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Abstract

In this paper we develop a time series model which allows long-term disequilibriums to
have epochs of non-stationarity, giving the impression that long term relationships between
economic variables have temporarily broken down, before they endogenously collapse back
towards their long term relationship. This autoregressive root model is shown to be ergodic
and covariance stationary under some rather general conditions. We study how this model
can be estimated and tested, developing appropriate asymptotic theory for this task. Finally
we apply the model to assess the purchasing power parity relationship.

Keywords: Cointegration; Equilibrium correction model; GARCH; Hidden Markov model; Like-
lihood; Regime switching; STAR model; Stochastic break; Stochastic unit root; Switching re-
gression; Real Exchange Rate; PPP; Unit root hypothesis.

1 Introduction

1.1 The model

Much of macroeconomic theory is concerned with long term relationships between variables.

Examples of this include the quantity theory of money and purchasing power parity (PPP).

When analysing non-stationary processes, modern econometrics formalises this using the concept

of cointegration as in Engle and Granger (1987). Cointegration allows only short term deviations

from long term relationships by imposing stationarity on the transitory disequilibriums and the

present paper follows that classic cointegration tradition. However, we introduce a non-linear

time series model which allow the disequilibriums to have epochs of true non-stationarity, giving

the impression that the long term relationships have temporarily broken down, before they

endogenously collapse back towards their long term relationship. The collapses regularise the

periods of non-stationarity forcing the disequilibrium to be globally stationary. This type of
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behaviour is reflected in an economic theory model developed by Bec, Salem, and Carrasco

(2001) where it is shown how trading costs in a two-country stochastic general equilibrium

model create a region of no trade where the PPP does not hold, while stationarity holds outside

this region.

We formalise the modelling of the time series of transitory disequilibriums yt by a combination

of non-stationarity and collapse. Our analysis will be based around a first order autoregression

whose root switches endogenously and stochastically between being exactly unity and being

stable. This can be thought of as a softening of threshold autoregressive models, which are often

used in economics, where the autoregressive parameter is a deterministic function of past data.

We call this model an autoregressive conditional root (ACR) model.

In its simplest form corresponding to an autoregression of order one, the ACR model is given

by the equation

yt = ρstyt−1 + εt, t = 1, 2, . . . , T, (1)

where st is binary, ρ is a real number and εt is an i.i.d.N(0,σ2) sequence. Alternatively this

model can be reparametrized as an equilibrium correction model (ECM)

∆yt = stπyt−1 + εt, (2)

where ∆ is the difference operator.

With Ft = σ (yt, yt−1, . . . , y0) the information up to time t we write the prediction probability

pt = Pr(st = 1|Ft−1, εt) = p(yt−1, . . . , yt−p), (3)

where the notation p(yt−1, . . . , yt−p) reflects that pt depends only on yt−1, . . . , yt−p. Note that

by assumption st and εt are independent conditionally on Ft−1. We will allow p(·) to be un-

constrained except that p(·) is measurable with respect to Ft−1 and is bounded awap from

zero.

We show that an initial distribution exists such that yt is strictly stationary and possess all of

its moments provided ρ ∈ (−1, 1) or π ∈ (−2, 0) in (1) and (2) respectively. No other condition

is needed apart from the mentioned boundedness of the probability p(·). This means that the

model can have epochs of non-stationarity, but is globally stable. Estimation is straightforward

as for instance the likelihood function can be computed via a prediction decomposition. We

argue that inference is regular within the parameter region just outline above while we briefly

mention aspects of inference in the case of yt being a random walk for the entire period.

In this model if the regime st is zero the process behaves locally like a random walk, while the

case st = 1 implies it is locally like an autoregression of order one. Note that in the ACR model
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the dynamics of the regime are determined entirely endogenously similar to threshold models

with an endogenous threshold variable as applied in Enders and Granger (1998). However,

now the threshold is actually stochastic rather than deterministic. In a recent paper, written

independently and concurrently from our paper, Gourieroux and Robert (2001) have studied in

detail the above model in the case where there is switching between white noise and a random

walk (ie. the case of the above model when ρ = 0) with pt = p(yt−1). Their wide ranging paper,

motivated by value-at-risk considerations in financial economics, allows a flexible distribution on

εt and studies specifically the tail behaviour of the marginal distribution of yt, the distribution

of epochs of non-stationary behaviour and shows that yt is geometrically ergodic. Our analysis

will be complementary, focusing on estimation and asymptotic inference for use in empirical

work.

The following simple examples allows us to gain a better understanding of the behaviour of

this process. The first is the Markov case which is written in terms of the logistic transform

λt = log {pt/ (1 − pt)} (4)

= λ(yt−1) (5)

= α+ βy2
t−1, (6)

with α and β being freely varying reals. So long as β is non-negative and α and β are finite, λt

will be bounded and so the process yt in (1) will be stationary as demonstrated below.

Example 1 We give in Figure 1 a sample path from the simplest Markov ACR processes. In

the Markov model (6) the parameter values will be taken to be α = −100, β = 1.1, ρ = 0.9,

and σ = 0.8. This process delivers a jagged realisations for pt, which never spend substantial

consecutive periods close to one. This is enough however to for the yt series to be stable, never

going much above ten in absolute value.

1.2 Related models

The ACR model seems new. However, it is related to a number of well known models. Apart

from the already mentioned threshold class of models, perhaps the closest is the stochastic

root model introduced by Granger and Swanson (1997) and further studied by Leybourne,

McCabe, and Mills (1996). These papers use (1) but place an exogenous process on the root

— allowing stationary, unit and explosive values. An example of this is where the log of the

root is specified as being a Gaussian autoregression. These models have many virtues, but the

likelihood function cannot usually be computed explicitly. Further, they do not have the clear

cut epoch interpretation of the ACR process.
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Figure 1: Simulations from the Markov model, with corresponding conditional probabilisties pt

given below. Code: regime sim.ox.

