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Abstract

The notion of cointegration has lead to a renewed interest in the identification and estimation
of structural relations among economic time series, a field to which Henri Theil has made many
pioneering contributions. This paper reviews the different approaches that have been put forward in
the literature for identifying cointegrating relationships and imposing (possibly over-identifying) re-
strictions on them. Next, various algorithms to obtain (approximate) maximum likelihood estimates
and likelihood ratio statistics are reviewed, with an emphasis on so-called switching algorithms. The
implementation of these algorithms is discussed and illustrated using an empirical example.

1 Introduction

The need to analyse simultaneous structural relations between economic time series has been one of
the main driving forces behind the development of econometrics as a separate discipline in the previous
century. This lead to the influential work of the Cowles Commission on identification and likelihood-
based estimation of simultaneous equations (see Hood and Koopmans, 1953), and subsequently to the
computationally more attractive two-stage and three-stage least-squares methods of Theil (1953) and
Zellner and Theil (1962).

In the following decades, it was realized that the dynamics of economic relations, and the statistical
properties of economic time series, should be incorporated in these simultaneous equations models. Via
the work of Theil and Boot (1962) and Zellner and Palm (1974) on dynamic simultaneous equations
models, the concept of error correction mechanisms developed by Sargan (1964) and Detvadson
(1978), and Sims’s (1980) analysis of vector autoregressive models, this has lead to cointegration and
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vector error correction modelling (Engle and Granger, 1987) as the currently dominant approach to the
econometric analysis of time series.

The problem of testing for cointegration and estimating the cointegrating relationships was solved
by Johansen (1988, 1991), using reduced rank regression techniques developed by Anderson (1951).
However, in the presence of multiple cointegrating relations, the resulting estimates are not unique
and directly interpretable, unless some identifying restrictions are imposed. Therefore, the familiar
identification problem of linear simultaneous structural relations reappears in vector error correction
models, the main new element being that these relations are now embedded as error correction terms in
a dynamic model.

Over the last decade, a number of approaches to identify and restrict multiple cointegration relations
have been proposed in the literature, notably by Johansen (1988, 1991, 1995a,b), Johansen and Juselius
(1990, 1992, 1994), Boswijk (1995), Doornik (1995), Elliott (2000), Hansen (2002), and Pesaran and
Shin (2002). This paper reviews these approaches, and discusses the algorithms needed to apply these
approaches in practice, as well as their implementation in some econometric software packages. An
empirical example is used to illustrate the approaches.

The paper only considers identifying restrictions on the cointegrating vectors and adjustment co-
efficients. Identifying restrictions on short-run parameters, and the analysis of vector error correction
models in structural form, is not discussed here; see, e.g., Johansen and Juselius (1994). Furthermore,
the analysis is limited to processes integrated of order oné(2ncointegration models similar iden-
tification issues arise, but the deviations from mixed normal inference in these models, as analysed in
Boswijk (2000) and Johansen (2002a), lead to specific complications that go beyond the scope of the
present paper.

The outline of the rest of the paper is as follows. In Section 2, the unrestricted cointegration model
and the reduced rank regression procedure are discussed. Furthermore, an expression for the information
matrix for the parameters of interest is obtained, and this is used to analyse the identification problem
and the asymptotic properties of the unrestricted maximum likelihood estimators. Section 3 discusses
identification and asymptotic results for a general class of restrictions on the cointegrating vectors and
adjustment coefficients. In Section 4, various specific classes of restrictions are reviewed, together
with the corresponding algorithms to maximize the likelihood function. The implementation of these
algorithms in some econometric packages is also discussed. In Section 5, an empirical example of the
various approaches discussed in the paper is considered.



2 The Model and Unrestricted Statistical Analysis

2.1 The Model

Consider thé:th order vector error correction model (VECM) fopavector time serie$ X, }:

k—1
AXy = T Xy 1+ gdy + ZFiAXt—i + Tq; + &4,
=1
k—1
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where the starting valugs(; _y, . .., Xo) are fixedg; is i.i.d. N(0,Q), and X} ; = (X]_;,d})’, where
d; andg; are deterministic regressors, such as a constant and trend term, and (seasonal) dummy vari-
ables. The most common two specifications for these deterministic variabléd,ag8 = (1,9)
(restricted constant, excluding a linear driftih) and(d;, ¢:) = (¢, 1) (restricted linear trend, exclud-
ing a quadratic trend itX;). The normality assumption a3 is made primarily for constructing the
likelihood function; asymptotic results may be obtained under weaker conditions.

The dynamics of the process is determined by the roots of the characteristic equation

d(z) = |L,(1 — 2) Hz—ZFz (1-2)]=0. 2

If all roots of (2) are outside the unit circle, thdm, has full row rankp and the process is (trend-)
stationary. The process is integrated of ortléf (1)) if rank I, = r < p, and @) hasp — r roots
equal to one and all other roots outside the unit circle (see Johansen, 1995a, Corollary 4.3](1f)this
condition holds withr > 0, and ifsp(I1;) C sp(Il;),* then we may writd] = a3’, with o and 3 full
column rank matrices of dimensiops r andp; x r, respectively, wherg; = dim(X;) = p+dim(dy).

In that case the system is cointegrated, such that timear combinationg’ X are (trend-) stationary
even thoughX; ~ I(1).

