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Abstract

When the DGP is nested in the model,PcGetsdelivers high performance selection across different
(unknown) states of nature. One of its steps involves sub-sample post-selection assessment, and
here we consider its properties and investigate its practical application. The simulation results show
that conditional on retaining a variable, sub-sample information cannot discriminate between sub-
stantive and adventitious significance. The Monte Carlo experiments also reveal that the sub-sample
selection method suggested by Hoover and Perez (1999) is dominated by procedures selecting only
on full-sample evidence, when both approaches are evaluated at a given size. Nevertheless, although
the sub-sample procedures do not result in a genuinely beneficial trade-off between size and power,
they are particularly successful in controlling the size for selection problems that were previously
deemed almost intractable.
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1 Introduction

Despite the many difficulties intrinsic to model selection, viewed as searching for an unknown specifica-
tion in a large class of models, recent automatic procedures have achieved high success rates in locating
the data generation process (DGP) across a variety of simulation experiments such as Hoover and Perez
(1999, 2000), Hendry and Krolzig (1999, 2002), Krolzig and Hendry (2001), Krolzig (2001, 2003), and
Brüggemann, Krolzig and L¨utkepohl (2002). Here we consider one of the selection strategies embod-
ied in PcGets, namely its ‘sub-sample significance evaluation’ procedure. After a final model has been
selected by the search process, its behaviour in overlapping sub-samples is evaluated, as a reliability
check on the selected model.1

Hendry and Krolzig (2002) distinguish between the costs of inference, which are an inevitable con-
sequence of non-zero significance levels and non-unit powers and apply even when the DGP is known,
and the costs of search, which are additional to those faced when commencing from a model that is the
DGP. In summarizing the Monte Carlo evidence on the performance ofPcGetsin a range of experiments,
including those used to calibrate its settings, Hendry and Krolzig (2003) show thatPcGetsperforms well
— in the sense that the costs of search are low — but naturally varies across the (unknown) states of
nature. Their simulation evidence also shows that the sub-sample assessment procedure substantially
lowers the ‘size’ of the selection algorithm, defined as the average incorrect retention rate of irrelevant
variables, with a small reduction in power. However, Lynch and Vital-Ahuja (1998) show that ‘selecting
variables that are significant on all three splits (the two sub-samples and overall)’ delivers no gain over
simply using a smaller nominal size. The Lynch and Vital-Ahuja (1998) argument applies to Hoover
and Perez (1999, 2000) who retain variables at the selection stage only if they are significant in two
overlapping sub-samples.

However, those approaches differ at first sight from selecting only on full-sample evidence, followed
by evaluation on sub-samples, which is thePcGetsapproach investigated here. Nevertheless, the simu-
lation evidence alone does not establish the efficacy of sub-sample selection: as Lynch and Vital-Ahuja
(1998) express the matter, the key issue is whether the power loss of the sub-sample ‘significance eval-
uation’ procedure is smaller — given the size reduction achieved — than that resulting from just setting
a tighter initial significance level. Unfortunately, power depends on both the unknown state of nature
(through a non-centrality parameter) and on the significance level set for the null, and varies in a highly
non-linear manner as a function of these. For example, if the power were close to unity, little loss could
occur for small changes in nominal significance levels (called size as a shorthand below), whereas for
smaller values of the non-centrality parameter, a large reduction in power might ensue.

The structure of the paper is as follows. Section 2 describes the various sub-sample selection pro-
cedures in Hoover and Perez (1999) andPcGets. Section 3 investigates by simulation, the distributional
properties and the implied power-size trade-off of the Hoover-Perez sub-sample selection method and
thePcGetssub-sample reliability assessment; different states of nature and various choices of the per-
centage of overlap are considered. Section 4 concludes.

1PcGetsby Hendry and Krolzig (2001) is an Ox Package (see Doornik, 2001) based on the theory of reduction (Hendry,
1995, Ch.9) implementing automatic general-to-specific (Gets) modelling for linear models.
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2 The form of sub-sample selection procedures

2.1 Hoover–Perez

Hoover and Perez (1999, 2000) select variables only if they are significant in two over-lapping sub-
samples. In the former paper, they graph the trade-off between size and power (defined as the average
retention probability of relevant variables) as the percentage of overlap varies from 50% to 90%, and
find that a split at about 70–80% performs best, in that the slope of the trade-off is steeper below and
flatter above. At first sight, that evidence looks persuasive; but the non-linear relation between size
and power for at-test also would show a similar shape as the size varied from (say) 10% to 0.1% for
values of the non-centrality parameter in the neighbourhood of 2. To see this, consider a normal random
variable:

x ∼ N
[
µ, σ2

]
, (1)

whereµ = 2 andσ2 = 1 so:

P (x ≥ cα) = P (x− 2 ≥ cα − 2) =
1√
2π

∫ ∞

cα−2
exp

(
−1

2
[x− 2]2

)
dx.