In the Markov switching literature in economics, following Hamilton (1989), the regime is

regarded as a latent variable and follows a Markov process governed by Pr(st|st−1). It is usually

employed to shift the intercept in a time series model, but it has been used to make the variance

to change (Hamilton and Susmel (1994)) delivering a simple stochastic volatility process and

even to make the root of an autoregression move between a unit root and a stationary root

(Karlsen and Tjøstheim (1990)) or an explosive root (Hall, Psaradakis, and Sola (1999)). In

this framework the regimes are an exogenous process with the observable yt not feeding back

into the regime. The likelihood function for this model can be computed via a relatively simple

filtering argument so long as the model has an autoregressive structure of finite order. This

model can be generalised in a number of ways, allowing explanatory variables to influence the

probabilities which govern the switching between the regimes. Two papers which carries this

out in some detail in the context of macroeconomics are Diebold, Lee, and Weinbach (1994) and

Durland and McCurdy (1994). In statistics and engineering the above model is often called the

hidden Markov model (HMM) and is a special case of a state space or parameter driven model

(e.g. Harvey (1989) and Cox (1981)). An early important reference in the HMM literature is

Baum, Petrie, Soules, and Weiss (1970).
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A related approach is the switching regression idea introduced into economics by Goldfeld

and Quandt (1973). In our context this would build a model for the regime st in (1) which

can depend upon explanatory variables and lagged values of the yt process. A simple example

of this is given by defining λt = α + βyt−1 in (6). This is outside our structure as it does not

bound λt away from minus infinity and so there is a possibility that the process will indeed be

absorbed into the random walk state. Hence this model has an entirely different interpretation

than the ACR model. The time series setup of λt = α+βyt−1 was explicitly studied recently by

Wong and Li (2001), although its stochastic properties were not derived. Of course this can be

generalised to allow λt to depend upon many lags of yt or other potentially helpful explanatory

variables.

The conditional expectation of equilibrium correction form of the ACR model is

E(∆yt|yt−1) = πptyt−1.

Suppose we again define λt = α+ βy2
t−1 then

E(∆yt|yt−1) = π
exp

(
α+ βy2

t−1

)
1 + exp

(
α+ βy2

t−1

)yt−1.

If we reinvent this model as

∆yt = π
exp

(
α+ βy2

t−1

)
1 + exp

(
α+ βy2

t−1

)yt−1 + εt,

then this is a simple a smooth transition autoregression (see Luukkonen, Saikkonen, and Teräsvirta

(1988), Tong (1990) and Granger and Teräsvirta (1993, Section 4.2)). Hence the ACR model

has many of the features of STAR models. However, STAR models do not have epochs of

nonstationary behaviour.

Finally, recently Engle and Smith (1999) have proposed an interesting stochastic break model

which has some features of the above setup. They write, in their simplest model

∆yt = qtεt, εt|Ft−1 ∼ NID(0, σ2)

and qt is a deterministic function of εt, bounded below by zero and above by one. Further,

∂qt/∂ |εt| is assumed to be finite and strictly negative. A simple example of this is where

qt =
ε2t

γ + ε2t
, γ > 0.

This model has shocks which are all permanent but of varying magnitude. It is quite different

from the model we desire, which moves between stationary and non-stationary behaviour, but

is globally stationary. Our model is more in the stochastic root tradition.
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1.3 Outline of the paper

This paper has three other main sections. In Section 2 we derive the stochastic properties of the

ACR model, deriving the conditions needed for the model to be strictly stationary. In Section 3

the likelihood function for the model is derived and we give conditions under which the maximum

likelihood estimator is asymptotically normally distributed. We also discuss the use of various

testing procedures to look at special cases of the model structure. In Section 4 of the paper we

illustrate the model on simulated and real data. The paper has two other sections. Section

5 dicsusses possible extensions and finally Section 6 concludes the paper, while the Appendix

proves theorems stated in the paper.

2 Stability of the ACR(p) process

In this section we formalise the discussion given above and study some stochastic properties of

the ACR process. In the first stage of this discussion we will deal with models with the prediction

probability pt is allowed to depend flexibly on p lagged values of the process yt−1, ..., yt−p.

We maintain the process as given by (1), (3) and (4) but assume that λt is some measurable

function of yt−1,yt−2,...,yt−p:

λt = λ (yt−1, yt−2, ..., yt−p) . (7)

This is denoted a p-th order autoregressive conditional root, or ACR(p), process. The case of

p = 1 is methodologically interesting for then the yt process is a Markov chain while for the

general case (yt, ..., yt−p) is a Markov chain.

Throughout we will assume λ satisfies:

Assumption 2. λ (·) is continuous in x and there exists a constant γ > 0, such that λ (x) ≥
−γ > −∞ for all x ∈ Rp.

It is important to remark that we could have equivalently written the ACR model directly

in terms of pt, flexibly parameterising it in terms of yt−1,yt−2,...,yt−p. The use of the logistic

transformation is not constraining, while Assumption 2 would imply that we are assuming that

the pt is always bounded away from zero. This is important, for it means that whatever state the

process is in, there is always a non-negative probability that we will enter the locally stationary

regime. For the specific case in (6) the assumption would imply that β should be non-negative.

Finally, we should note that the assumption does not bound λ(·) from above, so we are not

removing the possibility that the process will spend its entire time in the st = 1 regime.

For the ACR(p) process the following holds:
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Theorem 1 Under Assumption 2 then yt in (1) with λt given by (7) is geometrically ergodic

and has moments of any order if

|ρ| = |π + 1| < 1.

In particular, yt is stationary and β−mixing with exponential decay if initiated from the invariant
distribution.

The proof is based on Markov chain theory and uses the concept of a drift function. It is located

in the appendix.

The theorem has a number of important features. The theorem requires only very weak

assumptions on λ (·) to continue to hold. This is sufficient to imply the process is stationary

and ergodic. Further, all the moments of the process will exist which in particular implies,

for example, that the process is also covariance stationary. Geometric ergodicity also has the

implication that the law of large numbers as well as a central limit theorem holds irrespectively

of the choice of initial distribution of the process, see Meyn and Tweedie (1993). These features

are used in the next section where inference is considered.

Note that the tail properties of an ACR(1) type process is studied in Gourieroux and Robert

(2001) in the case where ρ = 0, λt = λ (yt−1) and The εt is an i.i.d. sequence with exponential

type distributions.

3 Inference

3.1 Likelihood based estimation and testing

In this section we consider asymptotic inference in the basic ACR(1) model as defined by (1),

(3) and (4). The focus is on hypotheses which leave the epochs or mixing structure intact. In

addition, we briefly mention inference for hypotheses, such as the unit root hypothesis, which

does not allow epochs of either mean-reversion or random-walk type behaviour.

