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Abstract

This paper analyses multivariate high frequency financial data using realised covariation.
We provide a new asymptotic distribution theory for standard methods such as regression,
correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a
day or week), allowing the number of high frequency returns during this period to go to
infinity. Our analysis allows us to study how high frequency correlations, regressions and
covariances change through time. In particular we provide confidence intervals for each of
these quantities.

Keywords: Power variation; Realised correlation; Realised covolatility; Realised regression;
Realised variance; Semimartingales; Covolatility.

1 Introduction

1.1 Motivation, definitions and assumptions

This paper provides a new econometric analysis of the covariance between asset returns. Based

on a fixed interval of time (e.g. a trading day or a calendar month), our asymptotic theory

allows the number of high frequency returns during this period to go to infinity. This new theory

allows us to study how covariances, correlations and regression coefficients change through time

by computing these quantities over non-overlapping intervals of time and providing confidence

limits for them.

The new econometrics is motivated by the advent of complete records of quotes or transaction

prices for many financial assets. Although market microstructure effects (e.g. discreteness of

prices, bid/ask bounce, irregular trading etc.) means that there is a mismatch between asset
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pricing theory based on semimartingales and the data at very fine time intervals (see, for example,

Bai, Russell, and Tiao (2000)) it does suggest the desirability of establishing an asymptotic

distribution theory for estimators as we use more and more highly frequent observations.

Here we suppose there are M intra-� observations during each � > 0 time period and that

log-price of a q dimensional vector of assets is written as y∗. The high frequency observations

will be defined as

yj,i = y∗
(
(i− 1) � + �jM−1

)− y∗
(
(i− 1) � + � (j − 1)M−1

)
, (1)

the j-th intra-� return for the i-th period (e.g. if � is a day, M = 1330, then this is the return

for the j-th minute on the i-th day). We will often write the k-th element of the vector yj,i as

yj,i(k). Then our focus of attention will be on

[y∗M ]i =
M∑

j=1

yj,iy
′
j,i =


M∑

j=1

yj,i(k)yj,i(l)


k,l=1,...,q

. (2)

In econometrics [y∗M ]i is labelled the realised covariation matrix. In this paper we will establish

the asymptotic distribution of [y∗M ]i as M → ∞, so providing a guide to its behaviour for a finite

value of M . The result is important in its own right of course, but it also implies a distribution

theory for quantities derived from the realised covariation matrix. Examples of this include

realised regression, realised correlation and more sophisticated quantities, including estimated

optimal portfolio weights and the estimated efficiency frontier for mean-variance investors.

Under very weak assumptions the probability limit of [y∗M ]i has been known for many years

using the theory of quadratic covariation (e.g. Jacod and Shiryaev (1987, p. 55), Back (1991),

Andersen, Bollerslev, Diebold, and Labys (2001a), Meddahi (2002)). Here we remind readers of

the substance of that theory, before we go beyond this to develop the asymptotic distribution

theory.

A q dimensional special semimartingale y∗ can be uniquely decomposed as

y∗(t) = α∗(t) +m∗(t), (3)

where α∗(t), a drift term, is a predictable process with locally bounded variation paths and m∗(t)

is a local martingale. For an excellent discussion of probabilistic aspects of this see Protter

(1990). Back (1991) discusses why constraining ourselves to live within the class of special

semimartingales makes sense from an economic viewpoint.

One of the most important aspects of semimartingales is the quadratic covariation (QV)

matrix defined as

[y∗](t) =p− lim
M→∞

M−1∑
j=0

{y∗(tj+1) − y∗(tj)}{y∗(tj+1) − y∗(tj)}′, (4)
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for any sequence of partitions t0 = 0 < t1 < ... < tM = t with supj{tj+1 − tj} → 0 for M → ∞.

Here p− lim denotes the probability limit of the sum. Later it will be helpful to label the k, l-th

element of the QV [y∗](t) as the quadratic covariance

[
y∗(k), y

∗
(l)

]
(t) =p− lim

M→∞

M−1∑
j=0

{y∗k(tj+1)− y∗k(tj)}{y∗l (tj+1)− y∗l (tj)}. (5)

The definition of QV immediately implies

[y∗M ]i
p→ [y∗](�i)− [y∗](� (i− 1)), as M → ∞, (6)

meaning realised covariation consistently estimates increments of QV.

In general (e.g. Jacod and Shiryaev (1987, p. 55))

[y∗](t) = [y∗c](t) +
∑

0≤s≤t

∆y∗(s)∆y∗(s)′, (7)

where y∗c is the continuous component of y∗ and ∆y∗(t) = y∗(t)− y∗(t−) are the jumps at time

t. In the context of the semimartingale (3) the QV becomes

[y∗](t) = [m∗](t) +
∑

0≤s≤t

∆α∗(s)∆α∗(s)′ +
∑

0≤s≤t

∆m∗(s)∆α∗(s)′ (8)

+
∑

0≤s≤t

∆α∗(s)∆m∗(s)′, (9)

the QV of m∗ plus terms which are influenced by the jumps in α∗ and m∗. If α∗ is continuous

then we obtain the simplification

[y∗](t) = [m∗](t), (10)

which holds irrespective of the presence of jumps in the local martingale component1.

The result (10) is powerful for it does not depend upon the model for m∗ or α∗, only on

the assumption that α∗ is continuous. In the univariate case it is discussed in the econometric

literature by independent and concurrent work by Comte and Renault (1998), Barndorff-Nielsen

and Shephard (2001a) and Andersen and Bollerslev (1998). It was later developed and applied in

some empirical work by Andersen, Bollerslev, Diebold, and Labys (2001b). See also Barndorff-

Nielsen and Shephard (2001a) and Andersen, Bollerslev, Diebold, and Labys (2001a) for a

discussion of the multivariate case and Andersen, Bollerslev, and Diebold (2002) for an incisive

survey of this area. Andersen, Bollerslev, Diebold, and Ebens (2001) discusses the use of the

multivariate theory in the context of equity prices.

The above theoretical framework is too general for us to be able to derive a distribution

theory for it. As a result we have had to specialise. In particular we make three assumptions.
1This holds as the quadratic variation of any continuous, locally bounded variation process is zero.
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1. That m∗ is a multivariate stochastic volatility (SV) process

m∗(t) =
∫ t

0
Σ1/2(u)dw(u), (11)

where Σ1/2(t), is the instantaneous or spot covolatility matrix, and w is standard multi-

variate Brownian motion2. We call Σ the spot covariance matrix process and assume Σ(t)

is positive semi-definite for all values of t and that each element of Σ is a local bounded

variation process. Whatever the model for Σ the implied m∗ must be a continuous local

martingale.

2. For every ν = 1, ..., q the mean process α∗
ν is càglàd and satisfies (pathwise)

δ−3/4 max
1≤j≤M

|α∗
ν(jδ) − α∗

ν((j − 1)δ)| = o(1), (12)

in δ. This condition implies that the α∗ process is continuous and so is predictable. In the

results which follow, we refer to (12) as condition (A).

3. The joint α∗, Σ process is independent of w.

Conditions 1 and 2 imply this model structure is a continuous, special semimartingale with

y∗(t) = α∗(t) +
∫ t

0
Σ1/2(u)dw(u). (13)

Condition 3 is a strong, undesirable additional assumption for it rules out empirically important

dynamic effects such as leverage (e.g. Black (1976) and Nelson (1991)). We will comment in

detail about the import of this assumption in Section 4.3 of this paper.

A simple, but important, example of a general α∗ process which satisfies (A) is where

α∗(t) = µt+ Σ∗(t)β, where

Σ∗(t) =
∫ t

0
Σ(u)du.

This links the mean process to the covariance. It has the feature that for all possible models for

Σ, ∂α∗(t)/∂t = µ+ Σ(t)β. Differentiability of α∗ is a much stronger assumption than (A).

Importantly, for this model class [y∗](t) = Σ∗(t), due to condition (A) ruling out the pos-

sibility of jumps in α∗ and (11). This implies [y∗M ]i
p→ Σi, where Σi = Σ∗(i�) − Σ∗ {(i− 1) �}.

In econometrics Σ∗(t) is called integrated covariance matrix, while we call Σi actual covariance

matrix (Andersen, Bollerslev, and Diebold (2002) call this the notional covariance matrix). Both

quantities play a central role in the probabilistic analysis of SV models. Reviews of the literature

on this topic are given in Shephard (1996) and Ghysels, Harvey, and Renault (1996).
2The assumption of a continuous time SV model looks, at first sight, contrived. However, in the univariate

case all local martingales with continuous sample paths can be written as time changed Brownian motions (e.g.
Protter (1990, p. 81)). If the time change is itself differentiable, then this produces a univariate SV model. To
our knowledge the multivariate version of the this result has not, however, been established.
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The quadratic variation result implies ∂[y∗](t)/∂t equals Σ(t), which means in this context

we can view Σ as observable given the paths of y∗. This implies that Σ(t)dt is the conditional

(given the natural filtration) covariance matrix of the infinitesimal return dy∗(t). As a result

Σ∗(t) is the integrated conditional covariance matrix, while α∗(t) has the interpretation as the

integrated conditional mean process. The economic implications of these issues are discussed at

more length in Back (1991) and Andersen, Bollerslev, Diebold, and Labys (2001a).