Figure 1a plots the resulting power-size trade-off. The dashed line shows the evident slope change
around 5%, suggesting that the trade-off ‘worsens’ sharply as the size falls, but that is simply the correct
power cost of a smaller size, which should be determined by the relative losses on type 1 versus type 2
errors, not by the slope — which is an intrinsic feature of the test. To reinforce that point, the solid line
shows a three-way division, with an intermediate slope in the region of 5%. Thus, to be of benefit, a
split-sample evaluation would need to lose less power per reduction in size than the inherent trade-off.

There is a separate such trade-off line for each value ofµ in (1), and in figure 1b, the trade-off from
Hoover and Perez (1999) is shown with the corresponding lines fort = 3 andt = 3.3, between which
it lies. While it is difficult to judge the mean t-value in their simulation study, the evidence of a steeper
fall to the left, and a shallower rise to the right does not by itself suggest gains.

2.2 ThePcGetsapproach

After selection, the relevance of variables in the final model selected byPcGetsis explored by post-
selection reliability checks to ascertain whether ‘significance’ is substantive or adventitious. Post-
selection evaluation is an attempt to mimic the role in an automatic procedure of recursive estimation,
aiming to evaluate whether apparently significant effects are substantive or chance. It is not a check on
constancy, which has already been tested for the GUM, and checked by diagnostics at each potential
reduction.

Under the null hypothesisH0, using a 2-sided test, at-value will exceed (in absolute value) a critical
valuecα onα% of the occasions, whereα is the significance level, so:

P (−cα ≤ t ≤ cα | H0) = α. (2)

However, after selecting a model, the retained variables will have significantt-values by construction.2

The selected set of variables in the final model thus comprises (on average)α% of the initial set —
which are significant by chance — and the remainder — which are significant by having non-centralt-
distributions. The issue is whether conditional on observing full-sample significance, there is a division

2We neglect the small percentage of the time where retained variables enter insignificantly because their elimination would
induce a significant diagnostic test value.
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Figure 1 Power-size trade-off for a standard normal.

of the sample into sub-samples that would help discriminate between these, exploiting the fact that non-
centralt-values diverge, whereas centralt-values are only significant by a chance value falling outside
the range[−cα, cα] at the end of the sample.

Our proposed filter between variables that really matter (non-centralts) and those that are adven-
titiously significant (centralts that happen to take large end-of-period values) is to check sub-sample
reliability. The idea is that the centralt-tests should be low in at least one of the two sub-periods, so re-
vealing the actual irrelevance of the associated variable. However, because the sample sizes are smaller,
less stringent critical values must be used to ensure a coherent inference procedure.PcGetscenters on
the Hoover and Perez (1999) split of 75–25 splits (so 50% of observations are in common), and adjusts
the sub-sample nominal significance levels as a function of those selected for the full-sample selection.

It is clear from all the Monte Carlo studies that we have conducted that the reliability check re-
duces the size, and perhaps more importantly, has helped stabilize performance over different states
of nature. Nevertheless, that by itself does not resolve the key issue of whether an equivalent size re-
duction achieved by lowering the initial significance level of every test would result in higher or lower
power, and if so, how that changes across different DGPs. As noted above, the size-power trade-off is
highly non-linear in both the significance level and the non-centrality parameters of the variables, and
the analysis must be conditional on having retained each associated regressor at its observedt-value.
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3 Assessing sub-sample-based model selection procedures

It is important to distinguish the reliability assessment of a model (which has been selected based on
the full-sample information) from selection rules that are formulated in terms of sub-sample evidence.
We now provide some Monte Carlo evidence indicating that the latter procedure is dominated by the
former.

3.1 The curse of sub-samples

Both sub-sample-based selection rules rely on information from sub-samplet-tests, so it is useful to
start by analyzing the properties of a simple sub-samplet-test (without conditioning on full-sample
significance), and its relation to the full-samplet-test. Because of the difficulty induced by overlapping
samples, in§3.1.1 we first consider when the sub-samplet-values are independent, so the sub-samples
are non-overlapping.§3.1.2 discusses overlapping sub-samples.

3.1.1 Non-overlapping sub-samples

We consider the following approximation of thet-statistic:

t0 =
β̂

σ̂β
=

 σ̂2
ε

T

[
1
T

T∑
t=1

x2
t

]−1
− 1

2 1
T

∑T
t=1 xtyt

1
T

∑T
t=1 x

2
t

=

√
T

σ̂ε

1
T

∑T
t=1 xtyt√

1
T

∑T
t=1 x

2
t

'
√
T

σεσx

(
1
T

T∑
t=1

xtyt

)
. (3)

Under stationarity and ergodicity, sample moments are consistent for population, so replacing the sample
second moments by their population counterparts will introduce an error, but should not bias the calcu-
lations. However, when the data second moments for the conditioning variables changes substantially
over the sample, different outcomes could be obtained. We also assume a small number of regressors in
the selected model such that degree-of-freedom corrections can be neglected, and focus the analysis on
the scalar problem to highlight the key issues.

