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1. INTRODUCTION

The indeterminacy theorems of Debreu, Sonnenschein and Mantel say that without
suitable restrictions on endowments, preferences or technology, there is no structure to the
excess demand function of an exchange or production economy (see the survey in Shafer
and Sonnenschein (1982)). It follows from these results that, in general, an economy’s
equilibrium prices are neither unique nor stable with respect to Walras’ tatonnement. To
guarantee these properties, additional structural conditions beyond continuity and Walras’
Law need to be imposed on an economy’s excess demand function. The two most extensively
studied conditions which do guarantee uniqueness and stability are gross substitubility and
the weak axiom. These are aggregate conditions, so one is lead quite naturally to the
study of its microfoundations. For example, Mas-Colell (1991) and Grandmont (1992) have
identified primitive assumptions which lead to gross substitubility; Hildenbrand (1983),
Jerison (1999) and Quah (1997, 1999, 2000) have done the same for the weak axiom. (For
the weak axiom, see Quah (1999) for a more exhaustive list of references.) On the whole
these theoretical models suggest that aggregate properties like gross substitubility or the
weak axiom could arise under plausible scenarioes, though a more definite judgment would
require more empirical work.

This paper examines the comparative statics of economies with excess demand functions
that obey a property we call the weak axiom at equilibrium, a property which is weaker than
both gross substitubility and the weak axiom. (see Mas-Colell et al (1995)). We assume
that this property holds in a set of prices containing an equilibrium price, and study the

restrictions this imposes on equilibrium price changes as endowments and preferences are



varied. We show that with this property, there is a sense in which goods that are in excess
demand after some perturbation of the economy’s parameters, will experience an increase
in their prices relative to those goods in excess supply. A straightforward corollary of this
result is that when the endowment of a good falls in an exchange economy where all agents
have normal demands for all goods, the price of that good will rise relative to the price of
some bundle of all other goods. In another application, we consider an exchange economy
with additive utility functions, which can be interpreted as a financial economy with von
Neumann-Morgenstern utility functions. We show that when the subjective probabilities
which agents attribute to a particular state falls, so will the price of consumption in that
state.

Another interesting issue in comparative statics is the following. Suppose an exchange
economy’s endowments are changed (with preferences held fixed) causing the economy’s
equilibrium price to change as well; when could we expect the economy’s mean endowment
and its corresponding equilibrium price to vary in a way that obeys the weak axiom? This
is a different question from asking whether an economy’s excess demand function satisfies
the weak axiom, and its answer will in general depend, not just on the change in the
mean endowment, but also on precisely how that change is distributed among agents in the
economy. It is useful for this purpose to restrict ourselves to endowment changes which
satisfy an aggregate normality condition, i.e, if an endowment change raises mean income
at the original equilibrium price, then it should also raise the demand for all goods at that
price. If all agents have normal demands for all goods, then aggregate normality will hold

if the endowment perturbation increases the income of every agent (and not just mean



income); if this does not hold, and the endowment perturbation, even though it raises
average income also causes the income of some agents to fall, then it is quite clear that
different income elasticities of demand across agents could lead to a violation of aggregate
normality. So aggregate normality is a joint restriction on demand behaviour and the
endowment perturbation.

We show that for endowment changes which satisfy the aggregate normality condition,
the equilibrium price will vary with mean endowment in a way that obeys the weak axiom
if and only if the economies’ excess demand functions satisfy the weak axiom at their
equilibrium prices. Indeed for this class of endowment changes one can go further: we
show that the equilibrium price change following a change in endowment must obey a
monotonicity property that was first studied by Nachbar (1999). Nachbar (1999) established
a local version of this result; our result generalizes this to a non-local, non-differentiable

context.