1.2 Contribution and literature

In the special case of y∗ being univariate, Barndorff-Nielsen and Shephard (2002a) have recently

established the following distributional results for the realised variance3 [y∗M ]i, considerably

strengthening the consistency result implied by (4). In particular they showed that, under some

weak regularity assumptions discussed in the next section, the following three results hold. The

first is that √
M
�

{
[y∗M ]i − Σi

}√
2
∫ i�
(i−1)� Σ2(u)du

L→ N(0, 1). (14)

The second result is that
[y∗M ]i − Σi√
2
3

∑M
j=1 y

4
j,i

L→ N(0, 1). (15)

These two limit theorems are linked together by the third result which is that

M

3�

M∑
j=1

y4
j,i

p→
∫ i�

(i−1)�
Σ2(u)du. (16)

The result (15) is feasible, while (14) is perhaps more informative from a theoretical viewpoint.

In particular the two results imply:

1. [y∗M ]i converges to Σi at rate
√
M .

2. The limit theorem is unaffected by the form of the drift process.

3. Knowledge of the volatility dynamics is not required in order to use this theory.

4. The fourth moment of returns need not exist for the asymptotic normality to hold.

5. The volatility process Σ(t) can be non-stationary, including intra-day effects.
3Sums of squared returns are often called realised volatility in econometrics, while we use the name realised

variance for that term and realised volatility for the corresponding square root. The use of volatility to denote
standard deviations rather than variances is standard in financial economics. See, for example, the literature
on volatility and variance swaps, which are derivatives written on realised volatility or variance, which includes
Demeterfi, Derman, Kamal, and Zou (1999), Howison, Rafailidis, and Rasmussen (2000) and Chriss and Morokoff
(1999). We have chosen to follow this nomenclature rather than the one more familiar in econometrics. Confidence
intervals for the realised volatility follow by square rooting the confidence intervals for the realised variance.

5



6. [y∗M ]i − Σi has a mixed Gaussian limit implying that it will have heavier tails than a

normal.

7. The magnitude of the error [y∗M ]i − Σi is likely to be large in times of high volatility.

These results are illustrated on empirical data in Barndorff-Nielsen and Shephard (2002b),

while Monte Carlo evidence of the accuracy of these asymptotic approximations, and an asymp-

totically equivalent feasible alternative

log [y∗M ]i − log Σi√
2
3

(∑M
j=1 y

2
j,i

)−2∑M
j=1 y

4
j,i

L→ N(0, 1), (17)

is studied in Barndorff-Nielsen and Shephard (2001b). The conclusion of that paper is to prefer

the form (17) which has significantly superior coverage properties compared to (15). See also

Meddahi (2002) and Andreou and Ghysels (2001) who have interesting additional insights into

these and other results about the accuracy of [y∗M ]i.

In independently and concurrent work Meddahi (2002) has studied the first two moments of

the difference between elements of the multivariate [y∗M ]i and Σi. This is the only other paper

we know of which has discussed the properties of [y∗M ]i − Σi.

These results are also quite closely related to the work of Foster and Nelson (1996) (note

also the work of Genon-Catalot, Laredo, and Picard (1992), Florens-Zmirou (1993) and Hansen

(1995)). In the univariate SV case, where the volatility follows a scalar diffusion, they provided

an asymptotic distribution theory for an estimator of Σ(t), the spot (not integrated) variance.

Their idea was to compute a local variance from the lagged data, e.g.,

Σ̂(t) = �
−1

M∑
j=1

{
y∗
(
t− �jM−1

)− y∗
(
t− � (j − 1)M−1

)}2
. (18)

They then studied its behaviour as M → ∞ and � ↓ 0 under some assumptions. This “double

asymptotics” yields a Gaussian limit theory so long as � ↓ 0 and M → ∞ at the right, related

rates. Of course this type of argument is familiar also in nonparametric econometrics (e.g.

Pagan and Ullah (1999)). The double asymptotics makes it harder to use in practice than our

own simpler analysis, which just needs M → ∞. This is made possible because our goal is to

estimate the easier integrated covariation rather than the harder spot covariation.

In this paper we extend the univariate results in (14), (15) and (16) to cover the multivariate

case. The contributions of the paper will be as follows:

• Our main result is that as M → ∞, conditioning on the path of α∗ and Σ,√
M

�
{vech ([y∗M ]i) − vech (Σi)} L→ N(0,Πi), (19)
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where Πi will be given explicitly in Section 24. Moreover, defining xj,i = vech(yj,iy
′
j,i) and

Gi =
M∑

j=1

xj,ix
′
j,i −

1
2

M−1∑
j=1

(
xj,ix

′
j+1,i + xj+1,ix

′
j,i

)
(20)

we have that M�
−1Gi, which is positive semi-definite, converges in probability to Πi.

Unconditionally this yields a feasible, mixed Gaussian limit theory. Further, the joint

limit theory for [y∗M ]i and [y∗M ]i′ , for i 
= i′, is block diagonal allowing easy testing of the

stability of aspects of the covariance structure of returns.

• We explore the accuracy of this feasible limit theory in a Monte Carlo study. In the

univariate case this theory specialises to

{[y∗M ]i − Σi}√∑M
j=1 y

4
j,i −

∑M
j=2 y

2
j,iy

2
j+1,i

L→ N(0, 1),

which is asymptotically equivalent to (15) as

M

�


M∑

j=1

y4
j,i −

M∑
j=2

y2
j,iy

2
j+1,i

 p→ 2
∫ i�

(i−1)�
Σ2(u)du

in that case.

• In the bivariate case we derive the asymptotic distribution of the realised regression esti-

mator. When we take one of the assets as a market portfolio we can regard the regression

as a high frequency estimate of a beta.

• We derive the asymptotic distribution of the realised correlation between two assets.

Realised correlations have been previously studied empirically by Andersen, Bollerslev,

Diebold, and Labys (2001b) but no distributional theory has been available to allow us to

assess the precision of the realised correlations.

The structure of the paper is as follows. In Section 2 we will give two theorems concerning the

asymptotic distribution of realised covariation. In Section 3 we transform the asymptotic theory

to give us a theory for measuring correlation and performing regression using high frequency

data. Section 4 performs some Monte Carlo experiments to assess the accuracy of the theory

for finite values of M . This section also studies the effect of leverage on our results. The overall

conclusion from this work is that our theory seems entirely robust to leverage. However proving

this result seems very challenging. Section 5 illustrates the use of this theory on some financial

data. Section 6 concludes, while there is an Appendix which contains the proofs of the theorems

given in the paper.
4Recall the vech notation stacks the (unique) lower triangular elements of the columns of a matrix into a

vector. See, for example, Lutkepohl (1996, Ch. 7).
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2 Theoretical framework

2.1 Multivariate SV model

We consider q stochastic processes y∗ν (ν = 1, ..., q), determined by a set of stochastic differential

equations

dy∗ν(t) = dα∗
ν(t) +

m∑
a=1

γa
ν (u)dwa(u) (21)

with initial condition y∗ν(0) = 0. Using this notation the spot covolatility matrix of the SV

model is

Σkl(t) =
m∑

a=1

γa
k(t)γ

a
l (t). (22)

This demonstrates that there is no loss in generality in moving from the SV model (13) to the

form of (21).

Here we are making the following assumptions

• α∗
ν and γa

ν > 0 (a = 1, ...,m) are processes of locally bounded variation.

• w = (w1, ..., wm) is m-dimensional standard Brownian motion (here m could be bigger,

equal to or smaller than q).

• The families of processes αν and γa
ν are assumed to be jointly independent of w.

• α∗
ν satisfies assumption (A) given above.

For j = 1, ...,M , let

yj,i(ν) = y∗ν
{
(i− 1) � + j�M−1

}− y∗ν
{
(i− 1) � + (j − 1) �M−1

}
(23)

and

αj,i(ν) = α∗
ν

{
(i− 1) � + j�M−1

}− α∗
ν

{
(i− 1) � + (j − 1) �M−1

}
, (24)

while

αν,i = α∗
ν(i�) − α∗

ν((i− 1) �) (25)

and

γa
ν,i =

∫
�i

�(i−1)
γa

ν (u)du. (26)

In order to simplify the notation, we will drop all mention of the subscript i in this and the

next section as its role is entirely passive for it is fixed in this analysis. Hence, for example

yj,i(ν) and γa
ν,i become yj(ν) and γa

ν respectively. But note that with this temporary convention

γa
ν does not stand for the process with sample path γa

ν (t).
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2.2 Results

We shall refer to condition (A) given above in (12). Then we have three main results, the proofs

of which are given in the Appendix.

Theorem 1 Suppose condition (A) is satisfied. Conditionally on

{αν , γ
a
ν}ν=1,...,q;a=1,...,m

the realised covariation matrix

[y∗M ] =


M∑

j=1

yj(k)yj(l)


k,l=1,2,...,q

, (27)

follows asymptotically, asM → ∞, the normal law with mean Σ and covariance matrix
(
�M−1

)
Ω

where Σ is the q × q matrix with

Σ =
∫

�i

�(i−1)
Σ(u)du =

{∫
�i

�(i−1)
Σkl(u)du

}
k,l=1,...,q

(28)

and Ω is the q2 × q2 array with elements

Ω =

{∫
�i

�(i−1)
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u)}du

}
k,k′,l,l′=1,...,q

. (29)

�

Corollary 1 Unconditionally the asymptotic law of√
M

�
([y∗M ]− Σ) (30)

is mixed normal with mean 0 and random covariance matrix Ω. �

This is an important result. In particular

• The rate of convergence is
√
M for all components of the realised covariation.