3.2 Distribution of the ML estimator

The specific prediction probability pt(·) of interest here is given by

pt = exp λt

1+exp λt
, λt = α+ βy2

t−1 (8)

in which case the parameters of the model ACR(1) are given by

θ = (π, α, β, σ2)′

where σ2 > 0 and π, α and β are freely varying. Conditional on the initial observation y0 the

log-likelihood function to be maximized is found from
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log fθ(y1, ..., yT |y0) =
T∑

t=1

log fθ(yt|yt−1) =
T∑

t=1

lt (θ) (9)

with

lt (θ) = log
{
ptφ

π
t + (1 − pt)φ0

t

}
.

Here the convenient notation

φπ
t = 1√

σ2
exp

{
− 1

2σ2 (∆yt − πyt−1)2
}

(10)

has been used for the Gaussian density apart from a constant. The likelihood function in (9) is

numerically maximised to obtain the maximum likelihood estimator, θ̂. Full expressions for the

score and observed information are given in equations (18) and (22) of Appendix B, respectively.

In the following it is shown that provided π is in the interval ] − 2, 0[ or equivalently ρ in

(1) is smaller than one in absolute value, then θ̂ is (locally) consistent, asymptotically Gaussian

and likelihood ratio tests for simple hypotheses on θ, θ = θ0 are asymptotically χ2 distributed.

More precisely the following Theorem holds:

Theorem 2 With the ACR(1) model defined by equations (1), (2), (3) and (4), then if π ∈
] − 2, 0[ (|ρ| < 1) there exists with probability tending to one as T tends to infinity a sequence of

θ̂ =
(
π̂, α̂, β̂, σ̂2

)
which satisfies the score equation,

∂lt
∂θ

(θ)
∣∣∣∣
θ=θ̂

= 0

and is consistent,

θ̂
P→ θ.

Furthermore,
√
T

(
θ̂ − θ

)
D→ N (0,Σ)

with

Σ = E

(
∂lt
∂θ

(θ)
∂lt
∂θ′

(θ)
)

= −E
(
∂2�t(θ)
∂θ∂θ′

)
> 0.

Finally, likelihood ratio tests for simple hypotheses on θ are asymptotically χ2 distributed.

The proof is given in Appendix B and is an application of Billingsley (1961) Theorems 2.1

and 2.2 which hold under regularity Conditions 1.1. and 1.2 therein. However, while regularity

Condition 1.1 remain unaltered the Condition 1.2 is modified based on Markov chain theory

for geometrically ergodic processes. The regularity conditions which are used are stated as

Conditions 5 and 6 respectively in Appendix B. Note also that Σ is consistently estimated by

the observed information, see also Lemma 5 in Appendix B.
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3.3 Testing for no epochs

Our main concern has been so far the class of hypotheses which leave the epochs or mixing

structure intact under the null. However, two alternative kinds of null hypotheses are also of

interest when analyzing data such as the PPP data briefly considered. The first is the null of

yt being a random walk process without any epochs of stationarity or mean-reverting behaviour

and a test for this hypothesis may be viewed as a misspecification test, see also Bec, Salem,

and Carrasco (2001). The second hypothesis is the null of yt being a Gaussian autoregressive

process, i.e. in this case a process without any epochs of random walk type behaviour. The null

of a random walk is implied by the simple restriction,

π = 0.

On the other hand the null of an autoregressive process can be characterized in the reparametrized

ACR(1) model with γ := exp (−α) as

γ = 0.

However, even though both hypotheses are simple, in both cases the parameter β vanish under

the null (as do α for the random walk hypothesis). Therefore the usual asymptotic expansion

of the likelihood ratio statistic in terms of score and information is problematic similar to the

situation discussed in Davies (1987) and Andrews and Ploberger (1994).

4 Empirical illustrations

In this section we will illustrate our analysis by applying our ACR model to purchasing power

parity data analyzed in Bec, Salem, and Carrasco (2001) by a threshold autoregressive model.

To carry this through we need to be able to numerically maximise the likelihood for our model

and we develop a simple algorithm for this in this subsection, before going on to look at a class

of conveniently parameterised models for λt. We explain why and discuss if our model has a

better and a more meaningful fit than conventional linear models to the PPP series between the

French Franc and Italian Lira. The final subsection will give other examples, based on a number

of other series.

4.1 Numerical optimisation of the likelihood

In order to carry out likelihood inference we have to numerically maximise the likelihood func-

tion. Experimenting has lead us to favour maximising the likelihood function via the EM algo-

rithm (e.g. Dempster, Laird, and Rubin (1977) and Ruud (1991)). This regards the indicators

s1, ..., sn as missing data.
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More precisely for the EM algorithm consider the likelihood function for s = (s1, ..., sn) and

y = (y1, ..., yT ) conditional on y0 as given by

log f(y, s) = −T
2

log σ2 − 1
2σ2

T∑
t=1

(∆yt − πstyt−1)2

+st log
{

pt

(1 − pt)

}
+ log(1 − pt).

see also (9). Taking conditional expectation of this, conditioning on FT = σ (yT , yT−1, . . . , y0)

and using

E (st|FT ) = p∗t and E
(
s2t |FT

)
= p∗t ,

see Lemma 4 and equation (19), we immediately find

E {log f(y, s)|FT } = −T
2

log σ2 − 1
2σ2

T∑
t=1

{
(∆yt)

2 − 2πp∗t yt−1∆yt + π2p∗t y
2
t−1

}
+

T∑
t=1

[
p∗t log

{
pt

(1 − pt)

}
+ log(1 − pt)

]
.

We maximise this with respect to the parameters.

Some of it is is in close form:

σ̂2 =
1
T

T∑
t=1

{
(∆yt)

2 − 2π̂p∗t yt−1∆yt + π̂2p∗t y
2
t−1

}
,

and

π̂ =
T∑

t=1

p∗t yt−1∆yt

/
T∑

t=1

p∗t y
2
t−1 .

The other parameters in the model effect only

L =
T∑

t=1

[
p∗t log

{
pt

(1 − pt)

}
+ log(1 − pt)

]
(11)

=
T∑

t=1

[p∗tλt − log {1 + exp (λt)}] . (12)

This has to be optimised numerically. In cases where λt is a linear function of past data, such

as in the pure autoregressive scheme

λt = α+ βg(yt−1),

where g(x) = x2 or some other known function, then (12) takes on the form of a logistic regression

for the “observations” p∗t . In this case this part of the likelihood function is concave, a result

which extends to any dynamic model where λt is linear in functions of lagged data. For more

general model structures this is not the case which implies the M-step in the EM algorithm has

to be carried out using automatic numerical optimisation algorithms.
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4.2 Finite memory, smooth models

As well as fitting simple Markov type models for λt, we would like to fit models with smoother

evolutions for the λt, depending not just on a last few values of the lagged dependent variable.