2. COMPARATIVE STATICS

Let Z : Rﬂr L= R! be the excess demand function of an exchange or production economy
with goods in the set L = {1,2,...,1}. We say that Z is standard if it satisfies Walras’ Law,
ie,p-Z(p) =0 for all pin RfH_, and is homogeneous of degree zero. A price p’ > 0 is an
equilibrium price if Z(p') = 0. Let P be a set in Rﬂ__,_; then Z satisfies the weak aziom at
equilbrium (WAE) in P if P contains an equilibrium price p’ and p’ - Z(p) > 0 whenever p
is in P and not collinear to p’. It is known that if WAE holds in an open neighborhood of

p’ then p’ will be locally stable with respect to Walras’ tatonnement. Clearly the definition



also requires the equilibrium to be unique (up to scalar multiples) in P, but unless P = Rﬂ_ n
global uniqueness is not implied. A sufficient condition for Z to satisfy WAE in an open and
convex neighborhood of p' is for Z to be C! and for v1'9,Z(p')v < 0 when v is not collinear
with p/; we shall refer to this property as the differentiable WAE. We will now explore the
comparative statics implications of WAE.

PROPOSITION 2.1: Suppose that Z : RZFJF — R is a standard excess demand function
of an economy with an equilibrium price at p and also that Z satisfies p - Z(p) > 0 for some
p >0 (in other words, Z satisfies WAE in the set {p,P}).

(i) Defining Lt = {i € L : Z'(p) > 0} and L~ = {i € L : Z'(p) < 0}, we have

0 SLPZ0) | TurZ)
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(i) There is a good j in L™ and a good k in L~ such that p7 /pF > p? /pF.

Proof: Clearly, Z(p) # 0 so L' and L~ are non-empty. By the intermediate value
theorem, there is A > 0, such that 3", (p* — )\pi)Zi(p) = 0. By WAE and Walras’ Law,
(5 — A\p) - Z(p) > 0. Expanding the left of this inequality, and following from our choice of
A\, - PP Z(p) > A ;- p'Z'(p). Therefore, we have

(2) Do+ 152?2(?) —A> DL ﬁl[_?l(p)]
S+ P Z(p) Y- P=2Z4p)]

Re-arranging this gives us (1).
The second part of the proposition follows immediately from (2) once we notice that

there must be a good j in L" such that
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and a good k in L~ such that
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QED

This result could be interpreted in the following way. Suppose that the economy is
initially at equilibrium at the price p. It experiences a perturbation which changes its
excess demand function to Z. The set Lt are those goods which are in excess demand
after the perturbation, while L™ are those goods in excess supply, at the original price of
p. The new equilibrium price is p; the proposition says that there is a bundle of goods in
L+ (weighted by the size of the excess demands) and a bundle of goods in L™ (weighted
by the size of the excess supplies) such that the price of the former relative to the latter
increases after the perturbation. This implies, in particular, that there is at least one good
in L™ whose price relative to a good in L~ increases after the perturbation.

Note that the theorem requires that WAE be satisfied by Z, the excess demand of the
perturbed economy and not Z, the excess demand of the original economy. This requirement
could be guaranteed for small perturbations in the following fashion. Suppose that Z
satisfies differentiable WAE at its equilibrium price p. Then p is also regqular, i.e., the rank
of 0,Z(p) is [ —1. (see Mas-Colell et al (1995)). Furthermore, suppose that excess demand is
a smooth function of price and a parameter ¢ in R, which represents possible perturbations
to the economy. Assume that at ¢ = 0, the excess demand is Z. Then one could establish,
with standard arguments that for an economy with a perturbation ¢ which is sufficiently
close to 0, its excess demand Z will be sufficiently close to Z and its equilibrium price p

sufficiently close to p for the condition of Proposition 1, p - Z(p) > 0, to hold.



Using Proposition 1 it is possible to form a direct link between the change in equilibrium
price and the change in the model’s parameters, provided we can say something about which
goods will be in excess supply or demand as a result of the parameter change. We will
illustrate this idea with two examples from exchange economies.

We consider the class of standard exchange economies, whose properties we now describe.
The agents in these economies form a finite set A. To each agent a in A is associated an
endowment w, in Ri and a demand function f, : Rl+ L XRyy — Rl+ ., defined as a function
of price and income, (p,w). At price p, the agent a’s income is p - wq, so his demand is
f(p,p - wq). We denote by w the vector (wg)qea in R{LA'. and by f the function from p
to (fa(p))aca. The economy with endowment w and demand f is denoted by E(w, f). We
assume that f, satisfies the budget identity and is homogeneous of degree zero. Following
from this, the excess demand function Z : R, | — R', defined by Z(p) = F(p) — pt(w) must
also be standard, where F(p) = [Y,ca fa(D,p - wa)]/|A| is the mean market demand and
p(w) = [X4ecawal/| Al is the mean endowment.

