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Abstract

Identification is an essential attribute of any model’s parameters, so we consider its three aspects
of ‘uniqueness’, ‘correspondence to reality’ and ‘interpretability’. Observationally-equivalent over-
identified models can co-exist, and are mutually encompassing in the population; correctly-identified
models need not correspond to the underlying structure; and may be wrongly interpreted. That a
given model is over-identified with all over-identifying restrictions valid (even asymptotically) is
insufficient to demonstrate that it is a unique representation. Moreover, structure (as invariance
under extended information) need not be identifiable. We consider the role of structural breaks to
discriminate between such representations.

1 Introduction

Of the many areas of econometrics to which Manfred Deistler has made important contributions in his
distinguished career,identification is the one on which we have chosen to concentrate. The literature
on the topic is vast, and it may be thought to be definitive: important contributions include Wright
(1915), Working (1927), Frisch (1934, 1938), Marschak (1942), Haavelmo (1944), Koopmans (1949),
Koopmans and Reiersøl (1950), Fisher (1966), Rothenberg (1971), Bowden (1973), Hatanaka (1975)
and Hsiao (1983), with the history documented by Qin (1989) and Aldrich (1994) – also see the critical
view in Liu (1960) (echoed by Sims, 1980) and the response by Fisher (1961). An equally large body
of work has addressed dynamic systems rather than just simultaneous equations models, and this has
been the concern of much of Manfred’s work – see,inter alia, Deistler (1976), Deistler and Seifert
(1978), Deistler, Ploberger and P¨otscher (1982) and Hannan and Deistler (1988). Certainly, in terms of
technical results, or generalizations thereof, we have no new findings to add. However, we suspect that
some interpretations of the available results on identification are less well based than might be believed
(see e.g., Faust and Whiteman, 1997), so we seek to clarify what can, and cannot, be deduced from
finding that a given model is ‘uniquely identified’.

Identification has many meanings: e.g., in the time-series literature, such as Box and Jenkins (1976)
and Kalman (1982), it means ‘match the model to the evidence’ (i.e., discover a representation accurate
up to a white-noise error). In the econometric literature, following the pioneering work of the Cowles
Commission researchers, it relates to the uniqueness of the parameterization that generated the observed
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data.1 However, we adopt the approach in Hendry (1995a) who follows the notions first discerned by
Wright (1915), and so consider three aspects of identification (see Hendry and Morgan, 1995, p23):
‘uniqueness’, ‘correspondence to the desired entity’ and ‘satisfying the assumed interpretation (usually
of a theory model)’. As an analogy, a regression of quantity on price delivers a unique function of
the data second moments, but need not correspond to any underlying economic behavior, and may be
incorrectly interpreted as a supply schedule due to a positive sign on price. In practice, the meaning of
‘identified’ can be ambiguous as in ‘Have you identified the parameters of the money demand function?’.
The first sense of identification was used by the Cowles Commission (Koopmans, Rubin and Leipnik,
1950) who formalized conditions for the uniqueness of coefficients in simultaneous systems, and this
is often the sense intended in econometrics. Conditions for the correct interpretation of parameters in
the light of a theory model are not so easily specified in general because they depend on subject-matter
considerations. The correspondences between parameters of models and those of the underlying data
generation processes (DGPs) are also often hidden, but merit careful appraisal.

Thus, we consider each of these three attributes, and discuss those issues which we do not find fully
clear in most presentations. Specifically, we show that uniqueness (as determined by the rank condition,
say) holds only within specifications, and that several distinct yet valid over-identified representations
can co-exist, each satisfying its own rank condition. Thus, the famous Cowles’ Commission rank con-
dition uniquely specifies a model only subject to the given restrictions, and does not preclude other
distinct, but conflicting, over-identified models.2 Secondly, we consider ‘correspondence to the desired
entity’ in a non-stationary world, where models that do not correspond can be eliminated, thereby facil-
itating unique identification. We also address the identification of ‘structure’. Thirdly, we briefly discuss
failures of interpretation.

The chapter is organized as follows. Section 2 discusses the concepts of identification and obser-
vational equivalence for the DGP and models thereof, and illustrates that a model may be uniquely
identified but not correspond to reality, or be interpretable. Section 3 considers observational equi-
valence and mutual encompassing, and illustrates models being indistinguishable in a sample due to
weak evidence. Sections 4 and 5 describe in turn non-unique just- and over- identified representations,
relating the former to multivariate cointegration analysis and illustrating the latter by four distinct over-
identified simultaneous-equations models that are nevertheless fully consistent with the reduced form.
Section 6 investigates the next attribute of identification, namely correspondence to reality, and notes
that structure might be inherently unidentifiable in a stationary world. However, section 7 argues that
non-stationarities, specifically structural breaks, can help discriminate non-structural from structural
representations. Finally, section 8 concludes.