Following the work on GARCH and ACD models by Bollerslev (1986) and Engle and Russell

(1998), it would seem sensible to allow structures with, for example,

λt = α+ βg(yt−1) + γλt−1, 0 ≤ λ < 1, (13)

and β > 0. Although this is straightforward to fit, our theory does not directly cover this case

for we have only proved stationarity of the model when

λt = λ(yt−1, ..., yt−p),

for any integer p ≥ 1, a finite memory process. We have not been able to prove the stationarity

result covers the (13) model, although our firm conjecture is that it holds so long as 0 ≤ γ < 1.

As a result of this deficiency we use finite memory models of the form

λt = α+ β

p∑
j=1

γj−1g(yt−j), 0 ≤ λ < 1.

These models certainly fall inside the compass of the theory that we have proved. Of course we

can rewrite this model in the computationally convenient form

λt = α+ βy2
t−1 + β

p−1∑
j=1

γjg(yt−j−1)

= α+ βy2
t−1 + β

p∑
j=1

γjg(yt−j−1) − βγp−1g(yt−p)

= α(1 − γ) + β
{
g(yt−1) − γp−1g(yt−p)

}
+ αγ + β

p∑
j=1

γjg(yt−j−1)

= α(1 − γ) + β
{
g(yt−1) − γp−1g(yt−p)

}
+ γλt−1.

In practice it will be necessary to set λ0, as well as y0, y−1, ... in order to use the above

recursion. In our paper we have used the ad hoc choice of putting λ0 = log {0.1/ (1 − 0.1)}
with yj = 0 for j = 0,−1,−2, .... This means that the process is started with only a moderate

probability of having a stationary root.

4.3 Purchasing power parity example

Of the vast amount of real exchange rates analyzed in Bec, Salem, and Carrasco (2001) we

focus here on one real exchange rate which is the French Franc versus Italian Lira for the period
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α β γ ρ σ log-L
-14.96 33.43 0.4056 0.7360 0.01367 920.88
-16.41 34.49 0.7278 0.01364 919.45

0.9872 0.01538 896.61
1 0.01533 895.58

-3.262 9.352 0.9788 0.01473 906.28
-5.605 1.440 0.01470 902.16

Table 1: Fit of ACR models, using a logistic model λt = α(1− γ) +β
{
g(yt−1) − γp−1g(yt−p)

}
+

γλt−1, to the ZFRIT series. Here p = 100. Results below the line enforced the autoregressive root
to be exactly zero, so the series moves between a unit root and white noise. Results were not sensi-
tive to the power used on the absolute value. Model was initialised with λ1 = log {0.1/ (1 − 0.1)}.

September 1973 to September 2000. The monthly data are from Datastream and are based on

nominal exhange rates which are monthly averages and on consumer price indeces.

Figure 2 displays the real exchange rate series. It indicates a series which moves around zero,

with large movements away from zero seemingly being forced eventually back to zero. There

are three periods when the series became large in absolute value: around 1976, 1993 and 1995

observations. Table 1 shows the results from fitting a Gaussian random walk and a Gaussian

autoregressive model to the data. The difference in the fit is modest but important in terms

of the log-likelihoods. We experimented with different functional forms for λ(yt−1), studying

the empirical impact of changing the power we raise the absolute value of the lagged variable.

However, throughout the impact of varying this effect was small.

The fitted ACR models have very much smaller values of ρ. This means that the PPP series

is stationary: it behaves like a random walk but when it gets a long way from equilibrium the

series will quickly collapse backwards corresponding to the small value of ρ. This is much in

accordance with the results for this series by the threshold AR modelling in Bec, Salem, and

Carrasco (2001) where the null of non-stationarity is strongly rejected based on formal testing.

The pure autoregressive model has a different meaning. It has a high, but less than one,

value for ρ. This means at all points the PPP has a small tendency to go back to zero, but this

is uniform over its sample space. Hence we would not expect, for example, the AR model to

have residuals which are large when the absolute value of the process is large.

Table 1 has two other main results. First the extension to allow for smoother effects in the

probability of collapse is not vital here, with a small increase in the likelihood function. Second,

the special case of when ρ is set to zero appears not to be supported by the data. This simple

model is better than a simple autoregression, however the series seems to prefer a fast but not

instant collapse in the series.
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Figure 2: Top graph is the ZFRIT series against time. Bottom time is the implied pt =
exp(λt)/ {1 + exp(λt)}, the conditional probability of a stationary regime. Code: regime.ox.

Figure 2 plots pt against t for the fitted ACR model, given by the first line of Table 1. The fit

of the model given in the second line is very similar. The important point is that the probability

of moving into the stationary regime is highest around the 1976 observation, when the original

series is furthest from zero. It has three other important times when the probability is away

from zero. However, none of them reach the level of the earlier peak. Interesting when we force

ρ = 0 the corresponding figure, not reported here, is very different for now if just has a single

spike around the 1995 observation. This is because this model structure makes the series return

to zero instantly, and this feature seems to occur only once in the data.

The top right graph of Figure 3 repeats the picture of the conditional probability pt against

t. In addition Figure 3 shows the standardised residuals from the fitted ACR model and the

corresponding residuals from the standard autoregressive models. The standard residuals from

the AR model are computed as

uAR
t =

yt − ρ̂yt−1

σ̂
,

where ρ̂ and σ̂ denote the maximum likelihood estimators of the AR parameters. Computing

equivalent residuals for the ACR model is not so straightforward. We have chosen to compute
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Figure 3: Top graph left is pt. Top right are the residuals from the ACR model. Bottom left are
the residuals from the AR model. Bottom right is the difference between the residuals from the
ACR and AR models. Code: regime.ox.

first the one-step ahead prediction distribution functions

vt = ptΦ
(
yt − ρ̃yt−1

σ̃

)
+ (1 − pt) Φ

(
yt − yt−1

σ̃

)
,

where ρ̃ and σ̃ denote the maximum likelihood estimators of the ACR parameters, while Φ is the

distribution function of the standard normal. These {vt} are approximately standard uniform

and i.i.d. if the model is true, ignoring the effect of estimating the parameters. These have

been frequently used to define residuals in non-linear time series econometric models (see, for

example, Shephard (1994) and Kim, Shephard, and Chib (1998)). We then map these to our

residuals for the ACR model by the inverse distribution function

uACR
t = Φ−1(vt).

