t) = βt+ b(t).
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If τ∗ has continuous sample paths then so will y∗, otherwise both will have jumps.
Another approach changes σ in (2.1) into a positive process σ(t) such that∫ t

0
σ2(s)ds < +∞ a.s for every t > 0

and reformulates (2.1) into

y∗(t) = µt+ βτ∗(t) +
∫ √

τ(s)dw(s), (2.3)

where we have written τ(t) for the variance process σ2(t) and have introduced a drift term, in
analogy with (2.2), and where

τ∗(t) =
∫ t

0
τ(s)ds, (2.4)

i.e. τ∗ is the integrated variance. It plays a key role. It is often assumed that the processes w
and τ are independent, and we shall do so here. One implication of this model is that log-prices
always have continuous sample paths.
Noting that (2.3) is the solution to the stochastic differential equation

dy∗(t) = µdt+ βτ(t)dt+
√
τ(t)dw(t),

we shall refer to the above-mentioned two approaches as the SDE approach and the time-change
approach, respectively
We may, in fact, rephrase the model (2.3) in the form (2.2). More specifically, given (2.3)

there exists a Brownian motion b such that y∗, τ and b satisfy (2.2) and such that b and τ are
independent. Conversely, if τ∗ in (2.2) is of the form (2.4) then there exists a Brownian motion w
such that y∗, τ and w satisfy (2.3) and such that w and τ are independent (cf. Barndorff-Nielsen
and Shephard (2001a)).
Not all chronometers τ∗ are of the form (2.4) and in that sense (2.2) is more general than

(2.3). In particular, if τ∗ is a subordinator, i.e. a non-decreasing Lévy process, then (2.2)
cannot be represented as in (2.3). An example in case is the NIG (normal inverse Gaussian)
Lévy process which comes about by (2.2) through choosing τ∗ as the IG (inverse Gaussian)
subordinator, i.e. the Lévy process z(t) for which z(1) follows the inverse Gaussian law IG(δ, γ)
with probability density

δ√
2π

eδγx−3/2 exp
{
−1
2
(δ2x−1 + γ2x)

}
. (2.5)

A more general case of this is the generalised hyperbolic Lévy process, which takes τ∗ as the
GIG (generalised inverse Gaussian) subordinator.
From the viewpoint of detailed modelling, there may be some appeal in combining the two

approaches, by considering log price processes y∗(t) = y∗0(t) + y∗1(t) with y∗0 and y∗1 independent
and respectively of SDE and subordination type (e.g. SV plus NIG Lévy process). The resulting
processes have some similarities to the jump-diffusion processes discussed by, for example, Duffie,
Pan, and Singleton (2000). The subordination approach may also be broadened to random time
changes of Lévy processes in general, i.e. y∗(t) = µt+ z(τ∗(t)) where z is a Lévy process. This
has been discussed recently by Carr, Geman, Madan, and Yor (2001). We will return to these
issues in Subsection 7.3.
Two modifications of the SDE approach will be considered in Sections 3, 4 and 5. In the

first, a term is added to (a particular subclass of) (2.3) in order to model the so-called leverage
effect and in the second the term µt+ βτ∗(t) is changed to a more general type of process α(t).
Before dealing with these issues, we will now go on to discuss the question of choice of volatility
process and chronometer.
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2.2. Volatility and integrated variance processes

Main considerations in the choice of volatility process τ are: (i) The distributions of increments
of y∗(t) should have the kind of shapes typically observed on the financial markets. This means
they should be fat tailed, as Figure 2.1 illustrates which plots the log of non-parametric density
estimators of daily exchange rates, together with the corresponding fit of generalised hyperbolic
distributions to the same data. These plots bring out the well known feature that returns have
log-densities whose tails decay not faster than linearly. (ii) The timewise correlation structure
of the increments of y∗ should show the kind of quasi long range behaviour that is also typically
observed. (Note that irrespective of the choice of τ , the form (2.3) accommodates possible
asymmetry of the distributions, by the parameter β.) This can be illustrated by using realised
variances, sums of intra-day squared returns, which is discussed in Section 4 of this paper. SV
models can reproduce both of these features.
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Figure 2.1: Log of the estimates of the unconditional density of the daily returns for six exchange
rates against the US Dollar. 26 July 1985 to 28 July 2000. Also plotted is the log-density for
the ML fit of the five parameter generalised hyperbolic distribution.

In the financial economics literature almost all volatility models are the solution to non-linear
SDEs driven by Brownian motion. The non-linearity is essential in order that the volatility does
not go negative. The most common is the constant elasticity of variance (CEV) process

dσ2(t) = −λ{
σ2(t)− ξ

}
dt+ ωσ(t)ηdb(λt), η ∈ [1, 2],

where b(t) is standard Brownian motion. Of course the special case of η = 1 delivers the square
root process, while when η = 2 we have Nelson’s GARCH diffusion. These models have been
heavily favoured by Meddahi and Renault (2002) in this context.
In some recent work we have taken a radically different route. We construct non-negative