• No kowledge of the drift process or spot covariance matrix is needed to use this theory.

• The limit theorem is mixed Gaussian, that is Ω is a stochastic matrix. This means that

the difference between realised covariation matrix and actual covariation matrix will be

heavier tailed than Gaussian.
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• The size of realised covariation matrix errors depends upon the level of volatility of the

process. This impacts not just the precision of the realised variance but also the realised

covariances.

• Inevitably Ω is singular, due to the symmetric nature of [y∗M ] and Σ. Later we will

write the theory in terms of the unique elements of these matrices, by employing vech

transformations, however for the moment we prefer to maintain the general structure for

this makes the proof more straightforward as it can be carried out using standard tensor

notation.

Unfortunately Ω is not known and so this result is infeasible. However, the following theorem

means that Ω can be replaced by a consistent estimator, thus providing a feasible theory.

Theorem 2 Suppose condition (A) is satisfied. Then let

ψ̂klk′l′ =
M

�

M∑
j=1

yj(k)yj(l)yj(k′)yj(l′)

and

ψ̃klk′l′ =
M

�

M−1∑
j=1

yj(k)yj(l)yj+1(k′)yj+1(l′).

Then

ψ̂klk′l′
p→
∫

�i

�(i−1)
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u) + Σkl(u)Σk′l′(u)}du

while
ψ̃klk′l′

p→ ∫
�i
�(i−1) Σkl(u)Σk′l′(u)du

= p− lim
M→∞

ψ̃k′l′kl.

Corollary 2 Defining

ψklk′l′ = ψ̂klk′l′ − 1
2

(
ψ̃klk′l′ + ψ̃k′l′kl

)
we see that

ψklk′l′
p→
∫

�i

�(i−1)
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u)}du,

and so there exists a random q2 × q2 matrix

H =
M∑

j=1

xjx
′
j −

1
2

M−1∑
j=1

(
xjx

′
j+1 + xj+1x

′
j

)
, (31)

where5 xj = vec(yjy
′
j), explicitly calculable in terms of y

∗
M , such that

M

�
H

p→ Ω

as M → ∞. �

5Recall the vec notation stacks the columns of a matrix into a vector.
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The above corollary provides a general framework for the asymptotics for realised covariation.

A convenient feature of the matrix H in (31) is that it is positive semi-definite. This follows

from the property of the first order serial correlation coefficient that its square is less than or

equal to one. In particular the result follows because for any conformable vector c,

c′Hc =
M∑

j=1

(
c′xj

)2 − M−1∑
j=1

(
c′xj

) (
c′xj+1

) ≥ 0. (32)

In general H will be singular as [y∗M ] is a symmetric matrix6.

It is sometimes convenient to avoid the symmetric replication in the realised covariation

matrix by employing a vech transformation. Then the limit theory can be easily written as

Corollary 3 As M → ∞, conditionally√
M

�
{vech ([y∗M ])− vech (Σ)} L→ N(0,Π), (33)

while, defining xj = vech(yjy
′
j) and

G =
M∑

j=1

xjx
′
j −

1
2

M−1∑
j=1

(
xjx

′
j+1 + xj+1x

′
j

)
, (34)

we have that
M

�
G

p→ Π. (35)

The matrix G is still only guaranteed to be positive semi-definite, but should be positive

definite in practice.

Finally we note the following result.

Corollary 4 The asymptotic unconditional covariance of the error term is, if it exists,

E(Ω) =

{∫
�i

�(i−1)
[E {Σkk′(u)Σll′(u)} + E {Σkl′(u)Σlk′(u)}] du

}
k,k′,l,l′=1,...,q

. (36)

Previously Meddahi (2002) has studied this covariance quantity, but using very different

methods. Importantly he proved that this result is independent of a no leverage assumption in

the case where volatility is a stationary diffusion. We will return to this point in Section 4.3 of

the paper.
6This argument is familiar in econometrics where Newey and West (1987) prove positive semi-definiteness of

the Bartlett zero frequency spectral density estimator. Of course our analysis gives a much simpler result here.
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2.3 Discussion

The general results are compact. It is helpful to look at special cases in order to gain further

understanding.

Example 1 Suppose we are interested in the joint distribution of realised covariation in the

bivariate case. Then the Theorem 1 tells us that

√
M

�



∑M

j=1 y
2
j(k)∑M

j=1 yj(k)yj(l)∑M
j=1 y

2
j(l)

−
∫

�i

�(i−1)

 Σkk(u)
Σkl(u)
Σll(u)

du

 (37)

L→ N

0,
∫

�i

�(i−1)


2Σ2

kk(u) 2Σkk(u)Σkl(u) 2Σ2
kl(u)

2Σkk(u)Σkl(u) Σkk(u)Σll(u) + Σ2
kl(u) 2Σll(u)Σkl(u)

2Σ2
kl(u) 2Σll(u)Σkl(u) 2Σ2

ll(u)

du

 . (38)

The result on realised variances
∑M

j=1 y
2
j(k) and

∑M
j=1 y

2
j(l) were first derived in Barndorff-Nielsen

and Shephard (2002a). The result on the marginal distribution of realised covariance as M → ∞
is that √

M
�

{∑M
j=1 yj(k)yj(l) −

∫
�i
�(i−1) Σkl(u)du

}
√∫

�i
�(i−1){Σkk(u)Σll(u) + Σ2

kl(u)}du
L→ N(0, 1), (39)

which seems new, as does the joint distribution. Notice that when the spot correlation is zero

then Σ is diagonal. When Σkk(t) = Σll(t), then the asymptotic covariance becomes

∫
�i

�(i−1)
Σ2

kk(s)


2 2ρk,l(u) 2ρ2

k,l(u)

2ρk,l(u)
(
1 + ρ2

k,l(u)
)

2ρk,l(u)
2ρ2

k,l(u) 2ρk,l(u) 2

du, (40)

where

ρk,l(u) =
Σkl(u)

Σkk(u)Σll(u)
. (41)

This last result is a generalisation of the result given in Anderson (1984, p. 121) on the asymp-

totic joint distribution in the case of i.i.d. Gaussian data.

Example 2 Special cases of Theorem 2 include

M

�

M∑
j=1

y4
j(k)

p→ 3
∫

�i

�(i−1)
Σ2

kk(u)du, (42)

M

�

M∑
j=1

y3
j(k)yj(l)

p→ 3
∫

�i

�(i−1)
Σkk(u)Σkl(u)du (43)

M

�

M∑
j=1

y2
j(k)y

2
j(l)

p→
∫

�i

�(i−1)

{
2Σ2

kl(u) + Σkk(u)Σll(u)
}
du. (44)
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Likewise
M

�

M∑
j=1

y2
j(k)y

2
j+1(l)

p→
∫

�i

�(i−1)
Σkk(u)Σll(u)du, (45)

M

�

M∑
j=1

(
yj(k)yj(l)

) (
yj+1(k)yj+1(l)

) p→
∫

�i

�(i−1)
Σ2

kl(u)du (46)

Example 3 Example 1 gives us an infeasible limit theorem, for the covariance matrix is stochas-

tic and unknown. Theorem 2 provides a consistent estimator of it. In particular, examples of

the theory include that ∑M
j=1 y

2
j(k) −

∫
�i
�(i−1) Σkk(u)du√∑M

j=1 y
4
j(k) −

∑M−1
j=1 y2

j(k)y
2
j+1(k)

L→ N(0, 1) (47)

and ∑M
j=1 yj(k)yj(l) −

∫
�i
�(i−1) Σkl(u)du√∑M

j=1 y
2
j(k)y

2
j(l) −

∑M−1
j=1 yj(k)yj(l)yj+1(k)yj+1(l)

L→ N(0, 1). (48)

The latter result seems new, the former is an asymptotically equivalent form of the result given in

(15) due to Barndorff-Nielsen and Shephard (2002a)7. The denominators in both of these limit

theorems are guaranteed to be non-negative by the property of the first order serial correlation

coefficient. The results in the previous example suggest an asymptotically equivalent alternative

to (48), that is ∑M
j=1 yj(k)yj(l) −

∫
�i
�(i−1) Σkl(u)du√

1
2

(∑M
j=1 y

2
j(k)y

2
j(l) +

∑M−1
j=1 y2

j(k)y
2
j+1(l)

) L→ N(0, 1). (49)

3 Asymptotic theory for regression and correlation

3.1 Regression

Regression plays a central role both in theoretical and empirical financial economics (e.g. see

Cochrane (2001, Ch. 12) and Campbell, Lo, and MacKinlay (1997, Ch. 5) which are both

devoted to regression). For example, the regression of the returns of an individual asset on a

wide market index is often called a “beta” (e.g. Lintner (1965)). In this Section we use our

distribution theory for realised covariation to derive a theory for univariate regression. Again this
7The replacement of 2

3

∑M
j=1 y4

j(k) by
∑M

j=1 y4
j(k) −

∑M
j=2 y2

j(k)y
2
j+1(k) leaves the asymptotic result unchanged

for

M
M∑

j=1

y4
j(k)

p→ 3

∫
�i

�(i−1)

