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Abstract

GARCH models are commonly used as latent processes in econometrics, Þnancial economics and
macroeconomics. Yet no exact likelihood analysis of these models has been provided so far. In
this paper we outline the issues and suggest a Markov chain Monte Carlo algorithm which allows
the calculation of a classical estimator via the simulated EM algorithm or a Bayesian solution in
O(T ) computational operations, where T denotes the sample size. We assess the performance of
our proposed algorithm in the context of both artiÞcial examples and an empirical application
to 26 UK sectorial stock returns, and compare it to existing approximate solutions.

Keywords: Bayesian inference; Dynamic Heteroskedasticity; Factor models; Markov chain
Monte Carlo; Simulated EM algorithm; Volatility.



1 Introduction

A key feature of the class of parametric ARCH processes pioneered by Engle (1982) and Bollerslev

(1986)

ft = εtλ
1/2
t , εt

i.i.d.∼ N(0, 1),

is that the volatility process {λt} is measurable by construction with respect to the sequence
of natural Þltrations generated by the past values of the {ft} ARCH process, Fft−1 say, at least
up to a Þnite dimensional vector of unknown parameters ϕ. An extensive review of the econo-

metric literature on this topic is given in Bollerslev, Engle, and Nelson (1994). An immediate

consequence of this setup is that the usual prediction error decomposition delivers the likelihood

function of the sample conditional on initial values F0 as

p(f |ϕ,F0) =
TY
t=1

p(ft|Fft−1,ϕ) =
TY
t=1

1p
λt (ϕ)

φ

Ã
ftp
λt (ϕ)

!
,

where T is the sample size, f = (f1, ..., fT )
0, and φ(.) denotes a standard normal density. This

means that inference on unknown parameters can be carried out relatively easily.

This argument continues to hold when the normality assumption on εt is replaced by another

parametric distribution, such as the Student t (e.g. Bollerslev (1987)) or the normal inverse

Gaussian (e.g. Jensen and Lunde (2001)). Further, it does not really get any more complicated

when we deal with the fractional ARCH models of Baillie, Bollerslev, and Mikkelsen (1996),

although some care has to be taken with dealing with F0 appropriately (see the contribution
of Diebold and Schuermann (2000)). The same prediction error decomposition has been used

in the multivariate ARCH context by Engle and Kroner (1995) among many others (see again

Bollerslev, Engle, and Nelson (1994)).

The fact that the conditional likelihood function for ARCH models is easily computed is

a major reason for the rapid adoption of this class of models in econometrics, Þnancial eco-

nomics and macroeconomics. However, the analysis becomes substantially more complicated

if an ARCH model is used as a latent process, for the log-likelihood function of the observed

variables can no longer be written in closed form.

The main modern way of carrying out likelihood inference on latent models is via a Markov

chain Monte Carlo (MCMC) algorithm (see Chib (2001) for an extensive review of the use of

such methods in the context of econometrics). The MCMC algorithm generates simulations

from the distribution of the latent process {ft} conditional upon the data {xt} and parameters
ϕ. This simulation procedure can be used either to carry out Bayesian inference on the unknown

ϕ, or to classically estimate ϕ by means of a simulated EM algorithm. In either case, a crucial
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feature of these methods is the continual conditional simulation of the latent vector f given x

and ϕ, either one element at a time or in blocks. Unfortunately, the non-Markovian nature of

the GARCH process implies that each time we simulate a single ft, we implicitly change all

future conditional variances. As pointed out by Shephard (1996), a regrettable consequence

of this path-dependence in volatility is that standard MCMC algorithms will involve a O(T 2)

computational load. Since this cost has to be borne for each value of ϕ, such procedures are

generally infeasible for the types of large Þnancial datasets that we see in practice, even with

the massive computational power economists have available to them. To some degree this has

prompted interest in models that replace the ARCH assumption with discrete-time versions of

the multivariate log-normal stochastic volatility (SV) process (see the reviews of SV models

by Taylor (1994), Ghysels, Harvey, and Renault (1996) and Shephard (1996)), because their

Þrst-order Markovian structure is particularly convenient for conducting inference via MCMC

methods. Papers which Þt these models in practice include Pitt and Shephard (1999b), Aguilar

and West (2000) and Chib, Nardari, and Shephard (2001). A related line of research that

also relies on MCMC methods concentrates on models in which the volatility dynamics of the

latent variables is characterised by a discrete-state Þrst-order Markov chain (see Albert and Chib

(1993), Carter and Kohn (1994), Shephard (1994), Kim and Nelson (1999), and the references

therein).

Nonetheless, economists have built, and continue to build, many models that involve latent

GARCH processes in order to tackle a number of important empirical problems. Here we discuss

two main categories of models that have been extensively used, together with some illustrative

examples:

1. Asset pricing models

(a) Aggregate models. Chou, Engle, and Kane (1992) proposed a time-varying para-

meter ARCH in mean model in which the slope coefficient in the linear relationship

between the mean excess return on a stock market index and its variance changes

over time according to a random walk. SpeciÞcally,

xt = btλt + ft

bt = bt−1 + vt

λt = θ + βλt−1 + αf2t−1.

The problem is that ft is not measurable with respect to the econometrician�s in-

formation set Fxt−1 as long as the variance of vt is positive, which means that the
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conditional variance of the observable process {xt} given its past Fxt−1 cannot be
written in closed form. Both Chou, Engle, and Kane (1992) and Harvey, Ruiz, and

Sentana (1992) proposed approximate maximum likelihood estimators to this prob-

lem, but the quality of their approximations remains unknown.

(b) Multiasset models. Starting with Diebold and Nerlove (1989) and King, Sentana,

and Wadhwani (1994), N -dimensional multivariate dynamic heteroskedasticity mod-

els for asset returns have been developed on the basis of traditional factor structures.

In this paper we will discuss in detail the case where we observe the return vector

xt = Crft + wt, (1)

where

rft = Λtτ + ft (2)

are the risk awarded factors, andµ
ft
wt

¶
|Fx,ft−1 ∼ N

·µ
0
0

¶
,

µ
Λt 0
0 Γ

¶¸
. (3)

This model is called a conditionally heteroskedastic factor model. Here ft is a k × 1
vector of unobserved common factors, C is a N × k matrix of factor loadings, with
N ≥ k and rank (C) = k, Γ is a N × N diagonal matrix of constant idiosyncratic

variances, Λt is a k × k diagonal positive deÞnite matrix of time-varying factor vari-
ances, and τ is a k × 1 vector of factor risk prices. These assumptions imply that
the distribution of xt conditional on Fx,ft−1 is N (CΛtτ ,Σt), where the conditional co-
variance matrix Σt = CΛtC

0 + Γ has the usual factor structure. However, when ft

is a latent ARCH process cloaked in the noise wt, we cannot directly write down

the likelihood function of the observable process {xt}. Papers which propose estima-
tors of this model include Diebold and Nerlove (1989), Harvey, Ruiz, and Sentana

(1992), Gourieroux, Monfort, and Renault (1993), Calzolari, Fiorentini, and Sentana

(2001) and Dungey, Martin, and Pagan (2000). Nevertheless, none of them works out

how to perform exact likelihood-based inference, which remains an unsolved prob-

lem. Further, it is previously not known how to estimate the density of f |x,ϕ or its
moments.

2. Hidden equilibrium prices

(a) Bid/ask prices. Many economic models use the concept that there is an evolving

equilibrium price which cannot be observed due to market imperfections. A classic
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example of this is the market microstructure work of Hasbrouck (1999), who models

the bid and ask price on the New York stock exchange (observed, say, every thirty

minutes) as being the outcome of three continuous random variables: the equilibrium

price (say Ft) and the costs of quote exposure on the bid (Bt) and ask sides (At).

The bid and ask prices in the market are then formed by rounding, with the observed

bid and ask prices being

bt = Floor(Ft −Bt) and at = Ceiling(Ft +At).

In a simple model, the logs of Ft, Bt and At are assumed to be Gaussian autoregres-

sions with i.i.d. innovations, although Hasbrouck mentioned his desire to allow the

innovations of ft (= lnFt) to follow an ARCH process, which he was unable to handle

econometrically.

(b) Target interest rates: There are also examples in macroeconomics in which prices

can only change in discrete amounts. For instance, ordered probit models have been

used by Eichengreen, Watson, and Grossman (1985) and Dueker (1999) to describe

the interest rate setting behaviour of monetary policy authorities. In their models,

the desired change in a target interest rate is given by an equation of the form

∆x∗t = ∆z
0
t−1β + ft

where zt is a set of observable conditioning variables, and ft follows a possibly dynamic

heteroskedastic process. Although Dueker (1999) motivates his work by reference to

ARCH processes, he only derives MCMC estimation methods for the case in which

the volatility of ft follows a discrete-state Markov chain. An elegant approach to

likelihood inference for these types of situations is put forward by Lee (1999), who

employs importance sampling to estimate the likelihood function.