Ezxample 1. This is a simple and well-known example which could also be be found in

Mas-Colell et al (1995). Consider an economy whose endowment has been perturbed from

1

., with a strict inequality for at least one agent, and for

w to @. For all agents a, @} < w
all other goods i, @¢ = w!. In other words, the endowment of good 1 has fallen for some
agents, while the other endowment of all other goods stay the same. The demand function
remains at f and we assume that it is such that all goods are normal for all agents. At the

original equilibrium price of p, the change in endowment causes the income of some agents

fall, while no agent has an increase in income. So at the price p, the demand for all goods



must fall, and consequently, for any good k > 1, ZF(p) < 0. By Walras’ Law, Z!(p) > 0. In
the notation of Proposition 2.1, L™ = {1} and L™ = {2,3,...,1}; the same proposition tell
us that at the new equilibrium price of p, the price of good 1 relative to the price of some
bundle of all other goods must have risen.

Example 2. In this example, we assume that endowments are fixed and consider the ef-
fect of a change in preferences on the equilibrium price. Two standard exchange economies,
€(w,g) and £(w, ) have different demand functions but the same endowments. We as-
sume that the demand function g, is generated by the smooth utility function U,(x) =
Sty whal (a), while §, is generated by U, (z) = Y4, 7l (27), where STy i = S| 7l =
1. We may interpret this as a finance model with complete markets inhabited by agents
with von Neumann-Morgenstern utility functions; U, and U, are the utility functions of the
agent a under the subjective probabilites 7, and 7, (both understood as vectors in Rﬂ_ 4)
respectively. Can we say anything about the connection between the equilibrium price of
state ¢ consumption and the subjective probabilities agents attach to state ¢7 It turns out

that we can, using Propostion 2.1 and the following lemma.

LEMMA 2.2: Suppose that Tty # 7a. Then
=i i

L}, = argmax;c;,— and L}" = argmin, ; —
T T

=

*

are both non-empty and for all (p,w) >0, Gt (p,w) > gi(p,w) if i is in L:, and g (p,w) <
gt (p,w) if i is in LX*.

Proof: The non-emptiness of L} and L}* are obvious, following from the fact that
To # g and Y ,ep ™ = Y. 7% = 1. Suppose that 7% /7%, = K if i is in L%. Note that K

must be bigger than 1. We define #, = ,/K; clearly 7, > #,, with 7% = 4 if and only



if ¢ is in L}. The utility function ﬁa(ac) = Yl #lul(2'), generates the same demand as
U,. We could think of U, being changed to ﬁa step by step, where at each step, the weight
attached to each i is lowered from 7’ to #%, for all 4 in L\ L. It is known that lowering the
weight attached to some good, keeping the other weights the same has the effect of raising
the demand of every other good (see, for example, Grandmont (1998)); therefore, at each
step, the demand for good i in L} strictly increases. It follows that g (p,w) > ¢&(p,w), if i
is in L}. The proof for the other part is the same. QED

To apply this result consider the following scenario. For some subset of agents A’ in A,
7, undergoes a change to 7,. This change in subjective beliefs is binary, i.e., the probability
of a state either goes up by a common factor k, (in which case the state is in L) or it goes
down by a common factor £}, (in which case the state is in L**); so L} U L*¥* = L. Assume
that L} = L* is common across all agents in A’, and similarly, that L** = L** is common
across all agents in A’. Then we know from the lemma that at the prevailing equlibrium price
of p, the goods in L* (respectively L**) must experience an increase (decrease) in demand.
It follows that (using the notation of Proposition 2.1) L* C L™ and L** C L~. Together
with the fact that L* UL** = L, we obtain L™ = L* and L~ = L**. Finally we assume that
Z the excess demand of &(w, §) and p, its equilibrium price, satisfy j- Z(p) > 0, where p is
the equilibrium price of £(w, g). By Proposition 2.1 there is a bundle of goods in L* whose
price will rise relative to some bundle of goods in L**. Even more specifically, suppose that
for the agents in A’, the subjective probability of state 1 goes up, and the probability of all
other states fall by the same proportion. Then the price of state 1 consumption, relative to

the price of some consumption bundle in all other states, will rise.