If the sample is split intoJ non-overlapping partitions, the full-samplet-value is then given approx-
imately by:

t0 '
√
T

σεσx

 1
T

J∑
j=1

∑
t∈T|

xtyt

 , (4)

where thejth sub-samplet-value is given by:

tj '
√
τ jT

σεσx

 1
τ jT

∑
t∈T|

xtyt

 , (5)

whenτ j is the fraction of observations belonging to thejth partition, with
∑

j τ j = 1. Hence:

t0 '
J∑

j=1

√
τ jtj >

J∑
j=1

τ jtj, (6)



6

so the weighted sum of sub-samplet-values is less than the full-samplet-value. If the partitions are of
equal size,τ j = 1/J , we have that

t0 ' 1√
J

J∑
j=1

tj. (7)

and, hence,E[t0] '
√
JE[tj ].

For non-overlapping sub-samples, thetj-values are independently distributed so we can derive the
average squaredt-value in the full-sample from the sub-samplet2j -values as follows:

E[t20] '
J∑

j=1

τ jE[t2j ] +
J∑

j=1

∑
i6=j

√
τ iτ jE[tj ]E[ti]. (8)

Again assuming equal-sized partitions:

E[t20] ' E[t2j ] +
(

1− 1
J

)
ψ2. (9)

for the given full-sample non-centrality parameterψ (which for convenience is taken to be positive),
so we get the following relationship between the average squaredt-value in the full sample and the
sub-samples:

E[t2j ] '
1
J
ψ2, (10)

which is confirmed by a comparison of (4) and (5). The higher the non-centralityψ, the stronger the
shrinkage of the expected sub-sample|t|-value (compared to that of the full sample). This reduction
in the information content of sub-sample|t|-test might be referred to as the ‘curse of sub-samples’. It
indicates that sub-sample-based selection rules will find it hard to detect DGP variables (at a given size),
especially forψ2 values near the critical region.

3.1.2 Overlapping sub-samples

Suppose, for the following, thatJ = 2. If the sub-samples are overlapping,i.e., τ ∈ (0.5, 1), their
t-values are no longer independent. To overcome the correlation problem, we partition the sample into
three independent partitions (say,a, b and c) and construct from these, the two sub-samples and the
full-samplet-values. The three generatedt-distributed random variables areti ∼ t

(
τ iT,

√
τ iψ
)

for
i = a andc and tb ∼ t

(
(2τ − 1)T,

√
2τ − 1ψ

)
such thatt0 ∼ t(T,ψ). It follows from (6) that the

full-samplet-value is given by:

t0 '
√

1− τT ta +
√

2τ − 1 tb +
√

1− τT tc. (11)

The two sub-samplet-values result as follows:

t1 '
√

1− τT

τT
ta +

√
2τ − 1
τT

tb, (12)

t2 '
√

1− τT

τT
tc +

√
2τ − 1
τT

tb. (13)

It can be shown that the result in (6) holds: the weighted sum of sub-samplet-values is again less than
the full-samplet-value.

The advantage of the above procedure is thatt0 as well ast1 andt2 can be generated as weighted
sums of independentlyt-distributed random variables. Next, in§3.2, we use the framework laid out
here to investigate the Hoover–Perez sub-sample selection rule, which evaluates the minimum of the
two sub-samplet-values. Then,§3.3 examines the properties of thePcGetspost-selection reliability
check, which assesses the sub-sample evidence conditional on full-sample significance.
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3.2 The Hoover–Perez approach

3.2.1 Selection rule

We first consider the selection rule of Hoover and Perez, namely include a regressor if and only if its
coefficient is significant in both sub-samples. In other words, the minimum of the two sub-sample
|t|-values needs to be significant:

min{|t1|, |t2|} > cmin
α,τT , (14)

whereτ denotes the size of the sub-sample as a fraction of the (full) sample andα is the size of the test.
For the simple framework considered here, we can define and control the size of the procedure as

α = Pr
(

min{|t1|, |t2|} > cmin
α,τT

∣∣∣ψ = 0
)
. (15)

Soα is the nominal and empirical size of the procedure, which implies that the power of the selection
procedure is given by:

π(α, τ , ψ) = Pr
(

min{|t1|, |t2|} > cmin
α,τT

∣∣∣ψ > 0
)
, (16)

whereψ is the full-sample population|t|-value of the DGP variable. The properties of the selection rule
will ultimately depend on the distribution ofmin{|t1|, |t2|} for givenψ, which we will explore in the
following.3

3.2.2 Simulating the distribution of min{|t1|, |t2|}
Design.We investigate the properties of themin{|t1|, |t2|} statistic by simulation. The Monte Carlo
study consists ofM = 5 000 000 replications of an experiment witht(τT,

√
τψ) distributed random

variables with a (full-sample) non-centrality ofψ ∈ {0, 2, 3, 4, 5} and a full-sample size ofT = 100.
The size of the sub-samples is[τT ], whereτ ∈ [0.5, 1], such thatτ = 0.5 denotes the case of non-
overlapping sub-samples,τ ∈ (0.5, 1) implies overlapping sub-samples andτ = 1 is the borderline
case with the sub-samples and the full sample coinciding.

