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Abstract: Dickey and Fuller (1981) suggested unit root tests for an autoregres-
sive model with a linear trend and a fixed initial value. This model has nuisance
parameters so later authors have often worked with a slightly different model with
a random initial value in which nuisance parameters can be eliminated by an invari-
ant reduction of the model. This facilitates computation of envelope power functions
and comparison of the relative performance of different unit root tests. It is shown
here that invariance arguments also can be used when comparing power within the
model with fixed initial value. Despite the apparently small difference between the
two models the relative performance of unit root tests turns out to be very different.

Keywords: Envelope power function, maximal invariant parameter, maximal in-
variant statistic, most stringent test, unit root tests.

1 Introduction

Dickey and Fuller (1981) suggested unit root tests for an autoregressive model with a
linear trend and a fixed initial value. Although these tests are widely used and have
appeal as maximum likelihood ratio tests a wide range of alternative unit root tests
have been developed. Many of these tests are formulated for a slightly different model
with a random initial value. The change of scene allows nuisance parameters to be
eliminated by an invariant reduction of the model. In the reduced model the envelope
power function can be computed using the Neyman-Pearson Lemma and the power of
different tests can be compared to this and to each other. The problem of comparing
power is thereby solved, but it comes at the cost of using invariant reductions without
any immediate interpretation from an economic subject matter view. An alternative
approach is to leave nuisance parameters in the model and only eliminate them in the
power comparison using the notion of maximal invariant parameters. While this idea
is implicitly used by Elliot, Rothenberg, and Stock (1996) in their power comparison
for a model with random initial value the contribution of this paper is to discuss these
concepts more precisely and apply them for power comparison within the model with
a fixed initial value.

Four different unit root tests are considered in the power comparisons. The first
of these is the log maximum likelihood ratio test statistic for the model with fixed
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initial value that was formulated as a F-type statistic by Dickey and Fuller (1981).
The other three tests were suggested by Bhargava (1986), Ahn (1993), and Elliot,
Stock and Rothenberg (1996) and they are constructed for models with a random
initial value. A simulation study supports the finding of Elliot, Rothenberg, and
Stock (1996) that Dickey-Fuller tests are not particular good in a model with random
initial value while it is also shown that the Dickey-Fuller test is actually most stringent
in a model with fixed initial value. The practitioner is therefore faced with the issue
of choosing the model carefully before choosing a test.

In the event that both the models with fixed and random initial values describe a
data series the practitioner may be interested in comparing power across the models.
Since the models are not nested statistical theory give no guidance for such a com-
parison. This issue is therefore addressed by fitting empirical models to a time series
of quarterly UK production in order to get comparable alternative hypotheses. With
these particular choices of alternatives it is found that the maximal possible power is
about the same in the different models.

The above described analysis assumes that the considered models are well-specified.
In applications this will have to be checked. For the model with fixed initial value
the distributional assumptions are that the innovations are independently, identical
normal distributed. These assumptions can be tested consistently, whereas distribu-
tional assumptions to the initial value will only concern one particular observation
and cannot be tested consistently. For the considered data the assumption to the
initial value happen to be strongly rejected. While this of course not implies that
a model with random initial value would always be very wrong it does suggest that
some care should be made in making such assumptions.

The paper is organised so §2 first reviews the relevant maximal invariant statistics
and then introduces the models and associated maximal invariant parameters, while
83 describes the considered tests. The power of the tests are then compared in §4,
5 for models with random and fixed initial value respectively, whereas §6 attempts
a comparison across models. §7 concludes and a few mathematical derivations are
given in an Appendix.

2 Models

Suppose a linearly trending time series, wy, . . . , wr, is observed for which the economic
question of interest is whether its growth rate depends on its lagged levels. Some
invariance considerations are introduced before actually formalising this as a testing
problem. Two slightly different statistical models are then presented. One is to
assume that w, is fixed leading to a conditional model whereas conveniently chosen
distributions for w; lead to unconditional models.



2.1 Maximal invariant statistics

When formalising a statistical model the economic context will often indicate that
inferences should be invariant to certain aspects of the sample variation. An example
would be indifference to measuring log productivity in Pounds or in pence. This
is formalised as saying that the statistical analysis should be invariant to location
transformations of the type

Je: wy — wy + b for all b € R.

The analysis should therefore depend on the data vector W = (wq, ..., wy)" through
a vector, called a maximal invariant statistic, that varies in a (7' — 1)-dimensional
space determined by the orbits of the sample space under the transformation g., see
Lehman (1997, p. 284). A convenient choice of maximal invariant statistic is

X = (z1,...,27) where Ty = wp — Wy,
which would indeed take the same value if a constant b were added to each observation
Wg.

