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Abstract

The notion of cointegration has lead to a renewed interest in the identification and estimation

of structural relations among economic time series, a field to which Henri Theil has made many

pioneering contributions. This paper reviews the different approaches that have been put forward in

the literature for identifying cointegrating relationships and imposing (possibly over-identifying) re-

strictions on them. Next, various algorithms to obtain (approximate) maximum likelihood estimates

and likelihood ratio statistics are reviewed, with an emphasis on so-called switching algorithms. The

implementation of these algorithms is discussed and illustrated using an empirical example.

1 Introduction

The need to analyse simultaneous structural relations between economic time series has been one of

the main driving forces behind the development of econometrics as a separate discipline in the previous

century. This lead to the influential work of the Cowles Commission on identification and likelihood-

based estimation of simultaneous equations (see Hood and Koopmans, 1953), and subsequently to the

computationally more attractive two-stage and three-stage least-squares methods of Theil (1953) and

Zellner and Theil (1962).

In the following decades, it was realized that the dynamics of economic relations, and the statistical

properties of economic time series, should be incorporated in these simultaneous equations models. Via

the work of Theil and Boot (1962) and Zellner and Palm (1974) on dynamic simultaneous equations

models, the concept of error correction mechanisms developed by Sargan (1964) and Davidsonet al.

(1978), and Sims’s (1980) analysis of vector autoregressive models, this has lead to cointegration and
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vector error correction modelling (Engle and Granger, 1987) as the currently dominant approach to the

econometric analysis of time series.

The problem of testing for cointegration and estimating the cointegrating relationships was solved

by Johansen (1988, 1991), using reduced rank regression techniques developed by Anderson (1951).

However, in the presence of multiple cointegrating relations, the resulting estimates are not unique

and directly interpretable, unless some identifying restrictions are imposed. Therefore, the familiar

identification problem of linear simultaneous structural relations reappears in vector error correction

models, the main new element being that these relations are now embedded as error correction terms in

a dynamic model.

Over the last decade, a number of approaches to identify and restrict multiple cointegration relations

have been proposed in the literature, notably by Johansen (1988, 1991, 1995a,b), Johansen and Juselius

(1990, 1992, 1994), Boswijk (1995), Doornik (1995), Elliott (2000), Hansen (2002), and Pesaran and

Shin (2002). This paper reviews these approaches, and discusses the algorithms needed to apply these

approaches in practice, as well as their implementation in some econometric software packages. An

empirical example is used to illustrate the approaches.

The paper only considers identifying restrictions on the cointegrating vectors and adjustment co-

efficients. Identifying restrictions on short-run parameters, and the analysis of vector error correction

models in structural form, is not discussed here; see, e.g., Johansen and Juselius (1994). Furthermore,

the analysis is limited to processes integrated of order one. InI(2) cointegration models similar iden-

tification issues arise, but the deviations from mixed normal inference in these models, as analysed in

Boswijk (2000) and Johansen (2002a), lead to specific complications that go beyond the scope of the

present paper.

The outline of the rest of the paper is as follows. In Section 2, the unrestricted cointegration model

and the reduced rank regression procedure are discussed. Furthermore, an expression for the information

matrix for the parameters of interest is obtained, and this is used to analyse the identification problem

and the asymptotic properties of the unrestricted maximum likelihood estimators. Section 3 discusses

identification and asymptotic results for a general class of restrictions on the cointegrating vectors and

adjustment coefficients. In Section 4, various specific classes of restrictions are reviewed, together

with the corresponding algorithms to maximize the likelihood function. The implementation of these

algorithms in some econometric packages is also discussed. In Section 5, an empirical example of the

various approaches discussed in the paper is considered.
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2 The Model and Unrestricted Statistical Analysis

2.1 The Model

Consider thekth order vector error correction model (VECM) for ap-vector time series{Xt}:

∆Xt = ΠxXt−1 + Πddt +
k−1∑

i=1

Γi∆Xt−i + Υqt + εt,

= ΠX∗
t−1 +

k−1∑

i=1

Γi∆Xt−i + Υqt + εt, t = 1, . . . , T, (1)

where the starting values(X1−k, . . . , X0) are fixed,εt is i.i.d. N(0,Ω), andX∗
t−1 = (X ′

t−1, d
′
t)
′, where

dt andqt are deterministic regressors, such as a constant and trend term, and (seasonal) dummy vari-

ables. The most common two specifications for these deterministic variables are(dt, qt) = (1,∅)

(restricted constant, excluding a linear drift inXt) and(dt, qt) = (t, 1) (restricted linear trend, exclud-

ing a quadratic trend inXt). The normality assumption onεt is made primarily for constructing the

likelihood function; asymptotic results may be obtained under weaker conditions.

The dynamics of the process is determined by the roots of the characteristic equation

φ(z) :=

∣∣∣∣∣Ip(1− z)−Πxz −
k−1∑

i=1

Γiz
i(1− z)

∣∣∣∣∣ = 0. (2)

If all roots of (2) are outside the unit circle, thenΠx has full row rankp and the process is (trend-)

stationary. The process is integrated of order1 (I(1)) if rankΠx = r < p, and (2) hasp − r roots

equal to one and all other roots outside the unit circle (see Johansen, 1995a, Corollary 4.3). If thisI(1)

condition holds withr > 0, and if sp(Πd) ⊆ sp(Πx),1 then we may writeΠ = αβ′, with α andβ full

column rank matrices of dimensionsp×r andp1×r, respectively, wherep1 = dim(X∗
t ) = p+dim(dt).

In that case the system is cointegrated, such that ther linear combinationsβ′X∗
t are (trend-) stationary

even thoughXt ∼ I(1).

2.2 Reduced Rank Regression

The statistical analysis of theI(1) cointegration model is described in detail in Johansen (1991, 1995a),

the main elements of which are summarized here. LetΓ = (Γ1, . . . ,Γk−1, Υ) andWt = (∆X ′
t−1, . . . ,

∆X ′
t−k+1, q

′
t)
′, so that the model, with the reduced rank conditionΠ = αβ′ imposed, reads

∆Xt = αβ′X∗
t−1 + ΓWt + εt, t = 1, . . . , T. (3)

Since no restrictions will be imposed onΓ, we consider the concentrated log-likelihood function in

terms of the remaining (freely varying) parameters(α, β,Ω), which up to a constant term is given by

`c(α, β,Ω) = −T

2
log |Ω| − T

2
trΩ−1

(
S00 − S01βα′ − αβ′S10 + αβ′S11βα′

)
, (4)

1If the columns ofΠd do not lie in sp(Πx), then one should change the specification by moving some or all of the

deterministic variables fromdt to qt.
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where

S00 =
1
T

(
∆X ′∆X −∆X ′W [W ′W ]−1W ′∆X

)
,

S11 =
1
T

(
X∗′
−1X

∗
−1 −X∗′

−1W [W ′W ]−1W ′X∗
−1

)
,

S01 = S′10 =
1
T

(
∆X ′X∗

−1 −∆X ′W [W ′W ]−1W ′X∗
−1

)
,

with ∆X, X∗
−1 andW the data matrices (consisting ofT rows) of∆Xt, X∗

t−1 andWt, respectively.

For a given value ofβ, this log-likelihood function is maximized bŷα(β) = S01β(β′S11β)−1 and

Ω̂(β) = S00 − S01β(β′S11β)−1β′S10, which leads to the further concentrated log-likelihood function

in terms ofβ only:

`c(β) = −T

2
log

∣∣S00 − S01β(β′S11β)−1β′S10

∣∣

= −T

2
log |S00|

∣∣β′ (S11 − S10S
−1
00 S01

)
β
∣∣

∣∣β′S11β
∣∣ , (5)

where a further constant term has been omitted.

Recognizing (5) as a reduced rank regression problem, analysed originally by Anderson (1951),

Johansen (1988, 1991) has shown that this concentrated log-likelihood function is maximized byβ̂ =

(v̂1, . . . , v̂r), wherev̂i are the eigenvalues corresponding to the eigenvaluesλ̂i, in descending order, of

the generalized eigenvalue problem
∣∣λS11 − S10S

−1
00 S01

∣∣ = 0.

