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Abstract

We examine the properties of automatic model selection, as embodied inPcGets, and evaluate its
performance across different (unknown) states of nature. After describing the basic algorithm and
some recent changes, we discuss the consistency of its selection procedures, then examine the extent
to which model selection is non-distortionary at relevant sample sizes. The problems posed in
judging performance on collinear data are noted. The conclusion notes howPcGetscan handle
more variables than observations, and hence how it can tackle non-linear models.

1 Introduction

Model selection theory poses great difficulties: all statistics for selecting models and evaluating their
specifications have distributions, usually interdependent, different under null and alternative, and altered
by every modelling decision. Fortunately, recent advances in computer automation of selection al-
gorithms have allowed a fresh look at this old problem, by allowing operational studies of alternative
strategies: seeinter alia Hoover and Perez (1999) and Krolzig and Hendry (2001). An overview of the
literature, and the developments leading to general-to-specific (Gets) modelling in particular, is provided
by Campos, Ericsson and Hendry (2003). Here we analyze the properties ofPcGets, and seek to ascer-
tain its behaviour in sifting relevant from irrelevant variables in econometric modelling.1 Hendry and
Krolzig (2003b) describe the selection strategies embodied inPcGets, their foundation in the theory of
reduction, and potential alternatives. They emphasize the distinction between the costs of inference,
which are an inevitable consequence of non-zero significance levels and non-unit powers, versus the
costs of search, which are additional to those faced when commencing from a model that is the data
generation process (DGP). Finally, they calibrate its settings by Monte Carlo.

The structure of this paper is as follows. After outlining its algorithm, we describe some recent
changes in section 2. Then section 3 considers the large-sample performance ofPcGetsthrough the
consistency of its selection procedures, as embodied in its pre-programmed Liberal and Conservative
strategies: section 3.1 compares it with model selection based on information criteria (see e.g., Schwarz,
1978). Thirdly, its finite-sample behaviour is examined in section 4 across a range of Monte Carlo ex-
periments from Hendry and Krolzig (1999, 2003b) and Krolzig and Hendry (2001). Next, section 5
investigates possible small-sample ‘pre-test biases’ and ‘model-selection effects’ for both estimators
and tests in a single experiment. Section 6 comments on the impact of collinearity on selection probab-
ilities. Section 7 concludes, noting two new developments: the first when there are more variables than

∗We are indebted to Dorian Owen and Julia Campos for helpful comments and suggestions.
1PcGetsby Hendry and Krolzig (2001) is an Ox Package (see Doornik, 2001) implementing automatic general-to-specific

(Gets) modelling for linear regression models based on the theory of reduction, as in Hendry (1995, Ch.9).
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observations, which surprisingly, is not necessarily a major problem forPcGets; and secondly, selecting
a non-linear model when the desired class is known.

2 The selection algorithm

PcGetshas four basic stages in its approach to selecting a parsimonious undominated representation of
an overly general initial model, denoted the general unrestricted model (GUM). The first concerns the
estimation and testing of the GUM (1–4 below), the second is the pre-search process (5–6); the third is
the multi-path search procedure (7–13); and the fourth is the post-search evaluation (14). The following
sketches the main steps involved: see Hendry and Krolzig (2001) for details.

(1) formulate the GUM, based on theory, previous evidence, and institutional knowledge, seeking a
relatively orthogonal parameterization;

(2) select the set of mis-specification tests to be checked and their forms (e.g., residual autocorrelation
of rth-order);

(3) set the significance levels of all selection and mis-specification tests to ensure the desired overall
null rejection frequency, perhaps by selecting one of the pre-set strategies;

(4) check that the GUM captures the essential characteristics of the data (congruence), perhaps with
outlier adjustments;

(5) undertake pre-search reduction tests at a loose significance level (these include lag-order pre-
selection,F-tests on successively shorter lag groups and cumulativeF-tests based ont-tests
ordered from the smallest up, and the largest down);

(6) eliminate insignificant variables to reduce the search complexity, and estimate the new GUM as
the baseline for the next stage;

(7) multiple reduction path searches now commence from each feasible initial deletion (to avoid path-
dependent selections);

(8) diagnostically check the validity of each reduction, to ensure the congruence of the final model;
(9) if all reduction and diagnostic tests are acceptable and all remaining variables are significant (or

further reductions induce mis-specifications), that model becomes aterminal selection, and the
next path search commences;

(10) when all paths have been explored and all distinct terminal models have been found, they are
repeatedly tested against their union to find an encompassing contender;

(11) rejected models are removed, and the union of the ‘surviving’ terminal models becomes the GUM
of a repeated multi-path search iteration;

(12) this entire search process continues till a unique choice emerges, or search converges to a set of
mutually encompassing and undominated contenders;

(13) in that last case, all the selected models are reported and a unique final choice made by the desired
selection criterion;

(14) the significance of every variable in thefinal model is assessed in two over-lapping sub-samples
to check the reliability of the selection.

Several changes to this basic algorithm have been implemented since Hendry and Krolzig (2001),
so we briefly describe these. Most only slightly altered the program’s behaviour, reflecting how near
the theoretical upper bound performance already is, and the degree of ‘error correction’ manifest in the
experiments used to calibrate the program (when one procedure performed poorly, another usually did
well). Nevertheless, improvements remain feasible in several directions.

First, some settings were not previously envisaged, such as a model with very long lags of a variable
when only a few lags matter. When one, or a few, important effects are hidden in a morass of irrelevance,
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the pre-search block tests need not be appropriate, so we consider the outcome of a maximumt-test as a
check (sub-section 2.1). We also use much looser significance levels for the block tests than in Hendry
and Krolzig (1999), where the overall procedure was under-sized under the null.

