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1 Introduction

In the asymptotic analysis of autoregressive time series it is usually assumed that
the process has no explosive roots. This is somewhat in contrast with the statistical
analysis which is performed without that restriction. Often the assumption of non-
explosiveness will not be necessary and consequently the autoregressive model can be
used for analysing economic data exhibiting explosive growth. Examples of this are
the strong consistency results for least squares estimators proved by Rubin (1950) and
Lai and Wei (1985). While Lai and Wei focussed on the least squares estimator this
paper is oriented towards sample correlations which have a more natural normalisation
than the least squares estimator. The results are to a large extent derived using
methods presented by Lai and Wei (1982a,b, 1983a,b, 1985) and find applications in
autoregression problems such as lag determination, see Pitscher (1989) and Nielsen
(2001b), unit root testing (Nielsen 2001a) and cointegration analysis (Nielsen, 2000).

The model in this paper is a p-dimensional time series, Xi_g,..., Xg, ..., Xy sat-
isfying a kth order vector autoregressive equation



k
Xo =) AjXy j+puDy+ ey, t=1,...,T. (1.1)
j=1
Here the component Dy is a vector of deterministic terms such as a constant, a linear
trend, or seasonal dummies, while ; is an innovation term. For convenience let
Xy = (X[_q,...,X,_;) denote the stacked vector of lags of the process.
The aim of the paper is to describe, in an almost sure sense, the order of magnitude
of two statistics arising in regression analysis. The first of these statistics is the
denominator of the least squares estimator

!/
i Xt—l Xt—l (1 2)
=\ D D 7 ‘
for which the smallest and largest eigenvalues will be discussed. To get a more detailed
understanding of (1.2) the process X; is decomposed into processes Uy, Vi, W, with
characteristic roots whose absolute values are smaller than, equal to, or larger than
one. The sample correlations between these components vanish asymptotically and
the rate of convergence is discussed. These results for the denominator matrix will
facilitate a discussion of the normalised least squares estimator which is the second
statistic of interest,

{Z( X1 ) ( Xy )} S ( Xy ) (13)
t=1 D, D, t=1 D, " '
The two sets of results generalise those of Lai and Wai (1983b, 1985) in that results
concerning the order of magnitude of sample covariances are sharpened and since
deterministic terms are included. An immediate consequence of the two results is
that the sum of squared residuals in the regression given by (1.1) is asymptotically
equivalent to 7, €&, whereas more involved applications are given by Nielsen (2000,
2001a,b).

When discussing the order of magnitude of the above statistics the arguments
of Lai and Wei can be followed to a large extent. Following their precedence it is
assumed that the sequence of innovations (e;) is a martingale difference sequence
with respect to an increasing sequence of o-fields (F;), that is €; is Fi-measurable
with E(e;|Fi—1) = 0 a.s. It will often be required that the innovations satisfy the two
conditions

a.s.

sup E <||5t||2+’y |-7:t—1) 00 for some v > 2, (1.4)

a.s

li%ninf)\minE(eteﬂﬂ,l) > 0, (1.5)



where \.;, denotes the smallest eigenvalue of a symmetric matrix. Lai and Wei
(1983a) refer to (1.4), (1.5) as the local Marcinkiewicz-Zygmund conditions.
The deterministic process will be assumed to satisfy the assumption

D;, =DD;_,, leigen (D)| = 1, rank (D, ..., Dgmp) = dim D, (1.6)

which is inspired by Johansen (2000).
The outline of the paper is as follows.
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Here the process X; is decomposed into the three processes Uy, Vi, W;.

The deterministic process D, and in particular the order of magnitude for (1.2)
for the purely deterministic case is discussed.

The order of magnitude of the process X; is discussed.
The sample correlation of U; and D; is proved to vanish asymptotically.
The order of magnitude of the largest eigenvalue of (1.2) is found.

The non-explosive components and in particular the order of magnitude of the
smallest eigenvalue of (1.2) for this case is analysed.

The order of magnitude of the sample correlations of U, Vi, W;, D, and of the
smallest eigenvalue of (1.2) is discussed.

The least squares statistic (1.3) is discussed

Some Central Limit Theorems which can be used in the analysis of (1.3) are
presented.

The process V; with characteristic roots of length one can be decomposed further
into processes with unit roots at different frequencies. The sample correlations
between these are discussed. These results only hold weakly.

The Sections 5, 8, 9 also contain some examples showing how the results can be
applied in the analysis of non-stationary time series.

The following notation is used throughout the paper: For a matrix « let a®? = oo/
and let ||a|| be the Euclidean norm. When « is symmetric then A, (@) and Apayx (@)
denote the smallest and the largest eigenvalue respectively. While E (g,|F—;) is a
conditional expectation the notation (Y;|Z;) denotes the residual of the least squares
regression of Y; on Z;. The abbreviations a.s. and P are used for properties holding
almost surely and in probability, respectively.



2 Decompositions of the process

The process X, satisfying (1.1) is decomposed into stationary and explosive compo-
nents as well as components with roots at various locations on the unit circle. In later
sections it will be established that the sample correlations of these components are
asymptotically negligible.

As a first step write the process on companion form

(3)=(38)(52)(5) o
where

B:{Al"'Ak_l Ié(l)k}7 L:{O IP }’ H:LMDa e = L&y,
(

Ip(kfl) k—1)pxp

The eigenvalues of B are the characteristic roots of the process X;.

The decomposition can now be introduced using a similarity transformation. Fol-
lowing Herstein (1975, p. 308) there exists a regular, real matrix M which trans-
forms B into a real, rational canonical form. In particular, M can be chosen so
MBM™! = diag (U, V, W) is a block diagonal matrix where the absolute values of
the eigenvalues of U, V and W are smaller than one, equal to one and at least one,
respectively. Correspondingly, define the processes

U, U o 0 pupy Ui eu,t
MX;=| Vi |= 0 V 0 puy Vier |+ | e
W, 0 0 W puy Wi ewt

The process V; which has roots on the unit circle can be transformed further, into
components Vj ...V, so V;; has characteristic roots at exp (i;) and exp (—i6,)
where 04, ..., 0; are distinct and 0 < 0; < 7.

The deterministic term D, has roots on the unit circle and no other roots. The
Lemma 2.1 given below shows that one further similarity transformation leads to the
representations

Ut = 015 + ,aUDt where 015 = UUt_l + €ut, (22)
W, = Wi+jwD,  where W, =WW,_+ew,,

for some [;; and fiy,. An example of this is when D, = 1 in which case fi;; =
(I —U) ' . It is an immediate consequence of the representations (2.2), (2.3) that

(T D:) = (WD), (WilDy) = (Wi Dy).



The relation between V; and the process ‘;} = V‘;}_l + ey, is more complicated since
D and V have common eigenvalues and the process V; will therefore not be discussed.

The representations (2.2), (2.3) follow immediately from the next Lemma since
the matrices U, W, D have no common eigenvalues.

Lemma 2.1 Let A € R**®, B € R"® be square matrices while C € R**® is rectan-
gular. Then the equation AD — DB = C' has a unique solution D € R if and only
if the matrices A and B have no common eigenvalues.