OU (Ornstein-Uhlenbeck type) processes by replacing Browian motion with non-negative Lévy
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processes (subordinators). This model class generalises by the use of superposition (ie. the
addition of independent non-Gaussian OU processes). The linearity of these models allows us to
carry out many analytic calculations (e.g. analytic option pricing) which are not possible with
most non-linear diffusions.
Non-Gaussian OU processes are constructed in the following way. Let D be a distribution

on the positive halfline. If D is selfdecomposable1, and only then, there exists a subordinator z
such that whatever the value of λ > 0 the SDE

dτ(t) = −λτ(t)dt+ dz(λt), (2.6)

has a stationary solution. In this case, the law of τ(t) does not depend on λ, and we refer to
the process τ as a D-OU process. Notice τ(t) is kept from being negative by being driven by
z(t), a process with non-negative increments. A simulated example of the paths that the τ(t)
and z(λt) processes follow is given in Figure 2.2. This shows the case where D is a Γ(ν, α).
There are many other interesting choices for D. In particular generalised inverse Gaussian and
its important special case the inverse Gaussian.
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Figure 2.2: OU process with Γ(ν, α) marginals. Throughout, ν = 3, α = 8.5, λ= 0.01 and
∆ = 1. Top left: plot of z(λn∆) against n. Top right: plot of τ(n∆) against n. Same graph
but for longer series in bottom left. Bottom right: as a numerical check we also present the
empirical autocorrelation function for τ(n∆).

The solution of (2.6) may be expressed as

τ(t) = e−λtτ(0) + e−λt
∫ t

0
eλsdz(λs). (2.7)

1A probability distribution D on R is selfdecomposable if and only if the characteristic function φ of D satisfies
φ(ζ) = φ(cζ)φc(ζ) for all ζ ∈ R and all c ∈ (0, 1) and for some family of characteristic functions {φc : c ∈ (0, 1)}.
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An immediate consequence of (2.7) is that setting

ε(s, t) = λ−1
{
1− e−λ(t−s)

}
(2.8)

the integrated variance process τ∗(t) takes the simple form

τ∗(t) = ε(0, t)τ(0) +
∫ t

0
ε(s, t)dz(λs). (2.9)

Addition of independent OU processes, with different λ but such that the law of the one-
dimensional marginals of the resulting process is D, is referred to as a D-supOU process. An
alternative parametric modelling approach is to assume that z(1) follows a distribution D, then
we say that the corresponding OU process is of type OU-D while the corresponding superposition
based model is written as supOU-D.
One of the main advantages of the OU processes is that we are able to derive the conditional

cumulant function of τ∗(t)|τ(0) as well as the marginal cumulant function of τ∗(t), in terms
of the cumulant function of either D or z(1). Moreover, there is a simple relation between
the two latter functions; specifically, if we denote these by κ́ and κ, respectively, then (see
Barndorff-Nielsen and Shephard (2001a), Barndorff-Nielsen and Shephard (2001b))

κ́(ζ) =
∫ ∞

0
κ(e−sζ)ds and κ(ζ) = ζκ́′(ζ). (2.10)

The NIG law gives in many cases a consistently good fit to returns. If the chronometer
τ∗(t) in (2.2) or (2.3) followed the IG(δ, γ) law then y∗(t) would have the NIG(α, β, tµ, tδ)
distribution (where α =

√
β2 + γ2)2. The IG-OU and, more generally, the IG-supOU variance

processes τ , that have had a central place in our work, have the property that τ(t) has law
IG(δ, γ) (for all t, since τ is stationary). Then the law of τ∗(t) is not exactly IG for any t but
it is shown in Barndorff-Nielsen and Shephard (2001c) that it is in fact close to being IG.
The analogous conclusion holds more generally for the TS (tempered stable) and normal

tempered stable laws and associated stochastic volatility processes, but it is not the case if
instead of a TS law one uses, for instance, the log normal. This is also shown in Barndorff-
Nielsen and Shephard (2001c).
The TS distributions are obtained from the positive ω-stable laws (0 < ω < 1) by expo-

nential tilting. A further power tilting leads to the modified stable laws, of which the GIG
laws constitute the special case for which ω = 1

2 . If u is modified stable and independent of a
standard normal variable ε then, by definition, µ+βu+

√
uε (compare to (2.3)) follows a normal

modified stable law; the generalised hyperbolic laws correspond to ω = 1
2 . The modified stable

and normal modified stable laws are introduced and studied in Barndorff-Nielsen and Shephard
(2001d).

3. Derivative assets analysis

In this section we investigate the class of OU based stochastic volatility models from the view-
point of derivative asset analysis. In particular we assume that on a given filtered probability
space (Ω,Ft, P ) with P denoting the physical probability measure, the log-price process has
dynamics given by

dy∗(t) = (µ+ β τ(t))dt+
√
τ(t)dw(t) + ρdz(λt) (3.1)

2Four parameters is the minimum number needed to accomodate location, spread, asymmetry and tail heavy-
ness.
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where the variance process3 τ(t) is described by an Ornstein-Uhlenbeck type process as in (2.6),
z is the subordinator (independent of the Brownian motion w) driving τ(t) and ρ is a non positive
real parameter which accounts for possible leverage effects (e.g. Black (1976) and Nelson (1991)).
For simplicity, we also assume that z has no deterministic drift and that its Lévy measure is
absolutely continuous with respect to the Lebesgue measure. Hence the cumulant generating
function of z(1) can be written in the form

k(θ) = log E[eθz(1))] =
∫ +∞

0

(
eθx − 1

)
u(x)dx

where u(x) denotes the density of the Lévy measure. We also assume that there is a constant
continuously compounded interest rate r.