The other three graphs are time series plots of the residuals from the models. The plots

have been drawn so that the plots are all on the same scale, with the top left picture being the

residuals from the ACR model. This shows large failures in the models with residuals which are

even five standard deviations from zero. The bottom left picture shows similar effects from the
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autoregression, although the number of poor residuals is actually higher. The bottom right plot

shows the differences in the residuals, it shows that the difference in fit between the two models

is focused on 3 periods.

Both models have a large negative residual in 1976, but the ACR model has taken out a

number of positive residuals which follow the unwinding of the large negative equilibrium. That

is the fitted AR process regards the sharp move back towards zero in 1976 as surprising, while the

ACR model did not. Neither is able to predict the preceding sharp move away from equilibrium,

hence the shared negative residuals.

The next difference between the two fitted models occur in 1993 when the ACR model has

smaller negative residuals. This is the flip side of the above discussion. Now the PPP relationship

was misbalanced the other way and the ACR process correctly allowed for a rapid decline in

the PPP series, while this was outside the scope of the AR model. The third large discrepancy

repeats the 1976 episode in 1995.

Overall the ACR model has only improved upon the AR model in a modest way, really fitting

three occurrences in the PPP series. However, the model seems to allow the model to accord

more closely with what we would expect: When the adjustment back to equilibrium happens

then it is likely to happen quickly.

5 Potential extensions

5.1 ACR based cointegration models

At the start of this paper we motivated the development of the ACR model as a way to formalise

the idea that a long term equilibrium or cointegration between variables breaks down yielding a

disequilibrium which is a random walk. As the size of the equilibrium grows so the chance the

long-term relationship reasserts itself increases. Thus in the very long-term the disequilibrium

is stationary.

A generalization of the univariate model to the multivariate case would furthermore allow

for analysis of not only the real exchange rate, but also potentially include, say, money and

bonds markets and in particular interst rate parities — see Taylor (1995) for an overview and

Frydman and Goldberg (2002) for a recent discussion with non-linear type dynamics.

In econometrics already there exists a substantial literature on cointegration models where

the cointegrating relationships change through time. These are usually phrased in terms of

threshold models and leading references include Enders and Granger (1998), Tsay (1989) and

Tsay (1998).

To encorporate the ACR kind of dynamics in cointegration consider the first order m-
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dimensional canonical equilibrium correction model as given by

∆Yt = αβ′Yt−1 + εt,

where εt is an i.i.d.N(0,Ω) sequence. Leading references to this model structure include Hendry

(1995), Engle and Granger (1987) and Johansen (1995). The disequilibrium term β′Yt here

measures the size of the out of equilibrium.

Then suppose that the PPP, say, is given by the univariate process β′Yt. It immediately

follows that the vector ACR process (VACR)

∆Yt = αstβ
′Yt−1 + εt.

has some of the desired features: In particular, the process β′Yt,

∆β′Yt = st(β′α)β′Yt−1 + β′εt

is a univariate ACR process and so is strictly stationary using the results discussed above

provided |β′α| < 1. Likewise with α⊥ denoting the m ×m − 1 dimensional matrix of full rank

m− 1 and with α′α⊥ = 0,

∆α′
⊥Yt = α′

⊥εt

there are m − 1 common trends. In epochs where st is zero the series has no cointegrating

relationships even though they exist in the long run.

5.2 More general autoregressive models

Some natural extensions of the model are not discussed in the paper. First of all the first order

nature of the autoregression in (1) of the basic ACR model can be relaxed. By using higher

order autoregressions we produce AR(k)-ACR models. Of particular interest is parameterising

the AR part. We prefer to work with the equilibrium correction form used extensively in Hendry

(1995). In the AR(2) case the ACR model takes on the form

∆yt = stπyt−1 + γ∆yt−1 + εt

It seems natural to expect that provided the characteristic polynomial given by

A(z) = (1 − z) − πz − γ(1 − z)z

has roots with absolute value greater than one the yt process will be stationary. However, the

proof of this conjucture is challanging.

16



5.3 Conditional heteroskedasticity

ACR models could also be developed for models of conditional volatility, which is a commonly

used concept in financial econometrics. Consider first the traditional model with

yt|Ft−1 ∼ N(0, σ2
t ),

where the conditional variance follows a GARCH type recursion (see for a review Bollerslev,

Engle, and Nelson (1994)) such as

σ2
t = α0 + α1y

2
t−1 + α2σ

2
t−1

= α0 + α1y
2
t−1 + α2σ

2
t−1

= α0 + α1

(
y2

t−1 − σ2
t−1

)
+ ρσ2

t−1

where

ρ = α1 + α2.

Here α0, α1 and α2 are non-negative reals. Although this GARCH model is strictly stationary

even if ρ = 1, this unit root implies that the process is not covariance stationary and the mul-

tistep forecasts of volatility will trend upwards. This is often regarded as being unsatisfactory,

however empirically near unit root GARCH models are often estimated. See the discussion in,

for example, Bollerslev and Engle (1993) and Engle and Lee (1999).

We can use the ACR structure to construct a GARCH model which behaves mostly like

a unit root process, but which is regularised by periods of stationary GARCH. This is simply

achieved by writing

yt|Ft−1, st ∼ N(0, σ2
t )

and then we change the conditional variance into

σ2
t = α0 + {(α1 + α2)st − α2} y2

t−1 + α2σ
2
t−1.

Now when st = 0 the GARCH process has a unit root, while when st = 1 the process is locally

covariance stationary. The idea would be to allow, in the simplest case,

λt = α+ γσ2
t−1,

with γ being positive. This would mean that if the conditional variance becomes large the

process has a chance to switch to a covariance stationary process, while then the conditional

variance is low the process behaves like an integrated GARCH.
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6 Conclusions

This paper has proposed a new type of time series model, an autoregressive conditional root

model, which endogenously switches between being stationary and non-stationary. The periods

of stationarity regularise the overall properties of the model implying that although the process

has epochs of true non-stationarity overall the process is both strictly and covariance stationary.

This model was motivated by our desire to reflect the possibility that long-term economic

relationships between variables seem to sometimes breakdown over quite prolonged periods, but

when the disequilibrium becomes very large there is a tendency for the relationship to reassert

itself. This type of behaviour is quite often predicted from economic theory. Now we have a

rather flexible time series model which can test for this type of behaviour within the framework

of some established econometric theory.
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Appendix

The Appendix is divided into two parts: Appendix A is concerned with Markov chain theory

with focus on essentials for the proof of geometric ergodicity developed in Section 2. Appendix

B is about asymptotic inference in Markov chain models. This is mostly covered in Section 3 of

the paper. Both parts include a brief introduction to the relevant material as well as the proofs

needed in the paper.