Proof of Lemma 2.1. The equation can be rewritten using the vec-operator as
(A@I,—1I,® B)vecD = vecC,

see Magnus and Neudecker (1999, Chapter 2). A unique solution can therefore be
found when the matrix A’ ® I, — I, ® B has full rank or, in other words, when it has
no zero eigenvalues.

Two properties of Kronecker products are needed. First, the two matrices A’ ® I,
and I, ® B commute and hence they are simultaneously unitarily similar to triangular
matrices (Mirsky, 1961, Theorem 10.6.5). Secondly, a Kronecker product F' ® G
has eigenvalues of the form f;g; where f, g are the eigenvalues of F,G respectively,
see Magnus and Neudecker (1999, Theorem 2.3.1). As a consequence the matrix
A'® I, — I, ® B is unitarily similar to a triangular matrix with diagonal elements
given by a; — b; where a; and b; are eigenvalues of A and B respectively. Hence, if A
and B have no common eigenvalues then A’ ® I, — I, ® B has full rank.

Now suppose A and B have a common eigenvalue A and let z and y be associated
eigenvectors so Az = Az and By = Ay. Since (A ® I, — 1, ® B) (x ®y) = 0 the
vector x ® y is an eigenvector for A’ ® I, — I, ® B associated with the eigenvalue 0. m

3 Limiting results for the deterministic component

In the following some limit results will be given for the order of magnitude of the
deterministic process D; and the sum of squares Y-, D#?. The formulation of the
results is inspired by Lai and Wei (1983b) as will become evident in §7.

The results in this section exploit a similarity transformation as in §2. Because
of Assumption (1.6) there exists a regular, real matrix M so MD; = (D}, ..., Dy, ;)
and MDM~! has the form

diag (Dy,...,D,), (3.1)



where the blocks have different eigenvalues and each block, D, is a real Jordan matrix
AT

D, = , (3.2)

~

where (A, I) is one of the pairs

o e (el e ) (0 l)) e

The multiplicity of the eigenvalues of each block, D, is denoted 6; and is given by
dimD;/dim A;. The maximum multiplicity of any eigenvalue of D is given by

6 = max ¢; = max {multiplicity (A) : A is an eigenvalue of D} . (3.4)

1<5<n

The first result concerns the order of D;.
Theorem 3.1 Suppose Assumption 1.6 is satisfied. Then ||Dr|| = O(T?).

The proof will be formulated in terms of a Lemma which will be used once again
in Section 4.

Lemma 3.2 Let A be a complex number with |A\| =1 and let D,, Dy have dimension
r and s respectively and be complex Jordan matrices of the form (3.2) with (A, I) =
(A, 1). Further, let p be an (r X s) matriz. Then

T

> Dy ‘uD;

t=1

-0 (TrJrsfl) ‘

Proof of Lemma 3.2. The (j, m)-th element of D! is an upper triangular band
matrix with elements
t .
(DY) = ( ) i
2,m m — j

with the convention that the binomial coefficient (a,b) is 1if a = b = 0 and 0 if either
a < bor b < 0. Therefore the (j,m)-th element of 7, DT~ uD! is

d T—t ¢ L& (Tt T—t—k+j - t t—m+l
SIS IS o) o i PN ED SPPMI (R JUSD
Lm =1 k =1 m—1

t=1 k=3 \" 7]



Taking absolute values, using |A\| = 1 and properties of the binomial coefficient shows

= 0 dmax g S (TS ) g
Pl p—j) &= \m—1

t=1 k=j

T
(Z thuDi>
Ilm

t=1

~ 0 {z (T — by tm—l} _ 0 (1rotm) = 0 (1)

=1
Finally, use that the matrix of interest has a finite number of elements. =
Proof of Theorem 3.1. Assume without loss of generality that D is of Jordan

form (3.2). By the triangle inequality, || Dr[| < 374 || D;r|| where each term || D;r| =
O(T4mPi) according to Lemma 3.2. m

A second result concerns the order of magnitude of the sum of squares of D;.

Theorem 3.3 Suppose Assumptions 1.6 is satisfied. Then there exists constants
c1,c0 € Ry so

T T
)\min (T_l ZD;?Q) — C1, >\max (Tl_% ZD;?Q) — Cq,
t=1 t=1

and
-1

T
max D, (; D;®2> D=0 (T7).

Two Lemmas are needed to prove this result, of which the first is essentially
Theorem 3.3 formulated for the case where D only has eigenvalues at one frequency.

Lemma 3.4 Suppose Assumption 1.6 is satisfied and that D;, = D;D;, where D; is
a real Jordan block of the form (3.2). Define the normalisation matriz

N;p = T"*diag (T* dimD; ,T*l) ®1,

where I is defined in (3.3). Then it holds that 1, (N;1D;,)®? converges to a positive
definite matriz, and

-1

T
max D}, (Z fo) D;,=0(T7).
- s=1



Proof of Lemma 3.4. Only the most complicated case, where D; has non-real
eigenvalues is considered. In that case I = I, is the bivariate identity matrix and

S il B TS T R L A (i ACE)

The matrix D; is the upper block matrix with elements

(09, =, )2

as in the proof of Lemma 3.2. The binomial coefficient satisfies

el ) () o0

for large T" where the error is uniform in ¢. Since ||A|| = 1 it follows that

max NjrDje = O (7172,

and the desired results follows by proving that 37, ( ]TD],:) is convergent with
a positive definite limit.

Now, let b, a denote the last and second last element of D;, satisfying a? 4+ b > 0
by Assumption (1.6). The elements of the block matrix are therefore of the form

T
{(diij—n)!(diij m)!> " (N;rD;0)® }
s=1

1 T t 2dimD;—n—m . ®2 .
_ ? Z <f> Jj At—dlij+n ( Z > (At—dlij+m)’ i 0(1) .
t=1

Decomposing A as in (3.5) this expression becomes
11 4 1 1
Z(z‘ 1)MT<z' 1)’ (3.6)

1 & 0\ 2AmPimnmm (g — ib)? exp (2itd) i(a+0b)
2 ( > { —i(a+b)* (b— m)2 exp (—2ith) } '

where

The order of magnitude of this matrix can be judged by noting that

S~ tF exp (20t0) — {(%) (%) }kiexp (2it6) = O (T*) =o (TH),  (37)

t=1

8



and it holds that
1 T 2dimDj—n—m 0 —i
My = (a+ 1) {T;@) }(_Z . )+o(1). (3.8)

Inserting the expression (3.8) for My in (3.6) and noting that

(% ()

shows that
+/)dimD;—1 ®2
(a+b)2 ) 1 T (dlmD] H!
Jim 3 (a0 ={ 7yl

t=1 ;t iT:o

0!

The latter limit is positive definite since polynomials of increasing order constitute a
basis for functions on N. m

A second Lemma is concerned with sample correlations of deterministic compo-
nents with different roots.