2 Identification

The concepts of identification and observational equivalence apply separately to the DGP and to models
thereof: the parameters of the DGP could be identified when those of a model were non-unique; or
conversely, the model may have a unique parameterization but the parameters of interest from the DGP
may be unobtainable.

Let xt be the vector ofn variables to be modelled, chosen on the basis of economic considera-
tions related to the phenomena of interest and their statistical properties. From the theory of reduc-

1Such problems also arise in the time-series literature in relation to ARMA models, where ‘redundant’ dynamic common
factors can occur.

2In an earlier discussion related to our approach, Preston (1978) distinguishes between identification of structures and
models.
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tion (see,inter alia, Hendry, 1995a, and Mizon, 1995), there exists a local DGP (LDGP) for these
chosen variablesxt conditional on their historyXt−1 = (X0,X1

t−1) whenX0 are initial conditions and
X1

t−1 = (x1,x2, ...xt−1):
Dx (xt | Xt−1,φ) where φ ∈ Φ ⊆ R

s. (1)

Let φ1 ∈ Φ andφ2 ∈ Φ be two distinct values of thes-dimensional parameter vectorφ. When there
exist observationsxt for which DX (xt|Xt−1,φ1) 6= DX (xt|Xt−1,φ2) implies thatφ1 6= φ2, thenφ
is a sufficient parameter (see Madansky, 1976). Ifφ1 6= φ2 implies that there are observationsxt for
which DX (xt|Xt−1,φ1) 6= DX (xt|Xt−1,φ2), thenφ is (uniquely) identifiable. Thus it is possible to
uniquely identify which parameter value generated the data only when different parameter values lead
to different event probabilities. This property applies globally,∀φ ∈ Φ. Alternatively, if there exists
a neighborhoodN (φ1) of φ1 such thatφ2 6= φ1 implies thatDX (xt|Xt−1,φ1) 6= DX (xt|Xt−1,φ2)
∀φ2 ∈ N (φ1) thenφ1 is locally identifiable. When the LDGP is uniquely identified, let the value
of φ that generated the sample dataX1

T = (x1,x2, ...xT ) be the ‘true’ valueφ0. Further, any 1–1
transformation ofφ, ψ = f (φ) ∈ Ψ, also constitutes a valid parameterization.

In general, the LDGP is unknown and so models thereof are used. LetM1 be an econometric model
of the process generatingxt denoted by:

M1 = {f1 (xt | Xt−1,θ) for t = 1, 2, ...T where θ ∈ Θ ⊆ R
p} (2)

whenf1(xt|Xt−1,θ) is the postulated sequential joint density at timet, andp < s (usually). IfM1 were
correctly specified, then the identifiability ofθ could be defined as for that ofφ in the LDGP above.
In particular,θ is uniquely identifiable ifθ1 6= θ2 implies thatf1 (xt|Xt−1,θ1) 6= f1 (xt|Xt−1,θ2) .

However, correct specification is rare and so the identifiability of parameters and the properties of stat-
istics in mis-specified models must be considered. The parameters of a model can be non-unique if the
LDGP is not uniquely identified, or if the estimator ofθ does not converge asT → ∞, or both. Confin-
ing attention to cases in which the LDGP is uniquely identified, with the ‘true’ value ofφ for X1

T being
φ0, then assuming identifiable uniqueness onΘ ensures thatθ is uniquely identified (see e.g., Gallant
and White, 1988, and White, 1994). Indeed, under these conditions, the maximum likelihood estimator
θ̂T of θ tends in probability to its pseudo-true valueθ0 = θ(φ0) which is given by:

θ(φ0) = argmax
θ∈Θ

ELDGP [LT (θ)] (3)

when:

LT (θ) =
T∑

t=1

log f1 (xt | Xt−1,θ) . (4)

WhenLT (θ) has a maximizer̂θT ∈ Θ for eachT then, requiring the sequence{θ̂T } to be identifiable
uniquely onΘ rules out the possibility thatLT (θ) becomes flatter in a neighborhood ofθ̂T asT →
∞, and precludes that there are other sequences of estimators{θ̃T } which are such that{LT (θ̃T )}
approaches arbitrarily closely the almost sure limit ofLT (θ) asT → ∞. Thus the identification of the
model parameterθ is equivalent to the uniqueness of the pseudo-true valueθ0 = θ(φ0).