Secondly, the calibration of the mis-specification heteroscedasticity tests was poor in Hendry and
Krolzig (2003b), but this transpires to be a problem with the degrees of freedom assumed for the refer-
ence distribution (sub-section 2.2). The changed degrees of freedom lead to a substantial improvement
in behaviour under the null.

Fnally, lag-order determination uses a combined top-down/bottom-up approach, complemented by
an automatic Lagrange-multiplier test for omitted regressors. We also investigated exploiting the inform-
ation in the orderedt-statistics in the GUM to locate a cut-off between included and excluded variables,
but while suitable for orthogonal problems, multi-path search remains necessary in general: section 6
briefly addresses the collinearity issue. The post-selection procedure (14) is discussed in Krolzig and
Hendry (2003).

2.1 Max t-tests

When only one of a large setn of candidate variables matters, then on average, a block testFn
T−n will

have low power to detect its relevance compared to a focusedt-test. A crude approximation relating
these two statistics, valid for orthogonal variables, is:

Fn
T−n ' 1

n

n∑
i=1

t2(i).

The expected value oft2(i) under the null is unity, so ifn − 1 variables are irrelevant, then on average,
ignoring sampling variation:

Fn
T−n ' 1

n

n−1∑
i=1

1 +
1
n

t2(n) = 1 +
1
n

(
t2(n) − 1

)
, (1)

sinceE[t2(i)|H0] = 1, wheret2(n) denotes the largest statistic. Let the block test be conducted at sizeα,
then amax{|t|} criterion with the correct size would use the approximate nominal significance level
(see e.g., Savin, 1984):

δα
n = 1 − (1 − α)1/n. (2)

For example, forn = 10 whenα = 0.05 so P
(
F10

90 > 1.935|H0

)
= 0.05, then from (1), a significant

outcome due to onlyt2(10) requires its value to be about 10.3, whereas from (2):

δ0.05
10 = 1 − (1 − 0.05)1/10 = 0.0051,

which entailst2(10) > 8.2, and so is distinctly smaller.
To investigate the quality of the approximation in (2), we undertook a Monte Carlo experiment with

n IID centralt(ν) random variates, whereν = 30 is the degrees of freedom. In each of theM =
100, 000 replications, we calculated themax{|t1|, . . . , |tn|} of then random variables, and compared
the t-prob of its1 − α quantiles to the prediction of theδα

n rule. Figure 1 plotsδα
n for α = 0.01 and

0.05 and compares these to the0.95 and0.99 quantiles of the associatedt-probabilities. The results
demonstrate the quality of the approximation.

Nevertheless, one relevant variable can easily hide in a set where the overall outcome is insigni-
ficant. Such situations create a potential for conflicting inference—PcGetswould judge the variable
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Figure 1 δα
n andmax |t| of n IIDt(ν) random variates.

as irrelevant by theF test or a t-test based onδα
n, whereas a later investigator using a one-offt-test at

significance levelα would include it. Thus, we adopt a compromise between size and power which
is more favourable to the latter when the initial specification is highly over-parameterized, but a few
variables may matter, which is to consider themax{|t|} statistic, but at a less stringent level thanδα

n,
namely twice the value from (2). In the above example, that would requiret2(10) > 6.9 (corresponding
to the 1% level).

2.2 Recalibrating the heteroscedasticity tests

Krolzig and Hendry (2001) found that the QQ plots of the ARCH (see Engle, 1982) and uncondi-
tional heteroscedasticity tests (see White, 1980) were not straight lines, so the simulated outcomes did
not match their anticipated distributions, and they therefore cautioned against their use. In reviewing
PcGets, Dorian Owen (2003) suggested that the degrees of freedom were inappropriate by using a cor-
rection like that in Lagrange-multiplier autocorrelation tests (see e.g., Godfrey, 1978b, and Breusch
and Pagan, 1980). Instead, as argued in (e.g.) Davidson and MacKinnon (1993, Ch. 11), since the
covariance matrix is block diagonal between regression and scedastic function parameters, tests can
take the former as given. Doing so, changes the statistics from being regarded asFarch(q, T − k − 2q)
andFhet(q, T − k − q) to Farch(q, T − 2q) andFhet(q, T − q) respectively, and produces much closer
matches with their anticipated distributions. Figure 2 shows the outcomes for all the mis-specification
tests applied to the DGP, GUM and selected model in Krolzig and Hendry (2001).2

Overall, there is a marked improvement compared to the outcomes reported earlier.

3 Consistent selection

The performance of many selection algorithms as the sample size increases indefinitely is well known
for an autoregressive process under stationarity and ergodicity: see Hannan and Quinn (1979) (whose
criterion is denotedHQ), and Atkinson (1981), who proposes a general function from which various

2Chow 1 and 2 denote split-sample and forecast-period parameter constancy tests (see Chow, 1960); normality is the
Doornik and Hansen (1994) test for normality; and AR denotes a 4th-order Lagrange multiplier test for residual autocorrela-
tion: see Godfrey (1978a).
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Figure 2 Mis-specification test operating characteristics.

criteria for model selection can be generated. The first criterion, proposed by Akaike (1969, 1973)
(denotedAIC for Akaike information criterion) penalizes the log-likelihood by2n/T for n parameters
and a sample size ofT , but does not guarantee a consistent selection as the sample size diverges. Both
the Schwarz (1978) information criterion, also called the Bayesian information criterion, denotedBIC,
andHQ are consistent, in that they ensure that a DGP nested within a model thereof will be selected
with probability unity asT diverges relative ton. This requires that the number of observations per
parameter diverges at an appropriate rate, so that non-centralities diverge (guaranteeing retention of
relevant variables), and that the significance level decreases (so irrelevant variables are eventually almost
surely not retained). In particular,BIC penalizes the log-likelihood byn log(T )/T , whereasHQ uses
2n log(log(T ))/T , which Hannan and Quinn (1979) show is the minimum rate at which additional
parameters must be penalized to ensure consistency. Then selection is strongly consistent when the
assumed order of the model is no less than the true order and increases with the sample size. Based on
a Monte Carlo, Hannan and Quinn (1979) suggest thatHQ may perform better in large sample sizes.