In the case of non-overlapping sub-samples(τ = 0.5), the experiment consists of twot(ν, 1√
2
ψ)

distributed random variables withν = T
2 = 50 degrees of freedom and a (full-sample) non-centrality

ψ. Let {t1, t2} bet(ν) distributed random variables. Then, the full-samplet-value is given by:

t0 =
1√
2

(t1 + t2) .

For overlapping sub-samples we use the approach in equations (11) to (13).
Probability density function (pdf) ofmin{|t1|, |t2|}. The probability density function of

min{|t1|, |t2|} is illustrated in figure 2 for the case of non-overlapping sub-samples (i.e., τ = 0.5) and,
overlapping sub-samples(τ = 0.75). Furthermore, figure 2 compares the pdf ofmin{|t1|, |t2|} to the
density of the simple full-samplet-value. It can be seen that the probability mass is shifted to the left.
The shift is greater for the non-overlapping sub-samples and increases with a growing non-centrality.
This indicates that the discrimination between DGP variables (ψ > 0) and nuisance variables (ψ = 0) is
getting harder when the analysis is based on sub-sample information. This intuition will be confirmed
in the analysis in section 3.2.3. We now continue to evaluate the properties of the distribution of
min{|t1|, |t2|}.

3Lynch and Vital-Ahuja (1998) analyzed the related problem whether the use of sub-sample evidence can mitigate the
potential impact of data snooping on the distribution of test statistics. Comparing sub-sample and entire sampleR2 tests,
Lynch and Vital-Ahuja found that the full-sample test has a less distorted size and more power than the multi-sample test.
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Figure 2 Density of the full-sample|t| andmin{|t1|, |t2|} for T = 100.

Critical values. Table 1 reports the critical valuescmin
α,τT of the min{|t1|, |t2|} statistic for given

sizeα:
cmin
α,τT =

{
c
∣∣∣Pr
(
min {|t1|, |t2|} > c

∣∣∣ψ = 0
)

= α
}
.

When compared to the critical values of a full-samplet-test (τ = 1.0), the critical values have to be
chosen much lower to reflect the shift of the probability mass to the left. The smallerτ , the stronger the
shift. Forα = 0.05, the critical valuecmin

0.05,100τ drops from 1.984 forτ = 1.0, over 1.556 forτ = 0.75,
to 1.232 forτ = 0.5.

Table 1 Critical valuescmin
α,τT for the sub-samplemin{|t|1, |t|2} test.

τ \ α 1% 2.5% 5% 7.5% 10%

0.50 1.677 1.434 1.232 1.106 1.012
0.65 1.985 1.667 1.410 1.249 1.131
0.70 2.082 1.754 1.484 1.315 1.189
0.75 2.167 1.832 1.556 1.381 1.250
0.80 2.244 1.906 1.624 1.446 1.313
0.85 2.320 1.977 1.691 1.511 1.376

1.00 2.623 2.275 1.984 1.799 1.660

Also, table 2 reports the corresponding nominal significance levels of a simplet-test (withν = τT ).
In the case of non-overlapping sub-samples (τ = 0.5), sizes of1%, 5% and10% of themin{|t1|, |t2|}
test would only require critical values associated with a significance level of a simplet-test at9.7%,
22.1% and31.4%. Forτ = 0.75, the required levels are reduced to3.3%, 12.3% and21.4%.

In table 3, we suppose that the critical values have been taken from thet(τT ) distribution. As the
probability mass of themin{|t1|, |t2|} statistic is shifted to the left of the|t0|-density, the test becomes
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Table 2 Nominalt-probabilitiesη(α, τ ) for the critical valuescη,τT = cmin
α,τT .

τ \ α 1% 2.5% 5% 7.5% 10%

0.50 0.0966 0.1546 0.2206 0.2712 0.3137
0.65 0.0498 0.0985 0.1616 0.2143 0.2604
0.70 0.0397 0.0823 0.1409 0.1914 0.2371
0.75 0.0325 0.0697 0.1227 0.1701 0.2140
0.80 0.0269 0.0594 0.1074 0.1512 0.1921
0.85 0.0223 0.0506 0.0937 0.1337 0.1718

1.00 0.0100 0.0249 0.0499 0.0749 0.0999

dramatically undersized: For a nominal significance level of1%, 5% and10%, the resulting size of the
min{|t1|, |t2|} test in non-overlapping sub-samples (τ = 0.5) is 0.01%, 0.25% and1%, respectively.