Groups of transformations can of course be formulated arbitrarily. Given the
linear trend in the data translation by a linear trend like

g wy — wy + b+ ct for all b,c € R,
or a transformation involving scaling as in
gs wy — aw, + b+ ct for all @ # 0 and b,c € R

come to mind but the list of potential transformations is endless. From a subject
matter perspective invariance with respect to g; or g5 do not have any interpretation
as simple as a question of units so it would be somewhat unnatural to impose these
when formalising the model. See also Cox and Hinkley (1974, §2.3) for a discussion
in relation to the invariance principle. When it comes to power comparison these
transformations can be used more naturally and it is useful to note some associated
maximal invariants, Y and Z, given by

t_lx 4y — Yol
T 1 T t — T .
nguZIy'Z

Y = Ty —

2.2 Modelling by conditioning on the initial value
The first statistical model is autoregressive and takes the initial value, wy, as fixed:

Mo Awy =ow, 1+ B+ (t—1) + oey, fort=2,...,T, (1)
Fized: wy is fixed,



where the innovations eg,...,ep are independently, standard normally distributed
and the parameter 0p;zeq = (@, 3,7, ) satisfies 0 pizeq € Opized = R> x Ry, Since w;
is fixed the model can equivalently be formulated for the maximal invariant X by a
simple reparametrisation given by

Az =0z 1+ 6+t —1)+oe, fort=2,...,T, (2)

where 1 = 0 and the parameters «, 6, y, o vary in the same parameter space as before,
but 6 = § 4+ aw; has a different interpretation from /3.

A process within the model M g;,.q can be given a trend stationary initial distribu-
tion when |1+ «| < 1, while it is a random walk with a linear trend when oo = v = 0.
In order to compare these two cases Dickey and Fuller (1981) formulated the unit
root hypothesis:

Hpizea: a=7= 0.

This hypothesis is preferred to a hypothesis like @« = 0 which has less compelling
interpretation and generates tests that are typically suffering from lack of similarity
with respect to v, see Nielsen and Rahbek (2000).

The testing problem given by Mp;zeq, Hpizeq 18 invariant to the sample transfor-
mations ¢., g; and g,. The more general of these, g,, induces a parameter translation

g:,Fimed: (CV, 67 Y, 0, wl) = (a7 abd — ba + ¢, a7y — ca, ao, aw, + b + C) ) (3)

mapping O gizeq iNt0 Opieq and where w; is included as it plays a role similar to a
parameter. This has the property

Py (gsW € Alwi) =Py, o(W € Alwr), (4)

s,Fized
for all events A so that for each 6 in the restricted parameter space ©%,,., = (0) X
R x (0) x Ry then g} 1,040 is also ©%,,.4, see Lehmann (1997, p.282) and Cox and
Hinkley (1974, p.157f).

The transformations g;, gs do not offer any scope for eliminating nuisance param-
eters by invariant reduction of the model. This is because the nuisance parameter
0 does not in general have interpretation as either a level or a trend parameter and
the marginal distributions of Y and Z will therefore depend on 6. This is perhaps
not such a big loss since on the one hand the transformations g, gs as opposed to
g. do not have straight forward economic interpretations and on the other hand the
invariance can be exploited when it comes to comparing power functions of different
tests.



2.3 Maximal invariant parameters for the model Mp;,.4

Later on four tests will be discussed that are all functions of the maximal invariant
Z under g;. It will be therefore be useful to describe how the distribution of the
maximal invariant statistic Z varies across the parameter space, O p;zeq. This is done
by finding a maximal invariant parameter under the induced transformation g¥, see
Lehman (1997, p. 292).

By definition the maximal invariant statistic Z takes the same value for a re-
alization W and for any transformation thereof g;W given by gs(w;) = aw; + b +
ct. The definition of the induced transformation, (4), shows that for any value of
(O piged, w1) then Z has the same distribution under any probability measure in-
dexed by g} ripea(OFized; w1) as given in (3). This implies that although the dis-
tribution of W wvaries freely in a five dimensional space given by Op;.eq and the
range of w; the distribution of Z only varies in a bivariate subspace. Choosing
a = sign{y + a(aw; + 8)/(a + D)}, b= a8 —wy)/(a+1), c = —a(aw; + §)/(a +1)
shows that a maximal invariant parameter under g; r;,., is given by

and where ~v* is given by abs(y + dé«)/o. It implies that in a power comparison of
tests which are only depending on the data through the maximal invariant statistic Z
under g, it suffices to look at the maximal invariant parameter 6%,,., and the nuisance
parameters of the testing problem can be ignored since both o and  are parameters
of interest.

2.4 Modelling the joint distribution of the time series

The second type of statistical models gives a joint distribution of the time series W in-
cluding the initial value w;. Such models are often written in unobserved components
form,

wy = Te + Tit + vy,

M gandom : Avy = oe, + vy fort=2,...,T,
and
V] = WoEq for t =1,
where the innovations €1, ...,er are independently, standard normally distributed,

the parameter 0 gangom = (@, T, 71, 0) takes values in O pggngom = R®* X Ry and w is
chosen as some function of . In this model the unit root hypothesis is formulated as

HRWLdom : a=0.