PcGetsimplements similar requirements for consistent selection in both its Liberal and Conservative
strategies. The general model must eventually be over-parameterized relative to the (local) DGP, and the
nominal significance level decrease as the sample size increases. The Liberal strategy seeks to balance
the chances of omitting variables that matter against retaining ones which are irrelevant in the DGP,
so uses a relatively loose significance level (with HQ as its upper and BIC as its lower bound). The
Conservative strategy uses a more stringent significance level in small samples, implicitly attributing
a higher cost to retaining variables that do not matter in the DGP, but eventually converges onBIC.
Figure 3 illustrates thePcGetsrules for 10 variables relative toAIC, BIC andHQ for sample sizes up to
1000. As can be seen, thePcGetsConservative profile is much tighter than the three information criteria
considered in small samples, whereas the Liberal strategy usually lies betweenHQ (as its upper bound)
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Figure 3 Significance level comparisons across selection rules.

andBIC (as its lower). The block jumps are those actually set for the two strategies over the range
of sample sizes shown. A continuous profile could be implemented with ease, such as trackingBIC
or one proportional toT−0.8 (based on Hendry, 1995, Ch. 13: also shown), but as these strategies are
designed for relatively non-expert users, it seems preferable to relate them to ‘conventional’ significance
levels. TheAIC is substantially less stringent, particularly at larger sample sizes, so would tend to over-
select. However, the Conservative profile is noticeably tighter thanBIC at small samples, so the next
sub-section addresses its comparison withBIC. Importantly, while bothBIC andHQ deliver consistent
selections, they could differ substantively in small samples, which is precisely the intent of the two
PcGetsstrategies. Thus, researchers must carefully evaluate the relative costs of over- versus under-
selection for the problem at hand before deciding on the nominal significance level, or choice of strategy.

3.1 Comparisons withBIC

BIC selects from a set ofn candidates the model withk regressors which minimizes:

BICk = ln σ̃2
k + c

k ln T

T
,

wherec ≥ 1 and:

σ̃2
k =

1
T

T∑
t=1

(
yt −

k∑
i=1

β̃izi,t

)2

=
1
T

T∑
t=1

ũ2
t . (3)

A full search for a fixedc and allk ∈ [1, n] entails2n models to be compared, which forn = 40 exceeds
1012. We focus on the implicit setting of significance levels involved in the choice ofc (having shown
in figure 3 the effect of altering the form of the penalty function), and the impact of pre-selection to
reduce the value ofn for a manageable number of models. First, we re-establish the formal link ofBIC
to significance levels.

Consider the impact of adding an extra orthogonalized regressorzk+1,t, to a linear regression model
with k such variables, so that:

T∑
t=1

zk+1,tũt =
T∑

t=1

zk+1,tyt −
T∑

t=1

k∑
i=1

β̃izi,tzk+1,t =
T∑

t=1

zk+1,tyt = β̂k+1

T∑
t=1

z2
k+1,t,
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then, as is well known, from (3):

σ̃2
k+1 =

1
T

T∑
t=1

(
ũt − β̂k+1zk+1,t

)2
= σ̃2

k

1 − β̂
2

k+1

∑T
t=1 z2

k+1,t

T σ̃2
k


= σ̃2

k

(
1 − (T − k − 1)−1 t̂2(k+1)

σ̃2
k+1

σ̃2
k

)
,

where:

t̂2(k+1) =
T β̂

2

k+1

∑T
t=1 z2

k+1,t

σ̂2
k+1

,

and:

σ̂2
k+1 =

1
T − k − 1

T∑
t=1

û2
t for ût = ũt − β̂k+1zk+1,t.

Consequently:

σ̃2
k+1 = σ̃2

k

(
1 + (T − k − 1)−1 t̂2(k+1)

)−1
, (4)

so:

BICk+1 = ln σ̃2
k+1 + c

(k + 1) ln T

T

= ln σ̃2
k + c

k ln T

T
− ln

(
1 + (T − k − 1)−1 t̂2(k+1)

)
+ c

ln T

T

= BICk +
c

T
ln T − ln

(
1 + (T − k − 1)−1 t̂2(k+1)

)
.

Hence,BICk+1 < BICk when:

ln
[
T c/T

(
1 + (T − k − 1)−1 t̂2(k+1)

)−1
]

< 0,

so the(k + 1)st additional regressor will be retained byBIC when:

t̂2(k+1) > (T − k − 1)
(
T c/T − 1

)
.

Thus, choosingc is tantamount to choosing thep-value for the correspondingt-test. For example, when
T = 140, with c = 1 (the usual choice), andk = 40, as in Hoover and Perez (1999), we haveBIC41 <

BIC40 whenever̂t2(41) ≥ 3.63, or |t(41)| ≥ 1.9.
To select no variables when the null model is true andc = 1 requires:

t̂2(k) ≤ (T − k)
(
T 1/T − 1

)
∀k ≤ n, (5)

which is a sequence of|̂t(i)| between 1.9 (atk = 40) and 2.24 (atk = 1) for T = 140. That outcome
clearly entails at least every|̂t(i)| < 1.9 which has a probability, in an orthogonal setting, using even the
best case 140 degrees of freedom as an approximation:

P
(|t(i)| < 1.9 ∀i = 1, . . . , 40

)
= (1 − 0.0595)40 ' 0.09. (6)

Thus, 91% of the time,BIC should retain some variable(s). However, since there will be many ‘highly
insignificant’ variables in a set of 40 irrelevant regressors, the bound of|̂t(i)| < 2.2 is probably the
binding one, yielding (at the ‘average’ of 120 degrees of freedom),P

(|t(i)| < 2.2 ∀i
) ' 0.3. Reducing
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both T andk can worsen the chances of correct selection: for example,T = 80, c = 1 andk = 30
leads to a range betweenP

(|t(i)| < 1.68 ∀i = 1, . . . , 30
) ' 0.04 andP

(|t(i)| < 2.11 ∀i
) ' 0.31. Such

probabilities of correctly selecting a null model at relevant sample sizes are too low to provide a useful
practical basis. Consequently, two amendments have been proposed.