Table 3 Sizeα(η, τ ) of themin{|t1|, |t2|} > cη,T test.
τ \ η 1% 2.5% 5% 7.5% 10%

0.50 0.0001 0.0006 0.0025 0.0057 0.0100
0.65 0.0011 0.0038 0.0096 0.0168 0.0249
0.70 0.0017 0.0053 0.0129 0.0217 0.0315
0.75 0.0024 0.0071 0.0163 0.0268 0.0383
0.80 0.0031 0.0089 0.0201 0.0323 0.0455
0.95 0.0040 0.0111 0.0243 0.0385 0.0534
1.00 0.0099 0.0249 0.0500 0.0749 0.0999

3.2.3 Power size trade-off

We now derive thepower size trade-offof the min{|t1|, |t2|} test statistic for given sizeα with the
sub-sample size being a fractionτ of the full-sample:

π(α, τ , ψ) = Pr
(

min{|t1|, |t2|} > cmin
α,τT

∣∣∣ψ > 0
)
,

whereα = Pr
(

min{|t1|, |t2|} > cmin
α,τT

∣∣∣ψ = 0
)
.

Figure 3 reports the resulting power–size trade-off functionπ(α; τ , ψ) for the given (full-sample)
non-centrality parameterψ ∈ {2, 3, 4, 5}, sub-sample sizeτ ∈ {0.50, 0.55, . . . , 1.00} and, for greater
numerical stability,T = 1000. The (α, π(τ , ψ)) functional is derived by parametric variation of the
critical valuecmin

α,τT = cη(α,τ),τT according to its simplet-test significance levelη, resulting in sequences
of α(η, τ) andπ(α(η, τ ); τ , ψ). The power loss is quite substantial (up to40% for τ = 0.5), but it is
worth noting that analyzing overlapping sub-samples can retrieve part of the power loss.

The power of the test relative to the full-sample case,

π(α; τ , ψ)
π(α; 1, ψ)

with ψ > 0,

is illustrated in figure 4 for sub-sample sizes ofτ = 0.5 to 1.0. The power is found to be a monotonically
increasing function inτ , so we can conclude that the sub-sample-based selection rule of Hoover and
Perez (1999) is dominated by the simple full-samplet-test.
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Figure 3 Power–size trade-off under themin{|t1|, |t2|} > cmin
α,τT selection rule (T = 1000).
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α,τT selection rule (T = 1000).
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3.3PcGetsapproach

3.3.1 Reliability statistic

In PcGets, a variable is selected if it is significant in the full sample,i.e., |t0| > cγ,T .4 After selection,
the relevance of variables in the final model is explored by post-selection reliability checks to ascertain
whether ‘significance’ is substantive or adventitious.

The reliability of a regressor, which is normalized to be bounded between zero (no reliability) and
one (full reliability), is a function of the full-sample|t0|-value and the significance of that regressor in
the two sub-samples:

r(|t0|, |t1|, |t2|) ∈ [0, 1],

where the partial derivativesri ≥ 0 for i = 1, 2, 3, r(|t0|, ·, ·) = 0 if |t0| < cγ,T and r(·) = 1 if
|ti| > csub

δ,τT for all i. In the following, we consider parameterizations of the reliability function which
are based on a constant penaltyρ for insignificance in sub-samples:

r(|t0|, |t1|, |t2|) = I(|t0| > cγ,T)
[
1− ρI(|t1| < csub

δ,τT)− ρI(|t2| < csub
δ,τT)

]
, (17)

whereI(·) is an indicator function withI(C) = ∞ if C is true and0 otherwise. We allow here for
different significance levels for the full sample (γ) and the sub-samples (δ). PcGetssetsρ = 0.3 and
csub
δ,τT = c1.5γ,τT , where — for typical macro-economic sample sizes — the significance levelγ is 0.05

for the liberal and 0.01 for the conservative strategy.
Note that we can write (17) as:

r(|t0|, |t1|, |t2|) = I(|t0| > cγ,T)
[
1− ρI(min {|t1|, |t2|} < csub

δ,τT)− ρI(max {|t1|, |t2|} < csub
δ,τT)

]
,

which can be easily compared to the Hoover–Perez rule:

rHP(|t1|, |t2|) = I(min {|t1|, |t2|} > cmin
α,τT).

For rHP(|t1|, |t2|), we defined size as:

α = Pr
(

min {|t1|, |t2|} > cmin
α,τT

∣∣∣ ψ = 0
)

= E
[
rHP( |t0|, |t1|, |t2|)

∣∣∣ψ = 0
]
.

