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Abstract

This paper considers the application of Ellison’s (2000) “Radius-
Modified Coradius” Theorem to models of evolution with state-dependent
mutations. A reformulated theorem is presented, with a crucial role
played by the most probable evolutionary paths between states. The
form of such paths is liable to change outside of the uniform mutations
case, with concomitant effects on both long-run selection and expected
waiting times. An algorithm for finding these paths is offered, and
used to confirm the optimality of “step-by-step” evolution.
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1 Introduction

Since its inception in the works of Foster and Young (1990), Kandori,
Mailath, and Rob (1993), and Young (1993), the field of stochastic ad-
justment dynamics has been a lively and controversial one. Perturbing the
deterministic population dynamics of evolutionary game theory with van-
ishingly small noise appeared initially to resolve the equilibrium selection
problem from a general boundedly rational foundation. Moreover, the stan-
dard uniform mutation rate models of Kandori, Mailath, and Rob (1993),
and Young (1993) (henceforth KMRY) - in which a player errs (relative to
the unperturbed model) with a fixed probability ε each period - reduced
the complexity of Freidlin and Wentzell’s (1984) Markovian graph-theoretic
techniques to simple “mutation-counting”.

However, such models were quickly criticised on the grounds that the
vanishing noise required for selection results implied unacceptably long tran-
sition times to “long-run equilibrium” (Ellison 1993). It was not until El-
lison (2000) though that general analytical results on transition times were
available; Ellison’s (2000) “Radius-Modified Coradius” Theorem not only
provided a new technique for characterising the long-run stochastically sta-
ble set of an evolutionary model, but also bounded the speed with which
evolutionary change occurs. The intuition behind the theorem is that “if a
social convention tends to persist for a long time after it is established and
is sufficiently attractive in the sense of being likely to emerge relatively soon
after play begins in any other state, then in the long run that convention
will prevail most of the time”1.

Two new measures are employed to exploit this intuition. First, the
“radius” of the basin of attraction of a limit set (or a union of limit sets)
Ω, R(Ω), is defined as the minimum number of “mutations” (ε-probability
events) necessary to escape the basin of attraction of Ω. This radius provides
a bound on the persistence of the set Ω. Second, the “coradius” of the basin
of attraction of Ω, CR(Ω), is defined as the maximum over all other states of
the minimum number of mutations necessary to reach Ω. This coradius can
be shortened by incorporating the effect of “step-by-step” evolution: “large
evolutionary changes will occur more rapidly if it is possible for the change to
be effected via a series of more gradual steps between nearly stable states”2.
To capture the increased speed of step-by-step evolution, a new measure is
computed by subtracting from the coradius a correction term which depends
on the number of intermediate steady states along the evolutionary path and
the sizes of their basins of attraction. This “modified coradius”, CR∗(Ω),
provides a bound on the attractiveness of Ω.

Using these two measures, the “Radius-Modified Coradius” Theorem
1Ellison (2000), p.18, emphasis added.
2Ellison (2000), p.19.
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shows that R(Ω) > CR∗(Ω) is a sufficient condition for the long-run stochas-
tically stable set to be contained in Ω, and that the expected wait until Ω
is reached in this case is O(ε−CR∗(Ω)).

The aim of this paper is to consider the power of the “Radius-Modified
Coradius” Theorem in the face of another line of criticism of stochastic evo-
lutionary game theory, namely the arbitrariness of mutations occurring at a
rate independent of the current state of the system. Such “state-independent
mutations”, embodied in the fixed mutation rate ε of KMRY and others,
imply that players make mistakes (or experiment, etc.) with the same prob-
ability irrespective of the current strategy frequencies, and thus of the ex-
pected payoffs at stake. The effect of relaxing this assumption is dramatic:
Bergin and Lipman (1996) demonstrate that, given any model of the effect of
mutations, any invariant distribution of the “mutationless” process is close
to an invariant distribution of the process with appropriately chosen small
mutation rates. This implies that any strict Nash equilibrium of a strategic
form game is selected under some suitably chosen mutation model. Intu-
itively, when the mutation rates vary across states, the size of the relevant
basins of attraction is no longer enough to determine the long-run equilib-
rium; in particular, even though one basin of attraction may be smaller, it
may be “deeper” in the sense that mutations out of this basin are less likely.