First, lowering the maximum size of model to be considered using ‘pre-selection’ as in (say) Hansen
(1999). He enforces a maximum of10 in theBIC formula whenT = 140 despiten = 40 by sequentially
eliminating variables with the smallestt-values until 30 are removed. However, such a procedure entails
thatBIC actually confronts a different problem. If pre-selection did not matter, then under the null, we
would have:

P
(|t(i)| < 2.16 ∀i = 1, . . . , 10

)
= (1 − 0.0325)10 = 0.72. (7)

But the un-eliminated variables are those selected to have the largestt-values, so (7) overstates the
performance of his approach. Conversely, (6) will understate what happens after pre-selection, because
the very act of alteringn changes theparametersof BIC, and is not just a ‘numerical implementation’.
Hansen in fact reports0.45 for his Monte Carlo applied to the Hoover–Perez experiments. Interestingly,
using the ‘baseline’t-value of1.9 in (6) yields:

P
(|t(i)| < 1.9 ∀i = 1, . . . , 10

)
= 0.54, (8)

so even allowing for the initial existence of 40 variables matters considerably. A formal analysis requires
calculating the conditional probability of the 10 largestt-values being insignificant at the critical value
entailed by (5) forn = 10, given that the smallest 30t-values have been excluded irrespective of
their significance. Campos (2003) reports calculations for the setting where the smallest 30 are in fact
insignificant, and finds 0.29 in place of the approximation of 0.54 in (8) or the unconditional 0.09 in (7).

Conversely, to have a higher chance of selecting the null model, one could increasec. For example,
c = 2 raises the required|̂t(i)| to 2.7 and:

P
(|t(i)| < 2.7 ∀i = 1, . . . , 40

)
= (1 − 0.0078)40 = 0.73, (9)

which is a dramatic improvement over (6). Hansen’s setting ofc = 2 whenn = 10 raises the required
|̂t(i)| < 3.08, and again ignoring pre-selection, delivers a 97.5% chance of correctly finding a null model
(he reports 95% in his Monte Carlo, whereas(1 − 0.0078)10 = 0.92, and Campos finds 0.85 for the
conditional probability).

Nevertheless, when the null is false, both steps (i.e., raisingc and/or arbitrarily simplifying till 10
variables remain) could greatly reduce the probability of retaining relevant regressors witht-values less
than 2.5 in small samples. This effect does not show up in the Hoover–Perez experiments because the
‘population’ t-values are either very large or very small. Moreover, there are very few relevant variables
whereas more than 10 would ensure an inconsistent selection.

Three conclusions emerge from this analysis. First, pre-selection can help locate the DGP by alter-
ing the ‘parameters’ entered into theBIC calculations, specifically the apparent degrees of freedom and
the implicitly requiredt-value.PcGetsemploys a similar ‘pre-selection’ first stage, but based on block
sequential tests with very loose significance levels so relevant variables are unlikely to be eliminated.
Secondly, the trade-off between retaining irrelevant and losing relevant variables remains, and is determ-
ined by the choice ofc implicitly altering the significance level. In problems with manyt-values around
2 or 3, high values ofc will be very detrimental. Thirdly, the asymptotic comfort of consistent selection
when the model nests the DGP does not greatly restrict the choice of strategy in small samples. We also
note thatBIC does not address the difficulty that the initial model specification may not be adequate to
characterize the data, but will still select a ‘best’ representation without evidence on how poor it may
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be. In contrast,PcGetscommences by testing for congruency: perversely, in Monte Carlo experiments
conducted to date, where the DGP is a special case of the general model, such testing will lower the re-
lative success rate ofPcGets. Finally, the arbitrary specification of an upper bound onn is both counter
to the spirit ofBIC, and would deliver adverse findings in any setting wheren was set lower than the
number of relevant DGP variables.

4 Small-sample behaviour ofPcGets

Table 1 summarizes the main features of the various Monte Carlo experiments conducted to date, and
referred to below (HP, JEDC, S0–S4 and S0∗–S4∗ respectively denote Hoover and Perez, 1999, Krolzig
and Hendry, 2001, and two variants of thePcGetscalibration experiments in Hendry and Krolzig,
2003b). We now summarize the operating characteristics ofPcGetsacross the experiments in Table 1.