Since these eigenvectors satisfy the normalizationv̂iS11v̂i = 1 andv̂′iS11v̂j = 0, i 6= j, it follows that

β̂
′
S11β̂ = Ir, which leads tôα = S01β̂ andΩ̂ = S00 − S01β̂β̂

′
S10 = S00 − α̂α̂′. It also implies that

β̂
′
S10S

−1
00 S10β̂ = diag(λ̂1, . . . , λr), which in turn leads to

`c(β̂) = −T

2

(
log |S00|+

r∑

i=1

log(1− λ̂i)

)
.

Since these results also apply in caser = p, where the rank ofΠ is unrestricted, it follows that the

likelihood ratio statistic for the hypothesisHr : rank Π ≤ r in the general modelHp is given by

LR(Hr|Hp) = −T

p∑

i=r+1

log(1− λ̂i). (6)

The asymptotic null distribution of this statistic, expressed in terms of vector Brownian motion func-

tionals, is derived and tabulated in, e.g., Johansen (1995a), and depends on the specification of the

deterministic variables(dt, qt).

2.3 The Information Matrix

In order to characterize the asymptotic properties ofα̂ andβ̂, and discuss the identification problem, it is

useful to obtain the Fisher information matrix, which we derive from (4). Note first that, withΠ = αβ′,

S00 − S01βα′ − αβ′S10 + αβ′S11βα′ = S00 − S01S
−1
11 S10 + (Π− S01S

−1
11 )S11(Π− S−1

11 S10)

= Ω̂LS + (Π− Π̂LS)S11(Π− Π̂LS)′,
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whereΠ̂LS = S01S
−1
11 andΩ̂LS = S00 − S01S

−1
11 S10, the unrestricted maximum likelihood estimators

of Π andΩ, which are obtained by applying least-squares to (1). This leads to

`c(Π,Ω) = −T

2
log |Ω| − T

2
trΩ−1

[
Ω̂LS + (Π− Π̂LS)S11(Π− Π̂LS)′

]

= −T

2

(
log |Ω|+ trΩ−1Ω̂LS

)

−T

2
vec(Π′ − Π̂′LS)′

(
Ω−1 ⊗ S11

)
vec(Π′ − Π̂′LS), (7)

wherevec(A) stacks the columns ofA, and the Kronecker productA ⊗ B is defined by(aijB). From

(7) the usual block-diagonality of the information matrix between the regression parameters inΠ = αβ′

and the variance-covariance parameters inΩ is obtained. An asymptotically valid expression for the

observed (concentrated) information matrix2 for γ = (vec(α′)′, vec(β)′)′ is given by

Iγ = −∂ vec(Π′)′

∂γ

∂2`c(Π,Ω)
∂ vec(Π′)∂ vec(Π′)′

∂ vec(Π′)
∂γ′

= T

[
(Ip ⊗ β′)

(α′ ⊗ Ip1)

]
(
Ω−1 ⊗ S11

) [
(Ip ⊗ β) : (α⊗ Ip1)

]

= T

[
(Ω−1 ⊗ β′S11β) (Ω−1α⊗ β′S11)

(α′Ω−1 ⊗ S11β) (α′Ω−1α⊗ S11)

]
. (8)

The information matrixIγ is of dimension(p+p1)r×(p+p1)r, but has rank equal to(p+p1−r)r,

which is seen as follows (see also Johansen, 1995, Lemma 7.1). For anym×n matrixA of full column

rank, letA⊥ be anm × (m − n) matrix of full column rank such thatA′⊥A = 0. Then the left

null space of the Jacobian matrixJ(γ) = ∂ vec(Π′)/∂γ′ = [(Ip ⊗ β) : (α⊗ Ip1)] is spanned by the

pp1 × (p − r)(p1 − r) matrix (α⊥ ⊗ β⊥), which implies thatrankJ(γ) = pp1 − (p − r)(p1 − r) =

(p + p1 − r)r. And sinceIγ = TJ(γ)′
(
Ω−1 ⊗ S11

)
J(γ), with Ω−1 ⊗ S11 non-singular, this implies

thatrank Iγ = (p + p1 − r)r.

The fact that the rank of the Jacobian matrixJ and the information matrixIγ differs from the dimen-

sion ofγ by a termr2, implies that without further restrictions,γ (and henceα andβ) is not identified;

one might say thatγ containsr2 redundant parameters. This is also easily understood from the fact that

α andβ enter the likelihood function only via their productαβ′. And sinceαβ′ = αQ−1Qβ′ = α∗β∗′

for any non-singularr × r matrixQ, it follows that we may freely imposer2 restrictions onα and/orβ

without affecting the maximum of the likelihood function.

A common set of identifying restrictions isc′β = Ir,for some knownp1× r matrixc of full column

rank. The maximum likelihood estimators ofα and β under this restriction are obtained from the

reduced rank regression estimators(α̂, β̂) via β̂c = β̂(c′β̂)−1 andα̂c = α̂β̂
′
c (note that̂β

′
cS11β̂c 6= Ir).

Note that these restrictions may also be written as

β = c(c′c)−1 + c⊥B,

2Often the observed information is defined as minus the second derivative of the log-likelihood, evaluated at the maximum

likelihood estimate. Here we use the term to refer to minus the second derivative, evaluated at an arbitrary parameter point;

also some terms with expectation zero (when evaluated at the true value) have been omitted.
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whereB is a(p1 − r) × r freely varying (and identified) parameter matrix, with maximum likelihood

estimatorB̂ = (c′⊥c⊥)−1c′⊥β̂c. LettingYt = (c′c)−1c′X∗
t andZt = −c′⊥X∗

t , it follows that in this new

parametrization,

β′X∗
t = Yt −B′Zt,

which allowsB to be interpreted as the equilibrium or long-run effect ofZt onYt (see Johansen, 2002b,

for a further discussion of such interpretations). Lettingδ = (vec(α′c)′, vec(B)′)′, it follows that the

observed information matrix corresponding to this parametrization becomes

Iδ = T

[
(Ip ⊗ β′)

(α′ ⊗ c′⊥)

]
(
Ω−1 ⊗ S11

) [
(Ip ⊗ β) : (α⊗ c⊥)

]

= T

[
(Ω−1 ⊗ β′S11β) (Ω−1α⊗ β′S11c⊥)

(α′Ω−1 ⊗ c′⊥S11β) (α′Ω−1α⊗ c′⊥S11c⊥)

]
. (9)

Provided that the true value ofβ satisfies
∣∣β′c∣∣ 6= 0, this matrix is non-singular.

The asymptotic properties of̂αc andB̂ may now be characterized as follows, see Johansen (1991,

1995a), using a sequence of norming matricesDT = diag(T−1/2Ipr, D2T ), where the form ofD2T

depends on the specification of the deterministic components indt. In particular, whendt = 1 then

D2T = diag(T−1I(p−r)r, T
−1/2Ir), and whendt = t, we useD2T = diag(T−1I(p−r)r, T

−3/2Ir).

Then asT →∞,

D−1
T (δ̂ − δ) =

(
T 1/2 vec(α̂′c − α′)

D−1
2T vec(B̂ −B)

)

d−→ N

([
0

0

]
,

[
Ω⊗ Σ−1

ββ 0

0 (α′Ω−1α)−1 ⊗ V −1

])
, (10)

D′
TIδDT

d−→
[

Ω−1 ⊗ Σββ 0

0 α′Ω−1α⊗ V

]
, (11)

whereΣββ = plimT→∞ β′S11β, and whereV is a random matrix, which may be expressed as a

functional of a vector Brownian motion. Thus the limiting distribution ofT 1/2(α̂c − α) is normal,

whereasD−1
2T (B̂ − B) has amixednormal limiting distribution. The limiting result forIδ implies that

(δ̂ − δ)′Iδ(δ̂ − δ) d−→ χ2((p + p1 − r)r), and from the consistency ofδ̂ it follows that the same result

holds withIδ replaced bŷIδ, i.e., (9) evaluated atδ = δ̂. Similarly it can be shown that Wald, likelihood

ratio and Lagrange-multiplier tests for hypotheses onδ will have an asymptoticχ2 distribution under

the null hypothesis.