In this type of models the conditional distribution of ws, ..., wy given wy is au-
toregressive as in (1) with

B =1 —are, v = —aT, Wy = Te + woeq, (6)

and thus restricting the parameters o, 3,7,0% so v = 0 if @ = 0. The exclusion of
parameter values where v # 0 but a = 0 turns out to be important when considering
power functions of tests derived in the state space model but used in the conditional
model.

Several choices of w have been suggested in the literature. The simplest is

. 2 _
MRundom,A- w = la (7)

which was used by Ahn (1993) and Elliot, Rothenberg and Stock (1996). A variation
thereof is the model by Miiller and Elliot (2002) which essentially lets w? = k for
some known constant k. Bhargava (1986) uses

1 if[l1+al>1
M andom,B - 2= — . -
Random,B* & {1-(1+a)2}"! if [1+al <1, ®)
These choices are different in that specification B generates a stationary distribution

for (1+a)? < 1 but this comes at the price that the likelihood has poles for (1+a)? = 1.
The models can be written in a vector form as

Ao (W —=D1)=0e or W =D1+0A, 9)
where D = (1,t —1),_, pisa (T x2) matrix and € = (&),_, _ is a T-vector, while

w

—(1+a 1
T — ( TC > ’ Aa,w — ( ) .
—(14+a) 1
The testing problem given by M gandom, Hrandom for either choice of w is invariant
to the sample transformations g., g; and gs where gs induces the translation

9 Random (e, Te,T1,0) — (o, at. + b,at; + ¢, a0). (10)

For this model it is straight forward to impose an invariant reduction with respect
to g; as done by for instance Bhargava (1986) and Elliot, Rothenberg and Stock
(1996). The reduced model is based on the marginal distribution of the maximal
invariant Y under g;. This is easy to find since Y = D'\ W for some (T x T')-matrix
D, with the property D', D = 0 and hence by (9) it holds that Y = 0D, A_le. The
parameter space is accordingly reduced to a,0 € R x R, so ¢ remains a nuisance
parameter for the testing problem. This reduction of the model results in a likelihood
function that is somewhat complicated and which has apparently not been analysed
in the literature.



2.5 Maximal invariant parameters for the model Mg,,40m

The testing problem M gupdom, Hrandom reduced by g; has a nuisance parameter, o.
As in §2.3 this is dealt with by finding a maximal invariant parameter under g%. An
example is

*
Random

= (*,0,0,1) varying in O} given by o € R. 11
Random

For a power comparison of tests based on the maximal invariant statistic Z under g,
it therefore suffices to look at a simple hypothesis, a* = 0, for the scalar parameter

a’.

3 Tests for the unit root hypotheses

Four unit root test are considered. These could be applied to either of the testing
problems, Mg;zeq, Hrized and M gandom, Hrandom- The first test is the maximum like-
lihood ratio test in the conditional model which was first discussed by Dickey and
Fuller (1981). The other three tests were suggested by Ahn (1993), Bhargava (1986),
and Elliot, Rothenberg, and Stock (1996). They are intended for the models with
random initial conditions, but have ad hoc motivations.

The four tests have the common property that they all depend on the time series
W only through the maximal invariant Z under g5 although none of them are actually
designed with that in mind. After having described the four test statistics their null
distributions can therefore be discussed with relative ease.

3.1 Maximum likelihood ratio test statistic in conditional model

The log maximum likelihood ratio test for the testing problem (Mp;zeq, Hpizea) i given
by

~

LR =—-Tlog(1—\),

2, . . . .
where \ is the squared sample multiple correlation of the residuals from regressing
Aw; and (wy 1,t — 1)’ on a constant. Since multiple correlations are invariant to
non-singular linear transformations and since the computation involves regression on

<2
a constant the variable w; can be replaced by z;. In short, the correlation A can be

written as
~92 —92 2
A = Corr {Azt,<tt_11>‘1}

Tests based on the statistic LR are equivalent to tests based on the F-type statistic
&3 suggested by Dickey and Fuller (1981).
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3.2 Ahn’s test

Ahn’s (1993) test is designed for the testing problem (M gundom, 4, Hrandom,a) Where
w? =1, see (7). This was later generalised to a cointegration rank test by Liitkepohl
and Saikkonen (2000). It is given in terms of the statistic

T)‘?élhn
- )‘ihn

2
tAhn -
where ), is the squared sample correlation of Az, and z,_, satisfying

Y

N = Cort (Az, 21) = M
4> 5%

due to the identities 2 Zthg 2z 102z = (20 — 21)% — Zthg (Azt)2 and z; = 2z = 0.

3.3 Bhargava’s test

Bhargava’s (1986) test is designed for the testing problem (M grundom, 5, HRandom.B)
reduced by g;. Since w? depends on a two different tests are proposed depending on
the direction of the alternative. Here the focus will be on tests against o < 0 for
which Bhargava proposes the test statistic

R2 =T ZT?Q (Azt)22
> (2 —7%)

Bhargava (1986, Proposition 3) proves that this test asymptotically is locally most
powerful, see also Lehman (1997, p. 527). The normalisation with 7" is actually
not in Bhargava’s paper, but it indicates the appropriate scaling needed to ensure
convergence to a non-degenerate distribution under the null hypothesis.