M1 with θ = θ0 provides the best approximation to the LDGPDX (xt|Xt−1,φ0) in the sense that
the Kullback–Leibler information criterion (KLIC):

I (φ0,θ) =
∫

log
Dx (xt|Xt−1,φ0)
f1 (xt|Xt−1,θ)

Dx (xt | Xt−1,φ0) dxt (5)
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is minimized byθ = θ0. In generalI (φ0,θ) > 0, with I (φ0,θ) = 0 if and only if f1 (xt|Xt−1,θ0) =
Dx (xt|Xt−1,φ0) with probability one (see Kullback and Leibler, 1951). Note that ifθ0 is to be the
unique solution to (3), then it is required that:

ELDGP

[
∂LT (θ)

∂θ

]
= 0 (6)

if and only if θ = θ(φ0). Despite being the best KLIC-approximation to the LDGP,M1 with θ = θ0

may only be locally identified, as opposed to a correctly specifiedM which is globally identified.
Equally, a uniquely identified model may not reflect completely the LDGP, or alternatively even if it
does reflect the LDGP, it may not be interpretable.

2.1 An example

We first illustrate that a mis-specified model can be uniquely identified but not reflect the LDGP para-
meters. Section 6 discusses a model’s correspondence to reality.

Suppose alla priori information suggests that the following model provides the best description of
the data(x1, x2, ...xT ):

f (θ) =

{
θxθ−1 x ∈ [0, 1]
0 otherwise

, θ > 0

when in fact the LDGP is a uniform distribution on[0, 1 + δ] , δ > 0. Then, the expectation of the
log-densitylog f (θ) under the LDGP is given by:

ELDGP [log f (θ)] =
1

1 + δ

∫ 1+δ

0
log f (θ) dx

=
1

1 + δ

{∫ 1

0
[log θ + (θ − 1) log x] dx +

∫ δ

1
0dx

}
=

1
1 + δ

{log θ − (θ − 1)} ,

which attains its maximum at:

θ∗ (δ) = argmax
θ>0

{
1

1 + δ
[log θ − (θ − 1)]

}
= 1.

Hence, the pseudo-true valueθ∗ (δ) = 1 is uniquely determined, implying thatθ is identified. However,
θ∗ (δ) does not depend on the LDGP parameterδ, and so any change inδ (with δ > 0) will leave
θ∗ (δ) unaffected at unity. In particular, thoughf (θ∗ (δ)) is a uniform distribution, it is defined on a
different interval from that of the LDGP: observations outside the interval[0, 1] would of course reveal
that mis-specification. Equally, each quasi log-likelihood function:

log LT (θ) = T log θ + (θ − 1)
T∑

t=1

log xt,

has a well defined maximum at:

θ∗T =
−T∑T

t=1 log xt

,

the existence and uniqueness of which does not depend onδ in the LDGP.
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We next illustrate that a model which does reflect the LDGP parameters may nonetheless be a worse
description thereof. Letδ < 0 in the LDGP, hence:∫

log f (θ)h (δ) =
1

1 + δ

∫ 1+δ

0
log f (θ) dx

=
1

1 + δ

{∫ 1+δ

0
[log θ + (θ − 1) log x] dx

}
= log θ + (θ − 1) {log (1 + δ) − 1} ,

implies that the pseudo-true value is given by:

θ∗ (δ) = argmax
θ>0

{log θ + (θ − 1) [log (1 + δ) − 1]} (7)

=
1

1 − log (1 + δ)
.

Monotonicity of the logarithmic function then guarantees thatθ∗ (δ) is uniquely determined for−1 <

δ < 0. Thus the model parameterθ is uniquely identified and does reflect the LDGP, but the model is
no longer a uniform distribution.

Finally, it is possible for a model to be uniquely identified and reflect the LDGP parameters, but not
be interpretable – also see section 4. The ‘classic’ example is regression estimation of an unidentifiable
supply-demand model in price (pt) and quantity (qt) which nevertheless delivers a unique function of
the LDGP parameters and the error (co)variances:

pt = µ11qt + v1,t

qt = µ21pt + v2,t

with: (
v1,t

v2,t

)
∼ IN2

[(
0
0

)
,

(
σ11 σ12

σ12 σ22

)]
,

then the OLS estimator ofµ11 converges to:

plim
T→∞

µ̂11 =
(1 + µ11µ21)σ12 + µ11σ22 + µ21σ11

σ22 + 2µ21σ12 + µ2
21σ11

,

which could have either sign (but the same sign asµ̂21).