Table 1 Monte Carlo designs.
Design regressors causal nuisance |t|-values avg.|t|-value

HP0 41 0 41 0
HP2∗ 41 1 40 5.77 5.77
HP2 41 1 40 11.34 11.34
HP7 41 3 38 (10.9, 16.7, 8.2) 11.93
JEDC 22 5 17 (2,3,4,6,8) 4.6
S0 34 0 34 0
S2 34 8 26 (2,2,2,2,2,2,2,2) 2
S3 34 8 26 (3,3,3,3,3,3,3,3) 3
S4 34 8 26 (4,4,4,4,4,4,4,4) 4
S0∗ 42 0 42 0
S2∗ 42 8 34 (2,2,2,2,2,2,2,2) 2
S3∗ 42 8 34 (3,3,3,3,3,3,3,3) 3
S4∗ 42 8 34 (4,4,4,4,4,4,4,4) 4

First, we consider control over ‘size’, such that the actual null rejection frequencies are close to
the nominal levels set by the user, ‘independently’ of the problem investigated. Figure 4 plots the ratio
of actual to nominal size across the various studies re-analyzing the Lovell (1983) (aka Hoover–Perez)
experiments at 5% and 1% nominal levels. The outcomes confirm that stabilization has occurred as
we have learned more about how such algorithms function, and so improve their search procedures.
The most recent size estimates incorporate the sub-sample reliability weightings, and are slightly below
nominal—despite there being between 35 and 40 irrelevant regressors. Consequently, ‘overfitting’ in
the sense of finding too many significant variables does not occur, especially as such large numbers of
irrelevant variables are not representative of empirical problems.

Secondly, we consider the calibration accuracy of the two basic strategies, Conservative and Liberal.
Figure 5 graphically illustrates four main aspects of the outcomes across all the Monte Carlo experiments
to date for both strategies. Panel a concerns a different sense of ‘overfitting’, namely potential downward
biased estimates of the equation standard error,σ̂, for the true valueσ. Again this does not occur: the
final averagêσ is close toσ. The Liberal strategy has a slight downward bias (less than 5% ofσ),
whereas the Conservative is upward biased by a similar amount. Such behaviour is easily explained:
the latter eliminates variables which matter so fits worse than the GUM, which unbiasedly estimatesσ,
and the former retains some variables which only matter by chance, but thereby slightly over fits. It
must be stressed thatPcGetsmodel selection is not based on fit as a criterion, but a minimal congruent
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Figure 4 Ratios of actual to nominal sizes in the data-mining experiments.

encompassing model will necessarily have the best fit at the chosen significance level. Equation (4)
recorded the fit relationship between models of sizek andk+1, which can be re-expressed for unbiased
estimators ofσ (i.e., corrected for degrees of freedom) as:

σ̂2
k

σ̂2
k+1

= 1 +
t̂2(k+1) − 1

T − k
. (10)

The probability under the null that|t| > 2.5 is 0.014 (whenT = 110 andk = 10) so largert-values
will occur less than once in 70 draws under the null, yet the ratio in (10) would only be about1.05.

Panel b shows sizes for the strategies across all experiments compared to their intended significance
levels of 5% and 1%, both with and without sub-sample reliability weightings (denoted (rel) in the
graphs): the latter are close to their targets, and in no case are deviations substantial for the former.

Panel c plots ‘power’, namely the average rejection frequency of the null for variables that do matter.
The Conservative strategy naturally has no higher power than the Liberal, and reveals that the cost of
avoiding spurious variables can be high in terms of missing variables that matter. The graphs also
show the impact of the sub-sample reliability weightings on the resulting power, confirming that there
is only a small effect, even at quite low powers where it should have most impact. Finally, comparisons
between neighbouring successive Sj and Sj∗ experiments shows that the impact on power of 8 additional
irrelevant variables is small, especially for the Liberal strategy.

Finally, figure 5d graphs the probabilities of locating the DGP, together with the corresponding out-
comes when the search commences from the DGP, with tests conducted at 5% and 1%. The movements
of the four lines are similar, and frequently the apparent problem for a search algorithm transpires to be
a cost of inference since the DGP is sometimes never retained even when it is the initial specification.
The out-performance of commencing from the DGP in the Hoover–Perez experiments is owing to the
high degree of over-parameterization and very larget-values on relevant variables, but even so, the Con-
servative strategy does a respectable job. When populationt-values are 2 or 3, the Liberal strategy does
best, and sometimes outperforms commencing from the DGP with a 1% significance level (S3 and S4).
Notice also that the two strategies cannot be ranked on this criterion: their relative performance depends
on the unknown state of nature. Nevertheless, as Hendry and Krolzig (2001, Ch. 5) discuss, a user
may be aware of the ‘type’ of problem being confronted, in which case, figure 5d shows the potential
advantages of an appropriate choice of strategy combined with a good initial specification.
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Figure 5 Overview of accuracy, size, power and success.

These findings also confirm the closeness in practice of the strategies to their desired operating
characteristics.

5 ‘Pre-test’ and ‘selection’ effects in small samples

Statistical tests have non-degenerate null distributions, and hence have non-zero size, and (generally)
non-unit power. Consequently, even if the local DGP were correctly specifieda priori from economic
theory, when an investigator did not know that the resulting model was ‘true’ – so sought to test hypo-
theses about its coefficients – then inferential mistakes could occur, the seriousness of which depend on
the characteristics of the local DGP and the sample drawn. Should the selected model thereby differ
from the DGP, it will deliver biased coefficient estimates: this is called the ‘pre-test’ problem, since
unbiased estimates could have been obtained from the unrestricted model by conducting no selection
tests (see e.g., Judge and Bock, 1978). The arguments against using alternatives such as Stein-James
‘shrinkage’ are presented in Hendry and Krolzig (2003b). Assuming that one knows the truth, and
knows that one does, so no testing is needed, is not a relevant benchmark in economics. In the following
simulations, the role of selections commencing from the DGP is merely to measure the additional costs
of selection compared to commencing from the GUM.