(c) Futures contracts. Some cash markets and many futures markets often shut when

the price of a futures contract moves in one day beyond a prespeciÞed maximum.

This is discussed in theory by Brennan (1986) and econometrically by McCurdy and

Morgan (1987), Kodres (1988), Kodres (1993), Morgan and Trevor (1999) and Wei

(2002). We might think about this problem as being one where {xt} are the observed,
potentially truncated, geometric returns while we think of {ft} as the corresponding
daily (unobserved) geometric return which we would have observed had there being

no constraints. In effect, ft measures the notional equilibrium return. Similar situ-

ations arise in target zone exchange rate agreements and commodity price support
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mechanisms. Given the empirical behaviour of future prices, it makes sense to have

ft following an ARCH process. But since in regulated markets ft is not always ob-

served, especially in volatile periods, ignoring the censoring will deliver biased results

typically underestimating the true level of volatility in the market.

In this context, our main contribution is to show that MCMC likelihood-based estimation

of latent GARCH models can in fact be handled by means of feasible O(T ) algorithms. The

crucial idea will be a novel transformation of the latent GARCH processes that makes them

Þrst-order Markovian. For the sake of concreteness, this will be developed within the context of

the conditionally heteroskedastic factor model in which the common factors follow the Quadratic

GARCH in mean process introduced by Sentana (1995), but applies much more widely.

The structure of our paper is as follows. In Section 2 we outline both classical and Bayesian

likelihood approaches to inference for the conditionally heteroskedastic factor model. We show

in both cases that the key task is to be able to produce simulators for {ft} | {xt} ,ϕ, that is
the factors given the data and the parameters. Section 3 explains how we exploit our Markov

inducing transformation to design fast, and yet simple, algorithms to carry this out. We also

assess the properties of our solution by use of a Monte Carlo experiment. This section is written

in a self-contained manner, so that readers who are not interested in factor models can read its

contribution directly in order to be able to apply it to other problems. An illustrative empirical

application of the factor model to UK sectorial stock market returns is presented in section 4.

Finally, our conclusions can be found in section 5.

2 Likelihood inference: EM and Bayesian approaches

2.1 The model

In this section we discuss the basic likelihood framework for a conditionally heteroskedastic

factor (CH factor) model with ARCH conditional variances. Therefore, the complete model is

given by the equations (1), (2), and (3), plus the assumption that each diagonal element of Λt,

λjt say, follows some univariate GARCH process that depends on a set of unknown parameters

ψj . In this respect, since (1) can be equivalently written as

xt =
³
CΛ1/2

´³
Λ−1/2rft

´
+ wt,

where Λ is any k × k diagonal positive deÞnite (p.d.) matrix of constant factor scales, we shall
initially impose restrictions on ψj which guarantee that

λj = E(λjt) = V (fjt) = 1 (j = 1, . . . , k)
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in order to eliminate such a scale indeterminacy. We will return to this issue in section 2.4.2.1

Throughout the parameters of interest are

ϕ0 = (c0, γ0, δ0)

where c = vec(C 0) = (c01, . . . , c0N)
0, c0i = (ci1, . . . , cik), γ = vecd(Γ) = (γ1, . . . , γN )

0, δ =

(δ01, . . . , δ
0
k)
0, and δj = (τ j ,ψj). We Þrst discuss the basics of the simulated EM algorithm

before going on to develop the corresponding Bayesian approach. As we shall see, in order to

implement both these procedures the most important unsolved task is to design a method to

rapidly simulate from {ft} | {xt} ,ϕ. This will be addressed in section 3 of the paper.

2.2 Simulated EM algorithm

2.2.1 Complete likelihood p(x, rf |ϕ)

Suppose for a moment that both the returns x and the risk awarded factors rf were observed,

where

x =
¡
x01, ..., x

0
T

¢0
, rf =

¡
r0f1, ..., r

0
fT

¢0
.

Then, we can write down the log-likelihood function of x, rf |ϕ,F0, as

−TN
2
ln 2π − 1

2

NX
i=1

TX
t=1

(
ln |γi|+

(xit − c0irft)2
γi

)
(4)

−Tk
2
ln 2π − 1

2

kX
j=1

(
TX
t=1

"
ln |λjt(δj)|+ [rfjt − τ jλjt(δj)]

2

λjt(δj)

#)
. (5)

Given our parametrisation of factors as univariate ARCH processes, such a factorisation performs

a sequential cut on the joint log-likelihood function of xt, rft, which would make rft strongly

exogenous for c and γ (see Engle, Hendry, and Richard (1983)). As a result, since these parame-

ters only enter through (4), their unrestricted MLE�s would be multivariate regression estimates,

which could be simply obtained from N univariate OLS regressions of each xit (i = 1, . . . ,N)

on rft. In addition, ML estimates of the conditional variance parameters ψj and price of risk

coefficients τ j could be obtained from k univariate dynamic heteroskedasticity in mean models

for rfjt (j = 1, . . . , k).
1 If the unconditional variance is unbounded, as in Integrated GARCH-type models, other symmetric scaling

assumptions can be made. For instance, we could choose inft λjt = 1, or simply Þx to 1 the constant element of
λjt. Alternatively, we can use the asymmetric scaling approach described in section 2.4.2 below, which Þxes cii
to 1 for i = 1, . . . , k. In any case, note that in principle there is no need to set to zero the strict upper triangle of
the factor loading matrix C in view of the identiÞcation results in Sentana and Fiorentini (2001).
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2.2.2 EM algorithm

Unfortunately, the r0fts are generally unobserved. Nevertheless, the previous discussion suggests

using the EM algorithm of Dempster, Laird, and Rubin (1977) as a convenient way to obtain

estimates of ϕ as close to the optimum as desired. An elegant review of this method is given by

Ruud (1991). At each iteration, the EM algorithm obtains ϕ(n+1) by maximising the expectation

of the complete log-likelihood given by equations (4) and (5) conditional on the data and the

current parameter values, i.e.

E
n
ln p(rf , x|ϕ,F0)|x,ϕ(n),F0

o
,

with respect to ϕ keeping ϕ(n) Þxed. When we do this it is helpful to write

r
(n)
ft|x = E

³
rft|x,ϕ(n)

´
and Ω

(n)
t|x = V

³
rft|x,ϕ(n)

´
.

For the moment, we abstract from the fact that such quantities are not easy to calculate. Then,

the expectation of the complete likelihood is

−TN
2
ln 2π − 1

2

NX
i=1

TX
t=1

ln |γi|+
³
xit − c0ir(n)ft|x

´2
+ c0iΩ

(n)
t|x ci

γi

 (6)

−Tk
2
ln 2π − 1

2

kX
j=1

TX
t=1

E

(
ln |λjt(δj)|+ [rfjt − τ jλjt(δj)]

2

λjt(δj)

¯̄̄̄
¯x,ϕ(n)

)
, (7)

where (n) refers to expressions evaluated at ϕ(n). Such a factorisation is particularly useful for

the Maximisation step of the EM algorithm, for C and Γ, which are typically high dimensional

objects, only enter through (6). SpeciÞcally:

c
(n+1)
i =

(
TX
t=1

³
r
(n)
ft|xr

0(n)
ft|x +Ω

(n)
t|x
´)−1( TX

t=1

r
(n)
ft|xxit

)
, (8)

γ
(n+1)
i =

1

T

TX
t=1

n
(xit − c

0(n+1)
i r

(n)
ft|x)

2 + c
0(n+1)
i Ω

(n)
t|x c

(n+1)
i

o
. (9)

This is very helpful for it means the M-step is extremely easy to compute for the vast majority

of the parameter space.

Similarly, δ(n+1)j can be obtained by maximizing (7) for j = 1, . . . , k. But since no closed

expression exists in general, one has to resort to numerical optimization methods. This is the

price to be paid for modelling the time variation in the conditional variance of the factors,

but can be regarded as a sunk cost which is completely independent of the number of series

under consideration. In fact, a very large number of series constitutes a computational blessing
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in this framework, because for large N the unobservable factors can be consistently estimated

(see Sentana (2002)), and the model effectively becomes a multivariate regression model, plus k

univariate conditionally heteroskedastic ones. Furthermore, it is not really necessary to maximize

(7) at each EM iteration if it is too costly relative to maximizing (6). In practice, we can do a

few iterations over (8) and (9) alone, before maximizing (7).

2.2.3 Computation of the score

Nevertheless, it is well known (e.g. Tanner (1996, p. 84-85)) that the convergence of the EM

algorithm slows down signiÞcantly in the neighbourhood of the optimum. As a result, after some

initial EM iterations it is tempting to switch to a derivative based optimisation routine, which is

more likely to quickly converge to the maximum. EM type arguments can be used to facilitate

this switch by allowing the computation of the score. In particular, it is easy to see that

E

½
∂ ln p(x, rf |ϕ,F0)

∂ϕ
|x,ϕ,F0

¾
= 0,

so it is clear that the score can be obtained as the expected value (given x, ϕ and F0) of the
sum of the unobservable scores corresponding to ln p(x|rf ,ϕ,F0) and ln p(rf |ϕ,F0). This result
was Þrst noted by Louis (1982); see also Ruud (1991) and Tanner (1996, p. 84).