3 General Restrictions

3.1 Parametrization and Identification

Following Doornik (1995), we consider a general class of the restrictions onα andβ of the following

form, where the cointegrating rankr is given:

Hg : α′ = fα(θ), β = fβ(θ), θ ∈ Θ ⊂ Rl, (12)
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whereθ is anl-dimensional parameter vector with parameter spaceΘ, and wherefα(·) andfβ(·) are

matrix-valued functions onΘ of appropriate dimensions, satisfying the following conditions:

Condition 1 The functionsfα(·) andfβ(·) and the parameter spaceΘ satisfy:

1. rank fα(θ) = rank fβ(θ) = r, for all θ ∈ Θ except a possible set of Lebesgue measure zero;

2. fα(·) andfβ(·) are continuously differentiable onΘ, with Jacobian matrices

Fα(θ) =
∂ vec fα(θ)

∂θ′
, Fβ(θ) =

∂ vec fβ(θ)
∂θ′

.

The first condition is imposed to avoid restrictions that are in conflict with the cointegrating rankr.

The second condition is standard, and allows the identification ofθ to be analysed from the properties

of the Jacobian matrices.

Observe thatα andβ depend on the same parameter vectorθ; hence restrictions linkingα andβ

are possible in this general set-up. However, in many empirically relevant cases such restrictions are

excluded, and we may partitionθ as(ψ′, φ′)′, with

α′ = fα(θ) = g(ψ), β = fβ(θ) = h(φ), (ψ, φ) ∈ Ψ× Φ, (13)

so that

Fα(θ) =
[

∂ vec g(ψ)
∂ψ′

: 0
]

=
[

G(ψ) : 0
]
, (14)

Fβ(θ) =
[

0 :
∂ vech(φ)

∂φ′

]
=

[
0 : H(φ)

]
. (15)

The decomposition of the parameter spaceΘ = Ψ × Φ entails that the two parameter vectorsψ and

φ are variation free, which simplifies the maximization of the log-likelihood considerably, as discussed

below.

From the fact thatΠ = αβ′ = fα(θ)′fβ(θ)′, and using the notationγ = (vec(α′)′, vec(β)′)′ and

J = ∂ vec(Π′)/∂γ′ = [(Ip ⊗ β) : (α⊗ Ip1)] introduced in the previous section, we obtain from the

chain rule,

J (θ) :=
∂ vec(Π′)

∂θ′
=

∂ vec(Π′)
∂γ′

∂γ

∂θ′

= J(γ)F (θ)

= (Ip ⊗ β) Fα(θ) + (α⊗ Ip1) Fβ(θ), (16)

whereF (θ) = [Fα(θ)′ : Fβ(θ)]′. Analogously to the derivations in the previous section, this leads to

the following expression for the observed information matrix onθ:

Iθ = TJ (θ)′
(
Ω−1 ⊗ S11

)J (θ)

= TF (θ)′
[

(Ω−1 ⊗ β′S11β) (Ω−1α⊗ β′S11)

(α′Ω−1 ⊗ S11β) (α′Ω−1α⊗ S11)

]
F (θ). (17)
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When restrictions linkingα andβ are excluded, such that (13)–(15) holds, then the expressions for

J (θ) andIθ simplify to

J (θ) =
[

(Ip ⊗ β) G(ψ) : (α⊗ Ip1) H(φ)
]
, (18)

Iθ = T

[
G(ψ)′(Ω−1 ⊗ β′S11β)G(ψ) G(ψ)′(Ω−1α⊗ β′S11)H(φ)

H(φ)′(α′Ω−1 ⊗ S11β)G(ψ) H(φ)′(α′Ω−1α⊗ S11)H(φ)

]
. (19)

The following theorem, adapted from Doornik (1995, Proposition 1) and based on Rothenberg

(1971), discusses local identification ofθ. Let N(θ0) denote a neighbourhood ofθ0.

Theorem 1 Consider the model

∆Xt = fα(θ)′fβ(θ)′X∗
t−1 + ΓWt + εt, εt ∼ i.i.d. N(0, Ω), t = 1, . . . , T,

wherefα(·) and fβ(·) satisfy Condition 1, and whereθ ∈ Θ, an open subset ofRl, with θ variation

independent of the (unrestricted) parametersΓ andΩ. A sufficient condition for the parameter value

θ0 ∈ Θ to be locally identified is that

rankJ (θ) = rank {[Ip ⊗ fβ(θ)]Fα(θ) + [fα(θ)⊗ Ip1 ]Fβ(θ)} = l, θ ∈ N(θ0) ⊂ Θ. (20)

Proof. Let Π0 = fα(θ0)′fβ(θ0)′. In the model∆Xt = ΠX∗
t−1 +ΓWt + εt, with Π unrestricted,Π0

is globally identified, since this is a regression model, where the regressors(X∗′
t−1, W

′
t)
′ are perfectly

multicollinear with probability zero. The global identification ofΠ0 still applies in the restricted model

defined byΠ = fα(θ)′fβ(θ)′, θ ∈ Θ, simply because no matricesΠ 6= Π0 exist that are observationally

equivalent toΠ0 (neither inside nor outside the restricted parameter space). Therefore, local identifica-

tion of θ0 requires that we can uniquely solveΠ0 = fα(θ)′fβ(θ)′ for θ, and a sufficient condition for

this is that the Jacobian matrixJ (θ) has full row rank in a neighbourhood ofθ0. ¤

Note that the theorem only provides a sufficient condition for local identification, which is not

necessary. In particular, a parameter valueθ0 can be identified even ifrankJ (θ0) < l, as long asθ0 is

a single point where rank deficiency occurs. For example, the equationπ = θ3 can be uniquely solved

for θ at π0 = θ0 = 0, even though the derivative∂π/∂θ is zero atθ0 = 0. However, in such cases

the asymptotic properties of the maximum likelihood estimator ofθ will be different from the “regular”

cases defined by Theorem 1.

Because the relationship between the Jacobian matrixJ (θ) and the observed information matrix

Iθ, an equivalent requirement for local identification is thatIθ is non-singular in a neighbourhood of

θ0. The non-singularity of the information matrix was proposed by Rothenberg (1971) as a condition

for local identification, although he focussed on the usualexpectedinformation matrix, instead of the

observedinformation matrixIθ which is more natural for non-ergodic models.

In the previous section we have shown thatrankJ(γ) = (p+p1−r)r, and sinceJ (θ) = J(γ)F (θ),

it follows that (p + p1 − r)r is an upper bound to the number of identified parameters inθ. Thus an

order conditionfor identification isl ≤ (p + p1 − r)r.
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Johansen (1991, Appendix C), Elliott (2000) and Pesaran and Shin (2002), consider a subclass of

the type of restrictions here, whereα is unrestricted, but general restriction are imposed onβ. Hence

this corresponds to (13)–(15) with ψ = vec(α′), such thatvec g(ψ) = ψ andG(ψ) = Ipr. This leads

to the rank condition

rank
[

(Ip ⊗ β) : (α⊗ Ip1) H(φ)
]

= l,

in a neighbourhood ofφ0. The matrix(Ip ⊗ β) has full column rankpr; if we eliminate these columns

by pre-multiplying with (Ip ⊗ β′⊥), then we arrive at the conditionrank
[
(α⊗ β′⊥)H(φ)

]
=

rank
[
(α⊗ Ip1−r)(Ir ⊗ β′⊥)H(φ)

]
= l − pr =: lφ, where lφ is the dimension ofφ. And since

(α⊗ Ip1−r) has full column rank, the rank condition becomes

rank
[
(Ir ⊗ β′⊥)H(φ)

]
= lφ, φ ∈ N(φ0). (21)

This rank condition was derived by Boswijk (1995) for the case whereh(φ) is linear. It also corre-

sponds to the conditionrank {[Ir ⊗ C(1)′]H(φ)} = lφ considered by Pesaran and Shin (2002), where

C(1) = β⊥
[
α′⊥(Ip −

∑k−1
i=1 Γi)β⊥

]−1
α′⊥ (in this caseβ only contains coefficients ofXt−1, not of

any restricted deterministic componentsdt).