Bergin and Lipman’s findings seemed to cast stochastic evolutionary
game theory into a wilderness of indeterminacy far worse than the one which
it had sought to escape. However, economically justified models of “state-
dependent mutations” still offer the prospect of insight from the Markovian
selection tools, albeit at the price of greater complexity. And indeed, many
of the early results of the stochastic adjustment dynamics literature - most
notably the pre-eminence of the risk-dominant equilibrium in 2×2 coordina-
tion games - can be confirmed in this new context (under certain conditions).
Particular models of state-dependent mutations doing just this include My-
att and Wallace (1998), van Damme and Weibull (1998), Lee, Szeidl, and
Valentinyi (2001), and Norman (2003). The most general analysis of the
role of noise in stochastic adjustment dynamics is that of Blume (1999),
who finds that the known stochastic stability results are preserved for the
(large) class of noise processes satisfying a certain symmetry condition.

Ellison’s (2000) “Radius-Modified Coradius” Theorem is framed using
the “ε-cost” language of the uniform mutation rate model which Bergin and
Lipman (1996) so forcefully criticised. However, as Ellison notes, his model
“can easily accommodate state-dependent mutation rates with unbounded
likelihood ratios (as in Bergin and Lipman (1996))”3. In this context though,
the “cost” of a transition has a less clear interpretation; it still measures the
order of probability of the transition, but this can no longer be ascertained

3Ellison (2000), p. 21.
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by simply “counting mutations”. As a consequence, the application of the
theorem in models with state-dependent mutations is not immediately ob-
vious.

The present paper makes this application explicit by modifying the spec-
ification of noise in Ellison’s model, and hence reformulating the theorem in
terms of the underlying transition probabilities. The simplicity of Ellison’s
theorem is sacrificed somewhat in making this step, but the same fundamen-
tal lessons emerge. However, the reformulated theorem highlights the crucial
role of the most probable (or “optimal”) evolutionary paths between states,
and clouds Ellison’s “step-by-step” effect on the speed of evolution outside
of the uniform mutations case. Nonetheless, an algorithm for finding the
optimal evolutionary paths is offered, and used to demonstrate the contin-
ued optimality of “step-by-step” evolution. This serves to clarify the precise
sense in which Ellison’s intermediate “steps” must be “intermediate”.

The next section presents the essentials of Ellison’s model, modified
to emphasise the presence of state-dependent mutations. Section 3 then
presents the reformulated theorem and compares it with the original. El-
lison’s exposition is followed very closely in order to facilitate comparison.
Section 4 presents the optimal evolutionary path algorithm, and section 5
applies it to “step-by-step” evolution.

2 Preliminaries

Ellison’s (2000) model is unchanged, except that the parameter ε and its
associated “cost” function are replaced by a general noise model g : R→ R,
in the sense of Blume (1999), which assigns choice probabilities to payoff
differences. This is to emphasise the presence of state-dependent mutations.
Ellison’s (2000) Definition 1 thus becomes

Definition 1 A model of evolution with noise is a triple (Z,P, g($;σ2))
consisting of:

1. A finite set Z referred to as the state space of the model;

2. A Markov transition matrix P on Z;

3. A noise model g($; σ2) mapping payoff differences $(z), z ∈ Z, into
choice probabilities, given a noise variance of σ2. The noise model
defines a family of Markov transition matrices P (σ2) on Z indexed by
the parameter σ2 ∈ [0, σ̄2) such that:

(a) P (σ2) is ergodic for each σ2 > 0;

(b) P (σ2) is continuous in σ2 with P (0) = P .
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The thinking behind the noise model here is that trembles from strate-
gies’ payoffs (i.e., noise) are generated by a random variable with cumulative
distribution function F , mean ν and variance σ2. This random utility-style
framework is intuitive for modelling evolution with state-dependent muta-
tions, but it is not entirely general. It cannot, for instance, generate the
standard uniform mutation rate model for every game (though it can for
any given game). Blume (1999) instead parameterises noise models by a
parameter β such that the variance around the best response decreases with
1/β. This too is not general, but it does include the most popular parameter-
isations of noise and noise reduction; the uniform mutation rate model and
the “log-linear model” of Blume (1993) and Brock and Durlauf (1995), for
instance, both fit into Blume’s scheme. Nonetheless, the results presented
in this paper hold for either choice of parameterisation.