A
where zZ= f;zt.

3.4 Elliot, Rothenberg and Stock’s DF-GLS™ test

The Elliot, Rothenberg and Stock (1996) test is designed for the testing problem
(M gandom, B> Hrandom.5) reduced by g;. It can be computed as follows. First the vari-
ables Wz, = A1 W and Dz = Az D are formed with @ = —13.5/T. They chose
this value through a simulation study that indicated that an asymptotic envelope
power function for 5% level tests would reach 50% at this point. Secondly, Wz is
regressed on Dg; giving the estimate 75, = (D’571D571)*1D%71Wa71. Using this esti-
mate the original data series is de-trended giving W% = W — D75 ;. Regressing Aw{



on w¢ ; then gives the test statistic

A
tors = VT i

V1= Nigs

where Agrs is the sample correlation of Aw{ and w | satisfying
Aprs = Corr (Awf, wi ) = Corr (Azl 2 ).

The latter equality holds since the regression W5z, on Dg; ensures invariance with
respect to ¢g; and the scale invariance of sample correlations ensures invariance with
respect to gs so W can be replaced by Z.

3.5 Null distribution of considered tests

In each of the three models Mpizeqd, M random, 4, and M gapgom, 5 the restricted parameter
spaces under the respective null hypotheses reduce to single point under g:. In either
case the maximal invariant X under g. is given by

t
_9Es fort > 1,

and the maximal invariant Z is a function thereof. As a consequence the maximal
invariant statistic Z is pivotal and has exactly the same distribution under each of
the restricted models Hgizea, Hrandom, 4, and Hrandom, 5. The four test statistics under
consideration are all functions of Z and thus leading to similar tests and their critical
values are the same in all of the models. Based on a simulation study using 10°
repetitions the 5% critical values for the LR, t,,., R2, and tggs tests are found to be
12.511, 7.002, 0.348, and —3.039, respectively, for T" = 100.

The four statistics all converge to non-degenerate distributions under the null
hypotheses. Dickey and Fuller (1981) prove this for LR while Ahn (1993, Lemma
1 and Theorem 1) prove this for ¢4, and a similar argument can be made for the
statistic Ry. Elliot, Rothenberg and Stock (1996) state the result for tgprs.

4 Power comparison for models with fixed initial value

A power comparison is first done for the testing problem M gundom ,Hrandom, reduced by
the transformation g;, which has the variance parameter o as a nuisance parameter.
The four tests of interest all depend on the maximal invariant statistic Z under g;.
It therefore suffices to reduce the parameter space by the transformation g3 z,.,dom
with associated maximal invariant parameter 0%,,,4,,» Varying in a univariate space
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as discussed in §2.5. For each value of the maximal invariant parameter the power
of the four tests can then easily be compared with each other and also with point
optimal tests found from the Neyman-Pearson Lemma.

In the following point optimal tests are discussed first. Power comparisons for
each of the models Mgandom, 4 and M gandom 5 then follow and finally the results from
these two slightly different models are compared.

4.1 Envelope power functions under ¢; ,,.4om

As a first step towards using the Neyman-Pearson Lemma the likelihood for the
maximal invariant parameter 05,,.,m based on the data Y is discussed. As deduced

in §2.4 the marginal distribution of Y is given by

«,

Y =D AL BNy {0, D, (A, Anw)” DL} ,

*

for any 0%,n40m- Since y1 = yr = 0 the above covariance matrix is singular, but
(y2,-..,yr—1) will have an invertible covariance matrix. In this case the result of
Lehman (1997, Exercise 6.3.5) shows that the likelihood based on Y can be written
conveniently in terms of the likelihood based on W as

Ly (a) = comax Ly (o, T)

where ¢, is a function of «, while 7 = (7., 7;)" and ¢ = 1. The likelihood based on W
can in turn be written as

—2log Ly (o, 7) = do + { A (W — D7)} {A (W — D7)},

where d,, is another function of a. Introducing the variables W, , = A,,W and
Dy = AqwD the maximum with respect to 7 is found by least squares regression.

Denoting the resulting residuals by W7, = {Ir — Dq4 (Dgé,wD(W)_1 Dy }We it
follows that

—2maxlog Lx (a,7) = do + W, W],

a,w)

which can be computed by a singular value decomposition, see Doornik and O’Brien
(2002).

Taking two values of 0},,40m Satisfying o = 0 and a # 0 the Neyman-Pearson
Lemma shows that a most powerful test is given in terms of the log likelihood statistics

QRandom,w = -2 log LY (0) + 2 IOg Ly (Oé) .
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By the above considerations the test statistic can be rewritten as
S A T/ T T/ T
QR(mdom,w =€y + QR(mdom,w where QR(mdom,w == 0w’ 0w — Wa,wWa,w’

where e, is some constant depending on «. Tests based on @ random, and Q Random.w
are therefore equivalent and their critical values can be found by simulation.