5.1 Selection effects on coefficient estimates

To investigate the impact of selection, we re-ran the Krolzig and Hendry (2001) experiments. As shown
in table 2, unconditionally coefficient estimates are downward biased (being a mix of 0 andβ̂i whenzi

is retained). However, the Liberal strategy biases are under 10% for|t| > 3.
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Table 2 Unconditional coefficient estimates, SEs and SDs (including zeros).
DGP Reduction of DGP GUM Reduction of GUM true value

variable LIB CON LIB CON

mean
Za 0.204 0.142 0.092 0.204 0.140 0.093 0.200
Zb 0.301 0.270 0.230 0.300 0.271 0.224 0.300
Zc 0.399 0.396 0.378 0.399 0.393 0.373 0.400
Zd 0.604 0.601 0.601 0.604 0.604 0.604 0.600
Ze 0.803 0.796 0.796 0.801 0.803 0.803 0.800
SE
Za 0.103 0.051 0.029 0.113 0.049 0.029 0.100
Zb 0.102 0.083 0.066 0.112 0.081 0.063 0.100
Zc 0.103 0.100 0.093 0.113 0.097 0.091 0.100
Zd 0.102 0.103 0.104 0.113 0.101 0.103 0.100
Ze 0.103 0.103 0.103 0.113 0.101 0.103 0.100
SD
Za 0.103 0.150 0.150 0.115 0.151 0.150
Zb 0.102 0.149 0.182 0.113 0.150 0.184
Zc 0.103 0.113 0.151 0.115 0.125 0.158
Zd 0.103 0.104 0.107 0.116 0.108 0.108
Ze 0.106 0.100 0.102 0.119 0.111 0.110

residuals
σ 0.998 1.007 1.017 0.998 0.981 1.008 1.000

% bias -0.2% 0.7% 1.7% -0.2% -1.9% 0.8%

Table 3 Conditional coefficient estimates, SEs and SDs (excluding zeros).
DGP Reduction of DGP GUM Reduction of GUM true value

variable LIB CON LIB CON

mean
Za 0.204 0.286 0.324 0.204 0.285 0.322 0.200
Zb 0.301 0.332 0.358 0.300 0.333 0.360 0.300
Zc 0.399 0.407 0.420 0.399 0.410 0.422 0.400
Zd 0.604 0.602 0.602 0.604 0.604 0.605 0.600
Ze 0.803 0.796 0.796 0.801 0.803 0.803 0.800
SE
Za 0.103 0.102 0.101 0.113 0.099 0.101 0.100
Zb 0.102 0.102 0.102 0.112 0.100 0.100 0.100
Zc 0.103 0.103 0.103 0.113 0.101 0.102 0.100
Zd 0.102 0.103 0.104 0.113 0.101 0.103 0.100
Ze 0.103 0.103 0.103 0.113 0.101 0.103 0.100
SD
Za 0.103 0.066 0.061 0.115 0.070 0.062
Zb 0.102 0.082 0.075 0.113 0.084 0.075
Zc 0.103 0.095 0.089 0.115 0.098 0.090
Zd 0.103 0.102 0.104 0.116 0.108 0.106
Ze 0.106 0.100 0.102 0.119 0.111 0.110

residuals
σ 0.998 1.007 1.017 0.998 0.981 1.008 1.000

% bias -0.2% 0.7% 1.7% -0.2% -1.9% 0.8%
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Figure 6 Unconditional distributions from the Liberal strategy.

Figure 6 shows the unconditional distributions of the five relevant and 17 irrelevant regressors for the
Liberal strategy.3 These unconditional distributions illustrate the quality of the classification of variables
into DGP variables (top row) and nuisance variables (all others). The non-zero-mass distribution of the
DGP variables is truncated normal, but truncation does not affect variables with a populationt-value
greater than 4.

Conditional on being retained, the results are shown in table 3. As expected, the coefficient estimates
are now upward biased for smallert-values (|t| ≤ 3), more so for the Conservative strategy, but are close
to the population values for largert-values. The Liberal strategy biases are under 10% for|t| > 3.

Figure 7 records the corresponding conditional distributions. Those for the non-DGP variables are
bimodal and symmetric, except for the lagged endogenous variable, where the impact of the famous
Hurwicz (1950) bias is clear.

The final important result is that these ‘pre-test’ effects are not, in any essential respects, changed
by searchper se. The coefficient biases are closely similar when commencing from the DGP and the
GUM for each strategy, both conditionally and unconditionally as tables 2 and 3 show.

5.2 Selection effects on estimated standard errors and standard deviations

Crucially, the conditional estimated standard errors (SEs) are not biased on either strategy, so the repor-
tedSEs for a selected equation’s coefficients are close to providing unbiased estimates of the standard
deviations (SDs) for the estimated DGP. At first sight, that might seem an astonishing result, since des-
pite selection, the estimated uncertainty when a DGP variable is selected is a correct reflection of the

3The results for the Conservative strategy are similar, but distributions of irrelevant variables are almost invisible, and so
are not shown.
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Figure 7 Conditional distributions from the Liberal strategy.

uncertainty operating in the DGP without selection. However, the intuition is simple: theSDs in the
estimated DGP model are correctly estimated by the reportedSEs (column 2); the latter are based on
the estimated equation standard error (σ̂, which is close toσ on average as shown on the bottom row)
times the associated square-root element from(X′X)−1; and that in turn is approximately the same in
the selected model when the relevant variable is retained.

Naturally, unconditionalSEs are downwards biased (as parameter estimates restricted to zero have
zero standard errors), and theSDs are upward biased (again as a mix of 0 andβ̂i). The probabilityp
of retaining a variable with a populationt2-value of 4 is approximately 0.5, so the effects are largest at
small populationt-values. Indeed, the mean unconditional estimates and theirSEs are approximatelyp
times the corresponding conditional.

However, the relevance of such unconditional ‘sampling properties’ is unclear in the context of
model selection when the DGP is unknown. The elimination of insignificant variables is the objective
of simplification in small samples, and the underlying state of nature (whether variables are relevant
or irrelevant) is unknown, so the cost of the bimodality of the unconditional selection distribution for
relevant variables is a largerSD.