3.1. Sets of equivalent martingale measures

Consider a derivative product written on an asset with log-price given by (3.1), maturity T
and payoff h(y∗(T )) and let Ct denote its arbitrage-free price at time t ≤ T . According to the
fundamental theorem of asset pricing, Ct is given by

Ct = EQ[e−r(T−t)h(y∗(T ))|Ft] (3.2)

where the expectation is taken with respect to an equivalent martingale measure (EMM) or
risk neutral measure Q, i.e. a probability measure equivalent to P under which the discounted
price process exp (−rt+ y∗(t)) evolves as a martingale. As is typical for financial market models
allowing for stochastic volatility, the model in (3.1) is arbitrage free but incomplete, meaning
that there exists an infinite number of EMMs. The structure of a general EMM and some
relevant subsets of EMMs under the model (3.1) are studied in Nicolato and Venardos (2001).
A similar analysis has been independently developed by Hubalek and Tompkins (2000b).
Of special interest is the setM′ consisting of those equivalent martingale measures Q under

which z(λt) remains a Lévy process. Let Q ∈ M′ and let uQ(dx) denote the Lévy measure of z
under Q. Then

uQ(dx) = ϕ(x)u(x)dx, (3.3)

where the density ϕ(x) is a strictly positive function such that∫
R+

(√
ϕ(x)− 1

)2
u(x)dx < +∞. (3.4)

The dynamics of the log-price process y∗(t) under Q are given by

dy∗(t) =
{
r − λkQ(ρ)− 1

2
τ(t)

}
dt+

√
τ(t)dwQ(t) + ρdz(λt),

dτ(t) = −λτ(t)dt+ dz(λt),
(3.5)

where wQ(t) is aQ-Brownian motion, wQ(t) and z(λt) are independent and kQ(θ) is the cumulant
function of z(1) under Q, i.e.

kQ(θ) =
∫ +∞

0

(
eθx − 1

)
ϕ(x)u(x)dx.

Conversely, for any positive function ϕ(x) satisfying (3.4) there exists Q ∈ M′ under which z
has Lévy measure uQ(dx) given by (3.3).

3Notice that when z(1) has finite second moment, the instantaneous variance of log-returns is given by (τ(t)+
ρ2λVar(z(1)))dt.
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Process Integral
∫ T
t kQ[f(s, θ)]ds

and setting f1 = θρ+ 1
2(θ

2 − θ)
(
1− e−λ(T−t)

)
kQ(θ) f2 = θρ+ 1

2(θ
2 − θ)

IG(γ, δ)-OU δ
λ

(√
γ2 − 2f1 −

√
γ2 − 2θ ρ

)
+ 2δf2

λ
√

2f2−γ2
×

δθ√
γ2−2θ

(
arctan

(√
γ2−2θρ
2f2−γ2

)
− arctan

(√
γ2−2f1
2f2−γ2

))

Γ(α, ν)-OU
(
α log

[
α−f1
α−θρ

]
+ f2λ(T − t)

)
× ν
λ(α−f2)

νθ
α−θ

Table 3.1: The closed form solution for the integral appearing in the Laplace transform of
y∗(T )|y∗(t), τ(t) for the IG-OU and Γ-OU models.

In other words, in a risk neutral world governed by a Q ∈ M′, the log price process and its
volatility are again described by a model of the type (3.1), albeit with different parameters and
possibly different invariant law for the volatility process.
In subsection 3.3 it will be argued that it is sufficient to consider only equivalent martingale

measures inM′. From the viewpoint of analytical tractability, this choice has clear advantages.
For example, the Markov property of the pair (y∗(t), τ(t)) implies the price at time t of the claim
h(y∗(T )) depends only on the value of the underlying and of the volatility process at time t and
not on the whole history up to time t. Moreover, for processes as in (3.5) (or, more generally as
in (3.1)) the conditional cumulant function of the log-price y∗(T ) given y∗(t), τ(t) has a simple
expression. More precisely, when the log price has risk neutral dynamics given by (3.5), the
conditional cumulant function

kt(θ) = log EQ [exp(θy∗(T ))|Ft] = log EQ [exp(θy∗(T ))|y∗(t), τ(t)]
is given by

kt(θ) =
[
θ
(
y∗(t) +

(
r − kQ(ρ)

)
(T − t)

)
+ (f(t, θ)− ρ θ) τ(t) + λ

∫ T

t
kQ(f(s, θ))ds

]
, (3.6)

where
f(s, θ) = ρθ +

1
2

(
θ2 − θ

)
ε(s, T ) (3.7)

and ε(s, t) is given in (2.8). For many concrete specifications of the volatility process, the
expression in (3.6) can be computed in terms of elementary functions. The results for the IG-
OU and the Γ-OU cases are given in Table 3.1. As we shall see below, the availability of the
conditional cumulant function in closed form can be exploited for computing the pricing formula
(3.2) rapidly.

3.2. Option pricing

In this section we assume that the equivalent martingale measure Q used for pricing the claim
h(y∗(T )) has been selected in the subset M′ and we investigate how to evaluate the expected
value in formula (3.2).
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The first approach we discuss is along the lines of Hull andWhite (1987). The key observation
is that for the model (3.5) the conditional law of the log-price y∗(T ) given (y∗(t), τ(t)) can be
represented as a normal variance-mean mixture. In fact, defining the effective log price and the
effective variance over the time interval [t, T ] as

y∗eff = y∗(t) + ρ (z(λT )− z(λt))− λkQ(ρ) (T − t) , (3.8)

τ∗eff =
τ∗(T )− τ∗(t)

T − t
= (T − t)−1

{
ε(t, T )τ(t) +

∫ T

t
ε(s, T )dz(λs)

}
(3.9)

with ε(t, T ) given by (2.8), and integrating (3.5) over [t, T ] it is easy to see that

y∗(T )|(y∗(t), τ(t)) L= r + y∗eff − 1
2
τ∗eff (T − t) +

√
(T − t)τ∗eff N (3.10)

where N is a standard normal random variable independent of (y∗eff , τ
∗
eff ).