An envelope power function for the testing problem M gundom, Hrandom reduced by
¢ and with parameter space reduced by ¢! can now be formed. For each o # 0
its value is given by the power of the point optimal test found above. It is worth
noting that this envelope power function will not be envelope power function in the
more general testing problem M gundom, Hrandom reduced by g; although one can get
that impression from Elliot, Rothenberg and Stock (1996). This is because the latter
problem has a nuisance parameter and a composite null hypothesis so the Neyman-
Pearson Lemma cannot be used to construct the envelope power function.

4.2 Comparing the tests under Mpgq,dom, 4

Power comparisons for the testing problem M rundom, 4, Hrandom,a reduced by g, and
with parameter space reduced by g} have previously been reported by Elliot, Rothen-
berg and Stock. This will be redone here in the situation where T" = 100 which
matches the sample size in the empirical illustration of §6.1.

Power curves for the four tests of §3 are reported in Figure 1 along with the power
envelope. These simulated curves as well as subsequent simulation results are based
on 10° repetitions with the same set of random numbers for each of the simulated
probability measures, and the simulated critical values reported in §3.5. If the critical
values had been known this would result in a simulation standard deviation of about
0.07% for powers in the range 5% — 95%. Since the critical values also simulated the
overall standard deviation on the reported numbers is a little larger. For a more
precise evaluation of the simulation uncertainty, see Paruolo (2001).

The results largely confirm those of Elliot, Stock and Rothenberg (1996). The
maximum likelihood ratio test LR from the conditional model Mg;;.q does not perform
well here, so a considerable gain in power is obtained by modelling the initial value.
In their work Elliot, Stock and Rothenberg (1996) reported that the power of their
test tgrs is visibly indistinguishable from the asymptotic power curve. As seen from
Figure 1 this is not the case at this sample length, while a simulation study with
T = 500 confirmed their large sample result. Having said this the test tgrs is more
powerful than the other considered tests for a large part of the parameter space.

As a final remark it is noted that the tests t3,,,, Rz, tzrs are designed to be used
against negative alternatives, a* < 0. Unlike the LR test these tests are indeed biased
when used against positive alternatives.
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Figure 1: Power curves as a function of a* for 5% tests for the testing problem
M Random, A, HRandom, 4 Teduced by g; and with parameter space reduced by g; for T' =
100. The upper curve is the envelope power function, while the other four curves are:
boxes: LR, triangles: t%, , bullets: Bhargava’s Ry, and diamonds: tgps.

4.3 Comparing the tests under Mgqniom, B

Simulated power curves for the testing problem M guniom, 5, Hrandom, 5 Teduced by g,
and with parameter space reduced by g! are reported in Figure 2. Only negative
alternatives, o < 0, are considered as the models Mgandom,a and Mgendom 5 are
identical for a* > 0, see (7), (8).

The overall ranking of the different tests is the same as in Figure 1. The tests
LM spy, and tgrs which are based on the model Mpggpdom, 4 Tather than Mggpiom, 5 are
a bit further away from the envelope power function than seen in Figure 1.

4.4 Comparing the models Mpzyn40m,4 and Mgapaom. B

It is tempting to compare the power functions in Figure 1 and 2 since the null hypothe-
ses are the same. The alternatives are actually different so interpretations should be
done with care. A pointwise comparison of the envelope power functions shows a
difference of up to 6% in favour of the alternatives of model Mggnaom 4. For the %,
and tgpg tests the differences are up to 9% and 7%, respectively, in favour of model
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Figure 2: Power curves as a function of a* for 5% tests for the testing problem
M Random, B> HRandom, B Teduced by ¢; and with parameter space reduced by g; for T' =
100. The upper curve is the envelope power function, while the other four curves are:
boxes: LR, triangles: t%, , bullets: Bhargava’s Ry, and diamonds: tgps.

M Random, - For the test Ry which is designed for the model M rgndom 5 this difference
is reduced to only 4%. The LR-test is most robust to changing the distributional
assumption to the initial value, wi, by being shifted only by up to 2% and that in
favour of the model M gandom, 5 With the more diffuse assumptions.

5 Power comparison for the conditional model

The testing problem M g;;eq,Hpizeq, 18 now considered, with parameter space reduced
by the transformation g; p;,., With associated maximal invariant parameter 07,,.q,
see §2.3. An asymptotic analysis shows that the tests t%, ., Ro, and tzrs are biased
against the alternative a = 0, but v # 0, that is when the time series is a random walk
with a quadratic trend. Since this alternative is not directly of interest a simulations
study is used to compare the four tests with each other and with point optimal tests
for other points in the alternative.
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5.1 Asymptotic theory for the four tests

The following theorem shows that in large samples the test statistics t%, ., Ro, and
tprs converge to zero while LR diverges when oo = 0, but v # 0. This implies that the
power of the first three tests goes to zero and these tests are asymptotically biased
while the LR test is consistent against those alternatives. The proof is given in an
Appendix.