Proposition 2.1 and the two examples discussed show that assuming WAE leads to
comparative statics that correspond broadly with our intuition: when a good is in excess
supply, its price falls; when the endowment of a good falls, its price will increase; and when
the probability of an event increases, so will its state price. The next section takes up a

different theme.
3. THE EQUILIBRIUM MAP

We keep the agents’ demand function fixed at f, and consider the collection of economies
{€(w,f):we RI;LA|}. Modifying our earlier notation, we write F(p,w) to refer to the mean
demand of the economy £(w, f) at price p and Z(p,w) as its excess demand. This notation
highlights the dependence of demand and excess demand on the endowment w; it also
means, of course, that we shall be thinking of F' and Z as functions of (p,w). We say that
F satisfies weak aggregate normality between (p,w) and (p,&) if the following holds: when
pp(w) >p-p@), Fp,w) > F(p,&), when p- pu(w) < p- (@), F(p,w) < F(p,®), and when
p-puw) =p-pu@), F(p,w) = F(p,&). This concept will be central to our exposition in
this section; the name we give to it follows Nachbar (1999) and is entirely appropriate since
the condition essentially says that if the endowment w at price p has a higher mean value
than @ at the same price, then aggregate demand must be weakly higher for all goods and
strictly higher for at least one good.

Let Q be a subset of RI;,'_A‘. To each economy &(w, f), with w in £, we associate an

equilibrium price P(w) which is normalized to satisfy P(w) - pu(w) = 1. We shall refer to P

as the equilibrium map or function. This map satisfies the weak axiom at @& if for any w in
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Q, with p(@) # p(w), either P(@) - p(w) > P(@)- (@) = 1 or P(w)-p(@) > P(w) - p(w) = 1.

The next result identifies conditions which guarantee that P obeys the weak axiom at @.
PROPOSITION 3.1: Let P : Q — Rﬂr+, Q C Rﬂm be an equilibrium map. Then P

satisfies the weak axiom at & if

(i) P(w) - Z(P(@),w) > 0 for all w in Q with P(w) # P(®) (equivalently, Z(-,w) satisfies

WAE in {P(w),P(®w)}), and

(ii) F satisfies weak aggregate normality between (P(w),w) and (P(@),w) for all w in Q.
Proof: Suppose that p(w) # p(@) and p(w) - P(0) <1 = p(w) - P(w). By aggregate

normality, F(P(v),w) < F(P(w),w) = p(w). Assuming that P(w) # P(@), we have

P(w) - Z(P(w),w) > 0 from which we obtain, as required,
P) (@) 2 Plw) - F(P@),w) > Pw) - ()

Suppose now that P(w) = P(@). Then if pu(w) - P(w) < 1, we also have p(w) - P(w) < 1,

which by the definition of P, cannot be true. So u(w) - P(@) = 1. By aggregate normality,

contrary to our initial assumption that p(w) # p(@). QED

Proposition 3.1 does not require the perturbation considered to be small, so w in 2 can
be far away from @, nor does it require differentiability in any form. If these assumptions
are made, then standard arguments will allow us to say a bit more. Let p be an equilibrium
price of £(w, f) satisfying p - u(@) = 1. Assume that Z is a C! function and that Z(-,®)
is regular at p. By the implicit function theorem, there is an open neighborhood of @,

M, and an open neighborhood of p, N, such that for all w in M, the economy &(w, f)
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has a unique (normalized) equilibrium price in N, which we denote by P(w), and the map
P : M — N is C'. Furthermore, if Z(-, &) satisfies differentiable WAE at p (so in particular,
Z(-,) is regular), M and N could be chosen such that the equilibrium map P also satisfies
P(w) - Z(P(@),w) > 0 for all w in N, provided P(@) # P(w). In other words, P satisfies
condition (i) in Proposition 3.1. If we now choose 2 C N so that condition (ii) in the
proposition also holds, then (abusing notation slightly), P : Q — R’gr . will satisfy the weak
axiom at @.