Let qt(xt|ϕ) = ∂ ln p(xt|ϕ,Fxt−1)/∂ϕ denote the contribution to the score function from ob-

servation t, and partition it into three components corresponding to c, γ and δ. Assuming that

γ > 0, this yields

qct(xt|ϕ) = vec
©
E
£
rft(xt − Crft)0|x,ϕ

¤ · Γ−1ª ,
qγt(xt|ϕ) =

1

2
vecd

©
Γ−1 ·E £(xt −Crft)(xt − Crft)0 − Γ|x,ϕ¤ · Γ−1ª ,

and

qδjt(xt|ϕ) = E

½·
λjt(δj)

∂τ j
∂δj

+ τ j
∂λjt(δj)

∂δj

¸
·
·
rfjt − τ jλjt(δj)

λjt(δj)

¸
+
1

2

·
1

λjt(δj)

∂λjt(δj)

∂δj

¸
·
Ã
[rfjt − τ jλjt(δj)]2

λjt(δj)
− 1
!
|x,ϕ

)
.

The Þrst two components can be conveniently re-written in terms of rft|x and Ωt|x as

qct(xt|ϕ) = vec
nh
rft|xx0t −

³
rft|xr0ft|x +Ωt|x

´
C 0
i
Γ−1

o
,

qγt(xt|ϕ) =
1

2
vecd

©
Γ−1

£
(xt −Crft|x)(xt − Crft|x)0 +CΩt|xC 0 − Γ

¤
Γ−1

ª
.

2.2.4 Simulated versions

All the above algorithms are infeasible for we do not know how to analytically compute the

required conditional expectations. The approach we follow here is to replace each of the expec-

tations by averages of simulations drawn from rf |x,ϕ(n),F0. In section 3 we will show how to
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carry out this simulation, the major contribution of the paper. The replacement of expectations

by averages of simulations means that the algorithms described in the previous two subsec-

tions will become a simulated EM algorithm and a simulated score one, respectively. These

approaches to computing the maximum likelihood estimator are discussed in the statistics liter-

ature by Celeux and Diebolt (1985) and Tanner (1996). They have also appeared in econometrics

on a number of occasions. Prominent references include Bresnahan (1981), Hajivassiliou and

McFadden (1998), Nielsen (2000), Ruud (1991) and Shephard (1993).

2.3 Simulation-based Bayesian inference

The task of simulating from rf |x,ϕ also appears in the Bayesian analysis of this model. Recall
that in our problem the key issue is that the likelihood function of the sample

p(x|ϕ,F0) =
Z
p(x|rf ,ϕ,F0)p(rf |ϕ,F0)drf

is intractable, which precludes the direct analysis of the posterior density p(ϕ|x,F0). This

problem can be overcome by focusing instead on the density

p(ϕ, rf |x,F0) ∝ p(x|rf ,ϕ,F0) · p(rf |ϕ,F0) · p(ϕ|F0).

We will aim to sample from this joint density, for we can then discard the rf draws yielding a

sample from the posterior p(ϕ|x,F0). Assuming independent priors between static and dynamic
variance parameters, our suggestion is to carry this out in some natural blocks.

1. Initialise ϕ.

2. Update draw from p(rf |ϕ, x,F0).

3. Update draw from p(ϕ|rf , x,F0) in the following blocks:

(a) Update p (c, γ|x, rf ). This is updated in a block.

(b) Update p(δj | {rfjt} ,F0) for j = 1, ..., k.

4. Goto 2.

Step 3b is the task of simulating from the posterior of the parameters of k univariate ARCH-

M processes. This has already been brießy addressed by Kim, Shephard, and Chib (1998), and

at more length later by Bauwens and Lubrano (1998) and Nakatsuma (2000). Similarly, the

tasks in 3a are those which appear in standard regression models. All that remains therefore is

Step 2, sampling from rf |ϕ, x,F0.
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The algorithm above is a special case of a Markov chain Monte Carlo (MCMC) algorithm,

which converges, as it iterates, to draws from the required density p(ϕ, rf |x,F0). It should be
kept in mind that sample variates from a MCMC algorithm are a high-dimensional (correlated)

sample from the target density of interest. These draws can be used as the basis for making

inferences by appealing to suitable ergodic theorems for Markov chains. For example, posterior

moments and marginal densities can be estimated (simulation consistently) by averaging the

relevant function of interest over the sampled variates. The posterior mean of ϕ is simply

estimated by the sample mean of the simulated ϕ values. These estimates can be made arbitrarily

accurate by increasing the simulation sample size. The accuracy of the resulting estimates (the

so called numerical standard error) can be assessed by standard time series methods that correct

for the serial correlation in the draws. Unfortunately, the serial correlation can be quite high

for badly behaved algorithms.

MCMC methods, namely the Metropolis-Hastings and Gibbs sampling algorithms, have had

a widespread inßuence on the theory and practice of Bayesian inference. Early work on these

methods appears in Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953), Hastings

(1970), Ripley (1977) and Geman and Geman (1984), while some of the more recent develop-

ments, spurred by Tanner and Wong (1987) and Gelfand and Smith (1990), are included in

Gilks, Richardson, and Spiegelhalter (1996), Tanner (1996, Ch. 6) and Chib (2001). The lat-

ter reference provides an excellent self-contained discussion of the use of these methods in the

context of econometrics.

2.4 Implementation details

2.4.1 The sufficient statistics for {rft} | {xt} ,ϕ,F0

As we have already seen, whether we follow a classical or a Bayesian approach to estimation,

our main task is to simulate from rf |ϕ, x,F0. This is not straightforward. One of the challenges
of working with the CH factor model is that the cross-sectional dimension of vector of returns

xt can be rather large. Nevertheless, enormous computational savings can be made by realizing

that there are k stochastic processes which suffice to represent {xt} in the simulation steps. The
intuition for this result can be obtained from standard likelihood theory of Gaussian regressions.

In particular, if we think of the CHmodel as a heteroskedastic regression of xit on the �regressors�

c0i with regression parameters rft and residual variances γi, then the generalised least squares

estimator of rft will provide a set of sufficient statistics.2 Hence, deÞning the matrix

P =
¡
C 0Γ−1C

¢−1
C 0Γ−1,

2These factor mimicking portfolios are usually known as Barlett scores in the multivariate statistical analysis
literature (see e.g. Sentana (2002)).
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then the �sufficient statistics� are {Pxt}, which we will write as {yt}. Note that

yt = Λtτ + ft + ηt where ηt = Pwt, andµ
ft
ηt

¶
|Fy,ft−1 ∼ N

·µ
0
0

¶
,

µ
Λt 0
0 Υ

¶¸
, Υ =

¡
C 0Γ−1C

¢−1
.

Therefore, the key remaining issue in MCMC is to how deal with this �compressed� model

structure. In particular, we focus on simulating from

p(rf |x,ϕ,F0) = p(rf |y,ϕ,F0)
∝ p(y|rf ,ϕ)p(rf |ϕ,F0).

For simplicity of exposition we will assume a single factor hereinafter, as the extension to

the multifactor case is tedious but straightforward. Thus the model we study will be

yt = rft + ηt rft = λtτ + ft ft = εtλ
1/2
t .

For the same reason, we will assume a Generalised Quadratic ARCH structure of orders 1,1 - or

GQARCH(1,1) for short - for the conditional variance

λt = θ + βλt−1 + α (ft−1 − µ)2 , (10)

where the dynamic asymmetry parameter µ is usually different from 0, allowing for the possibility

of a leverage effect (see Sentana (1995)). The special case of µ = 0 gives the GARCH(1,1) model,

while the additional assumption of β = 0 gives ARCH(1). Given that this process is covariance

stationary if α+β < 1, we can deÞne the innovations� unconditional signal to noise ratio as λ/υ,

where

λ =
θ + αµ2

1− β − α ,

υ =
¡
c0Γ−1c

¢−1
.

In section 3 we study different ways of generating non-independent draws from the conditional

distribution of rf |y,ϕ. As we shall see, the value of λ/υ will be one of the most important
determinants of the performance of the different simulators.

2.4.2 Scaling and related parametrisation issues

We have assumed so far that the scale indeterminacy of the common factors is resolved by

restricting their unconditional variance to be 1. In particular, in the single factor GQARCH(1,1)

model we can set

θ = (1− β − α)− αµ2,

11



which implies λ = 1 and θ ≥ 0 as long as β + α < 1 and µ is not too large. More speciÞcally,
we use the re-parametrisation α + β = ψ1 = sin2(ψ∗1) and β(α + β)−1 = ψ2 = sin2(ψ∗2) to

guarantee 0 ≤ β ≤ 1 − α ≤ 1. In addition, we set µ = [(1− α− β)/α]1/2 sin(ψ∗3) to ensure
θ ≥ 0 and λ = 1. However, the performance of the Gibbs sampler can be very sensitive to

the chosen normalisation (for further discussion, see Pitt and Shephard (1999a) and section 4

below). For that reason, we have also considered an alternative asymmetric scaling assumption

that sets the value of a particular factor loading, c1 say, to 1, and unrestricts the unconditional

variance parameter λ (as in Aguilar and West (2000), Chib, Nardari, and Shephard (2001),

or Pitt and Shephard (1999b)).3 Although such a scaling assumption does not constitute a

proper, symmetric normalisation, it solves the sign indeterminacy that would otherwise exist

(cf. Geweke and Zhou (1996)). Once the drawings from this alternative parametrisation have

been obtained, though, we transform them back to make them comparable with the earlier one.