Lemma 3.5 Suppose Assumptions 1.6 is satisfied. Then

T -2 ,p T ~1/2 ]
Z Dg?tz ZDq,tD;,t Z Df?f =0 (—) )
t=1 t=1 t=1 T

Proof of Lemma 3.5. Only the most complicated case where D, and D, both
have non-real eigenvalues is considered. It suffices to argue that

T 1
ZNq,TDq,tD;tNr,T =0 (_> )
t=1 7 T

where N, 1, N, are given in Lemma 3.4. The elements of this block matrix are

—N—

T
(dimD, — n)! (dim D, —m)!> Nq,TDq,tD;,thT}
t=1 n
T, 4\ dimDg+dimD,—n—m . ! .
Z < > AtfdlmeJrn ( z;j > ( Z?‘ > (AtfdlmDrer)/ {1 1 0(1)}
t=1 r
1 3 1 T t dimDg+dimD,—n—m 1 i
( 11 ) T ; (?) L 1 1 )7

9

| = 'ﬂ|r—t



where

/

I agexp {i0, (t —dimD, +m)} ] [ a, exp {i0, (t — dim D, +n)}
T

= | byexp{—ib, (t — dim D, +m)} brexp{—ib, (t —dimD, +n)}
The desired result follows as in the proof of Lemma 3.4 using (3.7). =

Proof of Theorem 3.3. Decompose D, as indicated above. The components
of D, are asymptotically uncorrelated by Lemma 3.5 and the result then follows by
Lemma 3.4. m

4 The order of magnitude of the process

In the following the order of magnitude of the process X; will be investigated. This is a
generalisation of Lai and Wei (1985, Theorem 1) where the case without deterministic
components is considered. The result will be formulated in terms of the multiplicity
of the largest eigenvalue of B, that is

p = max {multiplicity (A) : A is an eigenvalue of B and || = max |eigen (B)|} .
(4.1)

Theorem 4.1 Suppose Assumptions 1.4, 1.6 are satisfied. Then, for & <~/ (24+7),

o{T1-9/2} 1 O(T?) if max |eigen (B)| < 1,
IXell 2 | O{(T ' loglog T)!2} + O(T**-)  if max eigen (B)] = 1.
O(T*! max |eigen (B)|") if max |eigen (B)| > 1.

Proof of Theorem 4.1. If max |eigen (B)| < 1 then by (2.2) and the triangle
inequality

1 Xl = Uzl = HffT +/1UDTH =0 (HUTH> +O (D)) -

Use that ||Ur|| = ofT'-9/2} a.s. as shown by Lai and Wei (1985, Theorem 1,i)
together with Theorem 3.1.

When max |eigen (B)| = 1 the triangle inequality shows ||Xr| < [|[Vr|| + [|[Ur]| -
Thus it suffices to consider ||[Vz||. A similarity transformation of (V/, D})" results in
components of the type

Vit _ Ddimvj ﬂvj Vit + vt
Dy 0 Dim p; D4 0 ’

10



where Dgimv; and Dgim p,; are Jordan matrices with a common eigenvalue. It suffices
to show that V; ¢ is of the right order for each j. Now,

T T
_ T—t T—t =~ Tyt—1
Vir = Z Diimv,ev;t + Z Diim v, fv; Ddim p, Dj0;
t=1 t=1

where the first term is O{ (7%~ loglog T)'/?} a.s. according to Lai and Wei while the
second term is O(7T**%~1) by Lemma 3.2.
Suppose max |eigen (B)| > 1. By the triangle inequality and (2.3)

X[l = O (|[Wz])) + O (D2l + O (IVll) + O ([Tl

The first term is O(7* ! max |eigen (B)|") according to Lai and Wei (1985, Theorem
1,2i1) while the other terms are of smaller order. m

In the above proof of Theorem 4.1 the following generalised version of the Marcinkiewicz-
Zygmund Theorem was implicitely used.

Theorem 4.2 (Lai and Wei, 1983a, Corollaries 3,4)
Suppose Assumptions 1.4, 1.5 are satisfied. Then for any sequence of matrices A,

T T
S A < o0 & > Asey converges a.s.
t=1 t=1

If this holds, and a' A; # 0 for any vector a and infinitely many t then P(X1 | Aiey =

Y) =0 for any variable Y that is F; measurable for some t.

This result yields a more precise statement about the order of magnitude of the
explosive component.

Corollary 4.3 Suppose Assumption 1.4, 1.5, 1.6 are satisfied. Then

(1) W=ITWr converges a.s. to W = Wy + Y02, Weyy, satisfying P(d/W = 0) =0
for any a.

(i) Sy [[WIWA| — 382, [W W a.s.

Proof of Corollary 4.3. (i) The decomposition (2.3) and Lemma 3.2 show
that Wy = Wy +o(W7). The result then follows from Theorem 4.2, see also Lai and
Wei (1985, Lemma 2).

(i3) Rewrite L [[WTW|| = L, |[[W-T=9W~'W;|| and use (i) and that
||W~T|| is exponentially decreasing. m

11



5 Correlation between stationary and deterministic component

One major difference between the results presented here and the work of Lai and Wei
(1985) is that deterministic terms are included in the model. Before turning to the
question of how big the denominator matrix can be in Section 6 it is convenient to
consider the asymptotic order of magnitude of correlations between the zero mean
process with roots smaller than one, [7,5, and the deterministic component, D;.

As a first step towards discussing the sample correlation of U, and D, a result of
Lai and Wei concerning the matrix - 1 | U2 is stated. The result gives conditions
for relative compactness of a sequence of such matrices. Recalling that the relative
compactness of a sequence is the property that the limit points fall in a compact
set, this enables a discussion of the order of magnitude of the sequence under weak
assumptions. In particular, a condition is given ensuring that the limit points are
bounded away from zero.

Theorem 5.1 (Lai and Wei, 1985, Theorem 2, Lemma 3, Example 3).
Suppose Assumption 1.4 is satisfied. Then it holds with probability one that the matrix
sequences

lie®2.T>1 liE(e(gQ)f )'T>1 liU@JQ.T>1
T pt Ut - - ) T Pt Uit t—1) - - 9 T — t . -
are relatively compact and it holds, also with probability one, that
1 T
E is a limit point of (f doegi T > 1)
t=1
1 T
< E is a limit point of {T ZE (e%ﬂftq) T > 1}
t=1

%] T
= ZUtE (Ut)l s a limit point of (% ZUt®2 2T > 1) ,

t=0 t=1

If in addition Assumption 1.5 is satisfied the above limit points are positive definite.
The result for the sample correlation of U, and D, can now be stated and proved.
Theorem 5.2 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then, for all n >0

by

~1/2 ~1/2

o) (Eor) o)

12



Proof of Theorem 5.2. The norm of the matrix of interest is bounded by

~1/2 1/2

T ~
>0
t=1

T d B
Sl et (S07) o

The first term is O(T~/2) by Theorem 5.1. In the second term, the process Y; =

¢, U, is of order O{(T'loglog T)"/*} according to Theorem 4.1 because it satisfies
an autoregression with dim U; roots at one and dim U; roots equal to those of U. The
third term is of order O(7~'/?) according to Theorem 3.3. m

One immediate consequence of these result is the following.