Σ2
kk(s)ds

and

M
M∑

j=1

y2
j(k)y

2
j+1(k)

p→
∫

�i

�(i−1)

Σ2
kk(s)ds.
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will be based on fixed intervals of time and allowing the number of high frequency observations

to go to infinity within that interval. We regress variable l on variable k, then again surpressing

subscripts i,

β̂(kl) =

∑M
j=1 yj(k)yj(l)∑M

j=1 y
2
j(k)

. (50)

This involves just elements of the realised covariation and so we can use the asymptotic theory

of the previous section to derive its asymptotic distribution. The probability limit of regression

is known by the theory of QV. In particular

β̂(lk)
p→

[y∗(k), y
∗
(l)]

[y∗(k)]
= β(lk), (51)

a result which is discussed at some length in, for example, Back (1991) and Andersen, Bollerslev,

Diebold, and Labys (2001b). Empirical estimates of regression parameters using high frequency

data have been computed by, for example, Andersen, Bollerslev, Diebold, and Ebens (2001) and

Liu (2002). Here we extend the theoretical results to derive the asymptotic distribution, under

our additional assumptions given above. In this case β(lk) has the simpler form of

β(lk) =

∫
�i
�(i−1) Σkl(u)du∫
�i
�(i−1) Σkk(u)du

. (52)

The asymptotic distribution can be derived using standard linearisation methods8, which

approximates
√

M
�

(
β̂(lk) − β(lk)

)
by

∑M
j=1 yj(k)yj(l) − β(lk)

∑M
j=1 y

2
j(k)∫

�i
�(i−1) Σkk(u)du

. (53)

It yields the result

Proposition 1 Define

g(lk) = d′(lk)Ψ(lk)d(lk) (54)

where

Ψ(lk) =
∫

�i

�(i−1)

{
Σkk(u)Σll(u) + Σ2

kl(u) 2Σkk(u)Σkl(u)
2Σkk(u)Σkl(u) 2Σ2

kk(u)

}
du and d(lk) =

(
1

−β(lk)

)
.

(55)
8This is based on approximating x/y by

µx

µy
+

x − µx

µy
− (y − µy)µx

µ2
y

=
µx

µy
+

x

µy
− yµx

µ2
y

,

where µx and µy are the p-lims of x and y respectively.
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Then as M → ∞ so √
M
�

(
β̂(lk) − β(lk)

)
√(∫

�i
�(i−1) Σkk(u)du

)−2
g(lk)

L→ N(0, 1). (56)

Example 4 When Σkl(u) = 0 and so β(lk) = 0, we have that√
M
�
β̂(lk)√(∫

�i
�(i−1) Σkk(u)du

)−2 ∫
�i
�(i−1) Σkk(u)Σll(u)du

L→ N(0, 1) (57)

In practice we have to replace Ψ(lk) and d(lk) by estimators to make the above regression

theory feasible. However, the Theorem 2 from the previous section implies this is straightforward.

In particular

Proposition 2 Define

xj = yj(k)yj(l) − β̂(lk)y
2
j(k) (58)

and

ĝ(lk) =
M∑

j=1

x2
j −

M−1∑
j=1

xjxj+1 (59)

Then as M → ∞ so
β̂(lk) − β(lk)√(∑M
j=1 y

2
j(k)

)−2
ĝ(lk)

L→ N(0, 1). (60)

An attractive feature of this theory is that all of the required terms are straightforward to

compute. It is interesting to note that
∑M

j=1 xj = 0 exactly in this context.

3.2 Correlation

The same strategy can be used to derive the asymptotic distribution of the realised correlation

coefficient. We define

ρ̂(lk) =

∑M
j=1 yj(k)yj(l)√∑M

j=1 y
2
j(k)

∑M
j=1 y

2
j(l)

. (61)

The probability limit of the correlation is known by the theory of QV. In particular

ρ̂(lk)
p→

[y∗(k), y
∗
(l)]√

[y∗(k)][y
∗
(l)]

= ρ(lk), (62)

a result which is discussed at some length in Andersen, Bollerslev, Diebold, and Labys (2001b).

Here we extend this result to derive the asymptotic distribution, under our additional assump-

tions given above. In this case

ρ(lk) =

∫
�i
�(i−1) Σkl(u)du√∫

�i
�(i−1) Σkk(u)du

∫
�i
�(i−1) Σll(u)du

. (63)
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The asymptotic distribution can be derived using standard linearisation methods9, which

approximate
√

M
�

(
ρ̂(lk) − ρ(lk)

)
by

ρ(lk)

 ∑M
j=1 yj(k)yj(l)∫

�i
�(i−1) Σkl(u)du

− 1
2

∑M
j=1 y

2
j(k)∫

�i
�(i−1) Σkk(u)du

− 1
2

∑M
j=1 y

2
j(l)∫

�i
�(i−1) Σll(u)du

 (64)

=

∑M
j=1 yj(k)yj(l) − 1

2β(lk)

∑M
j=1 y

2
j(k) − 1

2β(kl)

∑M
j=1 y

2
j(l)√∫

�i
�(i−1) Σkk(u)du

∫
�i
�(i−1) Σll(u)du

. (65)

It yields the infeasible result

Proposition 3 Define

g(lk) = d′(lk)Π(lk)d(lk) (66)

where

Π(lk) =
∫

�i

�(i−1)


2Σ2

kk(u) 2Σkk(u)Σkl(u) 2Σ2
kl(u)

2Σkk(u)Σkl(u) Σkk(u)Σll(u) + Σ2
kl(u) 2Σll(u)Σkl(u)

2Σ2
k2(u) 2Σll(u)Σkl(u) 2Σ2

ll(u)

 du (67)

and

d(lk) =

 −1
2β(lk)

1
−1

2β(kl)

 .

Here β(lk) is the population regression of the l-th variable on the k-th, while β(kl) is the regression

of the k-th on the l-th. Then as M → ∞ so√
M
�

(
ρ̂(lk) − ρ(lk)

)√(∫
�i
�(i−1) Σkk(u)du

∫
�i
�(i−1) Σll(u)du

)−1
gi(l,k)

L→ N(0, 1). (68)

The following example illustrates the theory.

Example 5 When Σkl(s) = 0, we have that β(lk) = β(kl) = 0 and ρ(lk) = 0 so√
M
�
ρ̂(lk)√(∫

�i
�(i−1) Σkk(u)du

∫
�i
�(i−1) Σll(u)du

)−1 (∫
�i
�(i−1) Σkk(u)Σll(u)du

) L→ N (0, 1) . (69)

This has quite a stable asymptotic variance, compared to the corresponding result for the re-

gression coefficient (57), for it is unaffected by the scaling of any of the assets. Hence we might

expect the variance to be less influenced by changes in the integrated variance of one of the assets.
9This is based on approximating x/

√
yz by

µx√
µyµz

+
(x − µx)√

µyµz
− 1

2

(y − µy)µx

µy
√

µyµz
− 1

2

(z − µz)µx

µz
√

µyµz

=
µx√
µyµz

+ ρ

(
x

µx
− 1

2

y

µy
− 1

2

z

µz

)
,

where µx, µy, µz are the p-lims of x, y and z respectively.
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Proposition 4 The feasible limit theory involves

xj = yj(k)yj(l) −
1
2
β̂(lk)y

2
j(k) −

1
2
β̂(kl)y

2
j(l) (70)

=
1
2
yj(k)

(
yj(l) − β̂(lk)yj(k)

)
+

1
2
yj(l)

(
yj(k) − β̂(kl)yj(l)

)
(71)

and

ĝ(lk) =
M∑

j=1

x2
j −

M−1∑
j=1

xjxj+1. (72)

Then as M → ∞ so
ρ̂(lk) − ρ(lk)√(∑M

j=1 y
2
j(k)

∑M
j=1 y

2
j(l)

)−1
ĝ(lk)

L→ N(0, 1). (73)

We again note the simplicity of this result and that
∑M

j=1 xj = 0.

4 Small sample effectiveness of the limit theory

4.1 Simulation design

In this subsection we document some Monte Carlo experiments we have performed in order to

assess the accuracy of the above theory for realised covariation. Throughout we work with a

bivariate factor based stochastic volatility model. Some literature on this topic includes Diebold

and Nerlove (1989), Meddahi and Renault (1996), Meddahi and Renault (2002), Pitt and Shep-

hard (1999), Chib, Nardari, and Shephard (1999), Barndorff-Nielsen and Shephard (2001a,

Section 6.5) and Hubalek and Nicolato (2001). The structure of the model will be that

dy∗(t) = (B I) ds∗(t), (74)

where s∗ is a vector of independent, zero mean, SV models. That is

ds∗j (t) = σj(t)dwj(t), j = 1, ...,m,

where σj(t) are spot volatility processes and are constrained to be non-negative and wj are

standard Brownian motions. Throughout all the volatilities and the Brownian motions are

taken to be independent. This structure implies that
γ1

1(t) γ2
1(t) · · · γm

1 (t)

γ1
2(t) γ2

2(t)
...

...
γ1

q (t) γm
q (t)

 = (B I) diag {σ1(t), ..., σm(t)}

and that

Σ(t) = (B I) diag
{
σ2

1(t), ..., σ
2
m(t)

}
(B I)′ .