From a practical point of view, Þxing one factor loading to 1 introduces two main differences.

First, the log-likelihood function of the limiting factor representing portfolio rft will depend on

an extra parameter, λ. And second, the posterior distributions of the factor loading parameter

and idiosyncratic variance corresponding to the Þrst element of the vector xt have to be modiÞed

appropriately to reßect the fact that the prior distribution of c1 is now degenerate. It turns out,

though, that in the single factor case all we have to do is to apply standard Bayesian inference

procedures to the variance of (x1t − rft) under the assumption that its mean is zero. It is also
straightforward to modify the EM algorithm so as to impose the restriction c(n+1)1 = 1 for all

n. First, note that (9) is unaffected. Second, since Γ is diagonal, expression (8) remains valid

for rows 2, . . . , N . Finally, the unconditional variance parameter λ will enter in (7) multiplying

λt(δ).

3 MCMC simulation of {ft} | {yt} ,ϕ
It is clear from the discussion in the previous section that the key econometric issue in carrying

out likelihood-based inference for CH factor models and other latent generalised ARCH struc-

tures is to be able to effectively simulate from {ft} | {yt} ,ϕ, where the relationship between the
latent stochastic process {ft} and the observed process {yt} is described by a dynamic model of
the form:

yt = rft + ηt, rft = λtτ + ft, ft = εtλ
1/2
t ,

λt = θ + βλt−1 + α (ft−1 − µ)2 ,
3 In this respect, note that while γi, α and β are invariant to scale, the same is not true of ci, µ or τ , which

must be multiplied, divided and multiplied by
√
λ, respectively.
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where µ
ηt
εt

¶
i.i.d.∼ N

½µ
0
0

¶
,

µ
υ 0
0 1

¶¾
.

This section deals with this issue in detail, and represents the main contribution of the paper.

The Þrst subsection discusses a simple but computationally expensive approach, which is in fact

infeasible in many cases of practical interest, while the other subsections develop computationally

feasible algorithms.4

3.1 A simple but extremely expensive O(T 2) algorithm

The task is to simulate from p(f |y,ϕ). Now sampling from

p(f |y,ϕ) ∝ p(y|f, γ)p(f |ϕ)

=
TY
t=1

½
1√
υ
φ

µ
yt − τλt − ft√

υ

¶¾
·
½
1√
λt
φ

µ
ft√
λt

¶¾
,

is entirely feasible by using a Metropolis-Hastings algorithm. In particular, let us write the rth

iteration of a Markov chain as fr. Then we could generate a potential new value of the Markov

chain fnew by proposing it from some candidate density g(f |fr, y,ϕ), which we accept with
probability

min

·
1,
p(fnew|y,ϕ)
p(f r|y,ϕ)

g(f r|fnew, y,ϕ)
g(fnew|fr, y,ϕ)

¸
.

If it is accepted then we set fr+1 = fnew, otherwise we keep fr+1 = f r. This procedure is

iterated and will generate an ergodic Markov chain with equilibrium distribution p(f |y,ϕ) so
long as g(f |f r, y,ϕ) > 0 for all f (e.g. Tierney (1994) and Chib (2001)).

There are many potential candidate choices for g(f |f r, y,ϕ). For instance, we could use
an independent wholemove sampler which proposes f from the Kalman Þlter approximation to

p(f |y,ϕ) put forward by Harvey, Ruiz, and Sentana (1992) (HRS). Unfortunately, the dimen-
sion of the state vector f is so huge that it is likely that each choice will be rather poor, unless,

of course, the correct distribution p(f |y,ϕ) were known, as in the conditionally homoskedastic
Gaussian case discussed by Geweke and Zhou (1996). As a result, the MCMC algorithm will

hardly ever accept a proposal, generating unacceptably large dependence in the chain. A con-

ventional MCMC strategy for overcoming this problem is to update only a subset of the required

elements. In particular, following a suggestion made by Shephard (1996), Wei (2002) updates
4 In this respect, it is important to note that for a given set of parameter values and initial conditions, it is

generally simpler to simulate ft for t = 1, . . . , T and then compute rft = λtτ+ft, than to simulate rf directly. For
that reason, we concentrate on simulators of ft given y and ϕ. Importantly, we systematically set the mean and
variance of the initial factor f1 to their unconditional values of 0 and λ respectively. Given that λt is a sufficient
statistic for Ff

t−1, and that λ is a deterministic function of ϕ, F0 can thus be eliminated from the conditioning
set without information loss.
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only one ft at a time, leaving all the others unchanged. In this context, if we propose from

g(ft|fr\t, y,ϕ), where f r\t = {f r+11 , . . . , fr+1t−1 , f
r
t+1, . . . , f

r
T}, the acceptance rate will be

min

"
1,
p(fnewt |fr\t, y,ϕ)
p(f rt |f r\t, y,ϕ)

g(f rt |f r\t, y,ϕ)
g(fnewt |f r\t, y,ϕ)

#
,

since

p(f |y,ϕ) = p ¡f\t|y,ϕ¢ p(ft|f\t, y,ϕ).
The proposal is now much better as it is only in a single dimension, but unfortunately, each

time we consider modifying a single factor we have to compute

p(fnewt |f r\t, y,ϕ)
p(frt |fr\t, y,ϕ)

=
p(yt|fnewt ,λnew,tt ,ϕ)p(fnewt |λnew,tt ,ϕ)

p(yt|frt ,λr,tt ,ϕ)p(f rt |λr,tt ,ϕ)
TY

s=t+1

p(ys|frs ,λnew,ts ,ϕ)p(f rs |λnew,ts ,ϕ)

p(ys|frs ,λr,ts ,ϕ)p(f rs |λr,ts ,ϕ)
,

where for s = t+ 1, . . . , T

λnew,ts = V (fs|frs−1, f rs−2, . . . , frt+1, fnewt , f r+1t−1 , . . . , f
r+1
1 ),

λr,ts = V (fs|frs−1, f rs−2, . . . , frt+1, frt , f r+1t−1 , . . . , f
r+1
1 ),

while λnew,tt = λr,tt . So even if we propose f
new
t from the conditional distribution of ft given

yt, λ
r,t
t and ϕ to simplify the acceptance rate slightly, unless β = 0, or indeed α = 0, doing so

requires O(T − t) univariate normal density evaluations in view of the recursive nature of the
GQARCH process in (10), which makes λnew,ts to depend upon fnewt for s = t + 1, . . . , T . As

this cost would have to be borne T times in an MCMC sweep through all the elements of ft,

this algorithm is O(T 2) for each value of ϕ, and so is generally impractical for the sort of large

values of T characteristic of most Þnancial time series applications.

3.2 Sampling the factors in O(T ) operations

3.2.1 Markov transformations of GQARCH

An alternative approach is to work with a transformation of the latent GQARCH process that

becomes Þrst-order Markov. The simplest way to achieve this is to augment the factor with the

conditional variance λt+1, and then sample the joint Markov process {ft,λt+1} given y and ϕ.
To see the validity of this argument, we recall that

λt+1 = θ + βλt + α (ft − µ)2 ,
ft =

p
λtεt.

Notice that the time-shift between both variables is only apparent, as ft,λt+1 ∈ Fft . A tech-

nical difficulty with this approach is that the joint distribution of {ft,λt+1} is singular, which
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makes sampling slightly complicated as various Jacobian terms enter the acceptance rate of the

Metropolis-Hastings algorithm (see Spivak (1965, chap. 5)). This type of algorithm is discussed

in some detail in section 3.2.3. But an equivalent approach which avoids the singularities is to

map from the factors {ft} into a different set of Markov variables: the conditional variances
λt+1 and their �signs� st, where

st = sign (ft − µ) ,

so that st = ±1 with probability 1, because st = 0 is a zero-probability event. Although the

resulting transformation involves working with a partly discrete distribution, the mapping is

one-to-one with no singularities. SpeciÞcally, if we know {λt+1} and ϕ (and consequently λ),
then we know the value of

(ft − µ)2 = λt+1 − θ − βλt
α

, ∀t ≥ 1.

Hence the additional knowledge of the signs of (ft − µ) would reveal the entire path of {ft} so
long as λ1(= λ in our case) is known. Given that this second transformation also shares the

Markov nature of {ft,λt+1}, we can easily design MCMC algorithms which sample {st,λt+1},
and hence the factors, in O(T ) ßops.