Let CBS
t (y, τ) denote the Black-Scholes price for the contract h(y

∗(T )) when the current price
of the underlying is y and the deterministic variance is τ . Namely, CBS

t (y, τ) is the derivative
price when the conditional law of the log price at expiry is given by (3.10) where the effective
quantities (y∗eff , τ

∗
eff ) are treated as constant and are given by y and τ respectively.

Then computing (3.2) by iterated conditional expectations yields

Ct = EQ[CBS
t (y

∗
eff , τ

∗
eff )|y∗(t), τ(t)]. (3.11)

If the Black-Scholes price CBS
t (y, τ) is known in closed form, like in the case of European call

options, expression (3.11) can be evaluated as a sample average across simulations of the pair
(y∗eff , τ

∗
eff ). The random terms in the effective quantities involve only integrals of deterministic

functions with respect to a Lévy process. Hence (y∗eff , τ
∗
eff ) can be efficiently simulated using

the work of Marcus (1987) and Rosinski (1991) on infinite series representations of these type of
integrals. A self-contained exposition of the required results is given in Barndorff-Nielsen and
Shephard (2001b), whereas recent developments are surveyed in Rosinski (2000).

An alternative and extremely powerful approach to the evaluation of (3.2) is provided by so-
called transform based methods. The main idea has been essentially introduced in this context
by Heston (1993) and it has been further developed by Carr and Madan (1998) and Raible
(1998). It applies whenever the Laplace transform of the conditional log-price at expiry has an
analytical expression. As discussed in the previous section, this is the case for the IG-OU and
Γ-OU specifications of the variance process τ(t).
The crux of the matter is that the derivative price Ct can be expressed, under some regularity

conditions, as follows

Ct =
e−r(T−t)

2πi

∫ c+i∞

c−i∞
ekt(θ)ĥ(θ)dθ, (3.12)

where kt(θ) is given in (3.6), ĥ(θ) is the Laplace transform of the pay-off function

ĥ(θ) =
∫ +∞

−∞
e−θxh(x)dx

and c is a real number belonging to the domains of existence of both kt and ĥ.
When also ĥ can be expressed in terms of elementary functions, as in the case of European

call options, the pricing formula (3.12) can be computed numerically using automatic integration
software packages or more sophisticated procedures as described in Carr and Madan (1998) and
Raible (1998).

9



Nicolato and Venardos (2001) have reanalysed the 87 European call options on the S&P500
index observed in November 1993 discussed in Duffie, Pan, and Singleton (2000). The dataset is
based on 6 maturities. The fit to the volatility smiles of the OU-based SV option pricing model
is illustrated in Figure 3.1 using a Γ-OU case. In the OU framework, the empirical investigation
of more flexible pricing models based on superpositions of OU processes is a topic of ongoing
research.
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Figure 3.1: Empirical volatility smiles at various maturities plus fitted values using the Γ-OU
option pricing model.

3.3. Range of prices

When dealing with incomplete market models, it is important to determine the set of prices
obtained by formula (3.2) as the pricing measure Q varies over the whole set of equivalent
martingale measures. In particular, it has been shown by El Karoui and Quenez (1995) and by
Kramkov (1996) that the supremum of possible prices corresponds to the minimum initial value
of a self-financing strategy which super-replicates the contingent claim.
Eberlein and Jacod (1997) and Jakubėnas (1998) determine the range of prices for European

call options when the log-price of the underlying is given by a Lévy process. Incomplete markets
described by jump diffusion processes are examined by Bellamy and Jeanblanc (2000) while the
case of stochastic volatility in the context of diffusion processes is analysed by Frey and Sin
(1999) and Cvitanic, Pham, and Touzi (1999).
The set of viable prices of a call option when the underlying is of the form (3.1) is studied in

Nicolato and Venardos (2001). As in most of the above mentioned incomplete markets, it turns
out that the supremum of possible derivative prices coincides with the obvious upper bound
given by the current price of the underlying. Therefore, the minimal strategy to super-hedge
the European call is to hold a long position in the underlying asset. On the other hand, the
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infimum does not coincide with the trivial lower bound. It is given by the Black-Scholes function
evaluated at the current price of the underlying and at the infimum of the effective volatility,
i.e.

inf
Q
Ct = CBSt

{
y∗t ,

ε(t, T )
T − t

τ(t)
}
.

As discussed in Sections 3.1 and 3.2, it is particularly convenient to consider only structure
preserving equivalent martingale measures. One may ask whether this choice is too restrictive
in the sense that the range of prices is narrowed when the pricing measures are let to vary
only in M′. Nicolato and Venardos (2001) show that this is not the case. Indeed even smaller
subclasses of equivalent martingale measures give rise to the same range of prices.

4. Realised variance

In this and the following sections we study log-price processes of the form

y∗(t) = α(t) +
∫ t

0
τ1/2(s)dw(s), (4.1)

where w is Brownian motion and where τ - the variance - and α - the mean or ‘risk ’ process
- are assumed to be jointly independent of w. Further, we assume that α is a process of zero
quadratic variation. For example we can think of α as a process of bounded variation with
continuous paths.
Over an interval of time of length ∆ > 0, say a day, returns are defined as

yn = y∗ (∆n)− y∗ ((n− 1)∆) , n = 1, 2, ... (4.2)

which implies that whatever the model for τ and α, it follows that

yn|τn, αn ∼ N(αn, τn),

are conditionally independent through time, where we have defined

τn = τ∗(n∆)− τ∗ {(n− 1)∆}
and αn = α(n∆) − α((n − 1)∆). Barndorff-Nielsen and Shephard (2002) call τn the actual
variance of the process.