Both rank conditions (20) and (21) involve unknown parameters. One can check whether these con-

ditions are generically satisfied by drawing random elements fromΘ or Φ, and numerically determining

the rank for those parameter values. If the rank condition is satisfied outside a set of Lebesgue mea-

sure zero, then the probability of drawing an element from this set is zero (assuming that a continuous

distribution onΘ or Φ is used). Alternatively, one can check the rank condition by evaluating (20) in

θ̃, which is any (possibly non-unique) value that maximizes the likelihood function. In that case one

does not investigate generic identification, but rather the possibility of identification problems at the

maximum likelihood estimate (MLE); this clearly requires an algorithm to maximize the likelihood that

does not require a full rank information matrix.

Instead of investigating the rank ofJ (θ) at a random elementΘ or the MLEθ̃, one could investigate

the rank of the observed information matrixIθ at such points, as proposed by Boswijk (1995). However,

as argued by Doornik (1995), we may expect numerical evaluation of the rank ofJ (θ) to be somewhat

more reliable than that ofIθ, because the latter will be contaminated by the possible near-singularities

in Ω−1 or S11.

A method to establish the numerical rank ofJ (θ) or Iθ is proposed by Doornik (1995, Defini-

tion 1): the rank of anm × n matrix A is determined by the number of singular valueswi sat-

isfying wi > 104εm max1≤i≤m
∑n

j=1 |aij |, whereεm is the machine accuracy for double precision

(εm ≈ 2 × 10−16). The singular values are obtained from the singular value decomposition, available

in matrix programming languages such as Ox (Doornik, 2001).

3.2 Estimation and Testing

Consider again the log-likelihood function (4). The maximum likelihood estimator ofΩ for a fixed value

of θ is

Ω̃(θ) = S00 − S01Π(θ)′ −Π(θ)S10 + Π(θ)S11Π(θ)′, Π(θ) = g(θ)′h(θ)′,

9



which leads to the concentrated log-likelihood in terms ofθ only:

`∗c(θ) = −T

2
log

∣∣∣Ω̃(θ)
∣∣∣ , (22)

omitting an additive constant. Using the rules of matrix differential calculus, see Magnus and Neudecker

(1988), and in particulard log |A| = trA−1dA, the (concentrated) score vector is

q(θ) :=
∂`∗c(θ)

∂θ
= TJ (θ)′

[
Ω̃(θ)−1 ⊗ Ip1

]
vec

[
S10 − S11Π(θ)′

]

= TJ (θ)′
[
Ω̃(θ)−1 ⊗ S11

]
vec

[
Π̂′LS −Π(θ)′

]
. (23)

A (local) maximum of the likelihood function is obtained by any root ofq(θ) = 0 (provided that

the Hessian is negative semi-definite at this root). When the Jacobian matrixJ (θ) is of full column

rank for all θ ∈ Θ, then this maximum may be found by Newton-type methods, where minus the

Hessian matrix might be approximated byIθ = TJ (θ)′
[
Ω̃(θ)−1 ⊗ S11

]
J (θ). In practice the BFGS

(Broyden-Fletcher-Goldfarb-Shanno; see, e.g., Fletcher, 1987) method is known to be more robust, and

furthermore this method does not require an invertible Hessian matrix. Clearly, ifJ (θ) has a deficient

column rank throughout the entire parameter space, such thatθ is not fully identified, then the iterations

can only be expected to converge to one out of a continuum of roots.

Of particular interest is the case where there are no restrictions linkingα andβ, see (13)–(15). In

that case the score vector may be partitioned into

qψ(ψ, φ) = TG(ψ)′
[
Ω̃(θ)−1 ⊗ β′S11

]
vec

[
Π̂′LS −Π(θ)′

]
, (24)

qφ(ψ, φ) = TH(φ)′
[
α′Ω̃(θ)−1 ⊗ S11

]
vec

[
Π̂′LS −Π(θ)′

]
, (25)

where of courseα′ = g(ψ) andβ′ = h(φ)′. Now the equationsqψ(ψ, φ) = 0 may be solved to obtain

ψ̃(φ), i.e., the maximum likelihood estimator ofψ for a given value ofφ (and henceβ), and similarly

qφ(ψ, φ) = 0 may be solved to obtaiñφ(ψ). This suggests a so-calledswitching algorithm, which

means alternating between optimizing overψ for a given value ofφ, and optimizing overφ for a given

value ofψ. Thus, for a starting value(ψ̃0, φ̃0), the iterations involve evaluating

ψ̃1 = ψ̃(φ̃0), φ̃1 = φ̃(ψ̃1), . . . , ψ̃j = ψ̃(φ̃j−1), φ̃j = φ̃(ψ̃j), . . .

until the value of the likelihood function converges. This algorithm was proposed by Doornik (1995). In

a different context, such switching algorithms were considered earlier by Sargan (1964) and Oberhofer

and Kmenta (1974). As discussed in the next section, Johansen and Juselius (1994) introduced this idea

into cointegration modelling. Because the value of the log-likelihood function is non-decreasing in each

step, the algorithm will eventually converge to a point where no further improvements are possible in

the directions ofφ andψ (provided that there are no numerical problems preventing us from reaching

this point). Such a point may be a global maximum, but could also be a local maximum or even a saddle

point (when likelihood improvements are possible in directions associated with combinations ofφ and

ψ). Therefore, careful selection of starting values is required as always, and positive semi-definiteness of

the observed information matrix needs to be checked. Unlessg andh are linear (considered in the next
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section), each step involves a BFGS or Newton optimization, which might suggest that this procedure

will be computationally more intensive than direct maximization over the full parameter vector. The

advantage of this procedure however, is that for all reasonable specifications ofg andh, ψ is fully

identified given a known value ofφ, and converselyφ is identified givenψ. In other words,G(ψ)

andH(φ) will have full column rank even ifJ (θ) does not have full column rank, which makes the

algorithms particularly suited for partially identified models.

Once the MLẼθ has been obtained, its covariance matrix may be estimated by

Ĩ−1
θ =

[
TJ (θ̃)′

(
Ω̃−1 ⊗ S11

)
J (θ̃)

]−1
, (26)

and the restrictions implied byHg in (12) relative to the unrestricted cointegration modelHr may be

tested using the likelihood ratio statistic

LR(Hg|Hr) = 2
[
`c(β̂)− `∗c(θ̃)

]

= T

[
log

∣∣∣Ω̃
∣∣∣− log |S00| −

r∑

i=1

log(1− λ̂i)

]
. (27)

The asymptotic justification of this is provided in the next theorem:

Theorem 2 Consider the model (3) under the restrictions (12), and assume that the parameter spaceΘ

is compact, that the true valueθ0 lies in the interior ofΘ, and thatrankJ (θ) = s, θ ∈ N(θ0) . Then,

asT →∞,

LR(Hg|Hr)
d−→ χ2((p + p1 − r)r − s). (28)

If, in addition,s = l, thenθ̃ is consistent and asymptotically mixed normal, i.e.,

θ̃
p−→ θ0, (29)

and for any vectora 6= 0, (
a′Ĩ−1

θ a
)−1/2

a′(θ̃ − θ0)
d−→ N(0, 1). (30)

The proof of this theorem is given in the appendix. Note that the theorem does not explicitly specify

the rate of consistency. In the absence of restrictions linkingα andβ, see (13)–(15), we may in general

expectψ̃ and hencẽα = fα(ψ̃)′ to beOp(T−1/2)-consistent and asymptotically normal, whereasφ̃

and hencẽβ = fβ(φ̃) is expected to have a faster rate of convergence and to be asymptotically mixed

normal. However, whether this is indeed the case depends on whether the parameters are fully identified

by restrictions onβ, which corresponds to the condition (21). As an example of a case where this is

violated, suppose thatβ is unrestricted andα′ = (Ir, α
′
2), with α2 an unrestricted(p − r) × r matrix.

It can be checked that this corresponds to a just-identified model, but the corresponding estimator ofβ

will not be super-consistent, since the identifying restrictions onα imply that part of the information on

the adjustment toward equilibrium is contained inβ.