In this respect, it is worth mentioning that as we ßip from st = −1 to st = 1, we do not alter
the volatility process (implying the signs do not cause the volatility process), but we do alter

ft. As a result, we can Þrst simulate the Markovian process {λt+1} disregarding the values of
{st}, and then we go on to simulate {st} from its distribution conditional on {λt+1}, {yt} and
ϕ. Note that the second step is effectively a Gibbs sampling scheme whose acceptance rate is

always 1. In addition, conditional on {λt+1}, {yt} and ϕ, the elements of {st} are independent,
which further simpliÞes the calculations.

In the next subsections, we shall discuss in detail simulators of {λt+1}, but Þrst, we shall
brießy explain how to simulate st. To obtain the required conditionally Bernoulli distribution,

it is helpful to establish some notation. Let us write

ct+1 =
1√

ωt|yt,λt

"
φ

Ã
µ+ dt − ft|yt,λt√

ωt|yt,λt

!
+ φ

Ã
µ− dt − ft|yt,λt√

ωt|yt,λt

!#
,

dt =

r
λt+1 − θ − βλt

α
,

ft|yt,λt = E (ft|yt,λt,ϕ) = λt
λt + υ

(yt − τλt) =
ωt|yt,λt
υ

(yt − τλt),

and

ωt|yt,λt = V (ft|yt,λt,ϕ) =
¡
λ−1t + υ−1

¢−1
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Since, conditional on {λt+1}, the probability that st is 1 is the same as the probability that
ft = dt + µ, then

p (st = 1| {λt+1} , {yt} ,ϕ,λ1) = p (ft = dt + µ|λt+1,λt, yt,ϕ) = 1

ct
√
ωt|yt,λt

φ

Ã
µ+ dt − ft|yt,λt√

ωt|yt,λt

!
.

This is extremely cheap to compute. Further, in the special case of µ = 0, we can exploit the

fact that

p(ft|λt, yt,ϕ) = p(yt|ft,λt,ϕ)p(ft|λt,ϕ)
p(yt|λt,ϕ) =

1√
ωt|yt,λt

φ

Ã
ft − ft|yt,λt√
ωt|yt,λt

!
, (11)

and the symmetry of the normal distribution to prove that we can alternatively draw st = +1

with probability
φ
£
υ−1/2 (yt − τλt − dt)

¤
φ
£
υ−1/2 (yt − τλt − dt)

¤
+ φ

£
υ−1/2 (yt − τλt + dt)

¤
without affecting the results.

3.2.2 Single move samplers of {λt+1}

In this section, we concentrate on updating one single λt+1 at a time, leaving all the others

unchanged. In general, if we draw λnewt+1 from an arbitrary proposal density g(λt+1|λr\t+1, y,ϕ),
where λr\t+1 = {λr+12 , . . . ,λr+1t ,λrt+2, . . . ,λ

r
T+1}, then the MH acceptance rate would be

min

"
1,
p(λnewt+1 |λr\t+1, y,ϕ)
p(λrt+1|λr\t+1, y,ϕ)

g(λrt+1|λr\t+1, y,ϕ)
g(λnewt+1 |λr\t+1, y,ϕ)

#
.

Such an acceptance rate turns out to be exactly the same as in the popular discrete time version

of the log-normal stochastic volatility process (see e.g. Kim, Shephard, and Chib (1998)). In

fact, the similarity is not merely coincidental, because latent GARCH models are effectively

parameter driven processes, as opposed to standard GARCH models, which are observation

driven ones (see Andersen (1994) and Shephard (1996)). Nevertheless, there are important

differences in the distribution of λt between the two cases. In particular, since we are dealing

with volatilities as opposed to their logs, the range of values of λt+1 compatible with λt+2 and

λt in the GQARCH case is bounded from above and below to preserve positivity. SpeciÞcally,

the lower limit corresponds to dt = 0, and the upper limit to dt+1 = 0. Therefore, in practice it

makes sense to make the proposal to obey the support of the density. The crucial thing, though,

is that we can quickly evaluate

p(λt+1|λ\t+1, y,ϕ) ∝ p(λt+2|λt+1,ϕ)p(λt+1|λt,ϕ)p(yt+1|λt+2,λt+1,ϕ)p(yt|λt+1,λt,ϕ),
λt+1 ∈ [θ + βλt,β

−1 (λt+2 − θ)],
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where p(yt|λt+1,λt,ϕ) is a mixture of two univariate normal densities, and p(λt+1|λt,ϕ) is a
scaled non-central chi-squared distribution with a single degree of freedom.5

There are many ways in which we can carry out MCMC on p(λt+1|λ\t+1, y,ϕ). At Þrst sight,
it is tempting to simplify the acceptance rate by proposing λt+1 from p(λt+1|λt,ϕ), appropriately
truncated from above, since the lower truncation will be automatically satisÞed. However, such a

proposal would be ignoring the information in yt+1. Our experience suggests that the conditional

distribution of λt+1 can be radically modiÞed by incorporating the information in the observed

series, especially when the signal to noise ratio λ/υ is high. For that reason, we can achieve

a substantially higher acceptance rate by proposing λt+1 from p(λt+1|yt,λt,ϕ). A numerically
efficient way to simulate λt+1 from this distribution is to sample an underlying Gaussian random

variable fnewt ∼ N(ft|yt,λt ,ωt|yt,λt) doubly truncated so that it remains within the interval µ± lt,
where

lt =

s
λt+2 − θ(1 + β)− β2λt

αβ
,

and then compute

λnewt+1 = θ + βλt + α (f
c
t − µ)2 .

Note that the truncation implicitly guarantees a real value for

dnewt+1 =

r
λt+2 − θ − βλnewt+1

α
,

which in turn implies that λnewt+1 lies within the acceptable bounds. Simulating from the truncated

normal distribution of ft (given yt, λt and ϕ) can be done by using a simple accept/reject

algorithm, or by exploiting the probability integral transform.6 In any case, since the conditional
5The density of a scaled non-central chi-squared variable z = σ (x+ µ)2, where x ∼ N(0, 1), is

pNC(z; δ,σ) =
1

2σ
exp

½
− (δ + z/σ)

2

¾³ z
σδ

´−1/4r2σ

πz
cosh(

p
δz/σ), z ≥ δ,

where δ = µ2 and 2 cosh(u) = exp(u)+ exp(−u). This result is due to Fisher (1928) and is discussed by Johnson,
Kotz, and Balakrishnan (1995, Ch. 29). In addition, if we wish to compute, Pr(z < c2) for c > 0, then we have

Pr
n
x ∈ (−c/σ1/2 − µ, c/σ1/2 − µ)

o
= Φ

³
c/σ1/2 − µ

´
−Φ

³
−c/σ1/2 − µ

´
.

6SpeciÞcally, we can compute the value of the conditionally Gaussian distribution function at both truncation
limits, draw a uniform random number in the intermediate range, and use the inverse Gaussian distribution
function to obtain the truncated normal variate. If the degree of truncation is small, the extra computations
involved may make this method unnecesarily slow. On the other hand, a simple accept/reject method can be
very inefficient if the double truncation of fnewt is in the tails of its conditional distribution. Therefore, it may
worth assessing the degree of truncation Þrst, and depending on its tightness, choose one simulation method or
the other.

17



density of fnewt will be given by the following expression

p(fnewt ||fnewt − µ| ≤ lt, yt,λt,ϕ) = 1√
ωt|yt,λt

φ

Ã
fnewt − ft|yt,λt√

ωt|yt,λt

!

×
"
Φ

Ã
µ+ lt − ft|yt,λt√

ωt|yt,λt

!
−Φ

Ã
µ− lt − ft|yt,λt√

ωt|yt,λt

!#−1
,

where Φ(·) is the cumulative distribution function of a standard normal, the density of λnewt+1 will

be

p(λnewt+1

¯̄
λnewt+1 ∈ [θ + βλt,β−1 (λt+2 − θ)], yt,λt,ϕ)

=
cnewt

|2αdnewt | ×
"
Φ

Ã
µ+ lt − ft|yt,λt√

ωt|yt,λt

!
−Φ

Ã
µ− lt − ft|yt,λt√

ωt|yt,λt

!#−1
by virtue of the usual change of variable formula. But since the degree of truncation is the same

for old and new, the acceptance probability will be the minimum of 1 and

p(yt+1|λnewt+1 )

p(yt+1|λrt+1)
p(λt+2|yt+1,λnewt+1 )

p(λt+2|yt+1,λrt+1)
=
p(yt+1|λnewt+1 )

p(yt+1|λrt+1)
· c
new
t+1

crt+1
· d

r
t+1

dnewt+1

,

where we have again used (11).

Although the sign of (fnewt − µ) does not affect the acceptance rate, note that if we retain
fnewt , then we will not need to simulate st at a later stage. Taken together this implies that we

sweep through all T conditional variances, signs and factors in O(T ) operations. In addition, if

β = 0, the upper truncation disappears, and this sampler coincides with the single move sampler

over {ft} described in section 3.1.