Theorem 1 Consider the model Mp;zeq with oo =0 but v # 0. Then, for T — oo,

LRS 0o,  while 4,50, Ry50, tpps—0.

The parameter values a = 0, # 0 in them selves are not so interesting in appli-
cations as they correspond to random walks with quadratic trends. In finite samples
the asymptotic bias at these points will contaminate the power function in a wider
area of the parameter space where o # (0. This contamination will be studied by
simulation methods in the following.

5.2 Envelope power functions under g; ;...

The nuisance parameters of the testing problem Mpg; eq, Hrizeq are eliminated when
reducing the parameter space to O%,,., given by the maximal invariant parameter
O izea VAEr G5 pipeq as reported in §2.3. The null hypothesis is then reduced to
a simple hypothesis allowing the Neyman-Pearson Lemma to be use in comparing
two points 6},,., in the parameter space satisfying (a*,7*) # 0 and (a*,v*) = 0,
respectively. The lemma shows that a most powerful test rejects for small values of
the log likelihood ratio statistics

QFiwed = =2 IOg Ly (0, 0) + 210g LY (CV*, ")/*)

= A - (A et =" (- DY

t=1

5.3 Comparing the tests under My;,.q

Figure 3 and 4 show level curves of the envelope power function together with level
curves of the power functions for the L R-test and the t3,,,, respectively, for T' = 100.
They show how the asymptotic results of Theorem 1 contaminate the power function
in a wide area of the parameter space in a finite sample. These plots are based on
fine a grid with intervals 0.005 in o* and 0.00025 in v* with each point based on
simulations with 10° repetitions.

From Figure 3 it is seen that both the envelope power function and the power
function for the LR are shaped like valleys with minimum at the origin. None of
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Figure 3: Level curves for 5% level point optimal tests (thin lines) and for LR test
(thick lines) in the model Mp;zeq-

the level curves are elliptic as would have been the case in a standard test situation.
The difference between the power of the LR and the envelope power function is more
pronounced than seen in §4, in particular for a* < 0. The reason is presumably that
here the envelope power function is based on the full model Mg;;.4 rather than a
model reduced by g¢;.

Figure 4 shows that the power function for the t%, -test is very different in that
it slopes towards 0 when either a* or v* increases. The power surfaces for the R,
and tprs-tests are similar in shape and therefore not reported. For the ¢pgrs-test the
surfaces is nearly exactly identical whereas the Ro-surface is slightly less steep with a
little less power towards the bottom left of the plotted area and slightly more power
towards the right of the area.

A first comparison of Figure 3 and 4 shows that the LR test is vastly superior
outside the bottom left of the plotted area, which is roughly when ~* is larger than
about 2(a*)%. Tt is also seen that the power functions arising for varying o* but y* = 0
is more or less identical to what is seen in the models Mgy 40r In Figures 1 and 2.

A more formal comparison of tests with several degrees of freedom can be done
in terms of their average power or their stringency as suggested by Wald (1943).
Wald showed that for large samples from standard models the maximum likelihood
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Figure 4: Level curves for 5% level point optimal tests (thin lines) and for Ahn’s test
(thick lines) in the model Mp;zeq-

ratio test is optimal according to both criterions, see also Andersen, Borgan, Gill and
Keiding (1991, p. 603) and Lehmann (1997, p.525f), for more recent overviews.

The criterion of finding the test with best average power is difficult to use in this
situation, in that the average power is defined as the integral of the power function
over a surface K chosen as a level curve of the envelope power function and integrated
with respect to a certain weight function. This weight function is defined through
an asymptotically local argument so each arc of K has same weight as that of the
projection on to circle with uniform distribution. This integral would be rather hard
to compute analytically as it involves locally asymptotically Brownian functionals as
described by Jeganathan (1995).

It is more feasible to compare the tests in terms of their stringency. The idea is to
find the maximal shortcoming of each test which is the maximal power loss over the
surface K so the test with smallest maximal shortcoming is most stringent. Looking
at the 99% level curve of the envelope power function, say, the maximal shortcoming
of the LR test is about 91%. For the t%, = test the maximal shortcoming is more than
98.9%. The maximal shortcoming reduces to 98% if only the alternatives o < 0 are
considered, so in any case the LR test is substantially more stringent than the t%,,,
test. The same result applies for other level curves of the envelope power function
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and also for the other considered tests.

Regardless of the choice of method for comparison there is some variation in
the results depending on which area of the parameter space is considered. In §6
an empirical model is therefore used to highlight a parameter value that may be of
particular interest in applications and power comparisons are done for this value.

6 Comparing tests across models

Apart from a brief discussion in §4.4 the power comparisons in §4, 5 have been done
within specific models which is a situation where statistical theory gives guidelines.
It is an entirely different issue to compare across models since the different families
of probability measures are not nested. Still it is of considerable interest to compare
across models.