The result (28), which does not require a fully identified model, will be particularly useful in the next

section, where we consider various specific classes of restrictions onα andβ which are not necessarily
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fully identifying. It may be emphasized however, that all results of Theorem 2 break down whenθ0 is a

singular point ofJ (θ0), i.e., when the rank of the Jacobian matrix is lower atθ0 than in a neighbourhood

of θ0. Such cases are associated with local non-identifiability. Although the asymptotic distributions

of maximum likelihood estimators and likelihood ratio test statistics may be derived for such cases in

specific models, these distributions are typically non-normal and non-chi-squared, respectively.

4 Specific Classes of Restrictions

4.1 Weak Exogeneity Restrictions

Johansen and Juselius (1990) considered the hypothesis

Ha : α = Aζ, (31)

whereA is a knownp ×ma matrix of full column rank, withr ≤ ma < p, andζ is ama × r freely

varying parameter matrix. LettingYt = Ā′Xt andZt = A′⊥Xt (with Ā = A(A′A)−1), this hypothesis

implies that the model (3) may be written as

∆Yt = ψβ′X∗
t−1 + ΓyWt + εyt,

∆Zt = ΓzWt + εzt,

where
[
Γ′y : Γ′z

]
= Γ′[Ā : A⊥] and (ε′yt, ε

′
zt) = ε′t[Ā : A⊥]. Thus there is no adjustment toward

equilibrium in the equations describingZt, which implies thatZt is weakly exogenousfor the parameter

β, see Johansen (1995a, Chapter 8).

The maximum likelihood estimator under this restriction may again be obtained by reduced rank

regression, in a conditional model of∆Yt given ∆Zt. For details, see Johansen (1995a, Section

8.2.1). This results in a new set of eigenvaluesλ̃i, with corresponding eigenvectors̃vi defining the

restricted estimator̃β = (ṽ1, . . . , ṽr), and the concentrated restricted log-likelihood`c(β̃) = −0.5T ×(
log |S00|+

∑r
i=1 log(1− λ̃i)

)
, so that the likelihood ratio statistic becomes

LR(Ha|Hr) = T
r∑

i=1

log
1− λ̃i

1− λ̂i

. (32)

Note that the null hypothesis may be reformulated asvec(α′) = (A ⊗ Ir) vec(ζ ′) = Gψ, which

implies that the Jacobian matrixJ (θ) in this case is a special case of (18), given by

J (θ) =
[

(A⊗ β) : (α⊗ Ip1)
]
.

The left null space of this matrix is now spanned by[α⊥⊗β⊥ : A⊥⊗β], which means thatrankJ (θ) =

pp1−(p−r)(p1−r)−(p−ma)r = (ma+p1−r)r = s, whereas the number of columns is(ma+p1)r =

l. Thus the restrictions are not identifying: indeed, we still have that(ζ, β) is observationally equivalent

to (ζ∗, β∗) = (ζQ−1, βQ′) for arbitrary non-singularQ. From Theorem 2, we find that the degrees of

freedom for the likelihood ratio test is(p + p1 − r)r − s = (p −ma)r. In fact, the null hypothesis is

equivalent toA′⊥α = 0, which amounts to exactly(p−ma)r restrictions onα.

12



4.2 Linear Restrictions on the Cointegrating Space

Johansen (1988) and Johansen and Juselius (1990) considered hypotheses of the following form:

Hb : β = Hbϕ, (33)

whereHb is a knownp1 ×mb matrix of full column rank, withr ≤ mb < p1, andϕ is a freely varying

mb × r parameter matrix. This hypothesis restricts the column space ofβ to lie in sp(Hb). Again, the

restrictions are not identifying, sinceβ = Hbϕ is equivalent toβ∗ = Hbϕ
∗ = HbϕQ′ for arbitrary

non-singularQ, (accommodated by changingα to α∗ = αQ−1).

Writing the model (3) under this restriction as

∆Xt = αϕ′H ′
bX

∗
t−1 + ΓWt + εt, (34)

it is easily seen that the statistical analysis of this restricted model is entirely analogous to the reduced

rank regression procedure discussed in Section 3, withβ andX∗
t−1 replaced byϕ andH ′

bX
∗
t−1, respec-

tively, and similarly with(S11, S10, S01) replaced by(H ′
bS11Hb,H

′
bS10, S01Hb). This again results in

restricted eigenvalues̃λi, and a likelihood ratio statisticLR(Hb|Hr) = T
∑r

i=1 log(1− λ̃i)/(1− λ̂i).

Whens = r, thensp(Hb) is anr-dimensional subspace, which therefore fully specifies the column

space ofβ. Given thatβ is only identified up to its column space, this means that in this caseβ is fully

specified (after appropriate normalization). Nowϕ may be set toIr in (34) without loss of generality,

and the remaining parametersα, Γ andΩ may be estimated simply by least-squares.

The Jacobian matrix in this case becomesJ (θ) = [(Ip ⊗ β) : (α⊗Hc)]. Analogously to the pre-

vious sub-section, it can be shown that the rank ofJ (θ) is (p + mb − r)r = s, so that the degrees of

freedom for the likelihood ratio test is(p + p1 − r)r − s = (p1 −mb)r.

Johansen and Juselius (1992) considered:

Hc : β = (Hc : ϕ), (35)

whereHc is a knownp1 × r1 matrix of full column rank, and whereϕ is a freely varyingp1 × (r − r1)

parameter matrix, with0 ≤ r1 ≤ r. This corresponds to the case wherer1 cointegrating vectors are

fully known, and the remainingp1− r1 vectors are unrestricted. Partitioningα conformably withβ, we

may write the model under this restriction as

∆Xt = α1H
′
cX

∗
t−1 + α2φ

′X∗
t−1 + ΓWt + εt. (36)

By adding the termH ′
cX

∗
t−1 to the stationary regressorsWt, this is again recognized as a reduced

rank regression problem. The resulting eigenvalues may again be used to construct the likelihood ratio

statistic, and the degrees of freedom, following from the rank of the Jacobian matrix, is given by(p1 −
r)r1.
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4.3 Linear Identifying Restrictions on Separate Cointegrating Vectors

The restrictions onβ discussed in the previous sub-section are testable, but not identifying. Johansen

and Juselius (1994) and Johansen (1995) considered linear identifying restrictions on each of ther

cointegrating vectorβi separately, of the formβi = Hiϕi, and hence

Hd : β = (H1ϕ1, . . . , Hrϕr), (37)

whereHi arep1 ×mi matrices of full column rank, andϕi aremi-vectors. These restrictions can only

be identifying up to a scale factor; the scale can be fixed by restricting the first component ofϕi to 1,

i.e.,ϕ′i = (1, φ′i) and writingHi = [hi : H∗
i ], so thatβi = hi + H∗

i φi.

Johansen (1995) developed conditions under which such restrictions are generically identifying. The

appropriate rank condition for identification of theith cointegrating vector is that

rank
[
H ′

i⊥(H1ϕi, . . . , Hrϕr)
]

= r − 1, (38)

for all parameter values(ϕ1, . . . , ϕr) except a possible set of measure zero. Johansen showed how this

condition may be checked fromsp(H1), . . . , sp(Hr), without having to evaluate (38) at an arbitrary

point (ϕ1, . . . , ϕr).

Johansen and Juselius (1994) considered the case where the sameH matrix applies to a number of

cointegrating vectors, leading toHe : β = (Hdϕd,Heϕe), whereϕd andϕe are matrices, collecting the

ϕi vectors corresponding toHd andHe, respectively. In such cases these restrictions clearly cannot be

fully identifying. They proposed a switching algorithm to maximize the likelihood, alternating between

maximization overϕd for a given value ofϕe, and the converse maximization problem; both maximiza-

tion problems are solved by reduced rank regression. This algorithm was subsequently generalized to

(37) by Johansen (1995), where the algorithm cycles through the different vectorsϕi.

An expression for the asymptotic covariance matrix of the MLE of the normalized parameters

(φ′1, . . . , φ
′
r)
′, assuming that the rank condition (38) holds, may be obtained from the general expression

(19), as discussed in the next sub-section. The degrees of freedom for the likelihood ratio test forHd,

in case of full identification, is(p1 − r)r −∑r
i=1(mi − 1), wheremi = dim(ϕi) = dim(φ1) + 1.