Condition (ii) - aggregate normality - is essentially a joint restriction on agents’ Engel
curves and the distribution of the endowment perturbation across agents. It is quite clear
that unless agents have parallel Engel curves, aggregate normality must mean that {2 cannot
include all perturbations from @; in other words, {2 is a proper subset of, and cannot be
equal to, V. A simple but extreme situation where the condition is satisfied is to assume

that all goods are normal to all agents and that
Q={w e M:w,=a, + k0 where k, >0 and 6 € R' satisfies ||0]| = 1}.

The important thing to note here is that perturbation is collinear across agents, in the
direction of 6, so all agents either simultaneously experience an increase or decrease in
income at the original equilbrium price p, depending respectively on whether p-6 is positive
or negative. Clearly, condition (ii) is now guaranteed and Proposition 3.1 can be applied to
guarantee that P obeys the weak axiom at p.

The next result is a partial converse of Proposition 3.1. Loosely speaking, we show that
if P obeys the weak axiom, and aggregate normality holds, then the excess demand function

must satisfy WAE for a particular set of prices.
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PROPOSITION 3.2: Let p be an equilibrium price of E(w, f) with p- w(w) =1 and let
NC{we R{LA‘ :p-pu(w) =1}, Suppose that
(i) an equilibrium map P : Q — R' . with P(w) = p satisfies the weak aziom at &, and
(ii) F satisfies weak aggregate normality between (P(w),®) and (P(w),w) for all w in Q.
Then Z(-,&) satisfies WAE in P(2).

Proof: By (i), P(w) - (@) > 1 = P(w) - p(w), which implies, by (ii) that F(P(w),w) >

F(P(w),w) = p(w). It follows that
P(0) - F(P(w),0) > P(@) - pw) = P(@) - u(@)

and so P(@) - Z(P(w),@) > 0. QED

To understand Proposition 3.2 a little better, imagine that the economy &£(w, f), with
equilibrium price p, is perturbed with the endowment of agent a changed from w, to w, + 6,
where 0 isin © = {# € R : p- 0 = 0}. Clearly, at the price p, the income of all agents are
left unchanged by the perturbation and mean income is also preserved at p - pu(w), while
mean endowment becomes p(@w) + 6. Since 6 is common across all agents, the aggregate
normality required in condition (ii) of Proposition 3.2 will hold if all agents have normal
demands for all goods. Departing from our convention so far, we assume that p is in
T ={p € R"Jr L p! = 1}. So long as p is a regular equilibrium price, we can find a
diffeomorphic map P : © — T’ where ©' is open in © and 7" is open in T such that
P(0) is an equilibrium price of £(@ + 6, f) and P(0) = p. (Note that we have abused the
notation P.) If condition (i) in Proposition 3.2 holds, i.e., if P(6) -6 < 0 for all  in ©,
then the proposition says that p- Z(p,@) > 0 for all p in 7”. In other words, if there is an

open neighborhood of collinear endowment perturbations (as represented by #) in which P
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obeys the weak axiom, then there must also be an open neighborhood of p in which Z(-,®)
satisfies WAE.

Besides the weak axiom, there are other properties which the equilibrium map P could
usefully satisfy. We say that P is monotonic at @ if (u(0) —p(w)-(P(@)—P(w)) < 0 whenever
p(w) # p(w). Tt is easy to check that this property is stronger than the weak axiom; it was
first investigated by Malinvaud (1972) and a recent study could be found in Quah (1999). We
shall not discuss it any further in this paper, but it is worth mentioning that the conditions
developed in Quah (1999) to guarantee the monotonicity of P are neither stronger nor
weaker than the assumptions of Proposition 3.1: in particular, aggregate normality is not
required, so this condition is not necessary for P to satisfy the weak axiom.