3 Observational equivalence and mutual encompassing

When two models always generate identical outcomes, they are observationally equivalent and data
alone cannot distinguish between them. A sufficient condition is that all their parameters be unidenti-
fiable, but this is not necessary, and identified models can be observationally equivalent. Observational
equivalence arises whenever there is an unidentified model, and there is an equivalence set of mod-
els that impose just-identifying restrictions. As an example consider the following bivariate regression
model:

yt = α + βxt + ut with ut ∼ IN
[
µ, σ2

]
(8)

in whichµ andα are not uniquely identified. However, the set of models that imposes a single restriction
on µ andα (e.g.,µ = 0 or α = α∗) forms a set of models that cannot be distinguished on the basis of



6

observations. More generally at the level of the LDGP, sinceDX (xt|Xt−1,φ) is unchanged under 1–1
transformations of the parameterφ toψ = ψ (φ) ∈ Ψ thenDX (xt|Xt−1,φ) andDX (xt|Xt−1,ψ) are
observationally equivalent and hence isomorphic. Ifψ = ψ (φ) but is not 1–1 (e.g., due to imposing
some irrelevant parameters at their population values of zero), the processes are said to be equivalent.

Observationally-equivalent models are KLIC-equivalent, in that the relevant version of the criterion
in (5) will be zero. Equally, since encompassing is the ability of one model to account for the sa-
lient features of another model (see Mizon, 1984, Mizon and Richard, 1986, and Hendry, 1995a),
observationally-equivalent models will encompass each other, that is, be mutually encompassing. In
analyzing the relationships between observational equivalence, KLIC equivalence, and encompassing,
Lu and Mizon (1999) showed that models are KLIC-equivalent if and only if they are mutually encom-
passing with respect to their complete parameter vectors (complete parametric encompassing) and their
log sequential densities (Cox encompassing). Further, Bontemps and Mizon (2001) defined a congruent
model to be one that parsimoniously encompasses the LDGP, and showed that congruence of a nesting
model is sufficient for it to encompass models nested within it. Therefore, an example of mutual en-
compassing arises whenever a nesting model is both congruent and parsimoniously encompassed by a
nested model.

A distinction can be drawn between population and sample mutual encompassing. Mutual encom-
passing in the population is observational equivalence. For example, there might exist an equivalence
set of representations of the LDGP, in which the representations are usually re-parameterizations of
each other, though not necessarily having parameter spaces of the same dimension. However, mutual
encompassing in the sample can arise from observational equivalence, or from weak evidence resulting
in the models being indistinguishable on the basis of the available information.

3.1 An example

Consider the congruent representation of the LDGP foryt given inM2:

M2: yt = µ + εt + θεt−1 (9)

whenεt ∼ IN [0, 1] and |θ| < 1. An alternative, and observationally-equivalent, representation of the
LDGP is given byM3:

M3: yt =
µ

1 + θ
+

∞∑
i=1

(−θ)iyt−i + εt. (10)

In this simple example,M2 andM3 are mutually encompassing, both congruent, and observationally
equivalent. However,M3 is only relevant in the population, since only a finite-order autoregression can
be estimated using sample data. In fact, since|θ| < 1, a finite-order autoregression:

M4: yt = α +
m∑

i=1

βiyt−i + ut (11)

will give a good approximation to (10) when only sample data is available. Indeed,M4 with m =
3 is likely to be indistinguishable fromM2 empirically, so bothM2 andM4 would be empirically
congruent even though only the former is congruent. Bontemps and Mizon (2001) contains a more
detailed analysis of a related example.
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4 Non-unique just-identified representations

A well-known example of identified models forming an equivalence set arises in the just-identified
simultaneous equations model (SEM). Consider a closed vector autoregression (VAR):

xt =
k∑

i=1

Dixt−i + δ + εt with εt ∼ INn [0,Ω] (12)

which can be written alternatively as a vector equilibrium-correction model (VEqCM):

∆xt =
k−1∑
i=1

Γi∆xt−i + πxt−1 + δ + εt with εt ∼ INn [0,Ω] . (13)

Whenπ has full rankn, the variablesxt are I (0), and the parameters(Γ1,Γ2, . . . ,Γk−1,π, δ,Ω) or
(D1,D2, . . . ,Dk, δ,Ω) are all identified, in that their maximum likelihood estimators are unique, and
obtained by multivariate least squares. Indeed, the VAR and the VEqCM are both just-identified and
observationally-equivalent models. The set of observationally-equivalent just-identified models, though,
includes far more than these two models. The parameters of interest for many investigators are those of
a SEM such as:

A0xt =
k∑

i=1

Aixt−i + c + vt with vt ∼ INn [0,Σ] (14)

rather than the VAR or the VEqCM. Without further information, the parameters of (14) are unidentified
as is well known, and this leads to the traditional analysis of identification in simultaneous equations
models – seeinter alia Spanos (1986) and Greene (2000). All the SEMs resulting from sets ofa priori
restrictions on(A0,A1, . . . ,Ak, c,Σ) that achieve just-identification are observationally equivalent,
and thus observationally equivalent to the VAR and the VEqCM in (12) and (13) respectively.

A further identification issue arises when rank(π) = r < n, in which casext v I (1), but there are
r cointegrating vectorsβ′xt v I (0). In this case, (13) becomes:

∆xt =
k−1∑
i=1

Γi∆xt−i +αβ′xt−1 + δ + εt with εt ∼ INn [0,Ω] ,

whereα andβ aren × r matrices of rankr. It is well known thatα andβ are not identified without
further restrictions. Nevertheless, the Johansen procedure (see e.g., Johansen, 1995) for empirically
determining the value ofr, produces unique estimates ofα andβ as a result of requiringβ to be
orthogonal and normalized (see e.g., Johansen and Juselius, 1994). This estimate ofβ, for a given
value ofr, spans the space of just-identified cointegrating vectors, and is observationally equivalent to
any other just-identified estimate ofβ. The fact that the just-identified estimate ofβ provided by the
Johansen procedure may not have an economic interpretation is usually unimportant, since this estimate
is only used to provide a value for the unrestricted log likelihood function to be compared with the value
of the log-likelihood function corresponding to sets of over-identifying restrictions onβ which do have
an economic interpretation. Whenr = 1, of course,β should have an economic interpretation, perhaps
subject to eliminating irrelevant coefficients; and may do forr > 1.

In both cases, mis-interpretation ofβ can occur. One illustration is when an equation normalized on
(say) money, is interpreted as a ‘long-run money-demand relation’ becauseγ > 0:

m − p − y = −γ (Rl − Rs) , (15)
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(wherem is nominal money,p is the price deflator of real incomey, andRl and Rs are long- and
short-term interest rates), but actually is an ‘interest-rate spread’ equation, as in:

Rl = Rs + γ−1v,

wherev = p + y − m is the velocity of circulation. The values of theαij can help discrimination (see
e.g., Hendry and Juselius, 2001, for an exposition): if there was no feedback from (15) onto money
(interest rates), one might question the first (second) interpretation respectively.

5 Non-unique over-identified representations

A related class of model where the common interpretation of the available results on identification
may not always be well founded is that of over-identified simultaneous equations models. Though this
analysis applies for closed versions of linear dynamic models, such as the VAR and VEqCM in (12) and
(13), we use a notation that usually is associated with static SEMs:3

Byt + Czt = ut with ut ∼ INq [0,Σ] . (16)

Several models of (yt, zt) can be over-identified, satisfy the rank condition, and not fail over-
identification tests empirically, even when such models conflict theoretically (see Hendry and Mizon,
1993). Thus, the Cowles’ rank condition is insufficient for the three attributes, although it is sufficient
for uniqueness within theories, thus achieving uniqueness for a given interpretation as we now show.

Consider all linear transformsR of (B : C) to establish whether the uniquely admissibleR is
R = Iq. When (B : C) are unconstrained, (RB : RC) comprise all linear systems. However, when
(B : C) are restricted, admissibleRs are only relative to the restrictions on the given choice, so no
longer span all relevant linear models. Thus:

Byt + Czt = ut and B∗yt + C∗zt = u∗
t ,

can generate the same{yt}, so long as:

B−1C = (B∗)−1 C∗ = −Π,

and:
B−1ΣB−1′ = (B∗)−1 Σ∗(B∗)−1′.

The equivalence class is:
C∗ = B∗B−1C, (17)

or anyS such thatB∗ = SB at the same time asC∗ = SC, even though within their own restriction
sets, (B : C) and (B∗ : C∗) are both uniquely identified. This matches Hsiao (1983), who proves that
observational equivalence requires such anS since, from (17) we then have:

C∗ = B∗B−1C = SBB−1C = SC,

consistent with his claim. Therefore, all examples must satisfy this restriction.
How does this relate to the analysis of the Cowles Commission researchers? They soughtR such

that forrestrictedB andC, the only admissibleR is R = Iq where:

(RB : RC) = (B∗ : C∗) .