In an analogous fashion, we can define size and power for thePcGetsapproach as follows:
Size(ψ = 0):

α(γ, δ) = E
[
r(|t0|, |t1|, |t2|)

∣∣∣ψ = 0
]

= Pr
(
|t0| > cγ,T

∣∣∣ ψ = 0
)[

1− ρ

2∑
i=1

Pr
(
|ti| < csub

δ,τT

∣∣∣ |t0| > cγ,T , ψ = 0
)]

;

Power(ψ > 0):

π(γ, δ, τ , ψ) = E
[
r(|t0|, |t1|, |t2|)

∣∣∣ψ]
= Pr

(
|t0| > cγ,T

∣∣∣ ψ)[1− ρ
2∑

i=1

Pr
(
|ti| < csub

δ,τT

∣∣∣ |t0| > cγ,T , ψ
)]

,

4We abstract here from the possibility that a variable might be selected to ensure congruence, although it is not significant
in the full sample.
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which can be rewritten, for the size say, as:

α(γ, δ) = E
[
r(|t0|, |t1|, |t2|)

∣∣∣ψ = 0
]

= Pr
(
|t0| > cγ,T

∣∣∣ ψ = 0
) [

1−ρPr
(

min {|t1|, |t2|} < csub
δ,τT

∣∣∣ |t0| > cγ,T , ψ = 0
)

−ρPr
(

max {|t1|, |t2|} < csub
δ,τT

∣∣∣ |t0| > cγ,T , ψ = 0
) ]

' Pr
(
|t0| > cγ,T

∣∣∣ ψ = 0
) [

(1− ρ) + ρPr
(
min {|t1|, |t2|} > csub

δ,τT

∣∣∣ |t0| > cγ,T , ψ = 0
)]

= (1− ρ) Pr
(
|t0| > cγ,T

∣∣∣ ψ = 0
)

+ ρPr
(
min {|t1|, |t2|} > csub

δ,τT , |t0| > cγ,T

∣∣∣ψ = 0
)

sincePr
(

max {|t1|, |t2|} < csub
δ,τT

∣∣∣ |t0| > cγ,T , ψ
)
' 0 for δ ' γ.

Before investigating the power-size trade-off implied by thePcGetsreliability statistic (17) in sec-
tion 3.3.3, we proceed by analyzing the properties of the density of the sub-sample|ti|-value given its
significance in full sample,i.e., |t0| > cγ,T .

3.3.2 Simulating the conditional distribution of |ti| given |t0| > cγ,T

Design.Using the same framework as in section 3.2.2, we now investigate the sub-sample properties of
a singlet-test when the analysis is conditioned on its significance in the full sample. The Monte Carlo
study again consists ofM = 5 000 000 replications of the experiment witht(τT,

√
τψ) distributed ran-

dom variables with a full-sample non-centralityψ ∈ {0, 2, 3, 4, 5} and sample sizeT = 100. The size
of the sub-samples is[τT ], whereτ ∈ [0.5, 1], such thatτ = 0.5 denotes the case of non-overlapping
sub-samples,τ ∈ (0.5, 1) implies overlapping sub-samples andτ = 1 is the borderline case with the
sub-samples and the full sample coinciding.
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Figure 5 The density of|ti| andmini{|ti|} conditional on significance in the full sample.
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Figure 5 plots the conditional density of|ti| in non-overlapping(τ = 0.5) and overlapping(τ =
0.75) sub-samples conditional on significance in the full sample. When compared to the density of
simple (full-sample)t-test, two effects become evident:

(i) For non-DGP variables, conditioning on significance in the full sample makes the pdf of its sub-
sample|t|-value more similar to the unconditional density of a DGP variable with non-centrality
close to the critical value of the full-sample test,ψ ≈ cγ,T . Thus, probability mass is dramatically
shifted to the right.

(ii) For DGP variables with a sufficiently high population|t|-value,ψ > cγ,T , the probability of being
selected is close to one. So knowing the fact that the variable is significant in the full-sample does
not have any significant information value attached. Thus, the effect just described, which is so
powerful for non-DGP variables, does not play a role here. Instead the ‘curse of sub-samples’ is
due to shifting the probability mass to the left.

The two effects greatly complicate the selection problem: if a regressor is significant in the full
sample,|t0| > cγ,T , the distribution of the sub-sample|t|-values of a variable that matters(ψ > 0)
is hardly distinguishable from that of a nuisance variable(ψ = 0). A comparison of the two depicted
cases(τ = 0.5 versusτ = 0.75) suggests the use of information from overlapping sub-samples for the
reliability statistic.

The resulting size of the conditional sub-sample|ti| test at critical values corresponding to the re-
portednominalsignificance levels of a simplet-test is reported in table 4 forγ = 0.05 and in table 5
for a full-sample significance level ofγ = 0.01. In the split-sample analysis ofPcGets, the size of the
sub-sample is0.75T and thenominalsignificance level is1.5γ, whereγ is the significance level in the
full sample. Thus, a nuisance parameter which is significant in the full sample has a64.97% probability
of passing the sub-sample test using thePcGetsliberal strategy (54.1% for the conservative strategy).