4.1. Returns and realised variance

Suppose our desire is to estimate τn. We know that quadratic variation reveals integrated
variance

[y∗](t) = τ∗(t),

so theoretically we can compute

τn = [y∗](n∆)− [y∗] ((n− 1)∆) ,
see the concurrent independent work of Barndorff-Nielsen and Shephard (2001a) and Andersen
and Bollerslev (1998). However, in practice market microstructure effects (e.g. discreteness of
prices, bid/ask bounce) imply the SV models are typically misspecified over short time horizons.
Thus in econometrics the above asymptotic concept is replaced by the estimator, called realised
variance (or realised volatility),

[y∗M ]
[2]
n =

M∑
j=1

y2
j,n,
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where

yj,n = y∗
(
(n− 1)∆ + ∆j

M

)
− y∗

(
(n− 1)∆ + ∆(j − 1)

M

)
,

is the j-th intra-∆ return.
Realised variance estimators have a long history in financial economics. Examples include

Poterba and Summers (1986), Schwert (1989), Taylor and Xu (1997) and Christensen and Prab-
hala (1998), Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen, Bollerslev, Diebold,
and Ebens (2001). A stimulating discussion of this literature is given by Andersen, Bollerslev,
and Diebold (2002). However, until recently no econometric theory had been developed to un-
derstand the distribution of realised variance error [y∗M ]

[2]
n −τn other than the quadratic variation

implication that as M → ∞ so
[y∗M ]

[2]
n − τn

p→ 0.

Barndorff-Nielsen and Shephard (2001e) established a theory of power variation (see fur-
ther in sections below) which in particular implies that realised variance has a mixed normal
asymptotic distribution and, moreover, that

[y∗M ]
[2]
n − τn√

2
3

∑M
j=1 y

4
j,n

L→ N(0, 1). (4.3)

This is interesting for it means that the distribution of [y∗M ]
[2]
n − τn can be calculated (approx-

imately) without knowing the form of α or τ . This is an extension of an earlier result given in
Barndorff-Nielsen and Shephard (2002) which assumed α(t) = µt + βτ∗(t). An asymptotically
equivalent form for this result is

log[y∗M ]
[2]
n − log τn√

2
3

∑M
j=1 y

4
j,n

(
∑M

j=1 y
2
j,n)

2

L→ N(0, 1). (4.4)

Simulation evidence in Barndorff-Nielsen and Shephard (2001f) suggests that for small M the
asymptotic approximation in (4.4) is more accurate than the one in (4.3).
To illustrate this result we have used the same return data employed by Andersen, Bollerslev,

Diebold, and Labys (2001) in their empirical study of the properties of realised variance, although
we have made slightly different adjustments to deal with some missing data (in the context of
this paper the effect of these differences are tiny, but were made here to be consistent with our
other work on this dataset). Full details of this are given in Barndorff-Nielsen and Shephard
(2002). The data was kindly supplied to us by the Olsen group in Zurich. This United States
Dollar/ German Deutsche Mark series covers the ten year period from 1st December 1986 until
30th November 1996. It records every five minutes the most recent quote to appear on the
Reuters screen. Figure 4.1 shows the daily time series of the realised variance for M = 144.
Here we report the first 50 days of the series, while the realised variance estimator is based on
10 minute returns.
The 95% daily confidence intervals for realised variance are based on the accurate log-based

asymptotic result given in equation (4.4). We can see the important widening and closing of
the 95% confidence intervals, with the intervals seemingly being very large when the volatility
is high.

4.2. Second order properties of realised variance

Although the asymptotic distribution of [y∗M ]
[2]
n is potentially helpful, it is also interesting to

think about its exact second order properties. Barndorff-Nielsen and Shephard (2002) have
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Figure 4.1: Daily RV, [y∗M ]
[2]
n , drawn against n for the first 50 days of the sample. Also drawn

as vertical bars are the 95% intervals based on the log transformation. Throughout M = 144.

studied this when α(t) = 0. Although this is a limitation, the above asymptotic theory suggests
that if we incorrectly set α(t) to zero, the size of the approximation error is of small order for
reasonably large values of M .
The second order properties are built up in three stages. The first stage is that we write

un = [y∗M ]
[2]
n − τn so that [y∗M ]

[2]
n = τn + un. It has the feature that

un
L=
M∑
j=1

τ j,n
(
ε2j,n − 1

)
,

where εj,n
i.i.d.∼ N(0, 1) and is independent of

τ j,n = τ∗
(
(n− 1)∆ + ∆j

M

)
− τ∗

(
(n− 1)∆ + ∆(j − 1)

M

)
,

the intra-∆ variance. An implication is that un is a zero mean, white noise process which is
uncorrelated with τn.
Second Barndorff-Nielsen and Shephard (2001a) showed that if we write (when they exist)

ξ, ω2 and r, respectively, as the mean, variance and the autocorrelation function of the process
τ(t) then

E (τn) = ξ∆, Var (τn) = 2ω2r∗∗(∆) and Cov{τn, τn+s} = ω2♦r∗∗(∆s), (4.5)

where
♦r∗∗(s) = r∗∗(s+∆)− 2r∗∗(s) + r∗∗(s−∆), (4.6)

and

r∗(t) =
∫ t

0
r(u)du and r∗∗(t) =

∫ t

0
r∗(u)du. (4.7)
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Finally we note

Var(un) = 2ME
{
τ2

1,n

}
(4.8)

= 2M
{
Var (τ1,n) + E (τ1,n)

2
}

= 2M
{
2ω2r∗∗

(
∆M−1

)
+

(
∆M−1ξ

)2
}
. (4.9)

This has the feature that

Var
(√

Mun

)
→ 2∆2

(
ω2 + ξ2

)
as M → ∞.