A power comparison only makes sense if one is indifferent to the different inter-
pretations of the different tests and models. Interpreting tests by the strong repeated
sampling principle, see Cox and Hinkley (1974, p. 45), the idea of testing is to com-
pare the observed sample with hypothetical samples from the same model. In the
present, situation this relates to the invariant reduction by g; in the model M ggpndom
and to the way the initial value is modelled. In model Mg;,.q the initial value is in
all the hypothetical samples fixed at the observed initial value, whereas in the models
M gandom the initial value is random so that it starts sometimes below and sometimes
above the trend line. Whether there is an indifference to these interpretations must
depend on the specific situation.

To get comparable alternatives a UK production series is considered and each of
the models Mpized, MRrandom.a and Mpgndom, 5 is estimated. In the first instance the
models are assumed to be well-specified to facilitate model comparison. This is then
followed by a discussion of the validity of the model assumptions.

6.1 Models for UK production

Figure 5(a) shows a time series, wy, of quarterly log real total final expenditure for
the UK for the period 1963:1-1989:3. A detailed econometric analysis of this series in
conjunction with other macroeconomic series can be found in Doornik, Hendry and
Nielsen (1998), who also list a series of previous papers analysing this data set. To
match the above discussion the initial value w; = 11.038 is subtracted from the series
rendering a times series z; = w; — w; with xy =0 and 7' = 107.

The conditional model Mg, is estimated by least squares regression giving

Az = —0.081z; 1 + 0.0128 4+ 0.00051 (¢t — 1) + 0.0139¢,. (12)
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Figure 5: (a) the actual series wy. (b) the detrended series 7; along with confidence
bands derived from models M gandgom, 4 (solid) and M gandom, s (dashed). (c) & (d) time
series and correlogram of scaled residuals from fitted model.

The unconditional model M gqpdom,4 and M gapndom, 5 are estimated through a two stage
procedure, as outlined by Liitkepohl and Saikkonen (2000). In the first step the
regression (12) is carried out. Using the definitions in (6) this leads to estimates

7 =—4/a=0.0063, T.= (71— 0)/&+w; =0.080+ 11.038,

and a de-trended variable vy = w; — T, — 7yt can be computed. A second regression
then gives the result

Av, = —0.0817; 1 + 0.0139¢,. (13)

6.2 Comparing power

The null hypotheses of the testing problems (Mpgigzed, Hrized)s (Mgandom, 4, Hrandom, 4)
and (M gandom, B, HRandom, ) are comparable in that they all generate random walks
wi+ 2222 g although with varying properties of the initial value. Since the empirical
models (12) and (13) are estimated from the same data they are also considered to
be comparable. The corresponding maximal invariant parameters defined in (5) and
(11) are estimated by

~ %

0 ineg = (—0.081,0.038), 6,

Random

= —0.081,
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model altfrnative LR t%,, R tegs
MRandom.A  Orandom 117 23.1 214 235
Mpiandom.B  Opandom 125 192 192 20.1
M pized 0pg 167 53 103 7.0

Table 1: Simulated power of 5% level tests for alternatives given by the estimated
maximal invariant parameters for the UK production data. Based on T' = 107 and
10° repetitions and critical values of 12.506, 6.989, 0.326, -3.025 respectively.

which define points in the alternatives of the three testing problems. Table 1 shows
the power at these points.

There are several observations to be made from Table 1. The tests designed for
the models M ggngom perform well in those models but poorly in model Mg;;q and in
particular the test ¢, has virtually no power in the model Mgy The reason for
the poor performance in the model Mp;,.4 is that the estimated trend parameter is so
large in relation to the autoregressive parameter that the asymptotic bias described
in Theorem 1 is influential. The LR-test is a maximum likelihood ratio test in the
model Mp;;.q and performs well in that model but relatively poorly in M gapndom-

Comparing the results for the two models M gandom, a4 and M gopndom, s it is seen that
the L R-test is most robust to the different assumptions to the initial value as discussed
in §4.4. Of the remaining tests the Ra-test is most robust. This is probably because
it is designed for the model M ggndom, 5 While the ti,m and tprs-tests are designed for
MRandom,A-

Table 1 indicates that for this particular choice of parameters there is some vari-
ation in the maximal power that can be achieved in the three models with the model
M Random,4 having the most powerful tests. These results will of course depend a lot
on the considered parameters with results that would be less favourable to M random,
if a* were a little smaller or v* were a little larger.

6.3 Testing the model assumptions

For any econometric analysis it is important to establish to what extent the model
assumptions are met. There is an intriguing difference between the kind of misspec-
ification tests that can be performed for the models since the model Mpg;,.q can be
tested with consistent tests while the assumptions to the initial value in the models
M random cannot be tested consistently. While the consistency of course not helps
much in a finite sample it does indicate that in principle more powerful conclusions
could be reached by awaiting the arrival of future observations.