17



In the experiments in the first two subsections (in our third subsection we will look at

a diffusion based model) we will assume that each spot volatility σ follows a non-Gaussian

Ornstein-Uhlenbeck process. That is the volatility follows the solution to the SDE

dσ2
j (t) = −λjσ

2
j (t)dt+ dzj(λjt), (75)

where z(t) is a Lévy process with non-negative increments. These models have been developed

in this context by Barndorff-Nielsen and Shephard (2001a). They have the advantage, from

the point of view of illustrating our theory, that the volatility occasionally jumps. The rather

unusual timing for dzj(λjt) is chosen so that the marginal distribution of σ2
j (t) does not vary

with λj . This eases our understanding of the parameters which index this model. Related work

includes the affine models of Duffie, Pan, and Singleton (2000).

In the Monte Carlo experiments we report we design (75) to have marginal distribution

which is Γ(νj , aj), while taking � = 1. Then our choices for the parameters will be

B =
(

1
1

)
,

 ν1

ν2

ν3

 =

 2.0
1.0
1.5

 ,

 a1

a2

a3

 =

 5.0
1.0
1.0

 ,

 λ1

λ2

λ3

 =

 0.04
0.13
3.00

 .

(76)

This means that

E

 σ2
1(t)

σ2
2(t)

σ2
3(t)

 =

 0.4
1.0
1.5

 , Cov

 σ2
1(t)

σ2
2(t)

σ2
3(t)

 =

 0.02 0 0
0 1.0 0
0 0 1.5

 , (77)

which implies that the effect of the common component in the asset prices model (74), σ2
1(t), is

small in comparison with the individual effects σ2
2(t) and σ2

3(t).

Figure 1 shows a short sample path from (74) using M = 72, simulating 200 complete days.

The top left graph in the figure shows the daily returns from the factor model. It is difficult to

pick up any patterns in the data by looking at this data. The top right and middle right graphs

show the realised variances for the two assets:
M∑

j=1

y2
j,i(1) and

M∑
j=1

y2
j,i(2),

graphed against i, their corresponding day (recall the notation i was surpressed in the previous

two sections). Also drawn are there corresponding population versions
∫

�i
�(i−1) Σ11(u)du and∫

�i
�(i−1) Σ22(u)du. For asset 1 there is more memory in the volatility clustering, but it has

significant upwards and downwards shifts. For asset 2 the series has only a small degree of

memory.

The middle left graph in Figure 1 depicts the realised covariance
∑M

j=1 yj,i(1)yj,i(2) of the

series and shows it is quite a noisy estimator of the underlying actual covariance
∫

�i
�(i−1) Σ12(u)du.

18



0 50 100 150 200

−2.5

0.0

2.5

5.0 Daily returns
Asset 1 
Asset 2 

0 50 100 150 200

2.5

5.0

7.5

Realised variance for asset 1
Realised variance 
Actual variance 

0 50 100 150 200

0

1

2
Realised covariance for assets 1 & 2

Realised covariance 
Actual covariance 

0 50 100 150 200

1

2

3

4

Realised variance for asset 2
Realised variance 
Actual variance 

0 50 100 150 200

0.00

0.25

0.50

0.75

Realised correlation for assets 1 & 2
Realised correlation 
Actual correlation 

0 50 100 150 200

0.0

0.5

1.0
Realised regression for assets 1 & 2

Realised covariance 
Actual covariance 

Figure 1: Simulation from a bivariate factor SV model. Based on M = 72 throughout. Top left:
simulated daily returns. Top right: realised variance and actual variance for asset 1. Middle
right: realised variance and actual variance for asset 2. Middle left: realised covariance and ac-
tual covariance for assets 1 & 2. Bottom left: realised correlation and actual correlation between
assets 1 & 2. Bottom right: realised regression of asset 1 on asset 2, and actual regression. Code
is available at: sim mult.ox

The dependence structure of the data is much clearer in the bottom left graph which draws the

realised correlation ∑M
j=1 yj,i(1)yj,i(2)√∑M

j=1 y
2
j,i(1)

∑M
j=1 y

2
j,i(2)

amongst the two series. The errors in estimating the actual correlations∫
�i
�(i−1) Σ12(u)du√∫

�i
�(i−1) Σ11(u)du

∫
�i
�(i−1) Σ22(u)du

seem marginally more homoskedastic here, although when the correlation gets close to one

their variance seems to get small. A less stable picture appears when one looks at the realised
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regression of asset 1 on asset 2, ∑M
j=1 yj,i(1)yj,i(2)∑M

j=1 y
2
j,i(2)

which estimates ∫
�i
�(i−1) Σ12(u)du∫
�i
�(i−1) Σ22(u)du

.

Here the magnitude of the difference between these two quantities seems to vary quite signifi-

cantly through time.

In more extensive simulated data the above analysis showed that even with quite a large value

of M there are important differences between the realised quantities and the actual objects they

estimate. Further, the properties of the errors seem to differ as we move from volatilities to

covariances and on to correlations and correlations, with the errors being quite substantial when

we study the desired realised correlations and regressions. Our asymptotic theory allows us to

understand these objects. We now start using the theory to measure the size of the errors and

use Monte Carlo results to indicate the accuracy of the asymptotic theory in finite sample cases.

4.2 Assessing the performance of the asymptotic theory

4.2.1 Realised covariance

Our asymptotic theory tells us that∑M
j=1 yj,i(1)yj,i(2) −

∫
�i
�(i−1) Σ12(u)du√∑M

j=1 y
2
j,i(1)y

2
j,i(2) −

∑M−1
j=1 yj,i(1)yj,i(2)yj+1,i(1)yj+1,i(2)

d→ N(0, 1). (78)

How close to normality is this ratio for small and moderate values of M?

To investigate the effectiveness of the limit theory we have drawn in Figure 2 a plot of the

realised covariance errors
M∑

j=1

yj,i(1)yj,i(2) −
∫

�i

�(i−1)
Σ21(u)du

against i for the Monte Carlo design discussed in the previous subsection. As we move from the

left hand side across the page we increase the value of M and we can see the decrease in the

spread of these errors. The Figure also gives 95% confidence intervals for the errors generated

using the feasible limit theory (78). These also fall quite quickly with M (theory tells us they fall

at rate
√
M). An important feature of the confidence intervals is that they vary dramatically,

sometimes being quite small, other times being large. This reflects the changing volatility in the

series.

The coverage of the limit theory is assessed by the normal QQ plots given in the lower three

plots in Figure 2. These are based on 2, 000 simulated daily observations. These show quite
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Figure 2: Simulation from a bivariate factor SV model. Top line: drawn is the realised covari-
ance errors and their 95% confidence intervals. Bottom line are the normal QQ plots for the
standardised errors. These plot on the y-axis the ranked observed standardised errors (which
should be NID(0,1)) against, on the x-axis, their expected quantities. Left to right increases M
through 24 , 144 and 576 . Code is available at: sim mult.ox

poor results for small values of M , but with M being large the limit theory can be seen to be

effective.

4.2.2 Realised regression

Recall the limit theory for the regression of the returns of asset one on asset two. It has that as

M → ∞ so
β̂i(12) − βi(12)√(∑M

j=1 y
2
j,i(2)

)−2 {∑M
j=1 x

2
j,i −

∑M−1
j=1 xj,ixj+1,i

} L→ N(0, 1), (79)

where

xj,i = yj,i(1)yj,i(2) − β̂i(12)y
2
j,i(2). (80)
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It is important to note that the returns on the two assets appear asymmetrically here, with the

returns of the second asset appearing much more prominently. This means that if the first and

second assets are rescaled by different amounts the regression coefficients and their standard

errors change. However, unlike the realised covariance case, when both assets are rescaled by

the same amount, the coefficients and the standard errors do not now change.
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Figure 3: Simulation from a bivariate factor SV model. Top line: drawn is the realised regression
of asset one on asset two. Bottom line are the corresponding QQ plots. Code is available at:
sim mult.ox

The graphs on the top half of Figure 3 shows the regression errors∑M
j=1 yj,i(1)yj,i(2)∑M

j=1 y
2
j,i(2)

−
∫

�i
�(i−1) Σ21(u)du∫
�i
�(i−1) Σ22(u)du

,

plotted against time together with asymptotically valid 95% confidence intervals for these errors

based on (79). These Figures are computed for a variety of values of M . They show that the

confidence intervals are more stable through time than was the case for the realised covariance.

This is caused by the stablising
(∑M

j=1 y
2
j,i(2)

)−2
which appears in the denominator of (79).
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This means it is less sensitive to changes in the volatility of the second asset and so more simply

reflects the dependence between the two assets than the covariance.

Figure 3 shows the corresponding QQ plots for the standardised regression errors. They are

again based on 2,000 simulations and indicate that the asymptotic theory provides a reasonable

basis for confidence intervals by the time M is beyond 100. For smaller values of M there are

some significant distortions.