3This is not a limitation since thek × 1 vectorzt in (16) could be defined to include lagged values of theq × 1 vectoryt.
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Such anR must satisfy thea priori constraints on the(B : C) matrix. It is clear that the (unrestricted)
Π matrix in:

yt + Πzt = vt with vt ∼ INq [0,Ω] ,

is always identified because:
(DIq : DΠ) = (Iq : Π) ,

enforcesD = Iq: that result holds true independently of the correctness (or otherwise) of the model
specification, and the interpretability of its coefficients. The Cowles’ rank condition ensures the same for
(B : C) – but it does not preclude the possibility of a differently restricted(B∗ : C∗) that also satisfies
the rank condition, such that:

(B∗ : C∗) = (SB : SC) ,

which is thus a member of the equivalence set.

5.1 An example

We consider an example in which there are four alternative observationally-equivalent representations,
each of which is over-identified and has (potentially at least) an economic interpretation. The system
(‘reduced form’) itself is restricted, as in the following LDGP for a set of two endogenous variables
conditional on four strongly exogenous regressors(y1,t, y2,t, z1,t, z2,t, z3,t, z4,t):

(
y1,t

y2,t

)
=

(
π11 π12 π13 0
π21 0 π23 π24

)
z1,t

z2,t

z3,t

z4,t

+

(
ε1,t

ε2,t

)
. (18)

The reduced-form coefficient matrixΠ in this case has six free elements, and imposes two restrictions.
Notice that any linear restrictions can be re-parameterized to zero restrictions. Consequently, one of the
over-identified representations is (18). Two other over-identified representations follow.

5.1.1 Simultaneous representation 1

Consider the simultaneous-equations representation given in (19):

(
1 b12

0 1

)(
y1,t

y2,t

)
=

(
c11 c12 0 c14

c21 0 c23 c24

)
z1,t

z2,t

z3,t

z4,t

+

(
u1,t

u2,t

)
, (19)

where:

Π =

(
1 b12

0 1

)−1(
c11 c12 0 c14

c21 0 c23 c24

)

=

(
c11 − b12c21 c12 −b12c23 c14 − b12c24

c21 0 c23 c24

)

=

(
c11 − b12c21 c12 −b12c23 0

c21 0 c23 c24

)
.

Comparison with (18) shows that the population values must satisfyc14 = b12c24: clearly, it is necessary
thatc24 6= 0 otherwisez4,t becomes an irrelevant variable. This representation will be valid if and only
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if b12 = −π13/π23 with π23 6= 0, which definesb12. The second equation is over-identified, and hence
so is the system although the first is just identified (imposingc14 = b12c24 would ensure both equations
were over-identified).

5.1.2 Simultaneous representation 2

A second over-identified formulation consistent with (18) is given by:

(
1 0

b21 1

)(
y1,t

y2,t

)
=

(
d11 d12 d13 0
0 d22 d23 d24

)
z1,t

z2,t

z3,t

z4,t

+

(
e1,t

e2,t

)
, (20)

where now:

Π =

(
d11 d12 d13 0

−b21d11 0 d23 − b21d13 d24

)
,

so this system requiresd22 = b21d12 and imposesb21 = −π21/π11 which definesb21.
Thus, all three over-identified models are observationally equivalent. To satisfy that requirement,

we must have:

Π =

(
π11 π12 −b12π23 0

−b21π11 0 π23 π24

)
,

whereb12 andb21 are defined above. Such aΠ has six free elements as required, and satisfies the two
restrictions in (18). The matrixS above that links the two simultaneous-equations representations is:

S =

(
1 − b12b21 b12

−b21 1

)
,

where|S| = 1.

5.1.3 Simultaneous representation 3

The final over-identified formulation consistent with (18) combines the two ‘simultaneous’ relations:

(
1 b12

b21 1

)(
y1,t

y2,t

)
=

(
f11 f12 0 f14

0 f22 f23 f24

)
z1,t

z2,t

z3,t

z4,t

+

(
u1,t

u2,t

)
, (21)

whereb12b21 6= 1 and:

Π =
1

1 − b12b21

(
f11 (1 − b12b21) f12 −b12f23 0

−b21f11 0 f23 (1 − b21b12) f24

)
,

which implies that b21 = −π21/π11 and b12 = −π13/π23 (both scaled by the determinant
π23π11/ (π23π11 − π13π21)): enforcingf22 = b21f12 andf14 = b12f24 would ensure both equations
were over-identified.