The results imply that [y∗M ]
[2]
n is a serially dependent sequence with known autocovariance

function, plus an uncorrelated white noise error term with known variance. This is enough to
determine the entire second order properties of [y∗M ]

[2]
n , as well as allowing the linear filtering

and smoothing theory reviewed by Whittle (1983) to be used to provide model based estimators
of τn using the time series of realised volatilities. Further, a Gaussian quasi-likelihood can be
constructed for the realised volatilities which can be used to estimate the parameters which index
the continuous time SV model. This estimation is fast, free of discretisation errors and seems
quite accurate for reasonable values of M such as 12 or more. Details of this, together with
empirical and Monte Carlo illustrations, are given in Barndorff-Nielsen and Shephard (2001a).
Figure 4.2 gives the main result, which shows the correlogram of [y∗M ]

[2]
n using M = 144 (i.e.

ten minute returns) of the Olsen group’s Dollar/DM data based on ten years of data. This
shows quite a high correlation which damps down gradually. The Figure shows the implied
autocorrelation for the realised variances from a continuous time SV model based on a volatility
process constructed by a superposition of J Ornstein-Uhlenbeck processes. The parameters of
the models are determined using the above quasi-likelihood. We see that the one factor model
is hopeless, two factors produce a good fit, while models with three factors are more compelling.

5. Power variation

In some very recent work Barndorff-Nielsen and Shephard (2001e) have extended the above
analysis to allow detailed study of sums of powers of absolute high frequency returns. Let the
log-price y∗ again follow (4.1). Instead of working with multiple intervals of length ∆, in this
section we will follow Barndorff-Nielsen and Shephard (2001e) and think of computing the sums
of powers of absolute returns once, over the fixed interval 0 to t. Of course, one could use the
result repeatedly over non-overlapping intervals to analyse the previous situation but that will
not be our focus here. Instead our attention is on the development of the new asymptotic results
reported in Barndorff-Nielsen and Shephard (2001e).
Throughout the following holds, r denotes a positive number and we assume that the pro-

cesses τ = σ2 > 0 and α are of local bounded variation on [0,∞). This implies that τ and α are
locally bounded Riemann integrable functions and that y∗ is a semimartingale with a continuous
local martingale component.
Moreover we shall refer to the following conditions on the variance and mean processes:

(V) The variance process τ = σ2 is (pathwise) locally bounded away from 0 and
has, moreover, the property

p- lim
δ↓0

δ1/2
M∑
j=1

|τ r(ηj)− τ r(ξj)| = 0 (5.1)
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Figure 4.2: Results from the fit of the SV model using M = 144 (10 minute returns). Autocor-
relation function of [y∗M ]

[2]
n and the fit of SV model with various superpositions of J Ornstein-

Uhlenbeck processes.

for some r (equivalently for every r) and any ξj and ηj such that

0 ≤ ξ1 ≤ η1 ≤ δ ≤ ξ2 ≤ η2 ≤ 2δ ≤ · · · ≤ ξj ≤ ηj ≤ Mδ = t.

(M) The mean process α satisfies (pathwise)

lim
δ↓0

max
1≤j≤M

δ−1|α(jδ)− α((j − 1)δ)| < ∞. (5.2)

These regularity conditions are quite mild and are satisfied in particular if τ is of OU type
and if α is an integral of an OU process. Of some special interest are cases where α is of the
form

α(t) =
∫ t

0
g(σ(s))ds

for g a smooth function. Then regularity of τ will imply regularity of α.
Note that the assumptions allow τ to have, for example, deterministic diurnal effects, jumps,

long memory, no unconditional mean or to be non-stationary.
The realised power variation is defined, for r > 0, as

[y∗δ ]
[r](t) =

M∑
j=1

|yj(t)|r .

where yj(δ) = y∗(jδ)− y∗((j − 1)δ).
The main result of the above mentioned paper is the following theorem.
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Theorem 1. For δ ↓ 0 and r ≥ 1
2 , under conditions (V) and (M),

µ−1
r δ1−r/2[y∗δ ]

[r](t)
p→ τ r/2∗(t) (5.3)

and
µ−1
r δ1−r/2[y∗δ ]

[r](t)− τ r/2∗(t)

µ−1
r δ1−r/2

√
µ−1

2r vr[y
∗
δ ]

[2r](t)

L→ N(0, 1), (5.4)

where µr = E {|u|r} and vr = Var {|u|r}, with u ∼ N(0, 1). �

This result tells us that, for δ ↓ 0, scaled realised power variation converges in probability
to integrated power volatility and follows asymptotically a normal variance mixture distribution
with variance distributed as

δµ−2
r vrτ

r∗(t)

which is consistently estimated by the square of the denominator in (5.4). Hence the limit theory
is statistically feasible and does not depend upon knowledge of α or σ2.
Leading cases are realised quadratic variation, usually called realised volatility in the finance

and econometrics literature, which results when r = 2

[y∗δ ]
[2](t) =

M∑
j=1

y2
j (t),

in which case ∑M
j=1 y

2
j (t)−

∫ t
0 σ

2(s)ds√
2
3

∑M
j=1 y

4
j (t)

L→ N(0, 1) (5.5)

and realised absolute variation

[y∗δ ]
[1](t) =

M∑
j=1

|yj(t)| ,

when
µ−1

1

√
δ
∑M
j=1 |yj(t)| −

∫ t
0 σ(s)ds√

δ
(
µ−2

1 − 1)∑M
j=1 y

2
j (t)

L→ N(0, 1), (5.6)

where µ1 =
√
2/π.