4.2.3 Realised correlation

The feasible limit theory for correlation of the returns of asset one on asset two is

ρ̂i(12) − ρi(12)√(∑M
j=1 y

2
j,i(1)

∑M
j=1 y

2
j,i(2)

)−1 (∑M
j=1 x

2
j,i −

∑M−1
j=1 xj,ixj+1,i

) L→ N(0, 1), (81)

where

xj,i = yj,i(1)yj,i(2) −
1
2
β̂i(12)y

2
j,i(2) −

1
2
β̂i(21)y

2
j,i(1). (82)

Here

β̂i(12) =

∑M
j=1 yj,i(1)yj,i(2)∑M

j=1 y
2
j,i(2)

and β̂i(21) =

∑M
j=1 yj,i(1)yj,i(2)∑M

j=1 y
2
j,i(1)

.

Importantly the theory for correlation is entirely symmetric in the ways it deals with the two

asset returns. In particular the scaling
(∑M

j=1 y
2
j,i(1)

∑M
j=1 y

2
j,i(2)

)−1
adjusts the denominator to

make it invariant as we scale either of the asset returns within each time period. This suggests

it should be less sensitive to changes in the level of volatility in either of the assets.

Figure 4 shows the realised correlation error∑M
j=1 yj,i(1)yj,i(2)√∑M

j=1 y
2
j,i(1)

∑M
j=1 y

2
j,i(2)

−
∫

�i
�(i−1) Σ21(u)du√∫

�i
�(i−1) Σ11(u)du

∫
�i
�(i−1) Σ22(u)du

,

plotted against n, together with 95% confidence intervals generated using the above theory.

What becomes very clear is that the precision of the estimators does not vary very much. This

conclusion is reinforced as M increases. This means the errors for realised correlations are

approximately unconditionally normal.

The bottom plots in Figure 4 give QQ plots for the simulations of the realised correlation

based on the asymptotic theory. These plots are based on 2, 000 observations. The asymptotic

theory is a poor guide for small values of M , but for moderate to large values of M it is reasonably

accurate.

One possible way of improving the finite sample behaviour of the asymptotic distribution of

ρ̂i(12) is by using the Fisher (1921)-z transformation (e.g. see the exposition in Anderson (1984,
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Figure 4: Simulation from a bivariate factor SV model. Top line: drawn is the realised correlation
errors of asset one on asset two together with the associated asymptotic standard errors. Bottom
line is the corresponding QQ plot to assess the accuracy of the asymptotic theory. Code is
available at: sim mult.ox

122-124))

zi(12) =
1
2
log

1 + ρ̂i(12)

1 − ρ̂i(12)
and ζi(12) =

1
2
log

1 + ρi(12)

1 − ρi(12)
.

Recall Fisher’s analysis was based on M multivariate, independent and identically distributed

Gaussian data, in which case his transformation has the important feature that
√
M
(
zi(12) − ζi(12)

)
has a standard normal limit distribution and it is well known its asymptotic distribution pro-

vides an excellent approximation to the exact distribution (e.g. David (1938)). In our more

general case

zi(12) − ζi(12)√{
1− (

ρ̂i(12)

)2}−2 (∑M
j=1 y

2
j,i(1)

∑M
j=1 y

2
j,i(2)

)−1 (∑M
j=1 x

2
j,i −

∑M−1
j=1 xj,ixj+1,i

) L→ N(0, 1).

(83)

Figure 4 repeats the previous experiment but now using the Fisher transformation. This
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Figure 5: Simulation from a bivariate factor SV model. Top line: drawn is the realised correlation
error of assets one and two together with the associated asymptotic standard errors and the
constant interval based on an incorrect application of Fisher’s limit theory. Bottom line is the
corresponding QQ plot to assess the accuracy of the correct asymptotic theory and the Fisher
approximation. Code is available at: sim mult.ox

pictures demonstrate that the Fisher transformation improves the performance of the asymptotic

approximation and that the confidence intervals are again made even more stable through time.

This is particularly apparent when we look at the cases where M is very high.

Figure 4 also graphs the corresponding confidence intervals generated by Fisher’s original

theory, which is clearly not asymptotically valid here. The result is a flat confidence interval,

generated by ±2/
√
M . This interval is very close to the asymptotically valid ones and actually

results in a better behaved QQ plot. This result arises as the realised correlation is not effected

by changes in the level of the volatilities in either series, except where they occur within a day.

However, in this simulation experiment this does not happen. Consequently the Fisher theory

approximately applies. Of course over more sustained periods or with processes with even more

dramatic moves in the correlation or volatility structure within days the incorrect application
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of the Fisher theory can be highly misleading.

4.3 Effectiveness of the theory under leverage effects

This section will repeat the experiments reported in the previous subsections but this time based

on the Feller or Cox, Ingersoll, and Ross (1985) square root process10 for the volatility dynamics.

This has two aims, to demonstrate that the results we indicated above are not sensitive to the

type of volatility processes used in building the model and to explore the effect of leverage terms

on the performance of our theory.

We write the dynamics as

ds∗j (t) = σj(t)dwj(t), j = 1, ...,m,

but now with

dσ2
j (t) = −λj

{
σ2

j (t) − ξj

}
dt+ ωjσj(t)dbj(λjt), ξj ≥ ω2

j /2, (84)

where bj(t) is a standard Brownian motion process (independent over j) with

Cor {bj(λjt), wj(t)} = ρjt
√
λj .

The correlation parameters ρ1, ρ2,...,ρm represent the leverage effect in the model and would be

expected to be negative (e.g. Black (1976) and Nelson (1991)). The square root process has a

marginal distribution

σ2
j (t) ∼ Γ(2ω−2

j ξj , 2ω−2
j ) = Γ (νj , aj) , νj ≥ 1,

with a mean of νj/aj and a variance of νj/a
2
j . Throughout this section we again take � = 1.

Then we repeat our choices for the parameters (76) and (77), which implies ω1

ω2

ω3

 =

 0.63
1.41
1.41

 and

 ξ1
ξ2
ξ3

 =

 0.4
1
1.5

 .

In these experiments we will focus on the M = 576 case and see how varying between two

possible regimes  ρ1

ρ2

ρ3

 =

 0
0
0

 ,

 ρ1

ρ2

ρ3

 =

 −0.98
−0.98
−0.98

 ,

will effect the performance of our asymptotics. The above cases represent the no leverage case

and the strong leverage, respectively.
10In the context of SV models this is often called the Heston (1993) model.
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Figure 6: Simulation from a bivariate factor SV model based on the square root volatility processes
with no leverage. All calculations are based on M = 576. Top line: drawn is the realised
covariance error with the associated asymptotic standard errors and QQ plot. Middle line:
corresponding results for realised regression. Bottom line: results for realised correlation. Code
is available at: sim mult.ox.

The results in the no leverage case are given in Figure 6. They show that moving to the

diffusion based volatility model does not really change any of the conclusions from the previous

subsection — the asymptotics still provide a useful guide to the finite sample behaviour of these

statistics. Although not surprising, since this case is covered by our theory, this is a reassuring

result.

The results with strong leverage are given in Figure 711. They are very much in line with

those we reported for the non-leverage case and suggest that our analysis may be robust to

this effect. Proving this conjecture turns out to be challenging mathematically even in the

univariate case and is the subject of on-going research. In a stimulating piece of work Meddahi

(2002) has shown that the effect of leverage on the unconditional mean square error of the
11In the simulation, common random numbers are used in the leverage and non-leverage cases.
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Figure 7: Simulation from a bivariate factor SV model based on the square root volatility processes
with high amounts of leverage. All calculations are based on M = 576. Top line: drawn is the
realised covariance error with the associated asymptotic standard errors and QQ plot. Middle
line: corresponding results for realised regression. Bottom line: results for realised correlation.
Code is available at: sim mult.ox

realised covariation error is asymptotically negligible in a wide class of diffusion based volatility

models. This again points to the more general result of our asymptotics working in the leverage

case.

5 Empirical illustration

5.1 Confidence intervals for realised quantities

To illustrate some of the empirical features of realised covariation we have used a subset of

the return data employed by Andersen, Bollerslev, Diebold, and Labys (2001b), although the

Appendix will describe the slightly different adjustments we have made to deal with some missing

data. This bivariate series records the United States Dollar/ German Deutsche Mark and Dollar/

Japanese Yen series. It covers the ten year period from 1st December 1986 until 30th November
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1996. The subset we have selected to illustrate our theory starts on February 4th 1991 and

covers the next 100 trading days. The original dataset records every 5 minutes the most recent

quote to appear on the Reuters screen. It has been kindly supplied to us by Olsen and Associates

in Zurich. Throughout the analysis presented in this section we will set M = 144, thus basing

our analysis on 10 minute return data with � representing one day.
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Figure 8: Realised quantities, and their 95% confidence intervals, for ten minute changes bi-
variate exchange rate data on the DM and Yen against the Dollar. Data is 4th February 1991
onwards for 100 active trading days. Top left: realised covariance for the DM and Yen. Top
right: realised correlation for the DM and Yen. Middle left: realised variance for the DM. Middle
right: realised variance for the Yen. Bottom left: regression coefficient for DM on Yen. Bottom
right: regression coefficient for Yen on DM. Code: asy mult appli.ox.