As noted earlier, in almost all cases, the estimated equation standard errors are close toσ, so that
PcGetsdoes not ‘overfit’. Rather, the Conservative strategy underfits by eliminating too many of the
relevant regressors in its attempt to avoid adventitious significance, whereas the Liberal strategy per-
formance depends on the number of irrelevant variables in the GUM, and can be either under or overσ.
Indeed, so can theSEs andSDs, both conditional on retaining a variable, and unconditionally.

Overall, these results confirm using the Liberal strategy as the default option.
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5.3 Selection effects on the two heteroscedasticity tests

Another feature of interest is the impact of model selection on the outcomes of test statistics. This is
shown in figure 8 for the two heteroscedasticty tests recalibrated in section 2.2. The graphs compare the
ratios of actual sizes to nominal in the DGP, GUM and the selected model.4

The operational rules adopted were as follows. Specific models with diagnostic tests indicating an
invalid reduction at1% or less were rejected if the GUM showed no mis-specifications at5%. If a mis-
specification test was significant at1%, the test was dropped from the test battery. If thep-value of the
mis-specification test was between1% and5%, the significance level was reduced from1% to 0.5%.
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Figure 8 Ratios of actual sizes to nominal in the DGP, GUM and selected model.

There is almost no change in the rejection frequencies for quantiles above the nominal significance
level, but an increasing impact as the quantile decreases. The latter effect is essentially bound to occur,
since models with significant heteroscedasticity are selected against by construction. Nevertheless, the
outcomes in these graphs do not represent a ‘distortion’ of the sampling properties: the key decision is
taken at the level of the general model, and conditional on not rejecting there, no change should occur in
that decision. At most nominal significance levels in the GUM, the tests have their anticipated operating
characteristics, with the ARCH test oversized at smaller significance levels in the HP experiments due
to the heteroscedastic nuisance regressors affecting the residuals.

4The 1% level showed larger departures, but was imprecisely estimated given the rarity with which it occurred, and has
been omitted from the graphs.
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6 Collinearity

Perfect collinearity denotes an exact linear dependence between variables; perfect orthogonality denotes
no linear dependencies; but any intermediate state depends on which ‘version’ of a model is inspected,
as collinearity is not invariant under linear transforms.PcGetsprovides a ‘collinearity analysis’, re-
porting the correlation matrix and its eigenvalues, but because of a lack of invariance, suitable statistics
are unclear. First, eigenvalues are only invariant under orthogonal, and not under linear, transforms, so
depend on the transformations of the variables (rather than the ‘information content’). Secondly, ob-
served correlations are not reliable indicators of potential problems in determining if either or both of
two variables should enter a model – the source of their correlation matters. For example, inter-variable
correlations above 0.999 can easily arise in systems with unit roots and drift, but there is little difficulty
determining the relevance of variables. For example, when the DGP is:

yt = α0 + α1yt−1 + α2zt + εt with εt ∼ IN
[
0, σ2

ε

]
zt = γ + zt−1 + vt with vt ∼ IN

[
0, σ2

v

]
, (11)

whereE [εtvs] = 0 ∀t, s and the fitted model is (say):

yt = β0 + β1yt−1 + β2zt + β3zt−1 + · · · + ut,

even if all correlations exceed 0.999, neither Liberal nor Conservative strategy have great difficulty
retainingzt. In essence, the model is isomorphic to:

∆yt = α0 + α2∆zt + (α1 − 1) (yt−1 − κzt−1) + εt

where∆zt and(yt−1 − κzt−1) are little correlated.
Conversely, in a bivariate normal:(

xt

zt

)
∼ IN2

[(
0
0

)
,

(
1 ρ

ρ 1

)]
, (12)

with a conditional model as the DGP:

yt = βxt + γzt + εt (13)

whenρ = 0.99 there is almost no hope of determining which variables matter in (13).
Transforming variables to a ‘near orthogonal’ representation before modelling can help resolve this

problem, but otherwise, eliminating one of the two variables seems inevitable. Which is dropped de-
pends on the vagaries of sampling, inducing considerable ‘model uncertainty’, as the selected model
oscillates between retainingxt or zt (or both): either variable is an excellent proxy for the depend-
ence ofyt on βxt + γzt. That remains true even when one of the variables is irrelevant, although
then the multiple-path search is likely to select the correct equation. When both are relevant, a Monte
Carlo model-selection study of (13) given (12) whenρ = 0.99 would almost certainly suggest that
the algorithm had a low probability of selecting the DGP. In empirical applications, however, for users
willing to carefully peruse the detailed output, the impact of collinearity will be manifest in the num-
ber of different terminal models entered in encompassing comparisons. Such information could guide
selection when subject-matter knowledge was available.

A serious indirect cost imposed by collinearity is that thet-values in the GUM are poor indicators
of the importance of variables. Thus, tests which use the initial orderedt2(i) as a guide to the selection
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of candidate variables for elimination cannot perform adequately, which includes the initial cumulative
F-test and block tests (e.g., on groups of lagged variables). Thus, a simple separation into ‘included’ and
‘excluded’ variables in a one-off test is infeasible under non-orthogonality, and multi-path searches are
essential. Transforming the variables to a ‘near orthogonal’ representation before modelling probably
requires analyzing the properties of the regressors, and takes us in the direction of a system variant of
Gets: for applications of such ideas in the context of a vector autoregression, see Krolzig (2000).

The effects of collinearity on the selection properties ofPcGetsare illustrated by a variation of the
Monte Carlo experiments in Krolzig and Hendry (2001), The DGP is a Gaussian regression model,
where the strongly-exogenous variables are independent Gaussian AR(1) processes:

yt =
∑5

k=1 βk,0zk,t + ut, ut ∼ IN [0, σu] ,
zt = (αI10)zt−1 + vt, vt ∼ IN10

[
0,
(
1 − α2

)
σ2

vI10

]
for t = 1, . . . , T.