6. Multivariate extensions

When building a multivariate model for financial data, there are some basic considerations that
should be born in mind. Obviously, the univariate marginal processes should capture well-known
stylized features of univariate financial time series. The multivariate model should also provide
a flexible and realistic dependence structure between different assets. For example, a constant
correlation matrix of returns is considered economically unsatisfactory. Finally, an analytically
tractable continuous time model is clearly advisable, especially when issues like pricing and
hedging derivatives written on several assets come into play.
Here we discuss a possible extension of SV models of the type (2.3) to a multivariate setting

which has been originally suggested by Barndorff-Nielsen and Shephard (2001a) and further
developed by Hubalek and Nicolato (2001). This approach is in the spirit of earlier work in
discrete time by Diebold and Nerlove (1989) and Pitt and Shephard (1999). The vector of K
log-price processes y∗(t) = (y∗1(t), . . . , y∗K(t))

′ satisfies

dy∗(t) = (µ+Σ(t)β)dt+Σ
1
2 (t)dw(t) (6.1)
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where w(t) is standard Brownian motion and Σ(t) is a time varying spot covariance matrix. The
spot covariance matrix is modeled indirectly via a factor structure

Σ(t) = I(t) +BJ(t)B′ =
[
I B

]
diag(ϕ(t))

[
I B

]′
,

where ϕ(t) is a vector containing K + k independent Ornstein-Uhlenbeck type processes, thus
satisfying

dϕi(t) = −λiϕi(t)dt+ dzi(λit),
with z(t) = (z1(t), . . . , zK+k(t))

′ being independent Lévy processes which are also assumed to
be independent of w(t). The structure of the model means that there are K idiosyncratic and
k common factors which are arranged in the diagonal matrices

I(t) = diag(ϕ1(t), . . . , ϕK(t)), J(t) = diag(ϕK+1(t), . . . , ϕK+k(t))

and B ∈ R
K×k is the factor loadings matrix. This multivariate model corresponds to the

straightforward economic interpretation that assets in a particular market are driven by market
specific factors (common factors), but have a component that is specific to the particular asset
under consideration (the corresponding idiosycratic factor).
An attractive feature of this model is that it has a simple subordination interpretation. In

particular

y∗(t) L= µt+
{[

I B
]
diag(ϕ∗(t))

[
I B

]′}
β +

[
I B

]
w†(ϕ∗(t)),

where w† is a K + k dimensional vector of standard Brownian motions and ϕ∗ is a K + k
dimensional vector chronometer

ϕ∗(t) =
∫ t

0
ϕ(u)du.

This implies w†(ϕ∗(t)) is a vector of independent SV models. Of course the interesting feature of
this representation is that the dimension of the chronometer is higher than the log-price vector.
As in the univariate case, it is possible to introduce in the model (6.1) some leverage type

effects. This can be done in several ways. A rather general possibility is described by

dy∗(t) = (µ+Σ(t)β)dt+Σ1/2(t)dw(t) + ρdz(λt) (6.2)

where ρ ∈ R
n×(n+k). The linear dependence of the covariance matrix and of the drift (and of

possible leverage terms) on the factors ensures the analytical tractability of models of the type
described above. In particular, the cumulant functional

K

{
1 ‡

K∑
i=1

∫
fi(s)dy∗i (s)

}
= log E

[
exp

{
K∑
i=1

∫
fi(s)dy∗i (s)

}]
with fi deterministic “test functions” has a simple expression. These results are developed
at length in Hubalek and Nicolato (2001) who also study the structure preserving equivalent
martingale measures for this multivariate model in an analogous manner to the univariate case.
They also deliver closed form solutions for derivatives written on several assets (such as spread
options or exchange options).

7. Other issues

In this section we briefly discuss four other issues: (i) likelihood based inference for SV models,
(ii) term structure of interest rates based on OU type processes, (iii) time changed Lévy pro-
cesses, (iv) modelling and prediction of volatility surfaces generated off Black-Scholes implied
volatilities. Each of these topics has been extensively worked upon recently, but we have only
the space to briefly mention them here.
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7.1. Inference

Our main work on inference for SV models has been based on the use of realised variance. This
delivers fast and reasonably accurate estimators which are free from discretisation errors. This
work has already been discussed in Section 4.2 of this paper.
Another approach to estimating these types of models is based on building Bayesian Markov

chain Monte Carlo (MCMC) algorithms. These likelihood based methods are familiar in the
context of SV models following the work of Jacquier, Polson, and Rossi (1994), Kim, Shephard,
and Chib (1998) and Elerian, Chib, and Shephard (2001). However, in the context of OU based
volatility models a new type of algorithm is necessary — see the discussion in Barndorff-Nielsen
and Shephard (2001a).
Independent work by Fruhwirth-Schnatter and Soegner (2001) and Roberts, Papaspiliopou-

los, and Dellaportas (2001) have successfully analysed SV models based on the Γ-OU process
and superpositions of that process. The key to both approaches is to employ a reparameterisa-
tion of the model into jump times and jump heights, handling the model through a reversible
jump MCMC algorithm.