In the top left graph in Figure 8 we have drawn the realised covariance

M∑
j=1

yj,i(1)yj,i(2), (85)

together with the associated 95% confidence intervals constructed using our asymptotic the-

29



ory. These terms move rather violently through this period, while the corresponding realised

correlations ∑M
j=1 yj,i(1)yj,i(2)√∑M

j=1 y
2
j,i(1)

∑M
j=1 y

2
j,i(2)

, (86)

given in the top right piece of Figure 8 is actually quite stable. The correlations are not partic-

ularly precisely estimated, with the confidence intervals typically being around 0.3 wide (they

are computed using (83)). The instability in the realised covariance is caused by movements in

the realised volatilities
√∑M

j=1 y
2
j,i(1) and

√∑M
j=1 y

2
j,i(2), which are given in the middle elements

of the Figure. Interestingly the largest shifts in the correlation structure during this time period

do not appear at times of particularly large volatility spikes. The bottom graphs also pick up

the large movements in the volatility for they show the regressions of the DM on the Yen and

the Yen on the DM ∑M
j=1 yj,i(1)yj,i(2)√∑M

j=1 y
2
j,i(2)

and

∑M
j=1 yj,i(1)yj,i(2)√∑M

j=1 y
2
j,i(1)

,

respectively. These move very significantly over time, but again this is mostly due to volatility

shifts, not changes in the pattern of correlation.

5.2 Is the correlation constant through time?

It is clear that the volatilities of the DM and Yen against the Dollar change very significantly

through time and this effects the realised covariances and realised regressions. The integrated

correlations, on the other hand, are more stable and an interesting question is whether we

can regard them as being constant. Are the variations we see in the time series plot possibly

explained by noise? Here we assess this hypothesis formally, employing another feature of our

asymptotics — that the asymptotic analysis can be carried out with varying choices of �.

To assess the stability of the correlation amongst the exchange rates we compute the daily

Fisher transform of the realised correlation

zi(12) =
1
2
log

1 + ρ̂i(12)

1− ρ̂i(12)
where ρ̂i(12) =

∑M
j=1 yj,i(1)yj,i(2)√∑M

j=1 y
2
j,i(1)

∑M
j=1 y

2
j,i(2)

amongst the rates over the 200 active days again following 4th February 1991. This is then

compared with the transformed realised correlation computed once spanning the same 200 days

(we could have computed it over the whole sample, but this would risk rejecting the null due

to slowly evolving, long term changes in the correlations). To make this more precise we write

n = 200 to denote the total number of days in the sample and then compute

z(12) =
1
2
log

1 + ρ̂(12)

1 − ρ̂(12)
where ρ̂(12) =

∑n
i=1

∑M
j=1 yj,i(1)yj,i(2)√(∑n

i=1

∑M
j=1 y

2
j,i(1)

)(∑n
i=1

∑M
j=1 y

2
j,i(2)

) .
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Ignoring the effect of a single day being overlapping between these two computations in order

to simplify the exposition12, then as M → ∞(
zi(12) − z(12)

)− (
ζi(12) − ζ(12)

)√
s2
i + s2

L→ N(0, 1),

where

ζi(12) =
1
2
log

1 + ρi(12)

1− ρi(12)
, and ρi(12) =

∫
�i
�(i−1) Σ12(u)du√∫

�i
�(i−1) Σ11(u)du

√∫
�i
�(i−1) Σ22(u)du

,

ζ(12) =
1
2
log

1 + ρ(12)

1− ρ(12)
, and ρ(12) =

∫
�n
0 Σ12(u)du√∫

�n
0 Σ11(u)du

√∫
�n
0 Σ22(u)du

.

Further s2
i is computed as the denominator in (83), while

s2 =
{
1− (

ρ̂(12)

)2}−2


 n∑

i=1

M∑
j=1

y2
j,i(1)

 n∑
i=1

M∑
j=1

y2
j,i(2)


−1

×

 n∑

i=1

M∑
j=1

x2
j,i

−
 n∑

i=1

M−1∑
j=1

xj,ixj+1,i

 ,

where

xj,i = yj,i(1)yj,i(2) −
1
2
β̂(12)y

2
j,i(2) −

1
2
β̂(21)y

2
j,i(1),

that is the regressions are based on the whole sample. Under a null hypothesis that the corre-

lation pattern has not changed through time, then

zi(12) − z(12)√
s2
i + s2

L→H0 N(0, 1).

We plot zi(12) − z(12) together with twice
√
s2
i + s2 in Figure 9. This shows endemic rejection of

the null hypothesis, with the correlations moving in discernible patterns throughout the sample.

A hypothesis of constant correlations is not maintainable for this dataset.

6 Conclusions

In this paper we have developed a distribution theory for realised covariation, a quantity which

appears both in finance theory and in a great deal of empirical financial econometrics. Our

new theory can be used to derive a feasible limit theory for realised regression and realised

correlation. This is robust for it does not need the empirical researcher to specify a model for
12We could formally ignore the dependence by simply dropping the i-th day’s data from ρ̂(12). This would make

the statistics asymptotically (as M → ∞, but with n fixed) independent. This happens without any assumption
that the returns between days are independent.
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Figure 9: Fisher transformations of the realised correlations. Crosses denote zi(12) − z(12).
Comparison is with the daily correlations with the same quantity computed over 200 days.
95% confidence intervals are based on the mixed Gaussian M → ∞ limit theory. Code:
asy mult appli.ox.

the spot covariation or the drift process. In that sense it is semi-parametric. Unlike most of the

semi-parametric literature, there are no tuning parameters to choose in our approach, the theory

is both easy to code and self-contained. Monte Carlo results suggest the theory may well be

useful in practice for it seems a good guide to the finite sample behaviour. Further, the Monte

Carlo results conjecture that the main draw back of the theory, the inability of our theory to

deal with leverage effects, may not be very important in practice.

Although the paper has made substantial progress, there are many issues which are not

resolved. Estimated covariances are used in practice to compute, for example, portfolio selection

weights and mean-variance efficiency frontiers. The above theory can be used to calculate a

distribution theory for these economically interesting features.

An important theme in theoretical econometrics and statistics is that covariances are not

very robust objects, as they are highly sensitive to large movements in asset prices. It maybe
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desirable to construct economic theory and econometrics on more robust quantities such as mean

absolute errors. In some recent work Barndorff-Nielsen and Shephard (2001c) have studied the

univariate version of this problem, in particular establishing a limiting distribution theory for

M−1/2
∑M

j=1 |yj,i|, which is somewhat robust to jumps in the price process. We are currently

trying to construct multivariate versions of this type of result.
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A Proofs

A.1 Notation & semimartingales

We consider q stochastic processes y∗ν , determined by a set of stochastic differential equations

dy∗ν(t) = dα∗
ν(t) + γa

ν (t)dwa(t) (87)

with initial condition y∗ν(0) = 0 (ν = 1, ..., q) and a = 1, ...,m (recall m could be bigger, equal

or smaller than q). Throughout we are using the Einstein summation convention13 to indices

a, b, c, d but not to the indices k, l, k′, l′. In what is to follow we will write γab
kl = γa

kγ
b
l , with

similar notation for other index combinations. Using this notation the spot covolatility matrix

of the SV model is

Σkl(t) = γaa
kl (t). (88)

Throughout this section we notice that covering the i = 1 case is sufficient, for the results

for all other values of i follow immediately. In order to simplify the notation we drop reference

to n and write � = t. Let M denote a positive integer and, for an arbitrary t ∈ R+, set

δ = t/M,

the time period of the high frequency return.
13Recall the Einstein summation convention means that if an index is repeated in a single expression then

summation over that index is understood.
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For any q-dimensional semimartingale X with components Xν , ν = 1, ..., q, we define higher

order variations

[Xν1 , ..., Xνd
](t) =p-lim

δ↓0
[Xδν1 , ..., Xδνd

](t),

(provided the limit exists). Here d denotes a positive integer and ν1, ..., νd is any set of d

indices, each index arbitrarily chosen from {1, ..., q}. Furthermore, Xνδ denotes the discrete

approximation to Xν given by

Xνδ(s) = Xν((j − 1)δ) for (j − 1)δ ≤ s < jδ

and

[Xδν1 , ..., Xδνd
](t) = δ−d/2+1

M∑
j=1

{Xν1(δj) −Xν1((j − 1)δ)} · · · {Xνd
(jδ) −Xνd

((j − 1)δ)}.

Note that for q = 2 our notation coincides with the usual notation for the covariation of two

semimartingales and we have [Xνδ] = [Xνδ, Xδν ] and [Xδ] = [Xδ, Xδ] where Xδ = (X1δ, ..., Xqδ).

In studying the higher order variations [Xδν1 , ..., Xδνd
] it is helpful to use the fact, which

follows from the multidimensional version of Ito’s formula (cf. for instance Protter (1990, p.