3.2.3 Equivalent double-move samplers for {ft,λt+1}

In fact, it is possible to arrive at the same sampling procedure by jointly sampling (ft, λt+1, ft+1,

λt+2) conditional on f r\t,t+1, λ
r
\t+1,t+2, y and ϕ, where f

r
\t,t+1 = {fr+11 , . . . , fr+1t−1 , f

r
t+2, . . . , f

r
T}

and λr\t+1,t+2 = {λr+12 , . . . ,λr+1t ,λrt+3, . . . ,λ
r
T+1}. To see why, note that given that λt+2 will

be fully revealed by λt+3 and ft+2 when β 6= 0, the candidate random vector must satisfy

λnewt+2 = λ
r
t+2. In addition, since

λt+2 = θ(1 + β) + α(ft+1 − µ)2 + αβ(ft − µ)2 + β2λt,

any admissible proposal for ft and ft+1 must actually lie on the two-dimensional ellipse

β(ft − µ)2 + (ft+1 − µ)2 = [λt+2 − θ(1 + β)− β2λt]/α (12)

The implication is twofold. First, any candidate ft must be restricted to the interval [µ−lt, µ+lt].
Second, for any given ft then we can solve out ft+1 = µ± dt+1.
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Let g(ft+1, ft) denote any proposed distribution whose drawings (fnewt+1 , f
new
t ) satisfy equation

(12) - otherwise, we simply discard them. Then, the acceptance rate will be the minimum of 1

and7

p(yt|fnewt ,λt)p(yt+1|fnewt+1 ,λ
new
t+1 )p(f

new
t+1 ,λt+2|λnewt+1 )p(f

new
t ,λnewt+1 |λrt )

p(yt|frt ,λt)p(yt+1|f rt+1,λrt+1)p(f rt+1,λt+2|λrt+1)p(frt ,λrt+1|λrt )
· g(frt+1, f

r
t )

g(fnewt+1 , f
new
t )

.

If we then simulate fnewt from its distribution given yt, λr+1t , and ϕ, but taking into account

the truncation bounds on ft, it is clear that associated with this proposal, there is a single

candidate λnewt+1 , and two possible values for ft+1 on the ellipse. If we Þnally choose between

those two values by means of the conditional distribution of ft+1 given yt+1, λnewt+1 and ϕ, we can

prove that we obtain exactly the same acceptance rate as before. The only difference is that in

this case we actually propose a value for ft+1, while in the previous subsection we only implicitly

proposed a value for |ft+1 − µ|.
In terms of an algorithm then this works as follows:

0. Set t = 1.

1. Current values are f rt , f
r
t+1.

2. Sample fnewt ∼ N(ft|yt,λt ,ωt|yt,λt) doubly truncated so that it remains within the interval
µ± lt, which implies the permissible values of fnewt+1 are µ± dnewt+1 .

3. Draw

fnewt+1 =

½
µ+ dnewt+1 , with probability P (ft+1 = µ+ d

new
t+1 |λt+2,λnewt+1 , yt+1)

µ− dnewt+1 , with probability 1− P (ft+1 = µ+ dnewt+1 |λt+2,λnewt+1 , yt+1)

and accept proposal
©
fnewt , fnewt+1

ª
with probability

min

½
1,
p(yt+1|λnewt+1 )

p(yt+1|λrt+1)
p(λt+2|yt+1,λnewt+1 )

p(λt+2|yt+1,λrt+1)
¾

4. Increase t by 1 and Goto 2.

3.2.4 Block-samplers

Unfortunately, the degree of truncation of the distribution of λt+1 conditional with λt+2 and

λt can be severe. For that reason, it is convenient to consider double, triple, and in general

h-tuple move samplers for λt+1. In addition, the mixing properties of the resulting chain are
7As we mentioned before, a technical complication with this approach is that since ft+1, ft satisfy (12), we have

to be particularly careful in evaluating g(ft+1, ft) as a function of the marginal density of ft and the conditional
probability of ft+1 given ft, because there are extra Jacobian terms involved, which reßect the differentials along
the ellipse (12) at the points fnewt+1 , f

new
t and frt+1, f

r
t . For analogous reasons, we also have to be careful in

evaluating p(ft,λt+1|λt), since ft,λt+1 lie on a parabola.
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usually much better as a result (see e.g. Kim, Shephard, and Chib (1998) and Liu, Wong,

and Kong (1994)). For h = 2 for instance, a numerically efficient procedure is to simulate

fnewt ∼ N(ft|yt,λt ,ωt|yt,λt), but taking into account that

|ft − µ| ≤
s
λt+3 − θ(1 + β + β2)− β3λt

αβ2
.

Associated with this proposal, there is a candidate λnewt+1 , which we can combine with yt+1 to

simulate fnewt , but taking into account again that

|ft+1 − µ| ≤
s
λt+3 − θ(1 + β)− β2λnewt+1

αβ
,

which in turn implies a candidate λnewt+2 that is fully compatible with λt+3. Tedious algebraic

manipulations show that for a given set of parameter values ϕ, the acceptance probability will

be the minimum of 1 and

p(λt+3|yt+2,λnewt+2 ) · p(λt+2 ≤ (λt+3 − θ)/β|yt+1,λnewt+1 ) · p(yt+2|λnewt+2 ) · p(yt+1|λnewt+1 )

p(λt+3|yt+2,λrt+2) · p(λt+2 ≤ (λt+3 − θ)|yt+1,λrt+1) · p(yt+2|λrt+2) · p(yt+1|λrt+1)
,

where the terms p(λt+2 ≤ (λt+3 − θ)/β|yt+1,λt+1) reßect the degree of truncation of the con-
ditional distribution of λt+2. Again, since we can use fnewt+1 and fnewt to sample st+1 and st,

we can reinterpret this double move sampler over λt+2,λt+1 as a triple move sampler over

ft, ft+1, ft+2,λt+1,λt+2 and λt+3, which effectively becomes a sampler of ft, ft+1, ft+2 on the

tridimensional ellipsoid:

β2(ft − µ)2 + β(ft+1 − µ)2 + (ft+2 − µ)2 = [λt+3 − θ(1 + β + β2)− β3λt]/α.

As we increase h, this procedure converges to the following independent wholemove sampler:

starting with λ1 = λ, we recursively propose fnewt from the unrestricted univariate normal

density N(ft|yt,λnewt
,ωt|yt,λnewt

), where λnewt = V (ft|fnew1 , . . . , fnewt−1 ). The acceptance probability

in this case is the minimum of 1 and QT
t=1 p(yt|λnewt ,ϕ)QT
t=1 p(yt|λrt ,ϕ)

.

Since this T -tuple method suffers from the problem discussed at the beginning of section 3.1, it

is clear that as far the choice of h is concerned, there is an implicit trade-off between alleviating

the degree of truncation, and increasing the dimension of the proposal. For that reason, our

preferred method is a mixed procedure, in which the value of h is randomly chosen from a

uniform distribution in the range 1 ≤ h ≤ H ≤ T .
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3.3 A comparison of the different simulators

In order to compare the performance of the different MCMC samplers introduced in the previous

subsections, we have generated realizations of size T = 240 of the GLS factor representing

portfolios that would correspond to the trivariate single factor models analyzed by Monte Carlo

methods in Sentana and Fiorentini (2001). These authors set λ = 1, c=(1, 1, 1)0, and Γ=γI3, with

γ = 2 or 1/2, corresponding to low and high signal to noise ratios.8 They also set (α,β) = (.2, .6)

or (.4, .4), to represent persistent but smooth GARCH behaviour, and persistent but volatile

conditional variances respectively (γ = 1/2,α = .2,β = .6 matches roughly what we tend to see

in the empirical literature for monthly data). In addition, for each of the four combinations, we

have considered not only µ = 0, but also µ = 1/2, to allow for leverage effects in the conditional

variance of the factors. Finally, we have interacted the resulting eight combinations with τ = 0

and τ = 1/2, the second of which reßects the fact that conditioning information often plays a

crucial role in deriving asset risk premia (see King, Sentana, and Wadhwani (1994)).

We Þrst examine how much the variance of the sample mean of ft across 500,000 MCMC

simulations increases due to the autocorrelation in the drawings relative to an ideal but infea-

sible independent sampler. We do so by estimating the autocorrelation generating function at

the origin for observations t = 80 and t = 160 using standard spectral density estimation tech-

niques (see e.g. Priestley (1981)). In addition, we record the mean acceptance probabilities over

all observations, as well as the average CPU time needed to simulate one complete drawing of

f |y,ϕ. We analyze four different samplers: inefficient, single move (h = 1), block move (h = 9),
and random length block move (h ∼ U(1, 19)). The behaviour of the different simulators, which
is summarised in Table 1 and Figures 1a-1b, is very much as one would expect. The computa-

tionally inefficient sampler shows relatively little serial correlation, and a high acceptance rate

for each individual t, but it is extremely time consuming to compute even though our sample

size is fairly small. In fact, when we increase T from 240 to 2, 400 and 24, 000, the average CPU

time increases by a factor of 100 and 10,000, respectively, as opposed to 10 and 100 for the other

three simulators, which makes it impossible to implement in most cases of practical interest.