Consequently, demonstrating that a given model is over-identified and that all the over-identifying
restrictions are valid (even asymptotically) is insufficient to demonstrate that it is a unique representa-
tion.
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6 Identifying structure

We turn to the next attribute of identification, namely ‘correspondence to reality’. This notion shares
features with the time-series concept of identification. Historically, Frisch (1938) thought that structure
was inherently unidentifiable (see the commentary offered in Hendry and Morgan, 1995), and it is
easy to construct examples of unidentified structures, where a non-structural sub-system is identified.
Consider the system:

mt − ρyt − λpt = δ′1zt + v1,t (22)

yt − φpt = δ′2zt + v2,t (23)

pt = δ′3zt + v3,t. (24)

Here thezt are strongly exogenous, and thevi,t areiid errors. When there are no restrictions onδ1, then
(22) is not identifiable.

However, consider a setting whereyt is both unobserved, and its relevance is not realized, so ana-
lyses only consider the non-structural sub-system:

mt − (λ + ρφ) pt =
(
δ′1 + ρδ′2

)
zt + v1,t + ρv2,t (25)

pt = δ′3zt + v3,t. (26)

When a theory correctly specifies that sufficient elements ofδ′1 + ρδ′2 are zero, (25) can beidentifiable
on the conventional rank condition in this bivariate process. Equation (25) may even be interpretable
(e.g., as a money-demand equation whenλ + ρφ = 1), but it obviously does not correspond to the
structure.

Thus, conventional notions of identification are indeed limited to ‘uniqueness’, despite the some-
times ambiguous use of the phrase noted in the introduction. In the next section, we consider whether
‘structural change’ in an economy can help to discriminate between structural and non-structural rep-
resentations of the LDGP.

7 Structural change

We define structure as the set of invariant features of the economic mechanism (see Frisch, 1934,
Haavelmo, 1944, Wold and Jur´een, 1953, and Hendry, 1995b), or more precisely,θ ∈ Θ defines a
structure ifθ directly characterizes the relations of the economy and is invariant over time, and to exten-
sions of the information set and policy interventions. The last three attributes are empirically testable,
although the first is not, as with the corresponding attribute of identification. Consequently, although
all four representations considered in the example of section 5.1 are well defined and observationally
equivalent in a constant-parameter world, at most one representation of each equation can be invariant
to changes and hence be structural (see Hendry and Mizon, 1993, and Hendry, 1995a).

Clearly, no parameterizationθ ∈ Θ can be invariant to all change, so structure is relative – atomic
war would radically alter the economies of all participants. Thus, the class of ‘admissible’ interventions
must be delineated. In their analyses of the sources of forecast errors, Clements and Hendry (1998,
1999) find that shifts in deterministic terms (intercepts and deterministic trends etc.) are the primary
cause of forecast failure, a result corroborated by the Monte Carlo results in Hendry (2000) where other
forms of structural break (e.g., in other parameters) did not induce forecast failure. Consequently, invari-
ance to deterministic shifts in unmodeled variables seems one essential (but insufficient) requirement of
structure. Indeed, the concept of identification in Working (1927) and Frisch (1938) is close to using
‘shifts’ to isolate the invariant structure.
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7.1 External change

In terms of the preceding example, all four representations are equally structural to external changes,
such as shifts in the distributions of thezk,t, precisely because they all correspond to the same system
(reduced form) which is itself invariant to such shifts.

Nevertheless, consider a model of the first equation that also – or incorrectly – includedz4,t when
its long-run mean (i.e.,E[z4,t] = µ4 say) changed: then that equation would forecast a shift iny1,t

which did not materialize, hence fail to be structural on the grounds of a lack of invariance. As argued
in Hendry and Mizon (1993), such ‘spurious’ structures can often be detected using structural breaks
induced by natural experiments and policy changes. Some of the simulation experiments in Clements
and Hendry (2001) illustrate this situation. Thus, mis-specification (or serious mis-estimation) can
be revealed by external structural change, but alternative, correctly-specified, mutually-encompassing,
representations all survive.

However, the issue is complicated by the possibility of ‘extended constancy’ (see Hendry, 1996, and
Ericsson, Hendry and Prestwich, 1998): a model may fail on forecasts because of a deterministic shift,
be extended to incorporate the variable that changed, reparameterized to link that variable into an already
included regressor (as in an interest-rate differential, say) and finish with precisely the same parameters
on the same number of variables as initially, but with one variable redefined (or, more precisely, re-
measured). The example in section 7.3 illustrates this phenomenon.