Another property of P, closely related to the weak axiom, has recently been studied by
Nachbar (1999). We say that the equilibrium map P : Q@ — R'_ is N-monotonic at @ if
for all w in Q, there is a vector a > 0, and real number A > 0 (both of which depend on
w) such that a - P(w) = a- AP(w) and (u(@) — p(w)) - (P(@) — AP(w)) < 0, with equality
only if (i) p(w) = p(@) or (ii) pu(w) - P(w) # 1 and P(w) and P(w) are collinear. Again, it is
straightforward to check that this property is stronger than the weak axiom. The property
says that there is a way of normalizing prices such that the change in price and the change
in mean endowment move in opposite directions. The normalization gives an easy way of
interpreting a price change. For example, suppose that the price vector changes from p

to ¢, with a-p = a-¢q, and p* > ¢ for i in K C L. Then Y, g pla’ > Y ,cx ¢'a’ and
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DieI\K pla’ < DieINK g'a’, so

> ick pla’ Dick g'a’
e\ P'A" T Dierk ¢'0°

In other words, the price of the bundle {a‘};cf relative to the bundle {ai}ieL\K has fallen.

Our eventual goal is to find conditions which guarantee the N-monotonicity of P, but a
short digression is helpful at this stage. All the three properties on P we have stated have
natural analogues for any map II : Rl++ — Rﬂr+, satisfying the budget identity x-1l(x) = 1.
In this case, Il could be interpreted as the supporting price or inverse demand of the
commodity bundle x. We say that II satisfies the weak axiom at Z if for all x # Z, either
x-1I(z) > 1 or z - II(x) > 1; we say that II is monotonic at z if (z — x) - (II(Z) — (x)) <0
for all x # Z; and, finally, we say that II is N-monotonic at T if for any = # Z, there is
a > 0 and A > 0 such that a - II(Z) = a - M[I(z) and (T — ) - (II(Z) — All(x)) < 0, with
equality only if (i) # = x and (ii) = - II(Z) # 1 and II(x) and II(Z) are collinear.

We will not in this paper investigate the monotonicity of II, a topic which has already
been extensively studied: necessary and sufficient conditions could be found in Milleron
(1974), Mitjuschin and Polterovich (1978), Kannai (1989) and Quah (2000). We shall focus
instead on the N-monotonicity of II; we show that N-monotonicity is a simple consequence
of a weaker form of the weak axiom and a normality condition. More specifically, II satisfies
the limited weak axiom at T if for all x # Z, with x-1I(Z) = 1, we have Z-TI(x) > 1. Assuming
that II7! exists, we say that II~! is normal (or satisfies normality) at p if TI=1 (yp) > T~ 1(p)
whenever v < 1, and II™!(yp) < II7!(p) whenever v > 1.

PROPOSITION 3.3: Suppose that 11 : R{Hr — Rl+Jr s an invertible function satisfying

the budget identity and the limited weak axziom. Then the following are equivalent:
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(i) There is a vector a > 0 such that for all x with x - 1I(Z) = k # 1, we obtain

(z —x) - (I(z) — MI(z)) <0, where X is chosen to satisfy a-1I(Z) = a - \XII(x).

(ii) I~ is a normal function at T1(Z).

Furthermore, if (ii) is true, the vector a in (i) is unique up to scalar multiples and
(z —x) - (II(z) — MI(z)) = 0 if and only if II(Z) and II(z) are collinear.

Proof: We first show that (ii) implies (i). Assume that k& < 1 (the case of k > 1 can be
dealt with analogously); then m = 1/k > 1 satisfies mII(Z) - x = 1. Since II is invertible,
there is a unique y such that II(y) = mIl(Z). Note that y - II(Z) =y - II(y)/m = k By (ii),
Yy < T, s0a==T—y>0. For any x satisfying x - II(x) = k, we can choose \ to satisfy
a-II(Z) = a- AlI(x). Provided = # y, the limited weak axiom guarantees that y - II(x) > 1,

SO

(Z —x)- ((Z) = Mll(2)) = (T—y—(z—y)) - (I(Z) - M(z))
= —(z—y)- ((z) - All(z))

= MNz—y)- I(z)) <0.

So we have shown that (ii) implies (i) and also that given our choice of the vector a,
(z —x) - (II(z) — MI(z)) = 0 if and only if II(Z) and II(x) are collinear.