On the other hand, the single and 9-tuple move samplers over λt+1 produce results much faster,

with a reasonably high acceptance rate but more autocorrelation in the drawings. As expected,

the best overall performance seems to be achieved by the simulator with random block size.

Importantly, the distributions of ft generated by the four samplers are indistinguishable from
8More speciÞcally, when τ = 0 the coefficient of determination in the regression of yt on ft will be R2 = 3/5 or

6/7 for υ = 2/3 or 1/6 respectively. Note that R2 = λ/(λ+ υ) is a monotonic transformation of the innovations�
signal to noise ratio λ/υ.
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one another.9

We also assess the quality of the approximate Kalman Þlter procedure put forward by HRS

by comparing the Gaussian distributions for ft given data and parameters that their method

implies with the ones we have obtained by our exact MCMC approach. As can be seen from Table

2 and Figures 2a-2h, the results crucially depend on the parameter values. In particular, the

approximate Kalman Þlter provides more reliable results the closer the unconditional distribution

of the latent factors is to the normal (α = .2, β = .6), and the larger the signal to noise

ratio (γ = 1/2). In contrast, the degree of approximation is signiÞcantly worse when there

is substantial variation in the conditional variance of the factors (α = .4, β = .4), and the

signal to noise ratio is smaller (γ = 2). Nevertheless, while increasing the variability of the

conditional variances keeping everything else constant directly leads to a deterioration of the

HRS approximation, ceteris paribus increases in the idiosyncratic variance parameter γ mostly

seem to magnify the existing differences in proportion to the reciprocal of the root mean square

error ω1/2t|x . Increases in the price of risk parameter τ also affect negatively the quality of the

approximation. In contrast, variations in the dynamic asymmetry parameter µ (not reported

here) have a rather small effect, with an ambiguous sign. Similar results are obtained when

we compare the distributions of the risk rewarded factors, rft. Therefore, given that in many

empirical applications it is likely that the signal to noise ratio will be high, and the conditional

variance a fairly smooth process, we would expect the HRS simulators to be fairly accurate in

practice for monthly data, but probably less so at higher frequencies.

4 Empirical Application to UK Sectorial Stock Returns

In this section, we investigate the practical performance of the procedures discussed above. To do

so, we revisit the empirical application in Sentana (1995), who analyzed the relationship between

Þrst and second conditional moments for monthly excess stock returns on 26 U.K. sectors for

the period 1971:2 to 1990:10 (237 observations). On the basis of the approximate Kalman Þlter-

based Gaussian pseudo-likelihood function, he estimated a conditionally heteroskedastic in mean

latent factor model, in which the common unobservable factor follows a GQARCH (1,1) process.

Therefore, the total number of parameters is 2× 26 + 4 = 56.
9For the sake of brevity, we only present results for the parameter conÞguration α = .2, β = .6, π = .5, τ = .5

and γ = 2. However, the relative performance of the simulators is not affected much by changes in the parameter
values. Their mean acceptance rates, though, are sensitive to the parameter values, being uniformly higher the
higher the signal to noise ratio, and the lower the variability in λt. But while they are lower for τ = .5 than for
τ = 0, they are hardly sensitive to µ.
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4.1 Scaling choice

Before applying either the classical or Bayesian estimation procedures, though, we must decide

between the alternative normalisations c1 = 1 and λ = 1 discussed in section 2. In this respect,

our results clearly favour the former over the latter, which is line with the theoretical and

empirical Þndings obtained by Pitt and Shephard (1999a) for univariate stochastic volatility

models. In particular, if we set c1 = 1 for estimation purposes, but then re-scale the results

so that λ = 1, we obtain signiÞcantly less serial correlation in the MCMC drawings from the

posterior distributions of the factor loadings than if we directly set λ = 1 (see Table 3). For

that reason, in what follows the reported results correspond to the Þrst approach.

4.2 Simulated EM algorithm

Although in this example we knew the approximate ML estimates produced by the HRS method,

in practice no such initial values are necessarily available. For that reason, we decided to set all

parameters to plausible but arbitrary starting values. SpeciÞcally, we set all factor loadings to 1,

all idiosyncratic variances to 0.1, the ARCH and GARCH parameters to 0.2 and 0.6 respectively,

and both the price of risk, τ , and the dynamic asymmetry parameter, µ, to 0. Importantly, the

numerical maximisation of (7) with respect to the underlying parameters ψ∗1, ψ
∗
2, ψ

∗
3, τ and λ

described in section 2.4.2 was performed every single iteration.10

After just a few iterations, the EM algorithm takes the parameters fairly close to their ML

estimates. However, it slows down considerably in the neighbourhood of the optimum. For that

reason, we decided to stop it after 1250 iterations, at which point the Euclidean norm of the

changes in the parameter vector between iterations was around 10−4. As can be seen from Tables

4 and 5, the differences with respect to the approximate ML estimates are fairly small, which is

not surprising in view of the results in section 3.3 because the signal to noise ratio is around 100.

The most noticeable discrepancies appear in the conditional variance parameters α, β and µ,

the price of risk coefficient τ , and the Þrst factor loading c1, which remember coincides with the

unconditional standard deviation of the common factor in the normalisation used for estimation

purposes. In this respect, it is important to note that the discrepancies in the remaining factor

loadings are simply the result of the fact that the sample average of the estimated λt�s obtained

by the HRS method is approximately 5% smaller than the average factor variance generated

by our proposed MCMC procedure. If we look at the ratio of any two factor loading estimates

(excluding the Þrst), the differences are as small as in the idiosyncratic variances.
10Note that in order to maximise (7) at each EM iteration, we must maintain the latest simulated values of rf

constant. We must also maintain the underlying random drawings constant across EM iterations in oder to allow
the algorithm to converge (cf. Nielsen (2000)).
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4.3 SimulatedBayesian inference

Since the model for rft|δ corresponds to a univariate GQARCH in mean process, whose log-

likelihood function can be easily evaluated, we use Metropolis-Hastings MCMC methods to

simulate from the posterior distribution of δ given the �observed� rft.11 In particular, we

employed the Adaptive Rejection Metropolis Sampling (ARMS) algorithm of Gilks, Best, and

Tan (1995), and Gilks, Neal, Best, and Tan (1997).12 In this case, we use independent beta

priors on ψ1(= α+β) and ψ2(= β/(α+β)), with mean 3/4 and standard deviation .1443, which

are centred around the typical values estimated by previous studies with monthly return data.

We also use a shifted and scaled independent beta prior on ψ∗3, so that it ßuctuates between

±π/2 with zero mean and standard deviation π/4. Please note that such a distribution implies
that we do not take any ex-ante view on the sign of the dynamic asymmetry effect. Similarly, we

assume a normal prior for the price of risk coefficient τ , with zero mean and standard deviation

.1, which is also neutral about its possible sign. Finally, we use a standard inverted gamma prior

for the unconditional variance of the common factor, λ, with mean 1 and variance 1/2.

As for the static variance parameters, given that we chose to normalise with c1 = 1 for

estimation purposes, and that previous studies suggest that the dispersion of the factor load-

ings across different industrial sectors during our sample period is likely to be small, we chose

informative normal priors for the remaining factor loadings, with unit mean and variance γi/5.

In addition, we speciÞed the usual marginal inverted gamma prior for γi (i = 1, . . . , 26), with

mean and standard deviation equal to 1/4. If we recall the prior distribution for λ, such values

imply that the theoretical R2 in the regression of each sectorial return on the common factor

would be on average approximately equal to .8, which seems plausible for the sectorial return

data that we are analyzing.

If we use the posterior means of the parameters reported in Tables 4 and 5 as point estimates,

our results suggests that the Bayesian and classical procedures are largely in agreement. Again,

the discrepancies in the second and successive factor loadings are almost entirely driven by the

differences in the sample means of the estimated conditional variances of the factors across the

three methods. The most noticeable difference, in fact, corresponds to the dynamic asymmetry

parameter µ, which is the least precisely estimated. Nevertheless, our Þndings conÞrm the

main result in Sentana (1995), namely that there appears to be a signiÞcant leverage effect in
11 In this respect, it is important to note that we must recompute λt every time the conditional variance

parameters are updated, before proceeding to the next round of simulation of the common factors given observed
data and parameters (cf. Nakatsuma (2000)).
12We also considered the procedure suggested by Chib and Greenberg (1994), which makes proposals from

a multivariate normal prior on ψ∗1, ψ
∗
2, ψ

∗
3, τ and λ, with mean given by their ML estimators obtained on the

current rf , and variance given by the estimated inverse information matrix. But since both pocedures yield almost
identical results, we only report the ARMS ones.
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the sectorial returns through the common factor. They also conÞrm that the price of risk is

estimated as being positive.