Example 5.3 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then the Theorems
5.1, 5.2 and equation (2.2) imply that the sequence of matrices

l 1 - ©2 g 1 &n ~ oo .
=Y (WD) = 23 (TUD) T Y O o (17
1 t=1 t=1

t:

1

1s relatively compact with positive definite limit points. Moreover, this series will be
convergent almost surely if T~' L P2 is convergent. In particular, if U, = pD;+ &
then the sum of squared residuals from a least squares regression is asymptotically
equivalent to the sum of squared innovations.

6 The largest eigenvalue of the denominator matrix

The order of magnitude of the largest eigenvalue of the denominator matrix is de-
scribed in the following generalisation of Lai and Wei (1985, Corollary 1).

Theorem 6.1 Suppose Assumptions 1.4, 1.6 are satisfied. Then

Torx, \ % O (T) + O(T*71) if max |eigen (B)| < 1,
Amax {Z ( D, ) } 8 O(T*loglog T) + O(T*+%~1)  if max|eigen (B)| =1,
=1 ‘ O(T?~2 max |eigen (B)[*") if max |eigen (B)| > 1.

Proof of Theorem 6.1. If max|eigen (B)| < 1 then X; = U, + p,D; by (2.2).
By Theorem 5.2 the sample correlation of U, and D, vanishes asymptotically. The
result then follows since Apax (31, UP?) = O (T) a.s. by Lai and Wei (1985, Corollary
1) and since A\ (S, DP?) = O(T%~1) by Theorem 3.3.

If max |eigen (B)| > 1 the result follows directly from Theorem 4.1. m

For the explosive part of the process the following generalisation of Lai and Wei
(1985, Corollary 2) can be established.

13



Corollary 6.2 Suppose Assumption 1.4, 1.5, 1.6 are satisfied. Recall the definition
of W = limy_,ooc W ITWy in Corollary 4.3. Then

o

—T Zw®2 l (15 Z —tW

=1

where Fy, is positive definite a.s., hence

lim 7" 10g Ain (i m®2>

t=1

II5

2log min |eigen (W)|,

T
lim 77" 10g Amax (Z m®2> = 2log max |eigen (W) .

=1
Proof of Corollary 6.2. The result is a consequence of Corollary 4.3,i. The
details are given by Lai and Wei (1983b, Theorem 2). =

While Theorem 6.1 gives a bound for the sum of squares of the process the follow-
ing result gives a bound for sum of higher order powers of the stationary component.
The statement is less precise than that of Theorem 6.1 but the result is occasionally
useful and will be used in the proof of the Central Limit Theorem 10.2

Theorem 6.3 Suppose Assumption (1.4) is satisfied. Then, for alln >0 and { <~

i 2]

Proof of Theorem 6.3. For convenience define ey = UO. Using Holder’s
inequality it follows that

~ H2+C . | o

! 2 1 e 2
<{Slo ) o
j=0 Jj=0

Summation over ¢ then gives the following bound

e (12 o [y 1j/2[| (2 HO/ (10
Sl < (S| }

_ { Ui <2+<>/<1+<>}
] J

Ui/ <2+<>/<1+<>} ZHUtHHC/?ZH jH2+<

t
3 U ey,

HQJrC

5 [tz

Jj=0

.
g
EM%

8

O el

0 t=max(0,1—j)

<
g
M*

<.
Il
o

IN
—
M]3



The first two sums are finite because the eigenvalues of U are smaller than one in
absolute value. As for the third term decompose it as

T

T T
2} ||€U,j||2Jr< = Z {||€U,j||2+C —-E <||€U,j||2+g) ft—l)} + Z E <||6U,j||2+g) ft—l) .
j=

=0 =0

The latter term is of order O (T') = o(T'*") by Assumption (1.4). The first term is a
martingale. Normalised by 7' it converges to zero a.s. on the set

557 { e ~ B (e 4] Fics)| 7} < o0
j=0

see Hall and Heyde (1980, Theorem 2.18). Minkowski’s inequality shows that this sum
is finite if the sum Zfzoj*(1+")E(||eU7j||2ﬂ | F;_1) is finite. Assumption (1.4) ensures
this is the case. m

7 Limiting results for the non-explosive components

Two results are given for the non-explosive case, that is when max|eigen(B)| < 1.
The first concerns the smallest eigenvalue and thus a lower bound for the matrix
S (Xy|Dy)®* which is related to the denominator matrix (1.2). The second result
is of a more technical nature and will be used in the subsequent Section. It gives the
order of magnitude of the scalar max;<y St’S}lSt where

St:<)1§z), ST:Z(E) . (7.1)

The first result gives a lower bound for 7, (X,|D;)®* and is related to Theorem
3 of Lai and Wei (1985).

Theorem 7.1 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied and max |eigen (B)| <
1. Then

. . 1 - 2 . . ]- l ®2 a.s.
lim inf Ay, (? ZX,‘? ) thrrilcgf Amin {T Z (X¢|Dy) > 0.

=00 t=1 t=1

In other words, the rate of convergence of the denominator matrix is at least T’
which is the rate of convergence for sums of squares of stationary processes. This result
is useful in various ways as will be demonstrated in Section 8. While it also holds
that iminfz e Apin (T~ S, DE?) > 0, see Theorem 3.3, it is interesting to note
that these results are not sufficient to ensure that liminfz_, o Apin (77 XL, S©2) > 0
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a.s., and such a result has not been proved, although a version holding in probability
is given in §11.

The proof of Theorem 7.1 is based on the following generalisation of Lemma 6,77
of Lai and Wei (1983b). A slightly stronger version of this result is presented towards
the end of this section.

Lemma 7.2 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied and max |eigen (B)| < 1.
Then, for j > 1,

T T
(Z 5t+jS£> S;l (Z Stgi‘—i—j) = 0] (lOg T) .
t=1 t=1

Proof of Lemma 7.2. Lai and Wei (1982a, Lemma 1,ii7) show that the
object of interest is O {log Apax (S7)} on the set {Apax(S7) — oo}. While Theorem
6.1 show that log Apax (S7) = O(logT) a.s. Theorem 3.3 shows that Ay (Sr) >
Mmax (X8, DF?) — co. =

Proof of Theorem 7.1. The idea of the proof is taken from Lai and Wei
(1982b). Adding an additional regressor reduces the sum of squared residuals so

T T
> (X[ D) > 37 (Xe| Dy, Xi—aimx) ™ .

t=1 t=1
The model equation (2.1) shows

dim X—-1

X; = Z B’ (€—j + uDy_1_;) + B XX, imx
j=0
dimX-1 dmX-1 , .
= Y Ble;+ Y BuD UIiD, +BIXX, y.x,
j=0 J=0
and consequently
T oy L fdmX-1 2
, _ e, . .
_ —; _
Z(Xt|Dt7Xt dlmX) Z Z B € Dt7Xt dim X .
t=1 =1 Jj=0

The Lemma 7.2 implies that the regressor is negligible so

dim X—-1

®2
1 as 1 o -
(X¢| Dy, Xt—dimX)®2 =7 Z ( Z Bjet—j> {1+0(T)},
=1\ j=o0

T

M=

t

Il
—_

which has positive definite limit points, see Lai and Wei (1985, equation 3.19). m

The second and more technical result is an extended version of Theorem 3.3.
Recall the definition of the stacked process S; and the sum of squares Sy in (7.1).