Now, property 3(b) in Definition 1 implies that the Markov process
(Z, g($; σ2)) converges to (Z,P ) as noise vanishes (σ2 → 0). (Z, P ) is sim-
ply the deterministic dynamic defined by the underlying game, the matching
mechanism, the rules for strategy revision, and the default behavioural as-
sumptions made of the players (most frequently best-response to some sta-
tistical frequency of play). The “recurrent classes”4 or “limit sets” of this
dynamic represent short- to medium-run equilibria of the system, and con-
stitute the candidates for its long-run stochastically stable set (Young 1993).
A given limit set of the unperturbed process (Z, P ) is denoted L, whilst Ω
describes a union of one or more such sets. L denotes the union of all of
(Z, P )’s limit sets. The basin of attraction of Ω is denoted D(Ω), and is
given by

D(Ω) = {z ∈ Z | Prob {∃T s.t. zt ∈ Ω ∀t > T | z0 = z} = 1}

This is the set of initial states from which the unperturbed Markov process
converges to Ω with probability one.

Following Ellison, W (x, Y, g($; σ2)) will denote the expected wait until
a state belonging to the set Y is first reached given that play in the σ2-
perturbed model begins in state x. By examining maxx∈Z W (x,Ω, g($;σ2))
when σ2 is small one can address the issue of how quickly a system converges
to its long-run stochastically stable set Ω. Of course, W (·) will in general
tend to infinity as σ2 goes to zero, but the speed of convergence can still be
judged according to how quickly the waiting times increase as σ2 vanishes.

Heavy use will also be made of the following related notation. N(A, B, x)
will denote the expected number of times states in A occur (counting the
initial period if x ∈ A) before the process reaches B (not counting the
process as having immediately reached B if x ∈ B) when the process starts
at x. Meanwhile, Q(A,B, x) will be the probability that A is reached before

4Ω ⊂ Z is a recurrent class of (Z, P ) if ∀w ∈ Ω, Prob {zt+1 ∈ Ω | zt = w} = 1, and if
for all w, w′ ∈ Ω there exists s > 0 such that Prob {zt+s = w′ | zt = w} > 0.
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B when the process starts at x (not counting what happens in the initial
period if x ∈ A or x ∈ B).

3 The Theorem

The previous section’s seemingly minor modification to the noise mechanism
employed by Ellison complicates the resulting theorem considerably (though
not the underlying analysis, which is substantially unchanged). However,
it delivers a reformulation of the “Radius-Modified Coradius” Theorem in
terms of the evolutionary model’s transition probabilities, rather than its
“cost” function. This facilitates the application of the theorem in the pres-
ence of state-dependent mutations. The structure of Ellison’s presentation
is followed very closely in order to facilitate direct comparison. Hence, the
bulk of the analysis is relegated to the Appendices, where the Lemmas are
presented in the same order as in Ellison (2000).

Theorem 1 Let (Z, P, g($;σ2)) be a model of evolution with noise, L be
the union of the limit sets of (Z, P ), L a single limit set, Ω a union of limit
sets, and {Lj}r

j=i the limit sets through which the most probable path from
a given limit set Li to Ω passes. Then

(a) the long-run stochastically stable set of the model is contained in Ω
if

max
ω∈Ω

Q(Z −D(Ω), Ω, ω) = o

(
min

Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

))

(b) for any y /∈ Ω,

W (y, Ω, g($; σ2)) = O

([
min

Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

)]−1
)

as σ2 → 0.

Proof. Following Ellison (2000), Lemma 1 in the Appendix presents
the following characterisation of the steady-state distribution of the Markov
process (Z, g($; σ2)):

µσ2
(y)

µσ2(Ω)
=

N(y, Ω, y)∑
ω∈Ω Q(ω, Ω− ω, y)N(Ω, y, ω)
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As Ellison notes, the numerator is bounded above by W (y, Ω, g($;σ2)), so
it will suffice for parts (a) and (b) of the theorem to show that

W (y, Ω, g($; σ2)) = O

([
min

Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

)]−1
)

∀y /∈ Ω (1)

and
1/N(Ω, y, ω) = O

(
max
ω∈Ω

Q(Z −D(Ω), Ω, ω)
) ∀ω ∈ Ω (2)

Lemmas 2 and 6 in the Appendix contain these two results.
It is worth noting that it follows from Lemmas 2 and 3 that the time

necessary to leave the basin of attraction of a single limit set is W (l, Z −
D(L), g($; σ2)) ∼ O(1/maxz∈L Q(Z−D(L), L, z)) for any state l belonging
to a limit set L.