A Drift Criteria from Markov Chain Theory

A.1 Introduction

To address geometric ergodicity and stataionarity Markov chain theory will be used. A brief

introduction is given to drift criteria from Markov chain theory on general state spaces, see also

Meyn and Tweedie (1993).

Let (Xt)t=0,1,2,... be a time homogenous Markov chain on (X , E) = (Rp,Bp) for some p and

where Bp is the Borel σ-algebra on R
p. The kth step transition probability for k ≥ 1 is denoted

P k (A|x), that is

P k (A|x) = P (Xk ∈ A|X0 = x) = P (Xm+k ∈ A|Xm = x) ,

x ∈ X and A ∈ E and all m ≥ 0. The following regularity condition will be imposed:

Assumption A.1. For some k ≥ 1, the kth step transition probability has a strictly positive

and continuous density with respect to the Lebesque measure, i.e.

P (Xt+k ∈ A|Xt = x) =
∫

A
f(y|x)dy

for all n and all x ∈ X.
A Markov process satisfying Assumption A.1, is by Lemma 1 below irreducible with respect

to the Lebesque measure µ, it is aperiodic and compact sets C ⊂ X are small. For a discussion

of these concepts see e.g. Chan and Tong (1985) and Meyn and Tweedie (1993).

Lemma 1 Under Assumption A.1 the homogenous Markov chain (Xt)t=0,1,.. on (Rp,Bp) is

µ-irreducible, aperiodic and compact sets C ⊂ R
p are small.

Proof of Lemma 1: First note that the n-step transition probabilities can be defined recursively

as follows, P 1 (A|x) = P (X1 ∈ A|X0 = x) and

Pn (A|x) =
∫
X
Pn−1 (A| y) dP 1 (y|x) for n ≥ 2, x ∈ X and A ∈ E
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with P the chains kernel. Assumption A.1, states that for some n = k,

P k (A|x) =
∫

A
f(y|x)dy,

with f positive and continuous. Then the lemma has three parts: irreducibility, aperiodicity

and smallness of compact sets.

(i): Irreducibility with respect to µ follows by Meyn and Tweedie (1993, Proposition 4.2.1

(ii)) if
∞∑

n=1

Pn (A|x) > 0 for all x ∈ Rp and A ∈ Bp with µ (A) > 0.

Note that,
∞∑

n=1

Pn (A|x) ≥ P k (A|x) =
∫

A
f (y|x) dy > 0

by Assumption A.1 and the result follows.

(ii): An irreducible chain is periodic if it has period d > 1 and aperiodic if it has period

d = 1. If it has period d > 1,then by Meyn and Tweedie (1993, Theorem 5.4.4)) there exists

disjoint sets D0, D1, ..., Dd−1 in Bk such that

P 1 (Di+1|x) = 1 for x ∈ Di and i = 0, 1, .., d− 1 ( mod d)

and furthermore

ψ

(
d⋃

i=1

Di−1

)c

= 0,

where ψ is a maximal irreducibility measure. Now, by Meyn and Tweedie (1993, Proposition

4.2.2 (ii)) the Lebesgue measure µ is absolutely continuous with respect to ψ and therefore also

µ

(
d⋃

i=1

Di−1

)c

= 0.

For this to hold at least one of the sets D1, say, must have µ(D1) > 0 which by Assumption A.1

again implies P k (D1|x) > 0 for all x ∈ R
k. But iterating (A.1) k times one gets for some j the

contradiction,

P k (D1|x) = 0 with x ∈
⋃
i�=j

Di.

Hence the chain has period d = 1 and is therefore aperiodic.

(iii): If C is a compact set, f (·|·) attains its minimum on C × C which is strictly positive

since f > 0. In other words,

f (y|x) ≥ δ

for some δ > 0 and (x, y) ∈ C × C. For any x ∈ C and any A ∈ Bk,

P k (A | x) ≥ P k (A ∩ C | x) =
∫

A∩C
f(y|x)dy ≥ δµ (A ∩ C) .
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Hence for all x ∈ C, P k (· | x) is minorized by µ (· ∩ C) and therefore C is by definition small,

cf. Meyn and Tweedie (1993, p. 106). �
To derive geometric ergodicity define a drift function, which is any function V : X → [1,∞]

not identically ∞. For a drift function V consider them-step conditional expectation Em {V (x)},

defined as

EmV (x) := E(V (Xt+m)|Xt = x).

Definition 1 A drift function V : X → [1,∞] satisfies an m-step geometric drift criterion

(relative to the given Markov chain) if there is a compact set C ⊂ X, and constants β ∈ (0, 1),

b > 0, such that

Em {V (x)} ≤ βV (x) + b 1C(x) for all x ∈ X .

An important consequence of the m-step geometric drift criterion is the following theorem

which can be obtained from Tjøstheim (1990) or Hansen and Rahbek (1998):

Theorem 3 Let (Xt)t=0,1,... be a time homogenous Markov chain on (X , E) which is irreducible,

aperiodic and for which compact sets are small. Then if it satisfies a m-step geometric drift

criterion for some drift function V , the process is geometrically ergodic and there exists an

invariant measure for the process. If Xt is initiated at the invariant distribution then the Markov

chain is stationary and ergodic. Finally EV (Xt) <∞.

Remark. If Xt satisfies the drift criterion, not only is the process stationary and ergodic, but

as V is integrable, any moments of Xt which are bounded by V exist.

Remark. Geometric ergodicity is defined by

lim
n→∞ γ

−n ‖Pn ( ·|x) − π‖ = 0

for all x, with ‖g‖ = sup
{∣∣∫X f(x)dg(x)

∣∣∣∣ |f(x)| ≤ 1
}

and 0 < γ < 1. Similarly, ergodicity by

limn→∞ ‖Pn ( ·|x) − π‖ = 0.

A.2 ACR(1): Geometric Ergodicity

As mentioned yt is a Markov chain with one-step transition density given by

f (yt| yt−1) = (1 − pt)φ (∆yt/σ) + ptφ ((∆yt − πyt−1) /σ)

Lemma 2 f(·|·) satisfies Assumption A.1 if λ (·) satisfies Assumption 2

Proof of Lemma 2: Using the notation px = exp(λ(x))
1+exp(λ(x)) the density can be written as

f (y|x) =
1√

2πσ2

[
px exp

{
−(y − x)2

2σ2

}
+ (1 − px) exp

{
−(y − ρx)2

2σ2

}]
which is positive and continuous as desired. �
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Theorem 4 Under Assumption 2 then yt is geometrically ergodic and has moments of any order

if |ρ| = |π + 1| < 1.