Suppose now that (i) is true; we want to show that for v > 1, # > I~ !(1II(2)).
(Once again, the case of v < 1 can be dealt with analogously.) Consider x satisfying
x-II(Z) = 1/y > 1; for such x there is an associated vector a > 0 satisfying the conditions
laid out in (i). Choose 2’ such that & — 2’ is parallel to @ and a’-II(Z) = 1/. We claim that

2’ =TI Y(yII(Z)). If it is not, we write 2" = IT }(yI1(Z)), and consider 2™ = tz’ + (1 —t)z".
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For a suitably chosen t strictly between 0 and 1, 2™ is in the positive orthant, so II(z")
exists, and since it is distinct from 2", the limited weak axiom guarantees that «”-II(z") > 1.
Since /- II(z") = 1 by definition, we obtain 2’ -II(z") < 1. Note also that 2’ -II(Z) = 1/~.

Choose A so that a - II(Z) = a - AXII(2”"). Then

(2 —a")- (@) = X&) = (@2—a' = (" =) - (T@) = ("))
= (" =) (T(z) - NT("))
_ )\(xlll _ $/) . H(ﬂff”/)

= AN1-2-TI(z")) >0,

which is a violation of (i). So we conclude that 2/ = II71(yI1(z)). Since a > 0 by assump-
tion, and by our construction a is collinear to & — 2/, we have 2/ < Z. This establishes (ii)
and the uniqueness (up to scalar multiples) of a. QED

Note that the case of k = 1 in condition (i) of Propositon 3.3 is trivially true if II satisfies
the limited weak axiom. If z-TI(Z) = 1, we have (z—xz)-(II(Z) — \II(z)) = A(1—Z-I(x)) < 0
for any positive A, which means that any vector a > 0 could be chosen. This observation
and Proposition 3.3 are summarized in the following corollary.

COROLLARY 3.4: Let II : R{Hr — R{Hr be a function with the following properties:
(i) x - T(x) = 1 for all x, (ii) it obeys the limited weak aziom, and (iii) 11 exists and is
normal. Then 11 satisfies N-monotonicity.

Notice that the conditions of Corollary 3.4 are analogous to those of Proposition 3.1,
with the limited weak axiom similar to condition (i), and normality similar to condition (ii).

It turns out, not surprisingly, that a slight strengthening of the conditions in Proposition 3.1
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are sufficient to guarantee the N-monotonicity of P. In particular, (ii) needs to be replaced

by a slightly stronger condition. We say that F satisfies aggregate normality between (p,w)

and (p,@) if the following holds: (i) when p - p(w) > p- p(@), F(p,w) > F(p,o), (ii) when

p-pw) <p-p(@), Fp,w) < F(p,0), (iil) when p - p(w) = p - u(@), F(p,w) = F(p,©).
PROPOSITION 3.5: Let P : Q) — Rl++7 Q C Rﬂm be an equilibrium map. Then P

satisfies N-monotonicity at @ if

(i) P(w) - Z(P(@),w) > 0 for all w in Q with P(w) # P(@) (equivalently, Z(-,w) satisfies

WAE in {P(w),P(@)}), and

(ii) F satisfies aggregate normality between (P(w),w) and (P(@),w) for all w in Q.

Proof: If w satisfies u(w) - P(@w) = 1, we have

(@) = plw) - (P(@) = AP(w)) = —AMp(@) = pw)) - P(w)

for any positive number A, which means that the vector a can be chosen to be any vector
with strictly positive entries. (Note that the second equality follows from (ii) and the final
inequality from (i).)

We now consider the case when w satisfies p(w) - P(w) < 1 = p(@) - P(@). (The
case of p(w) - P(w) > 1 can be handled by an analogous argument.) By (ii), F(P(®),w) <
F(P(w),w) = p(w), so a = p(w) — F(P(@),w) > 0. Choosing A so that a-P(@) = Aa-P(w),

we obtain
(1(@) = pw)) - (P(@0) = AP(w)) = [u(@) - F(P®),w) - (Ww) = F(P(@),w))] - (P(@) = AP(w))

— —(ulw) - F(P@),w)) - (P(@) - \P(w))

18



which, by (i), must be negative. QED

The first version of this result could be found in Nachbar (1999). This statement is
different from Theorem 1 in Nachbar (1999) in several ways: the statement is non-local,
differentiability is no longer assumed, and perturbations which preserve mean income, i.e.,

P(@) - p(@) = P(@) - p(w) are not excluded.
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