16



Lemma 7.3 Suppose Assumptions 1.6, 1.4, 1.5 are satisfied and max |eigen (B)| < 1.
Then, for all £ < ~v/(2+7),

IQ-lq _ —£/4
Iglga%(StST St—o<T )

The Lemma 7.3 is proved by Lai and Wei (1983b, Theorem 4) for the special case
where X is a univariate autoregression without deterministic components and the
order of magnitude is shown to be o (1). The outline of their proof can also be used
to prove this more general and stronger result.

The first step in the argument is an algebraic result strengthening Lemma 3 of
Lai and Wei (1983b).

Lemma 7.4 Let {a;} be a sequence of non-negative numbers such that

T
a; = O T6 (72)
> o =o(T’)
for all 6 > 0 and there exists C' > 0 and k > 0 such that
a1 < ap+CT™" for all large t. (7.3)

Then
a; =0 (Té_”) ) for all p=min (1,k/2).

Proof of Lemma 7.4. Condition (7.3) implies that for every 0 < p < 1

min _ a; > ap — 2CTP™" for all large T.
T>t>T-T°F

In particular, choosing 0 < p < min(1, k/2), it is seen that
T T
Zat > Z ag >T* (aT — QC’T"*”) >TPap —2C for all large T.
=1 t=T—Te1

Combining this with (7.2) it follows that

ap <T7° (ZTj a + 20) =o(T°).

t=1

The second step is to generalise and strengthen Lemma 6i,47 of Lai and Wei
(1983b).
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Lemma 7.5 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied and max |eigen (B)| < 1.
Let Ty = inf{t: rankS; = dim S, } with the convention inf ) = co. Then

(i) Ty < oo,

(i3) S;S;1S; < 1 fort > T,

(112) Yo g1 SiSTS 2 O(log 7).

Proof of Lemma 7.5. (i) decompose St as

Q. ILimx A i (Xt|Dt)®2 0 Ismx O
’ 0 IdimD 0 Z?:l DEEJQ A IdimD .

where A = "1 X, Di(X L, DF*)~'. Tt follows that S; is regular if the second matrix
is regular, but this follows by Theorems 3.3, 7.1.

(1) is an immediate consequence of Lai and Wei, 1982, Lemma 2,i.

(77i) note that S; ; = S; — S;.5; and therefore

S;S;lst =1 —det Stfl/ det St S — lOg (det Stfl/ det St) . (74)
Using that —log(a/b) = logb — log a this implies
T
> 58 1S, <logdet Sy — logdet Sy,
t=To+1

Since det Sy, > 0 by construction, it suffices to argue that det Sp < An.x(St) =
O(T°) a.s. for some ¢ > 0 and that liminf; ,.,det Sy > 1 a.s. The first prop-
erty follows from Theorem 7.1 whereas the second follows by noting that det Sy =

det{>T | (X;|D;)®?} det(XL, D$*?) and then using Theorems 3.3, 7.1. =

The third step is to generalise Lemma 7 of Lai and Wei (1983b). The proof is
omitted since it is identical to their proof except for a reference to their Lemma 6
which is replaced by the above Lemma 7.5.

Lemma 7.6 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied and max |eigen (B)| < 1.
Then, for all £ < ~v/(247),

Sr41S741Sr1 < SrS;'Sr+ 0 (Tfé/z) ‘

The Lemma 7.3 can now be proved.
Proof of Lemma 7.3. Let Ty be defined as in Lemma 7.5 and note

max S;S7'S; < max S/S;'S; + max S;S;'S;.
1<t<T 1<t<Tp To<t<T
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The first term is of order O (T—!) since A\pax(S71) = O (T71) by Theorem 7.1 while
max;7, ||Sy|| is finite. The second term can in the first instance be bounded by

max S;S;7'S; < max S;S;1S,
To<t<T To<t<T

since the increment S;* — Sy +11 is positive semidefinite, see Lai and Wei (1982a, Equa-
tion 1.4b). The Lemma 7.4 now shows that S/S; 'S, “= o(T—¢/*) since the conditions
(7.2), (7.3) are satisfied by the Lemmas 7.5,i7i and 7.6 respectively. m

As a final result in this Section the Lemma 7.2 is strengthened slightly

Theorem 7.7 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied, dimD = 0, and
max |eigen (B)| < 1. Then, for j > 1,

T T
(Z etﬂ-S;) S;! (Z Stet;ﬂ.) = 0 (loglogT).
t=1 t=1

For the proof of Theorem 7.7 a result by Wei (1985) is used.

Lemma 7.8 (Wei 1985, Lemma 2)

Suppose Assumption 1.4 is satisfied. Let (z;) be a sequence of random variables
adapted to (F;) and let s3 = I 22 and assume z3 = o(s3 ") a.s. for some n > 0.
Then

T
th,lst =0 {sT (loglog ST)I/Q} )
t=1

Proof of Theorem 7.7. Using a similarity transformation St can be diago-
nalised and therefore without loss of generality it can be assumed that u; = S; is
univariate. By Lemma 7.3 it holds that s;*z2 = o(T~¢/4). Theorem 7.1 then shows
that s;2r2 = o(s;"). The desired result then follows from Lemma 7.8. m

8 Sample correlations and lower bound for denominator matrix

It has already been established in Section 5 that the sample correlation of U, and D,
vanishes asymptotically. In the following the remaining sample correlations of pairs
of the processes Uy, V;, Wy, D, are studied in a series of theorems. Subsequently these
are used to give a lower bound for the denominator matrix "L, (X;|D;)®? without
the condition |eigen(B)| < 1, and it is shown how that result can be applied to
cointegration analysis.
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Theorem 8.1 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then

—-1/2

)" () (o) 20t

Proof of Theorem 8.1. The norm of the matrix of interest is bounded by

T 1 1/2
! ®2
e (5o7) o

The first and the second terms are convergent according to Corollaries 4.3, 6.2 whereas
the third term is of order O(T~*/2) according to Theorem 3.3. m

~1/2 7

Wy w,

t=1

TS (w Y
t=1

Theorem 8.2 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then, for all £ <
v/ (2+7),

—-1/2

(;T; Wt®2> 2 (iwﬁ{) (;T; (jt@z) w0 (147,

Proof of Theorem 8.2. The norm of the matrix of interest is bounded by

_1/Qi}Hw—TmH (aarlo) (3507

The first two terms are convergent according to the Corollaries 4.3, 6.2. Theorem 4.1
shows that T-(1=8/20J; — 0 a.s. and therefore the third term is o{T~(1~9/2}, Finally,
the fourth term is O(T~%/2) by Example 5.3. =

—1/2

S (we )
t=1

Theorem 8.3 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then, for all & <

v/ (2+7),
(o) (B
W, (Vt!Dt)’} {

(o)

—1/2
(%\Dt)®2} oo (T,

-
-

M=
M=

~1/2
e (]

Il
—_

t

Il
—
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Proof of Theorem 8.3. The norm of the first expression is bounded by

1 &~
- (%4
(707)

The first term is of order o(T~¢/%) according to Lemma 7.3. In the second term the
process Y, = 321, U, is of order O{(T loglog T)"/*} because it satisfies a second order
autoregression with dim U; roots at one and dim U; roots equal to those of U. The
third term is finite a.s. according to Example 5.3.