4.4 General Linear Restrictions

Boswijk (1995) considered the case whereα′ = g(ψ) andβ = h(φ) are linear and affine, respectively,

i.e.,

Hl : vec(α′) = Gψ, vecβ = Hφ + h0, (39)

whereG andH are constant matrices of full column rank, andh0 is a constant vector. This class of

hypotheses encompasses all hypotheses considered in the previous subsections. For this case, Boswijk

(1995) proposed a switching algorithm that is explicit in each step, replacingΩ̃(θ)−1 in (24)–(25) by

Ω̃j−1 = Ω̃(θ̃j−1); this is justified by starting from the log-likelihood (4) instead of the concentrated

log-likelihood (22). Then the switching algorithm involves alternating over the following three explicit
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steps:

ψ̃(φ, Ω) =
[
G′ (Ω−1 ⊗ β′S11β

)
G

]−1
G′ (Ω−1 ⊗ β′S11

)
vec

(
Π̂′LS

)
,

φ̃(ψ, Ω) =
[
H ′ (α′Ω−1α⊗ S11

)
H

]−1
H ′ (α′Ω−1 ⊗ S11

) [
vec

(
Π̂′LS

)
− (α⊗ Ip1)h0

]
,

Ω̃(ψ, φ) = S00 − S01βα′ − αβ′S10 + αβ′S11βα′.

Starting from a set of initial values(ψ̃0, φ̃0, Ω̃0), the iterations then become

φ̃j = φ̃(ψ̃j−1, Ω̃j−1), ψ̃j = ψ̃(φ̃j , Ω̃j−1), Ω̃j = Ω̃(ψ̃j , φ̃j), . . . .

(The order of the evaluation of̃φ(ψ, Ω) andψ̃(φ,Ω) could also be reversed.) Recently Hansen (2002)

provided a generalization of this algorithm, allowing for non-homogeneous linear restrictions on(α, Γ),

and a possibly time-varying covariance matrixΩ, labelling thisgeneralized reduced rank regression.

The same approach may also be applied in theI(2) cointegration model, see Boswijk (2000), and in the

seasonal cointegration model, see Johansen and Schaumburg (1999).

The expressions (18)-(19) for the Jacobian matrixJ (θ) and the observed information matrixIθ

apply to this case, withG andH constant matrices instead of functions ofφ andψ:

J (θ) =
[

(Ip ⊗ β) G : (α⊗ Ip1) H
]
, (40)

Iθ = T

[
G′(Ω−1 ⊗ β′S11β)G G′(Ω−1α⊗ β′S11)H

H ′(α′Ω−1 ⊗ S11β)G H ′(α′Ω−1α⊗ S11)H

]
. (41)

Generic identification may be investigated by checking whetherJ (θ) has full column rank for randomly

chosenθ. If this is satisfied, the asymptotic covariance matrix of the MLEθ̃, following from Theorem

2, is given byĨ−1
θ . The degrees of freedom for the likelihood ratio test again follows from Theorem 2.

4.5 Non-Causality Restrictions

An important class of non-linear restrictions that does not fit easily in the framework of Theorems 1

and 2 of this paper, is given by Ganger-non-causality restrictions in cointegrated models, see Toda and

Phillips (1993). LetXt be partitioned asXt = (X ′
1t, X

′
2t)

′, and letα, β, Π andΓi, i = 1, . . . , k − 1,

be partitioned conformably (assuming thatdt is void, so thatX∗
t = Xt). Then the hypothesis thatX2t

does not Granger-causeX1t corresponds to the null hypothesis

Hgc : Π12 = α1β
′
2 = 0, Γ12,i = 0, i = 1, . . . , k − 1. (42)

The restrictions onΓi do not lead to statistical complications, so we will focus on the restrictionα1β
′
2 =

0. Furthermore, for ease of exposition we concentrate on the casep = 2, r = 1, so thatα1 andβ2 are

both scalars. We could formulate this hypothesis asα = fα(θ)′, β = fβ(θ), whereθ ∈ Θ ⊂ R4, and

fα(θ)′ =

(
θ1

θ2

)
, fβ(θ) =

(
θ3

θ41{θ1=0}

)
;
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however, it is clear thatfβ is not continuously differentiable, and furthermore the dimension ofΘ does

not reflect the number of restrictions.

Alternatively, we may write the hypothesis asg(γ) = α1β2 = 0 (recall thatγ = (α′, β′)′), and use

a Wald test statistic

W = g(γ̂)[G(γ̂)Î−1
γ G(γ̂)′]−1g(γ̂), (43)

whereG(γ) is the Jacobian matrix

G(γ) =
∂g(γ)
∂γ′

=
(

β2 0 0 α1

)
.

If eitherβ2 6= 0 or α1 6= 0, this Wald statistic can be shown to have a limitingχ2 null distribution, and

to be asymptotically equivalent to the LR statistic. However, the null hypothesis also contains parameter

values withα1 = β2 = 0, so thatG(γ) is zero; in such cases the asymptotic distribution ofW andLR

will be non-standard, and these tests will no longer be asymptotically equivalent. For more details we

refer to Phillips and Toda (1993).

4.6 Implementation in Econometric Software

Many of the algorithms to maximize the likelihood function under various parameters restrictions, dis-

cussed in the previous sub-sections, have been implemented in econometric software packages. Clearly,

as long as the likelihood function under the restriction can be programmed, it may be maximized in

any matrix programming language containing a good numerical optimization routine (such as Ox, see

Doornik, 2001). Many programs and modules written in such languages have becomes available over

the years. However, most practitioners will prefer an interactive econometric package with built-in

routines, that require only a minimal amount of programming. Here we discuss the most widely used

candidates to fill this need that are currently available.

The most flexible software within this class is PcGive (see Doornik and Hendry, 2001). Over the past

fifteen years, PcGive (and its companion PcFiml) have regularly been updated to include the most recent

classes of cointegration restrictions as they became available. The switching algorithm for the class of

general restrictions discussed in Section 3, and the associated method to check the rank condition and

compute the degrees of freedom for the likelihood ratio test via the numerical rank of the Jacobian

matrix, were developed by Doornik (1995) with the purpose of implementing them in PcGive. The

most recent version (PcGive 10.1) includes a refined version of those algorithms, but also allows the

hypotheses discussed in Sections 4.1 and 4.2 to be analysed using the reduced rank regression algorithms

mentioned in those sections. The empirical results in the next section have all been obtained using

PcGive 10.1.

A close competitor is EViews (Quantitative Micro Software, Irvine (CA);http://www.eviews.com).

The most recent version 4.1 allows for the class of general linear restrictions discussed in Section 4.4,

implementing the linear switching algorithm of Boswijk (1995). Thus non-linear restrictions, and linear

restrictions linkingα andβ are not allowed. The program does check the rank condition, and allows for

partially identified systems.
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The Cats in Rats package was developed by Hansen and Juselius (1995), and was used to empirically

implement the estimation and testing procedures discussed in Sections 4.1–4.3 as they were developed.

The more general hypotheses and algorithms discussed in Sections 3 and 4.4 are not implemented. Un-

like the competitors discussed here, which are all general-purpose time-series econometrics packages,

Cats in Rats focuses exclusively on cointegration analysis. It is essentially a module within Rats (see

http://www.estima.com) which does allow for more general econometric analyses of time series.

General (non-linear) restrictions on the cointegrating vectors, as analysed by Pesaran and Shin

(2002), may be empirically implemented using Microfit 4.0, see Pesaran and Pesaran (1997). The

program does not allow for restrictions onα. Also, it does not allow for partially identified models: first

the user should impose a set of just-identifying linear restrictions, after which general over-identifying

restrictions on the remaining parameters may be imposed and tested. The program also allows for the

classes of restrictions onβ discussed in Sections 4.2 and 4.3.

Finally, it may be noted that none of these packages have a built-in option to test non-causality

hypotheses of the type discussed in Section 4.5.