We have also performed an analysis of the sensitivities of the results in Tables 4 and 5 to our

choice of priors. In particular, we have halved and doubled the dispersion of the prior distribu-

tions of the factor loadings, idiosyncratic variances, price of risk coefficient τ , and unconditional

variance of the common factor, λ, around their respective means. As for the three parameters

with beta priors, we increased and reduced their prior variances as much as possible, but without

changing the mean or the concavity of the distribution. SpeciÞcally, we could only increase the

prior variances of ψ1 and ψ2 by approximately 50% each, and the prior variance of ψ∗3 by 30%.

The results, which are reported in Figures 3a-d and 4a-4d, indicate that the choice of priors does

not unduly inßuence our conclusions. In particular, the positivity of the dynamic asymmetry

parameter µ and the price of risk coefficient τ seems to be robust.

5 Conclusions

We derive exact likelihood-based estimators of latent variable models in which the variances of

the unobservable processes are functions of their past values. Since in general the expression for

the likelihood function is unknown, we resort to simulation methods. In this context, we show

that MCMC likelihood-based estimation of latent GARCH models can in fact be handled by

means of feasible O(T ) algorithms. Although we have developed our results within the context of

a CH factor model in which the common factors follow the Quadratic GARCH in mean process

introduced by Sentana (1995), it applies much more widely.

Our samplers of the latent variables given data and parameters involve three main steps.

First, we perform a signiÞcant dimensionality reduction through the use of the so-called GLS

factor scores. Second, we augment the state vector to achieve a Þrst-order Markovian process.

And third, we discuss alternative ways of dealing with the dynamic singularity implicit in the

GARCH model that results from the fact that there is only one shock driving innovations to the

level of the process and its variance. In this sense, the situation is radically different from the

one existing in stochastic volatility models.

A numerical comparison of our proposed procedures suggests that a random size block sam-

pler yields the best trade-off between serial dependence of the drawings, and speed. It also shows

that the Kalman Þlter-based Gaussian approximation introduced by HRS produces reasonable

results when the signal to noise ratio is high, and the unconditional distribution of the common

factor is not too far away from the normal, but that it may lead to substantial differences in

other cases likely to arise in situations where high frequency data is used.
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On the basis of our samplers, we can then use several recent proposals from the simulation-

based direct inference literature to estimate the model parameters. In particular, from a classical

perspective, we consider both a simulated EM algorithm, and the related method of simulated

scores. We also develop simulation-based Bayesian inference procedures by combining within a

Gibbs sampler the MCMC simulators with the posterior distributions of the parameters given

observed series and latent variables. In this respect, we Þnd that the parametrisations induced

by two alternative scaling assumptions can have a substantial effect on the efficiency of the Gibbs

sampler.

In order to investigate the practical performance of our proposed procedures, we fully re-

assess the empirical application in Sentana (1995), who analyzed the relationship between Þrst

and second conditional moments for monthly excess stock returns on 26 U.K. sectors for the

period 1971 to 1990. Given the extremely high signal to noise ratio, our exact-likelihood based

results are not very different from his. In particular, we conÞrm his main Þndings that there

is a dynamic leverage effect in sectorial returns through the common factor, and that the price

of risk coefficient is positive. Nevertheless, we also show that there are some differences in the

estimation of the conditional variance parameters.

Given the quantity and variety of empirically interesting situations in which models with

latent GARCH variables arise, we hope that our study will encourage others to estimate them

on a Þrmer theoretical basis.
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Table 1

Comparison between alternative MCMC simulators of f |y,ϕ

MAP IR Time
f80 f160 T = 240 T = 2, 400 T = 24, 000

Inefficient .901 1.42 3.39 7.116 692.94 71,761.1
h = 1 .690 8.10 68.76 1 10.09 100.4
h = 9 .518 19.01 16.77 .942 9.56 95.7
random h .602 3.42 7.91 .895 9.13 89.9

Notes: MAP denotes mean acceptance probability over the whole sample, while IR refers to

the inefficiency ratio of the MCMC drawings of the latent factor at observations 80 and 160.

Finally, Time refers to the total CPU time taken to simulate one complete drawing of f |y,ϕ
relative to the h = 1, T = 240 simulator.

Parameter values: α = .2,β = .6, µ = .5, τ = .5, γ = 2.
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Table 2

Comparison between the simulated distribution generated by our proposed MCMC method,

and the Kalman-Þlter based Gaussian approximation. The focus of attention is on the latent

factor at observations 80 and 160 for different parameter conÞgurations.

f80 f160
MCMC HRS MCMC HRS

α = .4,β = .4, µ = .5, τ = .5, γ = 2

mean .818 .896 -2.450 -2.009
variance .412 .471 .465 .471
skewness -.139 0 -.075 0
kurtosis 3.079 3 2.813 3

α = .2,β = .6, µ = .5, τ = .5, γ = 2

mean .973 1.006 -2.066 -1.883
variance .426 .444 .434 .432
skewness -.048 0 -.117 0
kurtosis 3.031 3 3.118 3

α = .2,β = .6, µ = .5, τ = .5, γ = .5

mean .884 .850 -2.349 -2.304
variance .156 .149 .144 .143
skewness -.041 0 -.062 0
kurtosis 2.989 3 2.976 3

α = .2,β = .6, µ = .5, τ = 0, γ = .5

mean .911 .901 -2.206 -2.178
variance .148 .148 .135 .143
skewness -.011 0 -.018 0
kurtosis 3.006 3 3.009 3

Note: HRS denotes the Harvey, Ruiz, and Sentana (1992) approximation.
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Table 3

Inefficiency ratios for posterior drawings of static variance parameters under alternative scaling

assumptions

Parameter c1 c26 γ1 γ26
IR (c1 = 1) 27.11 5.52 1.42 1.79
IR (λ = 1) 210.20 280.43 1.32 1.31
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Table 4

Estimates of static variance parameters

Factor Loadings Idiosyncratic Variances
Sector HRS SEM Bayesian HRS SEM Bayesian

PM PSD PM PSD
1 .805 .836 .852 .092 .349 .349 .348 .033
2 .764 .784 .806 .090 .198 .198 .199 .019
3 .969 .994 1.016 .110 .123 .123 .127 .013
4 .740 .759 .782 .087 .182 .182 .183 .017
5 1.027 1.053 1.075 .117 .182 .182 .185 .018
6 .816 .837 .860 .096 .230 .230 .230 .022
7 .816 .837 .859 .093 .115 .115 .118 .012
8 .771 .791 .813 .088 .091 .091 .094 .009
9 .812 .833 .856 .095 .219 .219 .220 .021
10 .826 .847 .870 .101 .410 .410 .407 .038
11 .801 .822 .844 .095 .258 .258 .258 .024
12 .876 .899 .921 .102 .255 .255 .255 .024
13 .797 .818 .840 .092 .149 .149 .151 .015
14 .884 .907 .930 .100 .118 .118 .121 .012
15 .970 .996 1.018 .113 .329 .329 .329 .031
16 .810 .832 .854 .095 .220 .220 .221 .021
17 .835 .857 .879 .095 .096 .096 .099 .010
18 .767 .787 .810 .092 .285 .285 .284 .027
19 .783 .804 .827 .094 .280 .280 .280 .026
20 .834 .855 .878 .098 .269 .269 .268 .025
21 .644 .661 .683 .085 .526 .526 .523 .048
22 .829 .850 .873 .095 .131 .131 .134 .013
23 .862 .885 .907 .103 .365 .365 .363 .034
24 .656 .673 .696 .080 .254 .254 .255 .024
25 .872 .894 .917 .101 .197 .197 .198 .019
26 .808 .830 .852 .095 .211 .211 .211 .020

Notes: HRS denotes the Harvey, Ruiz, and Sentana (1992) approximation, SEM simulated

EM, while PM and PSD represent the posterior mean and standard deviation respectively.
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Table 5

Estimates of dynamic variance parameters

Parameter HRS SEM Bayesian
PM PSD

α .143 .159 .173 .064
β .639 .591 .627 .080
µ .892 .944 .785 .400
τ .145 .142 .140 .061

Notes: HRS denotes the Harvey, Ruiz, and Sentana (1992) approximation, SEM simulated

EM, while PM and PSD represent the posterior mean and standard deviation respectively.
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Figure 1: Comparison of the alternative simulators of the latent factors given observables and

parameters by means of the autocorrelation functions (ACF) of the drawings.
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Figure 2: Comparison of the p.d.f. of the simulated latent factors given observables and

parameters with its Kalman Þlter-based Gaussian approximation for different parameter

conÞgurations.
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Figure 3: Sensitivity of the simulated posterior distributions of the static variance parameters

c1, γ1, c26, and γ26 to increases and decreases in the variance of the prior distributions.
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Figure 4: Sensitivity of the simulated posterior distributions of the dynamic variance para-

meters α, β, µ, and τ to increases and decreases in the variance of the prior distributions.
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