Correspondingly the second expression of interest is bounded by

~1/2

{rgaTX(W!Dt)'{Z(W!Dt)M} WilD)

t=1

HﬁZUt

. 1/2 ~1/2

%XWADA’{Z(W!&)@Q} (Vi D)

t=1

,Tm

fw oy w7}

The first term is of order o(T~¢/®) according to Lemma 7.3. The two terms involving
W are convergent and finite as found in Corollary 6.2. =

By combining these results nearly all pairs of the processes U,, V,, W,, D, have been
considered. The only exception is the sample correlation of V; and D; which will not
be negligible when these processes have common characteristic roots. The Table 1
summarises the results given in Theorem 5.2, 8.1, 8.2, 8.3.

Uy (V2| Dy) Wi Dy
U, 1 o(T¢/8)  O(T¢/2) o(T"172)
(Vi|Dy)  o(T¢/%) 1 o(T~¢/8) 0
W,  O(T %) o(T¢/3) 1 O(T1/2)
D;  o(T"1/?) 0 O(T~1/?) 1

Table 1: Order of magnitude of pairwise sample correlations, where n > 0 and £ <
7/ (2+7).

As an alternative to Table 1 the Table 2 presents the sample correlations of the
residuals (U;|Dy), (Vi|Dy), (Wy|D;). To derive these result let C (z,%) and C (z,y|z)
denote the sample correlations of processes z; and y, and of the residuals (x;|2;) and
(y¢|2t), respectively, and use the formulas

C(z, yelze) = {Idimf” +C(z, Z)®2}71/2 C iz, (yl2)}

= {]dimw + C (z, z)®2}_1/2 {C(z,y) — C(z,2)C(z,¥y)} {Idimy + C (y, z)®2}

21
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(UlDy) — (Vi[Dy) (Wil Dy)
(U] Dy) 1 o(T~#%)  O(T*?)
(ViIDy)  o(T%) 1 o(T~¢/%)
(WilDy) O(T"*?2) o(T"*¥) 1

Table 2: Order of magnitude of pairwise sample correlations, where £ < /(2 + 7).

As an second alternative to Table 1 the Table 3 presents the sample correlations
of the processes Uy, V;, W;. To derive these note that the formula for partitioned
inversion implies that

C{x,(i)}zO(T‘“) & C{z,(y2)} =o(T™") and C(z,2)=0(T™).

Ui Vi Wi
U 1 o(T¢/8)  o(T~%/?)
Vi o(T~¢/®) 1 o(T—¢/%)
W, o(T4/%) o(T~¢/?) 1

Table 3: Order of magnitude of pairwise sample correlations, where £ < /(2 + 7).

A final manipulation of these sample correlation results is to consider concatenated
processes using the formula

C{x,(i)}:o(T“) & C(z,9),C(z,2)=0(T") and C(y,2)=o(l).

This gives the following example.

Example 8.4 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then the results in
Table 2 show, with (Y, Z;) defined as either of the pairs (Uy, Vy), (U, W), (Vi, Wr)
and § </(2+7),

i(YtlDt)@Q o ith ) (Z|Dy) iztwt 1/2a-zs-o<1>.
(e} {goimny i v

t=1 t=1

This result is used in the study of the asymptotic behaviour of procedures for deter-
mining the order of vector autoregressive models by Nielsen (2001b).

A further implication of the above results is a generalisation of Theorem 7.1 con-
cerning a lower bound for the denominator matrix.
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Corollary 8.5 Suppose Assumption 1.4, 1.5, 1.6 are satisfied. Then
1 Koo 1 & 02 as
Proof of Corollary 8.5. Let Y, = (U/,V/)". Then the results in Table 2 show

T T ®2
X.|D ®2 a.s. Zt:l (Y;f|Dt) 0 } 1 1
> (XD { P e o)

Thus normalise the matrix on the right hand side with T" and apply Theorem 7.1 to
the upper left block and Corollary 6.2 and Theorem 8.1 to the lower left block. m

T—o00

lim inf A, (

For each of the components of the process X more precise convergence rates can
be obtained in that the weak limit of 7-2 37 V,#? is positive definite, see §11, and
> W? is exponentially growing, see Corollary 6.2. While these results are often
difficult to exploit since the similarity transformation M and the appropriate normal-
isation matrix, Ny say, do not commute in general, the Corollary 8.5 can be used
more easily as illustrated by the following example.

Example 8.6 Consider the vector autoregression

k
AXt = HXt,1 + Z F]'AXt,j + Et, t=1

J=1

T

where the innovations are independent identically N(0, Q) distributed. The hypothesis
of at most r cointegrating vectors can be formulated as H(r): rankll < r or equiva-
lently T = af3" for some (p X r)-matrices a, 3. Under the hypothesis the process X,
is mon-stationary but the cointegrating relation 3 X; can be given a stationary initial
distribution, provided (i) rankIl = r, (ii) the process has exactly p — r characteristic
roots at one, and (iii) the other characteristic roots are stationary. Consequently,
1 4 / ®2
Sgs = T Y (X a|AX . AXy )
t=1

converges in probability to the corresponding long-run covartance matrix which is in-
vertible. The convergence of Sﬁ_ﬁl is used by Johansen (1996) in the asymptotic theory
for the likelihood ratio test statistic for H(r) against H(p), a theory which assumes
(1)-(i4i). Now, it is an immediate consequence of Corollary 8.5 and the Lemma 8.7
below that o

lim sup Apax (ngg) < 00,

T—00

as long as just (i) is satisfied. This result is used by Nielsen (2000) to show that the
assumptions (ii) , (i) are redundant for various aspects of the asymptotic analysis of
cointegration tests.
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Lemma 8.7 Consider a sequence of vectors, (x},y;), t =1,...,T. Then
&l 1 Tl g\
m1n X 2 . R )‘min 2 0, 81
{; elye)” } dim(z) + dim(y) ;( Yt > (8.1)
T (g \ %2
Amin (Z yf@?) Amin{ Y ( ! ) > 0. (8.2)
t=1 =1 Yt

Proof of Lemma 8.7. The inequality (8.1) holds trivially if the matrix
SE (), 4)'}®? is singular. Therefore assume it is positive definite. The upper
left block of its inverse is given by {37, (z¢|y;)®?} ! and therefore

fr [{té(myt)@?} < tr {g ( z: >®2}1

Further, for a positive definite matrix A then Ayin(A) = {Amax (A1)} 1 and Apay(A) <
tr(A) < dim(A)Amax(A) which leads to the inequality (8.1). The inequality (8.2) is
a consequence of Poincaré’s Separation Theorem, see Magnus and Neudecker (1999,
Exercise 11.11.1). =

v

-1

9 Least squares statistics

The asymptotic order of the normalised least squares statistic (1.3) is stated and
proved in the following. Subsequently the least squares statistic itself and the sum of
squared residuals are considered.