7.2 Internal change

Now we allow for one of theπij in each equation to shift, so neither equation in the ‘reduced form’ (18)
can be structural, nor can either of the corresponding equations in (19) or (20). However, for shifts of
the formπ13 = b21π23 thenb12 remains constant, as do all the other parameters of the first equation, so
it is structural in (19) and (21); equivalently for the second equation whenπ21 = b12π11 (say). However,
if both π11 andπ23 shift, neither equation in (21) remains constant, and the matching equation in (19)
or (20) only remains constant if other parameters also shift (e.g.,π21 offsets the change inπ11 for (19)
to remain constant).

The first example can be made a special case of the second by endogenizing all the variables, in
which case, shifts in some variables’ distributions preclude them from being structural, albeit that the
same shifts might highlight the structurality of other equations.

An interesting re-interpretation of identification follows when the internal break is discovered and
correctly modelled. Consider (19) whenπ13 = b12π23 butπ23 shifts at timeT1 to π23 + η. Let 1{t≥T1}
denote the indicator for this event, and consider the augmented system:

(
1 b12

0 1

)(
y1,t

y2,t

)
=

(
c11 c12 0 c14 0
c21 0 c23 c24 η

)
z1,t

z2,t

z3,t

z4,t

1{t≥T1}z3,t

+

(
u1,t

u2,t

)
. (27)

Then (27) has constant parameters, but the first equation is more strongly over-identified than that in
(19), confirming the identifying role of ‘shifts’ first discussed by Wright (1915).

7.3 An example

The Banking Act of 1984 in the UK, which permitted interest payments on current accounts in exchange
for all interest payments being after the deduction of ‘standard rate’ tax, provided a natural experiment
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Figure 1 The effects of a change in the opportunity cost of holding money.

that illustrates the role of structural breaks in isolating structure. Following this legislative change,
previously-estimated models of the demand for narrow money (M1) (such as Hendry and Mizon, 1993)
suffered serious forecast failure. This is shown in the first column of graphs in figure 1 for which the
model used the competitive rate of interestRc as a measure of the opportunity cost of holding money. In
fact, the own rate of interest (Ro) changed from zero to near the value of the competitive rate (Rc: about
12 per cent per annum at the time) within 18 months, inducing very large inflows to M1. The effect was
a large shift in the opportunity cost of holding money, namely a deterministic shift fromRc to (Rc−Ro).
Models that correctly re-measured the opportunity cost by(Rc − Ro) continued to forecast well, once
the break was observed – see the second column of graphs in figure 1. Moreover, these models had the
same estimated parameter values after the break as before. Thus, the forecast failure of models using
Rc as a proxy for the opportunity cost was instrumental in the recognition that, once a more appropriate
measure of opportunity cost was used, there was no change in structure for the money demand equation,
although there clearly was for the opportunity cost equation (or both equations forRc andRo).

8 Conclusions

If identification were no more than the uniqueness of a parameterization, it could be achieved by im-
posing sufficient arbitrary restrictions. We suspect that was not what Cowles Commission researchers
envisaged, nor does it correspond to the normal use of language: few would accept the ‘identification’
of an approaching ‘Mini’ as a Rolls-Royce by false claims as to its size, shape, composition and form.
Rather, the attributes of correct interpretation and correspondence to an actual entity are also import-
ant. Thus, we re-considered these three attributes, as well as the potential identification of ‘structure’,
defined as invariance under extensions of the information set.

First, for uniqueness, both local and global identification of the parameters of the local data gen-
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eration process (LDGP) and of a model were considered. The converse of uniqueness is observational
equivalence, which arises whenever, in the population, models are mutually encompassing. In sample,
though, mutual encompassing can arise from the available information being unable to discriminate
between distinct models.

Next, we showed that Cowles Commission rank conditions for simultaneous equations models
(SEMs) only ensure uniqueness within a theory – there can be other over-identified (and interpretable)
models that are observationally equivalent under constant parameters. Forecast failure and structural
change can be valuable in discriminating non-structural (but uniquely over-identified) representations,
from those which potentially contain structure. However, there is no guarantee that structure can be
identified. Finally, interpretation remains in the eye of the beholder, usually dependent on a theoret-
ical framework. However, rejection of the relevant theory-based identifying restrictions, or violation of
theory-derived constancy requirements, would preclude such interpretations.
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