Proof of Theorem 4: Consider the drift function given by V (x) = 1+x2. Use iterated expectations

to see that

E
(
y2

t |yt−1 = x
)

= (1 − px)
(
x2 + σ2

)
+ px

(
σ2 + ρ2x2

)
= σ2 + x2β(λ(x))

where

β(λ(x)) = 1+ρ2 exp λ(x)
1+exp λ(x) .

Next, for there to be a constant β < 1, such that β (λ(x)) < β for all x it is necessary that ρ2 < 1.

As λ (x) is continuous in x and furthermore bounded below by −γ > −∞ define β = β (−γ)

which is smaller than one if ρ2 < 1. For moments of order 2k, simply use the drift function

Vk(x) = 1 + x2k. �

A.3 ACR(p): Geometric Ergodicity

Consider the process given by (1) but with

λt = λ (yt−1, .., yt−p) .

The p-dimensional Markov process is defined by

Xt = (yt, ..., yt−p+1)′ (14)

and we initially note that:

Lemma 3 With (Xt)t=1,2,... given by (14), Assumption A.1 holds.

Proof of Lemma 3: Note that the density of Xt+p conditional on Xt is given by,

f(Xt+p|Xt) = f (yt+p, . . . , yt+1|yt, . . . , yt−p+1)

=
f (yt+p, . . . , yt, . . . , yt−p+1)

f (yt, . . . , yt−p+1)
=

p∏
i=1

f (yt+i|yt−1+i, . . . , yt−p+i) > 0

where the last line follows by p-dependence in yt. Hence by definition f(Xt+p|Xt) is continuous

and positive. �

Next the drift criterion can be applied with, say,

V (x) = 1 +
(
c′x

)2 (15)
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with c′ = (1, 0, 0, ..., 0).

Proof of Theorem 1: Applying the drift function in (15), one finds

E(V (Xt)|Xt−1) = 1 + E(y2
t |Xt−1) = 1 + σ2 + β(λ(Xt−1))V (Xt−1)

with β(·) defined in (A.2). This shows the result for second order moments. For the general

case, consider the drift function Vk(x) = 1 + (c′x)2k. �

B Regularity conditions for the asymptotic inference

As mentioned the proof of Theorem 2 is an application of Billingsley (1961) Theorems 2.1

and 2.2 which hold under regularity Conditions 1.1. and 1.2 therein. Regularity Condition

1.2 is modified below based on Markov chain theory for geometrically ergodic processes, while

Condition 1.1 remain unaltered.

We show that geometric ergodicity imply that the ACR(1) model satsify the regularity

conditions, stated in their present form as Conditions 5 and 6.

B.1 Regularity Condition 1.1

Regularity Condition 1.1 of Billingsley (1961) is here restated as follows:

Condition 5

(i): For all x the set of y for which fθ(y|x) > 0 does not depend on θ.

(ii): For all y, x the log-likelihood lt(θ) = log fθ is well-defined except for a set of measure zero

with respect to the one-step transition probability1. Also the derivatives

∂
∂θi
lt(θ), ∂2

∂θi∂θj
lt(θ), ∂2

∂θi∂θj∂θk
lt(θ)

exist and are continuous in θ

(iii): E
∣∣∣ ∂
∂θi

log fθ

∣∣∣2 <∞ and

Σ = E
(

∂
∂θ lt(θ)

) (
∂
∂θ lt(θ)

)′
= −E

(
∂2

∂θ∂θ′ lt(θ)
)
> 0 (16)

(iv): For each θ there exists a neighbourhood N(θ) of θ such that

E sup
θ̃∈N

∣∣∣ ∂3

∂θi∂θj∂θk
lt(θ)

∣∣∣ <∞ (17)

Together the Lemmas 4, 5 and 6 in the following show that Condition 5 applies to the ACR

model.
1See Appendix A
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Lemma 4 With pt given by (8) the score for the model in (1) is given by

∂
∂θ lt(θ) = (p∗t − pt) ∂λt

∂θ +
{
p∗t

∂ log φπ
t

∂θ + (1 − p∗t ) ∂ log φ0
t

∂θ

}
(18)

such that

∂
∂π lt (θ) = p∗t et

1
σ2 yt−1

∂
∂(α,β)′ lt (θ)

= (p∗t − pt) zt ∂
∂σ2 lt (θ)

= − 1
2σ2 + 1

2σ4

(
p∗t e

2
t + (1 − p∗t ) ∆y2

t

)
Here

p∗t = E (st| yt, yt−1) = ptφπ
t

ptφπ
t +(1−pt)φ0

t
(19)

et = ∆yt − πyt−1 (20)

zt =
(
1, y2

t−1

)′ (21)

and φπ
t , φ

0
t are given by (10).

Proof of Lemma 4: The result follows by direct differentiation of the log likelihood function in

(9) combined with the identity (19). �

Next turn to the information matrix.

Lemma 5 The observed information is given by

∂2

∂θ∂θ′ lt(θ) =
{
p∗t

∂2 log φπ
t

∂θ∂θ′ + (1 − p∗t ) ∂2 log φ0
t

∂θ∂θ′

}
− (1 − pt) pt

∂λt
∂θ

∂λt
∂θ′ (22)

+ (1 − p∗t ) p∗t
(

∂λt
∂θ + ∂ log φπ

t
∂θ − ∂ log φ0

t
∂θ

) (
∂λt
∂θ′ + ∂ log φπ

t
∂θ′ − ∂ log φ0

t
∂θ′

)
Moreover, (16) holds.

Note that the expressions for the score and information can alternatively be derived by using

the EM algorithm and treating st as unobserved, see Louis (1982) and Ruud (1991).