Despite its notational complexity, this theorem has a clean interpretation
as the natural formulation of Ellison’s “Radius-Modified Coradius” Theo-
rem in a state-dependent mutations setting. To see this, note first that
maxω∈Ω Q(Z −D(Ω), Ω, ω) is just the probability of the most probable way
of escaping Ω’s basin of attraction. Hence it is the analog of Ellison’s radius,

R(Ω) = min
(z1,...,zT )∈S(Ω,Z−D(Ω))

c(z1, . . . , zT )

where (z1, . . . , zT ) is a path5, S(X, Y ) is the set of all paths from X to Y ,
and c(z1, . . . , zT ) is the “cost”6 of the given path. The radius R(Ω) is just
the exponent of ε that gives the order of the most probable (“least cost”)
way of escaping Ω’s basin of attraction.

Meanwhile,

min
Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

)
(3)

5A “path” from a set X to a set Y is defined to be a finite sequence of distinct states
(z1, . . . , zT ) with z1 ∈ X, zt /∈ Y for 2 ≤ t ≤ T − 1, and zT ∈ Y .

6The “cost” function measures any given transition’s order of probability. In the
uniform mutations model, this involves simply counting the number of “mutations” (ε-
probability events) required to effect the given transition. Hence, a lower cost c(z1, . . . , zT )
implies a higher probability εc(z1,...,zT ) for the required mutations.
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is the analog of Ellison’s modified coradius,

CR∗(Ω) = max
z /∈Ω


 min

(z1,...,zT )∈S(z,Ω)


c(z1, . . . , zT )−

r−1∑

j=2

R(Lj)







In particular, maxz∈Li Q(Z −D(Li), Li, z) in (3) is the most probable way
of escaping Li’s basin of attraction, whilst each term in the product is sim-
ply the maximum probability of transition to Lj+1 divided by the maximum
probability of leaving Lj ’s basin of attraction. Note that maxz′′∈Lj

Q(Lj+1,L−
(Lj ∪ Lj+1), z′′) is the analog of Ellison’s “minimum cost” of transition
from Lj to Lj+1, C(Lj , Lj+1) = min(z1,...,zT )∈S(Lj ,Lj+1) c(z1, . . . , zT ). Since
maxz∈Li Q(Z −D(Li), Li, z) is the analog of R(Li) whilst maxz′∈Lj

Q(Z −
D(Lj), Lj , z

′) is the analog of R(Lj), the analogy between (3) and Ellison’s
modified coradius becomes clear.

Recognising these relationships, the parallel between the two theorems
is evident. Specialising to the uniform mutations model, the sufficient con-
dition for Ω’s long-run stochastic stability in part (a) of the above theorem
becomes εR(Ω) = o(εCR∗(Ω)). This of course holds precisely when Ellison’s
condition, R(Ω) > CR∗(Ω), is true. For the waiting time in part (b), mean-
while, the expression in (3) is given by εCR∗(Ω) under uniform mutations, so
that the parallel is even more readily apparent.

Thus, unsurprisingly, the same basic lessons emerge from the reformu-
lated theorem as from the original. However, two novelties also emerge.
First, the effect of “step-by-step” evolution is no longer immediately obvious
from the reformulated theorem; it is not clear whether any given intermedi-
ate limit set should be passed through in the “step-by-step” fashion. This
points up the need to determine the most probable evolutionary path before
applying Theorem 1.

Second, and relatedly, the most probable way of escaping a given basin
of attraction emerges as crucial for both long-run selection and expected
waiting times. In the uniform mutation rate model, “direct jumps”7 out
of basins of attraction are generally most probable; indeed, it is this re-
sult which delivers the simple “mutation-counting” approach of models with
state-independent mutations. In the state-dependent mutations setting, by
contrast, it is no longer clear that direct jumps are “optimal” in this sense,
further complicating the results of Theorem 1. This underlines the need to
investigate optimal evolutionary paths in general models of state-dependent
mutations.

7By “direct jumps” is meant just enough simultaneous mutations to move between the
two states concerned in one period.
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4 An Algorithm

Finding the most probable evolutionary path from state 0 to a given state z
is a problem of combinatorial optimization.8 Let G = (V, P ) be a directed
graph with set V = Z = {0, 1, 2, . . . , N} of vertices, where each arc ij
is weighted by the transition probability pij from the perturbed Markov
matrix P (σ2). This digraph is connected9 by virtue of the irreducibility of
the perturbed Markov process. Unfortunately, the longest path problem
for a cyclic graph is NP -complete.10 However, the optimal evolutionary
path problem can be turned into a shortest path problem by relabelling the
weights

aij = − log pij

This transformation allows the direct use of Dijkstra’s (1959) shortest path
algorithm on the transformed graph G′ = (V,A).