Table 4 Sizeδ of |t1| > cη,τT given |t0| > c0.05,T .
τ \ δ 1% 2.5% 5% 7.5% 10%

0.50 0.1108 0.2174 0.3404 0.4299 0.5006
0.65 0.1536 0.2985 0.4559 0.5618 0.6396
0.70 0.1641 0.3236 0.4947 0.6068 0.6858
0.75 0.1720 0.3465 0.5322 0.6497 0.7309
0.80 0.1804 0.3730 0.5751 0.6981 0.7787
0.85 0.1881 0.4011 0.6254 0.7532 0.8307

1.00 0.1989 0.4993 1.0000 1.0000 1.0000

Table 5 Sizeδ of |t1| > cη,τT given |t0| > c0.01,T .
τ \ η 1% 1.5% 2% 2.5% 5%

0.50 0.2401 0.3051 0.3545 0.3962 0.5423
0.65 0.3613 0.4449 0.5075 0.5577 0.7130
0.70 0.4002 0.4912 0.5582 0.6102 0.7645
0.75 0.4439 0.5412 0.6129 0.6664 0.8160
0.80 0.4881 0.5933 0.6676 0.7225 0.8623
0.85 0.5438 0.6569 0.7320 0.7834 0.9047

1.00 1.0000 1.0000 1.0000 1.0000 1.0000

To illustrate the procedure, we also report here the results for the hypothetical case ofτ = 1. This
results in a two-stage test, where on the first stage a simplet-test is performed at a significance level
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of 0.05. Conditional on the outcome of that test, a furthert test is applied to significant variables at a
nominal size ofδ. Clearly allt0-values with|t0| > cγ,T are going to pass this test ifδ ≥ γ.

Table 6 reports the critical valuecsub
δ,τT of the sub-samplet-test conditional on significance in the

full sample |t| > cγ,T , when the size of the sub-sample test is calibrated to equalize the size in the
full sample,i.e., δ = γ. It illustrates the shift of the pdf to the right, when compared to the pdf of an
unconditionalt-test.

Table 6 Critical valuescsub
γ,τT of the sub-samplet-test conditional on|t0| > cγ,T .

τ \ γ 1% 2.5% 5% 7.5% 10% 20% 30% 40% 50%

0.50 4.148 3.526 3.049 2.743 2.520 1.926 1.522 1.194 0.912
0.65 4.148 3.588 3.130 2.840 2.619 2.034 1.635 1.311 1.021
0.70 4.167 3.590 3.136 2.846 2.630 2.051 1.657 1.337 1.051
0.75 4.141 3.583 3.132 2.848 2.634 2.065 1.677 1.360 1.078
0.80 4.120 3.569 3.128 2.847 2.636 2.075 1.690 1.379 1.102
0.85 4.113 3.570 3.127 2.846 2.638 2.082 1.703 1.396 1.124

1.00 4.089 3.532 3.099 2.828 2.624 2.081 1.712 1.416 1.157

Table 7 corresponds to the previous table. It reports the nominal significance level of a simplet-test
when the critical valuescsub

γ,τT given by table 6 are used. For reference, we also report the results for the
sequentialt-test implied byτ = 1.

Table 7 Nominalt(τT )-tail probabilityη(γ, τ ) for the critical valuescsub
γ,τT .

τ \ γ 1% 2.5% 5% 7.5% 10% 20% 30% 40% 50%

0.50 0.0001 0.0009 0.0037 0.0084 0.0150 0.0598 0.1344 0.2381 0.3660
0.65 0.0001 0.0006 0.0026 0.0060 0.0110 0.0460 0.1069 0.1945 0.3110
0.70 0.0001 0.0006 0.0025 0.0058 0.0105 0.0440 0.1019 0.1855 0.2970
0.75 0.0001 0.0006 0.0025 0.0057 0.0102 0.0423 0.0977 0.1778 0.2846
0.80 0.0001 0.0006 0.0025 0.0056 0.0101 0.0412 0.0949 0.1717 0.2736
0.85 0.0001 0.0006 0.0024 0.0055 0.0099 0.0403 0.0922 0.1664 0.2642

1.00 0.0001 0.0006 0.0025 0.0057 0.0101 0.0400 0.0900 0.1599 0.2501

Analogously to tables 6 and 7, the two following tables 8 and 9 report critical valuescsub
δ,τT and nom-

inal simplet-test significance levels of the conditional sub-samplet-test, but now under the assumption
that the full-sample evidence has been evaluated at a given significance level ofγ = 0.05. Forτ = 0.75,
an actual size of0.05 requires a critical value of 3.132, which corresponds to a nominal size of0.25%
in a simplet-test. Forτ = 1, the critical values can be taken from at(T,ψ)-distribution evaluated at the
two-sided tail-probabilityη = δγ.