5 An Empirical Application: UK M1

As an application of the various approaches to identifying and restricting cointegrated systems, we

consider a model of the demand for narrow money in the UK. We use quarterly seasonally adjusted data

over the sample period 1963(1)– 1989(2) that was originally analysed by Hendry and Ericsson (1991),

and subsequently by many others, including Doorniket al.(1998). Following these authors, we consider

the following variables:

• m− p: log of real M1, deflated by the total final expenditure deflator;

• y: real total final expenditure;

• ∆p: rate of inflation;

• R: interest rate differential, i.e., the three-month local authority interest rate minus the learning-

adjusted own interest rate;

• dout: dummy variable for output shifts, zero except unity in 1972(4), 1973(1), and 1979(2);

• doil: dummy variable for price shocks, zero except unity in 1973(3), 1973(4), and 1979(3).

See Hendry and Ericsson (1991) for details on data sources and transformations.

Following Doorniket al.(1998), we specify a VAR(2) model forXt = [(m− p)t, yt, ∆pt, Rt]′ with

deterministic variablesdt = t (restricted trend) andqt = (1, doutt, doilt)′ (unrestricted constant and

dummy variables); the estimation sample is 1964(3)-1989(2). Furthermore, we assume that the cointe-

grating rank is given byr = 2, although the likelihood ratio tests within this specification formally only
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supportr = 1. (In a model without the dummy variables, there is empirical support for a second cointe-

grating vector at the10% significance level.) The unrestricted estimates ofα andβ (with normalizations

β11 = β22 = 1 imposed) are

α̂ =




−0.088 −0.010

−0.022 −0.097

−0.001 0.078

−0.002 −0.062




, β̂ =




1 −0.064

−0.997 1

7.343 −3.383

7.651 0.858

−0.051 −0.593




.

m− p

y

∆p

R

t/100

All numerical results have been obtained using PcGive version 10.1, see Doornik and Hendry (2001).

No standard errors are given for the estimates ofα andβ, since these parameters are not identified yet.

The rank of the Jacobian matrixJ (θ) is s = 14, whereas the number of estimated parameters inα and

β is l = 16.

As a first sub-model, we test the hypothesis that the rate of inflation and the interest rate differential

are weakly exogenous. This is a hypothesis of the formHa discussed in Section 4.1, withA = [I2 : 0]′.

Using the algorithm referred to in Section 4.1, we obtain the following restricted estimates (imposing

the same normalization as before) and likelihood ratio statistic:

α̃ =




−0.090 0.065

−0.022 −0.151

0 0

0 0




, β̃ =




1 −0.164

−0.952 1

7.234 −1.764

7.692 0.131

−0.082 −0.555




, LR = 4.886 [0.30].

The same restriction may also be imposed using the switching algorithm for general restrictions dis-

cussed in Section 3. The resulting likelihood ratio statistic is identical, whereas the estimates ofα and

β are rotations of the ones given above. Given thep-value of0.3, the weak exogeneity hypothesis is not

rejected.

Suppose now that we wish to identify the long-run money demand relation (corresponding to the

first cointegrating vector,β1) by the restriction of a unit long-run income elasticity, (β12 = −β11)

and the exclusion of a trend term (β15 = 0), with no other restrictions (other than the normalizations)

imposed. Using the switching algorithm once more, this leads to

α̃ =




−0.095 0.004

−0.002 −0.070

−0.020 0.059

0.012 −0.047




, β̃ =




1 0.235

−1 1

6.643 −2.395

7.444 3.499

0 −0.780




, LR = 0.333 [0.56].

Note that these restrictions generically (over-) identifyβ1. The rank of the Jacobian matrix in this

model iss = 13, showing that there is a single over-identifying restriction, which is not rejected by

the likelihood ratio test. Note that becauseβ1 is identified, so isα2, but notα1 (sinceα1β
′
1 + α2β

′
2
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is observationally equivalent to(α1 + cα2)β′1 + α2(β′2 − cβ′1) = α∗1β
′
1 + α2β

∗′
2 , for arbitraryc). A

possible local identification problem arises if the restrictions imposed onβ1 are also satisfied byβ2.

As discussed in Boswijk (1996), this hypothesis of local non-identifiability may be tested in the form

Hb : β = Hbϕ, where

Hb =




1 0 0

−1 0 0

0 1 0

0 0 1

0 0 0




. (44)

The likelihood ratio statistic for this hypothesis, obtained from the algorithm referred to in Section 4.2, is

given byLR = 5.889 [0.21], which shows that we cannot reject this hypothesis, and identification based

on the restrictions onβ1 only is fragile. A possible explanation for this unexpected result is as follows.

The first columnβ̂1 of the unrestricted estimator̂β, which would be the MLE of the cointegrating

vector under the hypothesisr = 1, almost satisfies the restriction̂β1 = Hbϕ1 for some vectorϕ1.

Therefore, the evidence against the hypothesisβ = Hbϕ should come from the second cointegrating

vector. However, since the empirical support for this second cointegrating vector is rather weak, it might

not be estimated very precisely, which would imply that the resulting test will not be very powerful.3

As a final model, we consider the case where in addition to the restrictionsβ12 = β11, β15 = 0 and

the normalizations, we also impose the restriction that adjustment towards money demand equilibrium

occurs only in the equation for∆(m − p)t, i.e.,α12 = α13 = α14 = 0. The Jacobian matrix for this

model has ranks = 11, and since the number of unrestricted parametersl also equals11, this is an

identified model. The likelihood ratio statistic (3 over-identifying restrictions) isLR = 4.240 [0.24],

so that the restrictions cannot be rejected. The estimates, with their standard errors in parentheses, are

given by

α̃ =




−0.107
(0.013)

0.059
(0.066)

0 −0.141
(0.033)

0 0.018
(0.023)

0 −0.040
(0.043)




, β̃ =




1 0.006
(0.075)

−1 1

6.401
(1.360)

−1.739
(0.765)

7.409
(0.528)

1.650
(0.502)

0 −0.651
(0.037)




. (45)

The striking result is that we may obtain full identification by only imposing restrictions onβ1 andα1,

the cointegrating vector and adjustment coefficients associated with the money demand relation. The

second relation, for which we have less identifying information, is left unrestricted, but still is identified.

Although the final model is generically identified, local identification problems could still arise if

β2 would satisfy the same identifying restrictions asβ1. In other words, the final model, corresponding

3Another explanation might be that the asymptoticχ2 distribution of theLR test provides an inaccurate approximation to

its actual null distribution, such that the reportedp-value of0.21 deviates from the actual marginal significance level. We have

investigated this possibility using a bootstrap analysis (following the approach of Omtzigt and Fachin, 2002), but this leads to

a largerp-value, and hence even weaker evidence against the hypothesis of local non-identifiability.
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to the hypothesisHg : α12 = α13 = α14 = 0, β1 = Hbϕ1, with Hb as given in (44), contains a further

sub-modelH0 : α12 = α13 = α14 = 0, β = Hbϕ, which is not identified. The likelihood ratio test for

H0 inHg is LR = 4.489 [0.21], so that this hypothesis is not rejected (note that the rank of the Jacobian

matrix for the null model iss = 8, so this is aχ2(3) test). Again this result is surprising, since in (45)

it appears that̃β21 and β̃25 differ significantly from−1 and0, respectively. Indeed, theLR statistics

for the individual restrictionsβ21 = −1 andβ25 = 0 in modelHg both have ap-value of about0.04.

Apparently the estimators̃β21 andβ̃25 are strongly correlated, leading to the non-rejection of the joint

hypothesis in conjunction with rejection of the individual hypotheses.

To avoid such problems, we may follow Doorniket al.(1998) in imposing the additional restrictions

α21 = 0 andβ21 = 0 within the modelHg. The likelihood ratio statistic for the resulting model against

the unrestricted model (5 over-identifying restrictions) isLR = 4.763 [0.45], which shows that the

likelihood has hardly decreased by imposing these two additional restrictions, and indeed the estimates

are very close to those reported above. The advantage of this further restriction is that is does not contain

any non-identified sub-models; i.e., no problems of local non-identifiability can occur.