(14)

The parameterization of the DGP isβ1,0 = 0.2, β2,0 = 0.3, β3,0 = 0.4, β4,0 = 0.6, β5,0 = 0.8, and
σ2

u = σ2
v = 1. The populationt-value associated with regressork is given by:

tk = βk

√
T

σz

σu
= βk

√
T

(
1 − α2

)
σv

(1 − α2)σu
= βk

√
T

The DGP is designed to ensure invariant populationt-values with increasingα. For T = 100, the
non-zero populationt-values are therefore2, 3, 4, 6, 8.

The GUM is anADL(1, 1) model, which includes as non-DGP variables the lagged endogenous
variableyt−1, the strongly-exogenous variablesz6,t, . . . , z10,t and the first lags of all regressors:

yt = π0,0 + π0,1yt−1 +
10∑

k=1

1∑
i=0

πk,izk,t−i + wt, wt ∼ IN
[
0, σ2

w

]
. (15)

In an alternative experiment, we consider the orthogonal representation of (15):

yt = π0,0 + π0,1yt−1 +
10∑

k=1

πkzk,t +
10∑

k=1

γk (αzk,t − zk,t−1) + wt, wt ∼ IN
[
0, σ2

w

]
. (16)

In (15) as in (16),17 of 22 regressors are ‘nuisance’. The sample sizeT is just 100, and the number
of replicationsM is 1000. In a third experiment, using (16), the sample size is corrected for the time
dependence of the regressors:T (α) = 100(1 − α2)−1.

The Monte Carlo results are summarized in figure 9 which plots the size, power and the probability
of finding the DGP withPcGetswhen commencing from (i) GUM (15) withT = 100, (ii) GUM (16)
with T = 100, and (iii) GUM (16) withT (α). The first experiment illustrates the effects the collinearity:
a significant loss in power and growing size. Starting from an orthogonalized GUM stabilizes size and
power, which becomeα-invariant if the sample size is adjusted, although there is a slight fall in the
probability of locating the DGP.

7 Conclusion

Model selection is an important part of a progressive research strategy, and itself is progressing rap-
idly. The automatic selection algorithm inPcGetsprovides a consistent selection likeBIC, but in finite
samples both ensures a congruent model and can out-perform in important special cases withoutad hoc
adjustments. Recent improvements have stabilized the size relative to the desired nominal significance
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Figure 9 Selection properties ofPcGetsfor varyingα.

level, and the power relative to that feasible when the DGP is the initial specification. The power per-
formance on recent Monte Carlo experiments is close to the upper bound of a scalart-test at the given
non-centrality from a known distribution, so the direction of improvement is to protect against specific
formulations, such as needlessly long lags when a subset may matter.

Searchper sedoes not seem to impose serious additional costs over those of inference (nor does the
mis-specification testing, as that is needed even when commencing from the DGP specification). The
results to date on ‘pre-test’ biases confirm that these arise from simplifying the DGP, not from searching
for it in an over-parameterized representation. The equation standard error is found within±5% of the
population value, depending on the strategy adopted, soPcGetshas no substantive tendency to ‘overfit’.
Depending on the state of nature,PcGetscan even have a higher probability of finding the DGP starting
from the GUM using the Liberal strategy, than a researcher commencing from the DGP but selecting
by the Conservative strategy. Such a finding would have seemed astonishing in the aftermath of Lovell
(1983), and both shows the progress achieved and serves to emphasize the importance of the choice
of strategy for the underlying selection problem. That estimated standard errors in selected models are
close to those that would be reported for sampling standard deviations in the estimated DGP might
have surprised even more. The key to such performance seems to lie in using a search algorithm that
commences from a congruent representation, explores feasible paths while retaining congruence, and
terminates with a dominant encompassing selection.

Non-orthogonal designs remain problematic, and may be an area where expert knowledge will con-
tinue to prove very valuable. Nevertheless, we have added a ‘quick modeller’ option for non-expert
users, which may be able to outperform all but expert econometricians in selecting from an initial dy-
namic GUM. The main difference from standard ‘expert usage’ is that the program chooses the max-
imum lag length in dynamic models, then checks the congruence of the resulting GUM before estimating
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the levels representation unrestrictedly. ThePcGiveunit-root test (see e.g., Banerjee and Hendry, 1992,
Ericsson and MacKinnon, 1999) is applied to check for possible cointegration, and if found, the pro-
gram transforms the variables to differences and the cointegrated combination, then re-estimates that
I(0) GUM, from which the usual procedures are applied to select a parsimonious undominated model.

What lies ahead? Certainly, the theoretical context assumed above of regression analysis with
strongly exogenous variables is far too simple to characterize real-world econometrics. Empirical re-
searchers confront non-stationary, mis-measured data, on evolving dynamic and high-dimensional eco-
nomies, with at best weakly exogenous conditioning variables. At the practical level,Getsis applicable
to systems, such as vector autoregressions (see Krolzig, 2000), and for endogenous regressors where
sufficient valid instruments exist. Moreover, Omtzig (2002) has proposed an algorithm for automatic
selection of cointegration vectors, andGets is just as powerful a tool on cross-section problems, as
demonstrated by Hoover and Perez (2000).

Selection with more candidate regressors than observations (n > T ) is even feasible when the
DGP is estimable (withk < T/2 regressors say), by successively following paths corresponding to all
combinations of sub-blocks of initial variables and collecting all terminal models; then iterating from
blocks of that set: see Hendry and Krolzig (2003a), who also apply that idea to selecting non-linear
representations. Thus, we remain confident that further developments will continue to improve the
performance of, and widen the scope of application for, automatic modelling procedures.
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