Algorithm 1 (Dijkstra (1959))
set u0 = 0 and set T = {1, . . . , N}
for k = 1 to N

set uk = a0k (and set P [k] = 0)
repeat (N − 1) times

let l be a node k in T minimizing uk

delete l from T
for each k ∈ T

if ul + alk < uk then set uk = ul + alk (and set P [k] = l)
return u0, u1, . . . , uN (and P (0), P (1), . . . , P (N))

Dijkstra’s Algorithm partitions the graph’s vertices into two sets, F
(fixed) and T (temporary). Initially F = {0} and all other vertices belong to
T , and at each stage the nearest vertex in T is moved into F . Once the algo-
rithm has been run, u0, u1, . . . , uN records the shortest distances from ver-
tex 0 to each other vertex. The “predecessor” array P (0), P (1), . . . , P (N),
meanwhile, records where the various minima were obtained, and hence al-
lows the recovery of the shortest paths. The algorithm’s running time is
O(N2).

Proposition 1 Applying Dijkstra’s Algorithm to the transformed graph G′

delivers the most probable paths between vertex 0 and all other vertices in
the original graph G.

8Introductory texts on combinatorial optimization include McDiarmid (1997), Wilson
(1996) and Papadimitriou and Steiglitz (1982).

9A digraph is “connected” if it cannot be expressed as the union of two digraphs.
10An NP-complete problem is one that is as hard as any reasonable problem, in a precise

sense, and cannot be solved by any known polynomial algorithm (see Papadimitriou and
Steiglitz (1982), ch.15).
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Proof. The application of Dijkstra’s Algorithm to the transformed
graph G′ gives the path Uz of minimum “length”

∑
(i,j)∈Uz

− log pij , for
any given z. But this path will clearly maximise log{∏(i,j)∈Uz

pij}, and
hence also

∏
(i,j)∈Uz

pij , the probability of the path from 0 to z.

In fact, as a consequence, the following simpler algorithm can be em-
ployed on the original graph G.

Algorithm 2
set u0 = 0 and set T = {2, . . . , N}
for k = 1 to N

set uk = p0k (and set P [k] = 0)
repeat (N − 1) times

let m be a node k in T maximizing uk

delete m from T
for each k ∈ T

if um × pmk > uk then set uk = um × pmk (and set P [k] = m)
return u0, u1, . . . , uN (and P (0), P (1), . . . , P (N))

Proposition 2 Applying Algorithm 2 to the original graph G delivers the
most probable paths between vertex 0 and all other vertices in G.

Proof. The vertex m selected on each pass when maximizing uk in
Algorithm 2 is the same as the vertex l selected when minimizing uk in
Dijkstra’s Algorithm, since

m = arg max
k

∏

(i,j)∈Uk

pij

⇐⇒ m = arg max
k

∑

(i,j)∈Uk

log pij

= arg min
k

∑

(i,j)∈Uk

− log pij

= l

where Uk is the path associated with uk for a given k.
Furthermore, if um × pmk > uk in Algorithm 2, then


 ∏

(i,j)∈Um

pij


 pmk >

∏

(i,j)∈Uk

pij

⇐⇒ − log






 ∏

(i,j)∈Um

pij


 pmk



 < − log





∏

(i,j)∈Uk

pij





⇐⇒
∑

(i,j)∈Um

{
− log pij

}
− log pmk <

∑

(i,j)∈Uk

− log pij
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which, given that l = m, is precisely the condition ul +alk < uk in Dijkstra’s
Algorithm.

Consequently, applying Algorithm 2 to G is equivalent to applying Di-
jkstra’s Algorithm to G′, and the result follows from Proposition 2.

5 Step-by-Step Evolution

As was seen earlier, when the “Radius-Modified Coradius” Theorem is refor-
mulated for a state-dependent mutations setting, it is no longer immediately
clear that Ellison’s “step-by-step” evolution is optimal. To see that it is, one
must identify the limit sets through which a given evolutionary path should
pass.