Table 8 Critical valuescsub
δ,τT of the sub-samplet-test conditional on|t0| > c0.05,T .

τ \ δ 1% 2.5% 5% 7.5% 10% 20% 30% 40% 50%

0.50 3.662 3.324 3.049 2.866 2.728 2.362 2.101 1.880 1.677
0.65 3.689 3.382 3.130 2.970 2.850 2.522 2.291 2.098 1.919
0.70 3.688 3.383 3.136 2.981 2.865 2.553 2.336 2.155 1.986
0.75 3.668 3.364 3.132 2.983 2.873 2.574 2.369 2.198 2.042
0.80 3.649 3.361 3.128 2.986 2.877 2.593 2.402 2.243 2.097
0.85 3.652 3.363 3.127 2.985 2.880 2.610 2.430 2.283 2.151

1.00 3.598 3.319 3.099 2.967 2.868 2.624 2.474 2.364 2.275
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Table 9 Nominalt(τT )-tail probabilityη(δ, τ) for the critical valuescsub
δ,τT .

τ \ δ 1% 2.5% 5% 7.5% 10% 20% 30% 40% 50%

0.50 0.0006 0.0017 0.0037 0.0061 0.0088 0.0221 0.0407 0.0659 0.0998
0.65 0.0005 0.0012 0.0026 0.0042 0.0058 0.0141 0.0252 0.0398 0.0594
0.70 0.0004 0.0012 0.0025 0.0040 0.0055 0.0129 0.0224 0.0346 0.0510
0.75 0.0005 0.0012 0.0025 0.0039 0.0053 0.0120 0.0204 0.0310 0.0447
0.80 0.0005 0.0012 0.0025 0.0037 0.0052 0.0113 0.0186 0.0277 0.0391
0.85 0.0004 0.0012 0.0024 0.0037 0.0050 0.0107 0.0172 0.0249 0.0343

1.00 0.0005 0.0013 0.0025 0.0038 0.0050 0.0101 0.0151 0.0200 0.0250

3.3.3 Power size trade-off

We now derive thepower of the reliability statistic for given sizeα and the sub-sample size being a
fractionτ of the full-sample:

π(γ, τ , ψ) = Pr
(
|t0| >cγ,T

∣∣∣ ψ)[1− 0.3
2∑

i=1

Pr
(
|ti| < c1.5γ,τT

∣∣∣ |t0| > cγ,T , ψ
)]

,

whereα(γ, τ) = Pr
(
|t0| > cγ,T

∣∣∣ ψ = 0
)[

1− 0.3
2∑

i=1

Pr
(
|ti| < c1.5γ,τT

∣∣∣ |t0| > cγ,T , ψ = 0
)]

.

For the derivation of the power-size trade-offπ(α;ψ, τ ) shown in figure 6, we use the same approach
as before. The(α, π(ψ, τ)) functional is produced by parametric variation of the nominal significance
levelγ.

Figure 6 reports the resulting power–size trade-off forT = 1000. The efficient frontier is again
given by the full-sample analysis (τ = 1). While using non-overlapping sub-samples (τ = 0.5) delivers
the worst power at any sizeα, analyzing overlapping sub-samples can retrieve part of the power loss.
This is illustrated in figure 7, which plots the power of thePcGetsreliability statisticπ(α; τ , ψ) relative
to the power of the full-sample analysisπ(α; 1, ψ) for sub-sample sizes ofτ = 0.5 to 1.0. The power
is found to be a monotonically increasing function inτ . For the sub-sample size used byPcGets(i.e.,
τ = 0.75), the power loss is less than20% for ψ > 2.

While the loss in power is as severe as in the case of the Hoover and Perez (1999) sub-sample-
based selection rule, it is less damaging, since the reliability statistics are only provided as an additional
information source: ThePcGetsmodel selection process proceeds on the basis of the full-sample evid-
ence; then, the reliability of the selected variables is reported, and the user’s own model choice might
take this into consideration. For the size and power calculations presented here, we assumed that the
reliability statistics are translated into retention probabilities in a linear fashion. It is also worth noting,
that we derived the simulation results under the assumption of structural stability. In practice, models
are subject to structural breaks, so gains from analyzing sub-sample information can be expected in that
setting.

4 Conclusion

Model selection is an important part of a progressive research strategy, and itself is progressing rapidly.
The sub-sample reliability procedure appears in Monte Carlo studies to reduce size at a small cost in
power, but does not in fact result in a trade-off that is genuinely beneficial, although it certainly seems
relatively costless, and has successfully controlled the null rejection frequency for selection problems
that were previously deemed almost intractable (see e.g., Lovell, 1983).
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Figure 6 Power-size trade-off for thePcGetsreliability function (T = 1000).
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Figure 7 Relative Power for givenτ for thePcGetsreliability function (T = 1000).
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