74), that for any continuous semimartingales Y 1
t , ..., Y

m
t (with starting value 0) we have

Y 1
t · · ·Y m

t =
m∑

j=1

∫ t

0

∏
k �=j

Y k
s dY j

s +
∑

1≤j<k≤m

∫ t

0

∏
l �=j,k

Y l
sd[Y

j , Y k]s. (89)

For m = 2 this reduces to

Y 1
t Y

2
t =

∫ t

0
Y 1

s dY 2
s +

∫ t

0
Y 2

s dY 1
s +

∫ t

0
d[Y 1, Y 2]s (90)

while for m = 4

Y 1
t Y

2
t Y

3
t Y

4
t =

∫ t

0
Y 1

s Y
2
t Y

3
t dY 4 +

∫ t

0
Y 1

s Y
2
t Y

4
t dY 3 +

∫ t

0
Y 1

s Y
3
t Y

4
t dY 2 +

∫ t

0
Y 2

t Y
3
t Y

4dY 1
s

+
∫ t

0
Y 1

s Y
2
t d[Y 3, Y 4]s +

∫ t

0
Y 1

s Y
3
t d[Y 2, Y 4]s +

∫ t

0
Y 1

s Y
4
t d[Y 2, Y 3]s

+
∫ t

0
Y 2

s Y
3
t d[Y 1, Y 4]s +

∫ t

0
Y 2

s Y
3
t d[Y 1, Y 3]s +

∫ t

0
Y 3

s Y
4
t d[Y 1, Y 2]s. (91)

A.2 Proofs of theorems 1 and 2

Proof of Theorem 1 and 2.

We are interested in the limiting behaviour of

[y∗kδ, y
∗
lδ](t) =

M∑
j=1

ykjylj =
M∑

j=1

{y∗k(δj) − y∗k((j − 1)δ)}{y∗l (jδ) − y∗l ((j − 1)δ)}, (92)
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when the processes α∗
k, γ

a
k are considered given by conditioning.

To the asymptotic order considered the limit behaviour of [y∗δ ] is dominated by the infinitesi-

mal variation of the Brownian motion w, so that - as we shall show - the variation of the (vector)

process α∗ does not influence the limit laws.

Suppose initially that α∗ is identically 0, in which case

ykj =
∫ jδ

(j−1)δ
γa

k(s)dwa(s). (93)

The summands in (92) are independent and since the processes γa
k are locally of bounded

variation the matrix [y∗δ ] must asymptotically be normally distributed. (Detailed verification of

this follows standard reasoning and is therefore omitted here.) The task is thus to determine

the asymptotic mean and variance of [y∗δ ].

Let

Γkl(t) =
∫ t

0
γaa

kl (s)ds

and

Γklj =
∫ jδ

(j−1)δ
γaa

kl (s)ds.

By (93) and (89) we find E{ykjylj} = Γklj and hence we have

E{[y∗kδ, y
∗
lδ](t)} = Γkl(t) = Σkl(t).

Furthermore, for any indices k, l, k′, l′ in {1, ..., q},

Cov {[y∗kδ, y
∗
lδ](t), [y

∗
k′δ, y

∗
l′δ](t)} = E


M∑

j′=1

(ykj′ylj′ − Γklj′)
M∑

j=1

(yk′jyl′j − Γk′l′j)


=

M∑
j=1

E{ykjyljyk′jyl′j} −
M∑

j=1

ΓkljΓk′l′j . (94)

Consider now the case j = 1. Using (91) and similarly for other index combinations, we find

E{yk1yl1yk′1yl′1} =
∫ δ

0
E{
∫ u

0

∫ u

0
γa

k(s)γ
b
l (s)dba(s)dbb(s)}γc

k′(u)γc
l′(u)du [6]

=
∫ δ

0
γcc

k′l′(u)
∫ u

0
γaa

kl (s)dsdu [6] (95)

the symbol [6] indicating that E{ykjyljyk′jyl′j} equals the sum of the term given plus 5 similar

terms obtained via permutation of the indices k, l, k′, l′. Continuing the calculation we have

E{yk1yl1yk′1yl′1} =
∫ δ

0
γcc

k′l′(u)Γkl(u)du [6]

=
∫ δ

0
γcc

k′l′(u)Γkl(u)du+
∫ δ

0
γcc

kl (u)Γk′l′(u)du
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+
∫ δ

0
γcc

ll′(u)Γkk′(u)du+
∫ δ

0
γcc

kk′(u)Γll′(u)du

+
∫ δ

0
γcc

k′l(u)Γkl′(u)du+
∫ δ

0
γcc

kl′(u)Γk′l(u)du.

Next we note that

d
ds

{Γkl(s)Γk′l′(s)} = γcc
kl (s)Γk′l′(s) + γcc

k′l′(s)Γkl(s),

or, in other words,∫ δ

0
γcc

k′l′(u)Γkl(u)du+
∫ δ

0
γcc

kl (u)Γk′l′(u)du = Γkl(δ)Γk′l′(δ).

The terms for other values of the indices behave similarly and all in all we obtain

Cov {[y∗kδ, y
∗
lδ](t), [y

∗
k′δ, y

∗
l′δ](t)} =

M∑
j=1

(Γkk′jΓll′j + Γkl′jΓlk′j). (96)

Now, when δ → 0 the sum in (96) turns into an integral and behaves as δΩkl,k′l′(t) where

Ωkl,k′l′(t) =
∫ t

0
{γaa

kk′(s)γcc
ll′(s) + γaa

kl′(s)γ
cc
lk′(s)}ds,

as stated in Theorem 1.

Turning then to Theorem 2, recall from (94) that

Cov {[y∗kδ, y
∗
lδ](t), [y

∗
k′δ, y

∗
l′δ](t)} =

M∑
j=1

E{ykjyljyk′jyl′j} −
M∑

j=1

ΓkljΓk′l′j

From the previous discussion we have

δ−1Cov {[y∗kδ, y
∗
lδ](t), [y

∗
k′δ, y

∗
l′δ](t)} → Ωkl,k′l′(t).

On the other hand, arguing as above it is seen that

δ−1
M∑

j=1

E{ykjyljyk′jyl′j} →
∫ t

0
{γaa

kl (s)γ
cc
k′l′(s) + γaa

kk′(s)γcc
ll′(s) + γaa

kl′(s)γ
cc
lk′(s)}ds

and

δ−1
M∑

j=1

ΓkljΓk′l′j →
∫ t

0
γaa

kl (s)γ
cc
k′l′(s)ds,

and, moreover, that

[y∗δk, y
∗
δl, y

∗
δk′ , y∗δl′ ] = δ−1

M∑
j=1

ykjyljyk′jyl′j ,

must converge in probability to the same limit as δ−1
∑M

j=1 E{ykjyljyk′jyl′j}. Thus to obtain a

consistent estimator of Ωkl,k′l′(t) it suffices to find a consistent estimator of
∫ t
0 γ

aa
kl (s)γ

cc
k′l′(s)ds.

The quantity
M−1∑
j=1

ykjyljyk′(j+1)yl′(j+1),
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solves this problem, as is seen by again applying formula (91).

To prove that the same limiting laws hold when the mean processes α∗
ν are not 0 but satisfy

condition (A) we first note that

ykjylj = αkjαlj + αkjy0lj + αljy0kj + y0kjy0lj ,

where

y0kj =
∫ jδ

(j−1)δ
γa

k(s)dba(s).

Under condition (A), αkj is o(
√
δ) uniformly in k and j. Furthermore we have

αkjy0lj + αljy0kj ∼ N(0, α2
kjΓllj + α2

ljΓkkj).

Consequently,

[y∗kδ, y
∗
lδ](t) =

M∑
j=1

αkjαlj +
M∑

j=1

(αkjy0lj + αljy0kj) +
M∑

j=1

y0kjy0lj

= o(
√
δ) + op(

√
δ) + [y∗0kδ, y

∗
0lδ](t),

where

[y∗0kδ, y
∗
0lδ](t) =

M∑
j=1

y0kjy0lj .

It follows that, conditionally, δ−1/2{[y∗δ , y∗δ ] − Γ} has the same limit law as δ−1/2{[y∗0δ, y
∗
0δ] − Γ}

and the latter is as given in Theorem 1.

An analogous argument applies to Theorem 2.

B Data manipulation

The Olsen group have kindly made available to us a dataset which records every five minutes the

most recent quote to appear on the Reuters screen from 1st December 1986 until 30th November

1996. When prices are missing they have interpolated them. Details of this processing are given

in Dacorogna, Gencay, Muller, Olsen, and Pictet (2001). The same dataset was analysed by

Andersen, Bollerslev, Diebold, and Labys (2001b). We follow the extensive work of Torben

Andersen and Tim Bollerslev on this dataset, who remove much of the times when the market

is basically closed. This includes almost all of the weekend, while they have taken out most US

holidays. The result is what we will regard as a single time series of length 705,313 observations.

Although many of the breaks in the series have been removed, sometimes there are sequences

of very small price changes caused by, for example, unmodelled non-US holidays or data feed

breakdowns. We deal with this by adding a Brownian bridge simulation to sequences of data
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Figure 10: Top line of graphs are the raw and interpolated data using a Brownian bridge in-
terpolator. Bottom line of graphs is the corresponding returns. The x-axes are marked off in
days.

where at each time point the absolute change in a five minute period is below 0.01%. That

is, when this happens, we interpolate prices stochastically, adding a Brownian bridge with a

standard deviation of 0.01 for each time period. By using a bridge process we are not affecting

the long run trajectory of prices, while the impact on realised volatility is very small indeed.

We have used this stochastic method here in order to be consistent with our other work on this

topic where this effect is important. It is illustrated in Figure 10, which shows the first 500

observations in the Dollar/DM series we have used in this paper and another series which is for

the Yen/Dollar. Later stretches of the data have fewer breaks in them, but this graph illustrates

the effects of our intervention. Clearly our approach is ad hoc. However, a proper statistical

modelling of these breaks is very complicated due to their many causes and the fact that our

dataset is enormous.
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