This question can be addressed by applying Algorithm 2 to the digraph
GL = (VL, Q) with vertices VL = L corresponding to each limit set of the
model, where each arc ij is weighted by the probability qij of the most
probable path from the basin of attraction of limit set i to that of j.

Definition 2 A limit set L′ is said to be intermediate between limit set L
and a union of limit sets Ω if

qLL′ . qL′Ω > qLΩ

Proposition 3 The optimal evolutionary path (as σ2 → 0) from a given
limit set Li to a union of limit sets Ω will pass through all “intermediate”
limit sets {Lj} in a “step-by-step” fashion.

Proof. Applying Algorithm 2 to GL delivers a predecessor array with
P [Lk] = Lk−1 for all “intermediate” limit sets Lj in the sense of Definition
2.

This result confirms that, if there exist intermediate recurrent classes
(i.e. Ellison’s (2000) “steps” are in place), an optimal evolutionary path will
pass through each in a “step-by-step” fashion. Definition 2 also clarifies the
precise sense in which a recurrent class must be “intermediate” if it is to
constitute such an evolution-facilitating “step”.

Appendix

Lemma 1 Suppose (Z,P, g($; σ2)) is a model of evolution with noise. If
y ∈ Z and Ω ⊂ Z with y /∈ Ω, then

µσ2
(y)

µσ2(Ω)
=

N(y, Ω, y)∑
ω∈Ω Q(ω, Ω− ω, y)N(Ω, y, ω)

11



Proof. See Ellison’s (2000) Lemma 1 proof (with σ2’s replacing ε’s).

Lemma 2 Suppose (Z, P, g($;σ2)) is a model of evolution with noise and
that Ω is a union of limit sets of (Z, P ). Then, for any ω′ ∈ Ω and any
y /∈ D(Ω)

1
N(Ω, y, ω′)

≤ 1
N(Ω, Z −D(Ω), ω′)

= O
(
max
ω∈Ω

Q(Z −D(Ω), Ω, ω)
)

Proof. This is established in the first part of Ellison’s (2000) Lemma 2
proof.

Lemma 3 Suppose (Z, P, g($;σ2)) is a model of evolution with noise and
that L is a limit set of (Z,P ). Then,

W (l, Z −D(L), g($; σ2)) = O
(
1/max

z∈L
Q(Z −D(L), L, z)

)

for all l ∈ L.

Proof. Following Ellison’s (2000) Lemma 3 proof, given L we can
find a T and a k > 0 such that for any z ∈ D(L) there exists a path
z = z1, z2, . . . , zT with zT ∈ Z − D(L) such that the product of the tran-
sition probabilities along the path is at least k maxz′∈L Q(Z −D(L), L, z′).
Conditioning on the outcome of the first T periods we have for any z ∈ D(L)
that

W (z,Z −D(L), g($; σ2)) ≤ T+

(1− k max
z′∈L

Q(Z −D(L), L, z′)) max
z′′∈D(L)

W (z′′, Z −D(L), g($,σ2))

Taking the maximum of the LHS over z′′ ∈ D(L) gives

max
z′′∈D(L)

W (z, Z −D(L), g($;σ2)) ≤ (T/k)
(
1/max

z′∈L
Q(Z −D(L), L, z′))

)

as desired.

Lemma 4 Suppose (Z,P, g($; σ2)) is a model of evolution with noise. Let
L be the union of the limit sets of (Z, P ) and suppose L is a single limit set.
Then for any l ∈ L,

W (l,L − L, g($; σ2)) = O
(
1/max

z∈L
Q(Z −D(L), L, z)

)
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Proof. For each l ∈ L let Sl be the set of values of σ2 for which
W (l,L−L, g($; σ2)) = maxl′∈L W (l′,L−L, g($;σ2)). Ellison (2000, proof
of Lemma 4) establishes that, if Sl is not empty, then for all σ2 ∈ Sl we have
(
1−

∑

z∈Z−D(L),z /∈L
Q(z, Z −D(L)− z, l)Q(L,L − L, z)

)
W (l,L − L, g($; σ2))

≤ W (l, Z −D(L), g($;σ2)) + max
z∈Z

W (z,L, g($;σ2))

As Ellison notes, the first term on the LHS of the expression is bounded
away from zero because Q(L,L − L, z) is uniformly bounded away from
one for any z /∈ D(L). The first term on the RHS is O(1/maxz∈L Q(Z −
D(L), L, z)) by Lemma 3. The second term on the RHS is finite. It follows
from these observations that the desired result holds when σ2 ∈ Sl. Taking
the union of these sets over all l ∈ L, it holds for all σ2.