7.2. Term structure of interest rates

In the bond market framework introduced by Heath, Jarrow, and Morton (1992) the forward
rate f(t, T ) maturing at T is described by

df(t, T ) = α(t, T )dt+ σ(t, T )dw(t) (7.1)

where the drift and volatility coefficients α(t, T ) and σ(t, T ) are processes satisfying some mild
integrability conditions and smoothness in time to maturity and w is a (possibly d-dimensional)
Brownian motion.
Several modifications have been proposed, subjecting this model class for interest rates to an

evolution similar to that of the Samuelson-Black-Scholes model for asset prices. In particular,
forward rates driven by a purely jumping Lévy process or by a more general semimartingale
have been considered by Eberlein and Raible (1999), Björk, Kabanov, and Runggaldier (1997)
and Björk, Di Masi, Kabanov, and Runggaldier (1997). As for stochastic volatility, it is typically
introduced in (7.1) via the following factorization of the volatility coefficient

σ(t, T ) =
√
τ(t)h(T − t)

into a strictly positive stationary process τ depending only on calendar time t and a deter-
ministic, strictly positive function h modelling the behaviour of volatilities across different time
to maturities T − t. In Barndorff-Nielsen, Christiansen, and Nicolato (2001), the process τ is
assumed to be independent of w and it is described by an OU type process as in (2.6). Un-
der these assumptions, explicit term structure derivative formulas are obtained. However, the
leverage effect seems to be particularly relevant in the case of bond markets.
The construction and analysis of term structure models making use of volatility processes of

the OU type and including (negative) correlation between bond prices and their volatilities is a
topic of ongoing research.

7.3. Time changed Lévy processes

Recent contributions have focussed on introducing stochastic volatility in the context of expo-
nential Lévy models. Given a Lévy process z(t) and an independent positive process τ(t), Carr,
Geman, Madan, and Yor (2001) and Winkel (2001) consider a time changed Lévy process

y∗(t) = z(τ∗(t)), (7.2)
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where τ∗(t) =
∫ t
0 τ(s)ds, while Eberlein, Kallsen, and Kristen (2001) examine

dy∗(t) =
√
τ(t)dz(t). (7.3)

Typical examples for the z process would be a zero mean variance gamma or NIG Lévy process.
We will assume this to be the case here. Then we can write

z(t) = w(χ∗(t)),

where χ∗ is a subordinator and w is a Brownian motion independent of χ∗ and τ . Therefore,
both models (7.2) and (7.3) can again be thought of as time changed Brownian motions (2.2),
since we express (7.2) as

y∗(t) L= w (χ∗(τ∗(t))

and (7.3) as

y∗(t) L= w

(∫ t

0
τ(s)dχ∗(s)

)
.

Such a process will not, in general, have continuous sample paths.
An alternative approach, which has many of the features of the above process, is to model

y∗(t) L= µt+ βτ∗(t) + w1 (τ∗(t)) + w2 (χ∗(s)) ,

where w1 and w2 are independent standard Brownian motions which are also independent from
τ∗ and χ∗. Clearly this can be written as

y∗(t) L= µt+ βτ∗(t) + w (τ∗(t) + χ∗(s)) ,

which is both simple and tractable mathematically due to the linearity in the chronometer
τ∗(s) + χ∗(s).

7.4. Volatility surfaces

Based on a detailed and extensive empirical analysis Cont and da Fonséca (2001) have proposed
an interesting dynamical model for the timewise behaviour of the surface of implied volatilities.
Let It(m, τ) denote the implied volatility at time t, moneyness m4 and time to maturity τ .
Then the authors represent the logarithm of the implied volatility by a Karhunen-Loéve

decomposition into orthogonal terms

log It(m, τ) = X∞(m, τ) +
∞∑
k=1

xk(t)fk(m, τ)

where the fk(m, τ) are the eigenfunctions corresponding to the estimated covariance function
C(ξ1, ξ2), defined for points on the surface, and the coefficients xk(t) are modelled as inde-
pendent OU processes. In this representation the functions fk(m, τ) are deterministic and the
randomness resides in the processes xk(t). In the actual empirical study, which was for options
written on the SP500 index, the first two eigenmodes already captured most of the variation.

Hubalek and Tompkins (2000a) considered, among others, the SV model (3.1) with τ specified
as a superposition of two Γ-OU processes. Choosing a particular structure preserving equivalent
martingale measure, they compared the associated implied volatility surface with those observed

4m is defined as K/St where St denotes the price at time t of the underlying considered and K is the strike
price of the option.
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from options on four stock index futures markets (S&P500, FTSE100, DAX, NIKKEI225) and
on three bond futures markets (US T-Bonds, German Bund, British Gilt). They found that
smile surfaces arising from (3.1) could capture the shape (in particular the skew) of observed
smile surfaces but systematic differences indicated that it is necessary to study the change of
measure more thoroughly in order to calibrate the model to option prices.

8. Conclusion

This paper has reviewed some of our recent on work on stochastic volatility. The main areas
we have covered are: (i) subordination, (ii) OU based models, (iii) analytic option pricing, (iv)
the asymptotics of realised variance and realised power variation, (v) building and analysing
multivariate models. Some of these results hold generally for SV models, others are built out of
the specific OU structure for volatility we have been developing in a number of the papers.
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22



Rosinski, J. (2000). Series representations of Lévy processes from the perspective of point
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