Theorem 9.1 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then, for all £ <
v/ (2+7) and j > 1 it holds

— /2
3 X - 1 S X a.s. -
{Z<DZ> ;(D§>54+j=°{T“ Nt

t=1
If max |eigen (B)| < 1 then right hand side expression equals O{(log T)'/?} a.s.

Potscher (1989, Lemma A.1) states this result with £ = 0 and dim D, = 0 while
Nielsen (2001a) proves a univariate version holding in probability. A slightly stronger
version of the result was stated as Theorem 7.7 for the case |eigen(B)| < 1 and
dim D = 0. The Theorem 9.1 is a special case of the following slightly more general
result.
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Lemma 9.2 Suppose the innovations e; satisfy Assumptions 1.4, 1.5, 1.6 and that
my 18 a martingale difference sequence adapted to F; and satisfying Assumptions 1.4,
1.5. Then, for j > 1,

T ®2) ~V/2
X X / as.
{;( Dt > } ;( Dt )mtJrj =0 <r{l§352(Hth>

Proof of Lemma 9.2. Let S; = (U/,V/, D})". As a consequence of Theorems
8.1, 8.2 and 8.3, see also Table 1, the vector of interest equals

(M ) () aenn.

Thus the explosive and non-explosive components can be considered separately.
For the explosive component note that

where the first term is convergent because of the Corollaries 4.3, 6.2 while the second
term is of the desired order by Theorem 4.1.
For the second component the argument is essentially that of Lemma 7.2. =

T —-1/2
< (Z Wt®2> > Wi
=1 =1

T -1/2 p
(owe)  Low,
t=1

t=1

max |||,

Rather than discussing the normalised least square estimator as above the litera-
ture has been more concerned with the consistency of a the least squares estimator for
Ay, ..., Ag or equivalently of B. The issue of strong consistency was first discussed
for a Gaussian first order autoregression by Rubin (1950) and later for a vector au-
toregression without deterministic terms by Lai and Wei (1985, Theorem 4). By
combining Theorem 9.1 with Theorem 7.1 and Corollary 6.2 a generalisation to the
model with deterministic terms is achieved and the rate of convergence can be ad-
dressed more precisely. This has previously been done by Duflo, Senoussi and Touati
(1991, Theorem 1) in the case where the explosive roots have multiplicity one whereas
their Theorem 2 falsely suggests that the least square estimator for B otherwise is
inconsistent.

Theorem 9.3 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then, for all £ <
v/ (2+7) it holds

-1

<A1 —Au Ao Ak) - ;5'5 (X4|Dy)' {Z (Xt’Dt)@)z} =0 {(Tl logT)l/Q} )

t=1
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Proof of Theorem 9.3. As in the proof of Lemma 9.2 let S, = (U, V/, D})’
and use the similarity transformation described in §2 so

S, (8100} S, (8D

~ A /
A=Ay A= Ay) = ()7 o
( ) {Zthl (W75|Dt)®2} Y1 (WilDy) e
Use Theorem 9.1 together with Theorem 7.1 for the non-explosive part and together
with Corollary 6.2 for the explosive part. =

Another consequence of Theorem 9.1 is that variance of the innovations can be
estimated consistently.

Example 9.4 Suppose Assumptions 1.4, 1.5, 1.6 are satisfied. Then, for all £ <
v/ (24 7) it holds that the series

1 & _ 1 4 a.s.
?Z (Xe| X1, Dy)®* = Z (2¢| X1, Dy)™* 2 —25 +O(T7£)a

t=1 t:l

Q=

1s relatively compact with positive definite limit points Thus, if the variance of the
inmovations Var(g;) = Q is constant over time and T—* S, 5?2 — Q a.s. then ) is
a consistent estimator for 2.

~ These two additional conditions appearing in Example 9.4 for the consistency of
Q) are for instance satisfied if the conditional variance of the innovations is constant
Var(e|Fi—1) = Q a.s. This is demonstrated in the below Theorem.

Theorem 9.5 Suppose Assumption 1.4 is satisfied and E(¢52|Fi_1) = Q a.s. Then

1 & 1 y
e =Q+0(T7), Il ¢ < mi (—> dé< ——.
Tt:15t o( ) for all { < min {2 and & 31

Proof of Theorem 9.5. It suffices to consider the univariate case. The process
St e? — Q) is a martingale and therefore TS~} (X7_, 2 — 2) — 0 a.s. on the set

{Socve(e-af|my < orisp<

t=1

see Hall and Heyde (1980, Theorem 2.18). This set has probability one if p < 1+ /2
and p(¢ —1) < —1 according to Assumption 1.4. These restrictions are satisfied when
(<min(£1/2). =
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10 Central Limit Theorems

The limiting distribution of the least squares estimator is in general complicated to
describe except for the purely stationary case where a Central Limit Theorem can be
formulated. Thus, consider the statistic

(o) (G (&)

The middle term S | U,_,&/ is a martingale and the Central Limit Theorem of Brown
(1971) can therefore be applied. Slightly stronger assumptions to the innovations than
(1.4), (1.5) are necessary in order to describe the correlation structure of U; ;). That
is, assume the conditional variance of the innovations is constant over time

—-1/2

E(s5%17 1) 2 Q, (10.1)

where (2 is positive definite, and therefore (1.5) is trivially satisfied. The conditions
of Brown (1971, Theorem 1) are verified by the following Lemma which is proved
towards the end of this section.

Lemma 10.1 Suppose Assumptions (1.4), (10.1) are satisfied and E led|* < oo for

some n > 0. Define x; = a'Uy_1&}b for arbitrary vectors a € R4™U p € RI™X gnd
let

Then it holds

j—"tl} L (10.2)

Brown’s Central Limit Theorem states that the condition (10.2) implies s;' Y2 2,
converges in distribution to a standard normal. The Lemma 10.1 therefore gives the
following result.

Theorem 10.2 Suppose Assumptions (1.4), (10.1) are satisfied and E ||z/||* < oo for
some 1 > 0. Then

T

- “1/2 g —1/2
VT (Z Uﬁzl) (Z [7,514) (Z €§2> 2 N(0,1).

t=1
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In the above result the assumption of constant conditional variance (10.1) could
be replaced by Brown’s assumption (10.2) or alternatively the result could be based
on a mixingale assumption for 37, U; 1€}, see McLeish (1977).

Proof of Lemma 10.1. It suffices to assume Ut,et are scalar processes, SO
U, =UU, 1 + ¢ and 2, = U,_1£, with £y = Up. The assumption E H5tH4 < 00 ensures
the existence of all conditional expectations in the following.

Under Assumptions (1.4), (10.1) the Theorems 5.1, 9.1 imply that 7-! 7 2 —
Qand T'YF U2 — Fy = 32, U/'U a.s.