Appendix: Proof of Theorem 2

Consider first the case wheres = l, such thatθ0 is identified andJ (θ0) has full column rank. To prove

consistency of̃θ, we follow the approach of Saikkonen (1995). Letλ = (vec(Π′), vec(Γ′)′, vech(Ω)′)′,

and let the unrestricted parameter space ofλ be

Λu = {λ ∈ Rp(p1+p2+(p+1)/2) : Π ∈ Rp×p1 , Γ ∈ Rp×p2 , Ω ∈ Rp×p, Ω > 0},

wherep2 = p dim(Wt) = p [(k − 1)p + dim(qt)]. Analogously, define the restricted parameter space

Λr as

Λr = {λ ∈ Rp(p1+p2+(p+1)/2) : Π = fα(θ)′fβ(θ)′, θ ∈ Θ,Γ ∈ Rp×p2 , Ω ∈ Rp×p,Ω > 0}.

Letting `(λ) denote the unrestricted log-likelihood function, it is well known the unrestricted MLE

λ̂ = argmaxλ∈Λu
`(λ) is obtained from a least-squares regression. Furthermore, when the true value

λ0 is such that the system isI(1), it is known thatλ̂ is consistent, and that there exists a sequence of

norming matricesBT with ‖BT ‖ → 0 such thatB−1
T (λ̂−λ) = Op(1). Finally, from the simple form of

the log-likelihood̀ (λ), it may easily be established that for a true valueλ0 satisfying theI(1) condition,

∀δ > 0 : lim
T→∞

Pλ0

{
sup

λ∈N̄(λ0,δ)

`(λ) < `(λ0)

}
= 1, (A.1)

whereN̄(λ0, δ) is the complement of the neighbourhoodN(λ0, δ) = {λ ∈ Λu : ‖λ− λ0‖ < δ}. The

property (A.1) is a sufficient condition for (weak) consistency ofλ̂, see Wu (1981). However, since

supλ∈N̄(λ0,δ)∩Λr
`(λ) ≤ supλ∈N̄(λ0,δ) `(λ), it follows that

∀δ > 0 : lim
T→∞

Pλ0

{
sup

λ∈N̄(λ0,δ)∩Λr

`(λ) < `(λ0)

}
= 1,
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which in turn is sufficient for weak consistency of the restricted MLEλ̃ = argmaxλ∈Λr
`(λ). And

sinceΠ(θ) is a continuously differentiable function with Jacobian matrixJ (θ) of full column rank in a

neighbourhood ofθ0, consistency of̃Π = Π(θ̃) implies consistency of̃θ.

To obtain the asymptotic distribution ofθ̃, it is useful to write the functionΠ(θ) asΠ(δ(θ)), where

δ(θ) =

(
vec(α′c)

vec(B)

)
=

(
vec(c′βα)

vec
[
(c′⊥c⊥)−1c′⊥β(c′β)−1

]
)

=

(
vec(c′fβ(θ)fα(θ))

vec
{
(c′⊥c⊥)−1c′⊥fβ(θ)[c′fβ(θ)]−1

}
)

,

see Section 3. Recall that(αc, B) is a just-identified parameterization, so that anyΠ(θ) = fα(θ)′fβ(θ)′

may be written asΠ(δ(θ)), provided that|c′fβ(θ0)| 6= 0. Let K(θ) = ∂δ(θ)/∂θ′; since

J (θ) =
∂ vec(Π′)

∂θ

=
∂ vec(Π′)

∂δ′
∂δ

∂θ′

=
[

(Ip ⊗ βc : αc ⊗ c⊥
]
K(θ),

the concentrated score vector and observed information matrix forθ may be written as

q(θ) = TK(θ)′
[

(Ω−1 ⊗ β′cS11)

(α′cΩ−1 ⊗ c′⊥S11)

]
vec

[
Π̂′LS −Π(θ)′

]
(A.2)

Iθ = TK(θ)′
[

(Ω−1 ⊗ β′cS11βc) (Ω−1αc ⊗ β′cS11c⊥)

(α′cΩ−1 ⊗ c′⊥S11βc) (α′cΩ−1αc ⊗ c′⊥S11c⊥)

]
K(θ). (A.3)

Now let CT be any sequence of non-singular norming matrices such thatD−1
T K(θ0)CT → K̄,

whereK̄ is a matrix of full column rank. Then it follows that

C ′
TIθCT = C ′

T K(θ0)′D
′−1
T

×TD′
T

[
(Ω−1 ⊗ β′cS11βc) (Ω−1αc ⊗ β′cS11c⊥)

(α′cΩ−1 ⊗ c′⊥S11βc) (α′cΩ−1αc ⊗ c′⊥S11c⊥)

]
DT ×D−1

T K(θ0)CT

d−→ K̄ ′
[

Ω−1 ⊗ Σββ 0

0 α′cΩ−1αc ⊗ V

]
K̄

= K̄ ′ĪK̄, (A.4)

whereĪ = diag([Ω−1 ⊗ Σββ ],
[
α′cΩ−1αc ⊗ V

]
), and furthermore

C ′
T q(θ0)

d−→ K̄ ′Ī1/2Z, (A.5)

whereZ is a standard normal vector.

Following Saikkonen (1995), the asymptotic distribution ofθ̃ may now be obtained from the usual

first-order Taylor series approximation of the score vector, leading to

C−1
T (θ̃ − θ0) =

[
C ′

TIθCT

]−1
C ′

T q(θ0) + op(1)
d−→ (K̄ ′ĪK̄)−1K̄ ′Ī1/2Z

∼ N
(
0, [K̄ ′ĪK̄]−1

)
. (A.6)
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Consistency of̃θ at the rate determined byCT , and stochastic equicontinuity ofIθ (see Saikkonen,

1995) implies thatC ′
T ĨθCT has the same limit asC ′

TIθCT . For any vectora, let T d be that power ofT

such thatT da′CT converges to a non-zero row vectorb′. Then

(
a′Ĩ−1

θ a
)−1/2

a′(θ̃ − θ0) =
(
T da′CT [C ′

T ĨθCT ]−1C ′
T aT d

)−1/2
T da′CT C−1

T (θ̃ − θ0)

d−→ (b′
[
K̄ ′ĪK̄

]−1
b)−1/2b′[K̄ ′ĪK̄]−1K̄ ′Ī1/2Z

∼ N(0, 1). (A.7)

The distribution of the likelihood ratio statistic follows from a quadratic approximation of the like-

lihood function, leading to

LR(Hg|Hr) = [δ̂ − δ(θ̃)]′Iδ[δ̂ − δ(θ̃)] + op(1)

= [δ̂ − δ(θ̃)]′D−1
T D′

TIδDT D−1
T [δ̂ − δ(θ̃)]. (A.8)

Now it can be shown that

D−1
T [δ̂ − δ(θ̃)] d−→

(
Ī−1/2 − K̄

[
K̄ ′ĪK̄

]−1
K̄ ′Ī1/2

)
Z

∼ N(0, Ī−1 − K̄
[
K̄ ′ĪK̄

]−1
K̄ ′).

The covariance matrix has rank(p + p1 − r)r − l, and Ī is a generalized inverse of this covariance

matrix, which implies that

LR(Hg|Hr)
d−→ χ2([p + p1 − r]r − l). (A.9)

Finally, consider the case wheres < l, such thatθ0 is not fully identified. SinceJ (θ) has constant

rank s in a neighbourhood ofθ0, it follows that the rank deficiency and the associated identification

problem does not occur at an isolated point, but occurs generically, i.e., everywhere inΘ except for

a possible set of measure zero where the rank is lower thans. This in turn may be interpreted asθ

containingl − s redundant parameters. In such cases we may reparametrizeθ asθ(η), whereη ∈ H ⊂
Rs, such thatΘ = {θ(η), η ∈ H}, and whereθ(η) is a continuously differentiable function. The model

then becomesΠ(θ) = Π(θ(η)) = Π∗(η), η ∈ H, whereΠ∗ is a continuously differentiable function,

with Jacobian matrix of full column ranks in a neighbourhood of the true valueη0. This means that the

above result apply withθ replaced byη, and in particular,LR(Hg|Hr)
d−→ χ2([p + p1 − r]r − s). ¤
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