Lemma 5 Suppose (Z,P, g($; σ2)) is a model of evolution with noise. Let
L be the union of the limit sets of (Z, P ) and suppose that L and L′ are two
given limit sets. Then for any l ∈ L,

1
Q(L′,L − (L ∪ L′), l)

= O

(
maxz∈L Q(Z −D(L), L, z)

maxz′∈L Q(L′,L − (L ∪ L′), z′)

)

Proof. In the proof of his Lemma 5, Ellison (2000) shows that for l ∈ L
we have

Q(L′,L − (L ∪ L′), l) ≥ 1
|L|

∑

t=1,...,∞,l′∈L

Prob
{{z1, . . . , zt} ∩ (L − L) = ∅,

zt = l′ | z1 = l
} · Prob

{
L′ is reached before L − (L ∪ L′) and

at most |L| periods are spent in L | z1 = l
}

where |L| is the number of elements of L.
As Ellison notes, the summation over t and l′ of the first terms on the

RHS above is bounded below by N(L,L−L, l). Meanwhile, the second terms
on the RHS are uniformly bounded below by k maxz′∈L Q(L′,L−(L∪L′), z′)
for σ2 small for some k > 0. Hence we have

Q(L′,L − (L ∪ L′), l) ≥ 1
|L|N(L,L − L, l)k max

z′∈L
Q(L′,L − (L ∪ L′), z′)

≥ 1
|L|N(L,Z −D(L), l)k max

z′∈L
Q(L′,L − (L ∪ L′), z′)

≥ k′
maxz′∈L Q(L′,L − (L ∪ L′), z′)

maxz∈L Q(Z −D(L), L, z)

for some k′ > 0 using the result of Lemma 2.
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Lemma 6 Let (Z,P, g($; σ2) be a model of evolution with noise and sup-
pose that Ω is a union of limit sets of (Z, P ), whilst {Lj}r

j=i are the limit
sets through which the most probable path from a given limit set Li to Ω
passes. Then

max
y/∈Ω

W (y, Ω, g($; σ2)) = O

([
min

Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

)]−1
)

Proof. Following Ellison’s (2000) Lemma 6, it will suffice to establish
that

W (Ω, g($; σ2)) ≡ max
y∈L−Ω

W (y, Ω, g($; σ2))

= O

([
min

Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

)]−1
)

Given y ∈ L − Ω let z1, z2, . . . , zT be the most probable path from y to
Ω, passing through distinct limit sets L1, L2, . . . , Lr.

Writing q12 for miny′∈L1 Q(L2,L− (L1 ∪ L2), y′) and W (A,B, g($;σ2))
for maxx∈A W (x,B, g($; σ2)), Ellison shows that

W (Ω, g($; σ2)) ≤W (L1,L − L1, g($; σ2))
q12q23 · · · q(r−1)r

+ · · ·

+
W (Lr−1,L − Lr−1, g($; σ2))

q(r−1)r

It now suffices to show that the summation on the RHS of the above equation
is

O

([
min

Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

)]−1
)

Now, by Lemma 5 we know that

1
qj(j+1)

= O

(
maxz′∈Lj

Q(Z −D(Lj), Lj , z
′)

maxz∈Lj Q(Lj+1,L − (Lj ∪ Lj+1), z)

)
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Using this and the result of Lemma 4 we have

W (Li,L − Li, g($;σ2))
qi(i+1)q(i+1)(i+2) . . . q(r−1)r

=
(

1
maxz∈Li Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′∈Lj
Q(Z −D(Lj), Lj , z

′)
maxz′′∈Lj

Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

)

Hence we have

W (Ω, g($; σ2)) = O

(
max

Li∈L−Ω

(
1

maxz∈Li Q(Z −D(Li), Li, z)
r−1∏

j=i

maxz′∈Lj
Q(Z −D(Lj), Lj , z

′)
maxz′′∈Lj

Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

))

= O

([
min

Li∈L−Ω

(
max
z∈Li

Q(Z −D(Li), Li, z)

r−1∏

j=i

maxz′′∈Lj
Q(Lj+1,L − (Lj ∪ Lj+1), z′′)

maxz′∈Lj
Q(Z −D(Lj), Lj , z′)

)]−1
)

as required.
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