The first condition in (10.2) now follows by Assumption (10.1)

L2 1§T:E(x2\f ) 1§T:~2 E (<717 )1 N Q%% [0
— — — = — = — —_—

T T T Pt t t—1 T pt t—1 t t—1 T pt t—1 Us&,
Li = Lyere Lyer ow Ly (v Y uve)o - po
T T t=1 ! T t=1 til T t=1 =0

As for the Lindeberg expression in (10.2) note that 1(,2-5:2) < 65277 |z2|" for
any 1 > 0 so
Fir).

Fiaf<lostl () e (]

E {xfl(mgz&%) ﬂl} = UEE {gfl(m%&ss%)

The Lindeberg expression is consequently bounded by

1 1 - 24 o147
s (e 0 o ().

Here the first term is convergent as proved above, the second sum converges to zero
by Theorem 6.3, whereas the third term is bounded by assumption (1.4). m

11 Correlations of processes with unit roots at particular frequencies

Until now it has been argued that the sample correlations of the processes U, V,,
W, are asymptotically negligible in an almost sure sense. If an argument holding
in terms of weak convergence suffices a little more can be said. Using a similarity
transformation as in §2 the process V; can be decomposed into processes Vi, ..., Vi,
with distinct roots on the unit circle. For the case where X is univariate Chan and Wei
(1988) have shown that the sample correlations of these are asymptotically negligible
and the order of convergence has been refined by Nielsen (2001a). A multivariate
version will be stated here and a proof will be sketched.
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To establish a common notation decompose the processes V; and D, into compo-
nents Vi, ..., Viy and Dyy,..., D;y, possibly of dimension zero, so V;; and D, have
roots at exp (¢;) and exp (—6,) where 6q,...,6; are distinct. As in the Section 10
the Assumption (10.1) that E(¢?|F;_1) = Q a.s. will be used. The primary func-
tion of this is to ensure that the processes Vi, ..., Vi, suitably normalised, converge
jointly in distribution. A weakly asymptotic result for the sample correlations of these
processes can now be formulated.

Theorem 11.1 Suppose Assumptions 1.4, 1.6, 10.1 are satisfied. Let S be given by
Ui, Wy and components Vg, Dg, so 04 # 0,. Then it holds for alln >0

o) s (5O (5] e

With this result in hand the order of magnitudes reported in Table 1 can now be
strengthened using Lemma 3.5 and Theorem 5.2, 8.1, 8.2.

Uy Vi Vi W, D, D
U, 1 op (Tn 1/2) op (T"-12) O (ng/z) o (T"*1/2> o (an/z)
Vie op (T2 1 op (T 1/2)  op (T 1/2 1 op (Tn*1/2)
Vee Op Tn1/2 op (T?? 1/2> 1 op (T"1/2) op T??—l/2> 1
w, O (T—5/2 op (T” 1/2) op (T71/2 1 0O (T—1/2> 0O (T_1/2)
Dei o(T? op (T71/2) O (712 I 0T 1)
Dy of(T7Y2)  op (T”—W) 1 O (T2 O (T7) 1

Table 4: Asymptotic order of magnitude of pairwise correlations, where n > 0 and
£<7/(2+7).

The proof of Theorem 11.1 will be sketched in the following. The case where
X is a univariate and D is absent has been analysed by Chan and Wei (1988) and
then extended to include D; by Nielsen (2001a). Since the argument for the general
multivariate case is merely a tedious exercise in notation a detailed proof is omitted.
It has some interest though to give an overview of the arguments of Chan and Wei
(1988) so as to see where the assumption (10.1) is used.

The first step is an invariance principle for partial sums of the innovations.

Lemma 11.2 (Chan and Wei, 1988, Theorem 2.2)
Suppose Assumptions 1.4, 10.1 are satisfied and that dim X = 1. Then

3 (74 (T [Tl [Tl )
— | D ercostdy, Y epsintby, ..., ) ecosth,y esintb; | = By
VT =1 =1 =1 t—1
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on the space D[0,1]% of right continuous functions with limits from the left, where B
s a standard Brownian motion.

It is worth noting the marginal convergence of a element such as Zgﬁb] gy cos tl
can be established under weaker conditions. For instance if it holds that

1 & as 1

=SB

t=1

=l

T
> EP? +o(1)
t=1

together with Assumptions 1.4, 1.5 the invariance principle of Brown (1971, Theorem
3) can be used. Alternatively, the invariance principle for mixingales by McLeish
(1977) could be used. The tricky bit is to show the joint convergence of the compo-
nents. This holds if the average of the conditional covariances of the innovations is
asymptotically negligible. To see this Chan and Wei (1988) use Assumption 10.1 and
a trigonometric argument to show, for instance,

1 [Tu] [Tu]

a.s. 1 .
— Z E (e costhreysintby| Frq) = Q= Z costl sintf, — 0.
T t=1 T t=1

The second step is to look at the sample correlations of the processes Vi, ...,V
for the univariate case. While the above Lemma 11.2 shows that these processes
have quite a bit in common with random walks their sample correlations have a
complete different behaviour. For two random walks constructed from two sets of
independent innovations the sample correlation will converge in distribution whereas
the trigonometric construction of Vi4,...,V;, ensures that their sample correlations
are negligible. The argument is very similar to that made for the deterministic com-
ponent D; in Section 3. As long as dim X = 1 and dim D = 0 it can be assumed
without loss of generality that V,. is of Jordan form (3.2) with (A, I) given by (3.3)
which leads to the following result.

Lemma 11.3 (Chan and Wei, 1988, Section 3)
Suppose Assumptions 1.4, 10.1 are satisfied and that dim X =1 and dim D = 0. Let
Si be given by U, and components V,; so 0, # 0,. Then forn > 1/2 (!)

—1/2

T -1/2 , 7 T
(z sg@z) (z stvx,t) (z v@?) = op (T712).
t=1 t=1 t=1

The third and final step is to show that the result actually holds for n > 0 and
to allow explosive and deterministic components. This extension is given by Nielsen
(2001a, Lemma A4, B1).
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These three steps can be extended to give Theorem 11.1. For the univariate case
Lemma 11.3 has been extended by Chan (1989) to situations where dim D # 0.

In the proof of Lemma 11.3 a normalisation, N, say, is found ensuring that
S (N,.7V,)®? converges in distribution to a random matrix which is positive defi-
nite a.s. In this purely random situation N, ; = O(T~') whereas in the general situ-

ation including deterministic terms the inverse of the normalisation term is O(7~'/2)
as found by Chan (1989), see also Lemma 3.4, so

{i( gi )®2}_1 =0p(T) and {XTJ Vra|Drg)® }1 =0p (T°2). (11.1)

t=1 t=1

The Corollary 8.5, giving an almost sure lower bound for >°/_, (X;| D;)®?2, can therefore

be generalised as
T 22) !
Xy _ -1
5(5)} o)

Together with Theorem 9.1 this implies that the least squares estimator for p is at
least weakly consistent as long as Assumptions 1.4, 1.6, 10.1 are satisfied.
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