Proof of Lemma 5: Using the identities

∂
∂θpt = (1 − pt) pt

∂λt
∂θ (23)

∂
∂θp

∗
t = (1 − p∗t ) p∗t

∂
∂θ log

(
p∗t

1−p∗t

)
(24)

= (1 − p∗t ) p∗t
(

∂λt
∂θ + ∂ log φπ

t
∂θ − ∂ log φ0

t
∂θ

)
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it follows directly that

∂2

∂θ∂θ′ lt(θ) = (p∗t − pt) ∂2λt
∂θ∂θ′ +

{
p∗t

∂2 log φπ
t

∂θ∂θ′ + (1 − p∗t ) ∂2 log φ0
t

∂θ∂θ′

}
+

(
∂
∂θp

∗
t − ∂

∂θpt

)
∂λt
∂θ′ + ∂

∂θp
∗
t

(
∂ log φπ

t
∂θ′ − ∂ log φ0

t
∂θ′

)
= (p∗t − pt) ∂2λt

∂θ∂θ′ +
{
p∗t

∂2 log φπ
t

∂θ∂θ′ + (1 − p∗t ) ∂2 log φ0
t

∂θ∂θ′

}
− (1 − pt) pt

∂λt
∂θ

∂λt
∂θ′

+ (1 − p∗t ) p∗t
(

∂λt
∂θ + ∂ log φπ

t
∂θ − ∂ log φ0

t
∂θ

) (
∂λt
∂θ′ + ∂ log φπ

t
∂θ′ − ∂ log φ0

t
∂θ′

)
.

In particular,

∂2

∂π2 lt(θ) = −p∗t 1
σ2 y

2
t−1 + (1 − p∗t ) p∗t

{
1
σ2 yt−1 (∆yt − πyt−1)

}2

=
{

(1 − p∗t ) p∗t e
2
t

1
σ2 − p∗t

}
1
σ2 y

2
t−1

∂2

∂(α,β)′∂(α,β) lt(θ)

= {(1 − p∗t ) p∗t − (1 − pt) pt} ztz′t

such that for example

−E ∂2

∂π2 lt(θ) = E
(
p∗t et

1
σ2 yt−1

)2 = E
(

∂
∂π lt (θ)

)2

by the conditional independence of st and εt given yt−1. Likewise for the remaining terms in

(16) the results follow by repeated use of the identities

E
(
p∗t e

k
t

∣∣∣ yt−1

)
= E

(
stε

k
t

∣∣∣ yt−1

)
= ptE

(
εkt

)
(25)

π2E
(
pty

2
t−1

)
+ σ2 = E

(
∆y2

t

)
π4E

(
pty

4
t−1

)
= E

(
∆y4

t

) − 3σ2
{

2σ2 − 2E
(
∆y2

t

)}
for all positive integers k. �

Lemma 6 With (θ1, θ2, θ3, θ4) =
(
π, α, β, σ2

)
then (17) holds.

Proof of Lemma 6: The result is shown by using Lemma 5 and noting that with

vt = ∂ log φπ
t

∂π = 1
σ2 yt−1et = 1

σ2 yt−1 (∆yt − πyt−1) (26)

then

|vt| ≤ κ1 |yt−1∆yt| + κ2y
2
t−1

for θ̃ ∈ N (θ). One finds∣∣∣ ∂3

∂π3 lt(θ)
∣∣∣ =

∣∣−p∗t (1 − p∗t ) vt
1
σ2 y

2
t−1 + (1 − 2p∗t ) p∗t v

3
t

∣∣
≤ |vt| 1

σ2 y
2
t−1 + |vt|3
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and hence Eθ supθ̃∈N(θ)

∣∣∣ ∂3

∂π3 lt(θ)
∣∣∣ is finite by existence of all moments of yt (in particular Ey6

t <

∞). Next, ∣∣∣ ∂3

∂α3 lt(θ)
∣∣∣ = |(1 − 2p∗t ) (1 − p∗t ) p∗t − (1 − 2pt) (1 − pt) pt|

≤ 2

for all θ̃ and the condition is trivially satisfied. Similarly for the derivatives ∂3

∂θi∂θj∂θk
lt(θ),

i, j, k = 2, 3 using here the existence of sixth order moments as well. As to the derivatives
∂3

∂θi∂θj∂π lt(θ) for i, j = 2, 3 then e.g.∣∣∣ ∂3

∂α2∂π
lt(θ)

∣∣∣ = |(1 − 2p∗t ) (1 − p∗t ) p∗t vt|
≤ |vt|

and hence it is bounded by an integrable function. Similar arguments can be used for the

remaining derivatives. �

B.2 Regularity Condition 1.2

As noted regularity Condition 1.2 of Billingsley (1961) is modified here reflecting that we use

Markov chain theory on general state spaces.

Condition 6 Independently of choice of initial distribution and as T → ∞:
(v): Provided φ(·, ·) is measurable and E |φ (yt, yt−1)| <∞, then for each θ

1
T ΣT

t=1φ (yt, yt−1) a.s.→ Eφ (yt, yt−1)

(vi): Furthermore
1
T ΣT

t=1
∂
∂θ lt (θ) D→ N (0,Σ)

with Σ defined in (16).

Lemma 7 If |ρ| = |π + 1| < 1 then Condition 6 holds for the ACR model

Proof of Lemma 7: With Ft = σ (yt, yt−1, ...) then

E
{

∂
∂θ lt(θ)

∣∣Ft−1

}
= E

{
∂
∂θ lt(θ)

∣∣ yt−1

}
= E (p∗t vt| yt−1)

= 0
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by conditional independence, (26) and (25). Moreover, E
{

∂
∂(α,β)′ lt(θ)

∣∣∣ yt−1

}
and E

{
∂

∂σ2 lt(θ)
∣∣ yt−1

}
are identical to zero by the identities

E {(p∗t − pt)| yt−1} = 0 E
{

(1 − p∗t ) ∆y2
t

∣∣ yt−1

}
= (1 − pt)σ2.

Hence ∂
∂θ lt(θ) is a martingale difference sequence with respect to the filtration Ft.

Suppose next that (yt) is initiated by the invariant distribution. Then the law of large

numbers in (v) holds by the existence of all moments together with the demonstrated geometric

ergodicity. In particular, the average of the conditional second order moments

1
T ΣT

t=1E
{

∂
∂θ lt(θ)

∂
∂θ′ lt(θ)

∣∣Ft−1

}
will converge. Also the Lindeberg condition in Brown (1971) applies and the claimed asymptotic

normality of the score follows as well.

The choice of initial distribution can be relaxed by using the law of large numbers and

central limit theorem in Theorem 17.0.1 of Meyn and Tweedie (1993) as it can be shown that

the chain defined by Xt = (yt, yt−1), t = 1, 2, .. is geometrically ergodic by using the results in

the appendix used for showing that the (yt) chain was geometrically ergodic. �
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