In order to use a model like Mg;,.q the distributional assumptions to ws, ..., wr
given wy, or, equivalently, to &5, ..., ey must be checked. This issue is addressed more
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generally by Andreou and Spanos (2003) and their discussants. The assumptions can
be tested informally by graphing for instance the residuals and their correlogram as
done in Figure 5(c,d) or formally through statistical tests that are consistent. In this
way a normality test shows that non-normality is just significant at a 1% level. This
signals that it is potentially not straight forward to draw inference from the estimated
model (12). In their analysis of this data series Hendry and Mizon (1993) addressed
this issue by introducing a dummy variable taking the value one in 1972:4, 1973:1,
1979:2 matching fiscal expansions. While it is not the point of this paper to consider
such modifications it is the case that practitioners have means to find different and
possibly more appropriate descriptions of the data.

When using the model Mgangom it is necessary to test the assumptions to the
conditional distribution of ws, ..., wy given w; which can be done as above as well
as testing the distributional assumptions to w;. Figure 5(b) shows the de-trended
series ¥y together with pointwise confidence bands for the marginal distribution of
v; based on the variances o*{1 — (1 + @)*}/{1 — (1 + «)?} and o?/{1 — (1 + a)?},
respectively, in the models Mgandom 4 and Mpgandom 5. It is seen that even for the
model M pgqndom, s there is a very small probability of observing an o, that fits worse
with the distributional assumption to v;. Such a test concerning the distribution of a
single observation will inevitably be inconsistent, so apart for a more precise estimate
of the confidence band no power can be gained by looking at a longer time series.
The reason that the models seem to perform so badly is possibly that the growth
is above average in the first two years of this time series, see Figure 5(a). Better
fitting models would probably be found by discarding the first eight observations and
thereby loosing information which would not be palatable in many applications.

7 Conclusions

The power functions of four unit root tests defined by the LR, t%,,, Rs and tggs
statistics have been compared with each other and envelope power functions within
three different models. The notion of maximal invariant parameters has been used
more explicitly than before to simplify the problem of comparing power by essentially
reducing the null hypotheses to simple hypotheses which in turn facilitates use of the
Neyman-Pearson Lemma.

It has been demonstrated that the power of the four unit root tests is specific to the
model that generates the data. Out of the considered four tests the test suggested by
Elliot, Rothenberg and Stock (1996) seems most powerful within the models M gandom
with random initial value while the LR-test is most stringent in the model with fixed
initial value Mg;,.q where it is a maximum likelihood ratio test. The L R-test appears
to be most robust to variations in the specification of the model in that the power
varies least from model to model, whereas the tests based on t%, , Rs and tgrg have
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more power in the model Mgupniom and are biased in the model Mgz eq.

In empirical work the model Mgjzeq seems easier to use than Mgandom, 4 and
M random, 5. While there potentially is a power gain by working with the latter models
rather than the former, this is based on two assumptions that need to be motivated
in each application. First, the models M gandom, 4 and Mgapndom, 5 involve an additional
distributional assumption to the initial observation w;. In cases like the example
discussed in §6 where this assumption is not met any power gain from working with
M Random, 4 and M gandom, p rather than Mg;,eq will be illusive. Secondly, the tests based
on Ry and tgrs as well as the power results for the models M gpdom, 4 and M gondom, 5
are based on an invariant reduction of the models by the transformation g;. For each
application this reduction would have to motivated in terms of the subject matter,
which is not simple when modelling a variable like the logarithm of production as in
the example of §6. When choosing the model Mp;,.q the inferences concerning unit
roots are therefore less distracted by issues related to the initial value and to invariant
reductions.
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9 Appendix: Proof of Theorem 1

Consider the model Mg, with o = 0, v # 0. Since the four tests are scale invariant
it suffices to assume o2 = 1 and to work with Y instead of Z. Then

t
Aw, = B +(t — 1) + &, wt:w1+ﬂ(t—1)+%t(t—1)+Zeu.
u=2

The maximal invariant Y then satisfies

= (=D (E=T)+0p(T?), Az = (2t—T—2)+0p(1).

It holds that 2 Zfzz Y 1Ay, = (2?22 Ay,)? — Zfzz (Ay,g)2 , while, for T"— oo,

3 & > 7 5~ 2 o
T A = — 1 T = — 1
T T _
> Ay =0, T3 gy = — +0p(T7Y),
=2 =2 12

T T —
TS (D) (t—1) =L +op(l), T Yy (t—1) = S +0p(T7).
t=2 =2

It then follows that

2
Corr {Azt, ( tzt__ll ) ‘ 1} LA 1, TQAihn LA g, T?R, LN 60,

and therefore LR diverges, while LM 45,, and Ry converge to zero.
It is left to consider the test given by tggs. Since

D5 Dgy = ( T;T/2 ;:;g ) {1+0(1 "},

12

the de-trending estimator satisfies

/ B T3 —
Da,lya,l = —7 ( T4/2 ) {1 +OP(T 1)}:

(Diy D) (D Ya) = [~ T2 {1+ 0p(1)}, Op(1)]
and therefore it holds, uniformly in ¢ that
yl =y, +T?/12+¢(1), Ayl = Ay, + Op(1).
Applying the above results for the sums of y it is seen that
SAE=0n1),  TOY (A BT Ty () S L

and thus T2)\% rs converges to 15 in probability, implying that tgrg converges to 0.
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