2.2 Reduced Rank Regression

The statistical analysis of th 1) cointegration model is described in detail in Johansen (1991, 1995a),
the main elements of which are summarized hereIlet(T'y,...,I'y—1,Y) andW; = (AX] ,...,
AXQ_,CH, q,)', so that the model, with the reduced rank condifibe- o3’ imposed, reads

AXt = Oéﬁ/X;(_l + FWt + Et, t= 1, ey T. (3)

Since no restrictions will be imposed dh we consider the concentrated log-likelihood function in
terms of the remaining (freely varying) parameters3, €2), which up to a constant term is given by

T T
le(a, B,0) = — 5 log 12| - - 5 T Q71 (Soo — So1Ba’ — ' Sio + B’ S118)) (4)

Yf the columns ofII, do not lie insp(IL;), then one should change the specification by moving some or all of the
deterministic variables frond, to q;.



where

Soo = %(AX/AX—AX’W[W’W]‘lw’AX),
1
Sio= T( XE - X WWW])TTW X)),
So1 =Sl = % (AX'X*, — AX'WW'W]'W'X*,),

with AX, X*, andWW the data matrices (consisting ®frows) of AX;, X; ; andW;, respectively.
For a given value of3, this log-likelihood function is maximized b(3) = So13(8'S113)~! and
Q(B) = Soo — So13(3'S118)~ 13 S10, which leads to the further concentrated log-likelihood function
in terms of3 only:

L) = 3 log|Soo — SuBBSuA) ™ Sl
T 13 (S11 — S10S50-So1) B
= —ZloglS, 5
9 Og’ 00‘ ‘5/5115} ’ ( )

where a further constant term has been omitted.

Recognizing§) as a reduced rank regression problem, analysed originally by Anderson (1951),
Johansen (1988, 1991) has shown that this concentrated log-likelihood function is maximized by
(t1,...,0,), wherev; are the eigenvalues corresponding to the eigenvalydn descending order, of
the generalized eigenvalue problem

|AS11 — S1055 So1| = 0.
Since these eigenvectors satisfy the normalizatioh;v; = 1 and?,S110; = 0,7 # j, it follows that
38113 = I,., which leads tav = Sp13 andQ = Soo — So135 S10 = Soo — &d’. It also implies that
B/SwS@lSmB = diag(\,, . .., \), which in turn leads to
. T " .
Le(B) = ) <log |Soo + Z}log(l - Az’)) :
Since these results also apply in case- p, where the rank ofl is unrestricted, it follows that the
likelihood ratio statistic for the hypothest$, : rank IT < r in the general modéf,, is given by

p
LR(H,|Hy) = =T > log(1—Xy). (6)
1=r+1
The asymptotic null distribution of this statistic, expressed in terms of vector Brownian motion func-
tionals, is derived and tabulated in, e.g., Johansen (1995a), and depends on the specification of the

deterministic variable&d;, q; ).

2.3 The Information Matrix

In order to characterize the asymptotic properties afd3, and discuss the identification problem, it is
useful to obtain the Fisher information matrix, which we derive frdn Note first that, withl = o3,

Soo — So18a’ — 'S0 + aB'S11Ba’ = Soo — So1S11" S10 + (IT — S157;")S11 (T — Si7' S10)
= Qpgs+ (I —T5g)S1i (IT — Ts),
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wherell; g = 50151‘11 andQ ;s = Sy — 50151‘11510, the unrestricted maximum likelihood estimators
of IT and2, which are obtained by applying least-square&jo This leads to

T T . ra . R
0(ILQ) = —§log|Q\—§trQ 1[QL5+(H—HLS)SH(H—HLS)’]

T .
= -3 (log\Q] —i—trQ_lﬁLS)

T N ~
-5 vec(Il' — 117 ¢) (27! ® Si1) vec(Il' — 11 g), (7)

wherevec(A) stacks the columns of, and the Kronecker produet ® B is defined by(a;; B). From

(7) the usual block-diagonality of the information matrix between the regression paramdiess in3’
and the variance-covariance parameterfiis obtained. An asymptotically valid expression for the
observed (concentrated) information madriar v = (vec(a’)’, vec(3)') is given by

_ Ovec(Il')’ 020.(11, Q) 0 vec(IT)

Iy = 9y Ovec(Il)dvec(Il') 0y
i (IP ® ﬁ/) -1
=T Q S :
| (/@ 1) (@7 ® 5) [ (p®s) : (a@ly)
_ o @tessus @lasfsu) | @
L (O/Q_l & Snﬁ) (O/Q_la X Sn)

The information matrixZ., is of dimension(p+ p1)r x (p+p1)r, but has rank equal t@ +p; —r)r,
which is seen as follows (see also Johansen, 1995, Lemma 7.1). Far amymatrix A of full column
rank, letA; be anm x (m — n) matrix of full column rank such that’, A = 0. Then the left
null space of the Jacobian matrii~y) = dvec(Il') /0y = [(I, ® B) : (a ® I,)] is spanned by the
pp1 X (p — r)(p1 — r) matrix (o, ® 3, ), which implies thatank .J(y) = pp; — (p — r)(p1 — 1) =
(p+p1 —r)r. And sinceZ, = TJ(v)' (27! @ S11) J(v), with @~! ® Sy11 non-singular, this implies
thatrankZ, = (p + p1 — 7)r.

The fact that the rank of the Jacobian matfiand the information matri%, differs from the dimen-
sion ofy by a termr?, implies that without further restrictions,(and hencer and3) is not identified:;
one might say that contains-? redundant parameters. This is also easily understood from the fact that
a andg enter the likelihood function only via their produet’. And sincea’ = aQ QS = o* 3
for any non-singular x r matrix Q, it follows that we may freely impose’ restrictions orv and/or3
without affecting the maximum of the likelihood function.

A common set of identifying restrictions i§3 = I,.,for some knowrp; x r matrix ¢ of full column
rank. The maximum likelihood estimators afand 3 under this restriction are obtained from the
reduced rank regression estimatgis 3) via 3, = 3(¢3)~! andé. = a3 c (note that?,S11 3, # I).
Note that these restrictions may also be written as

B=cldc)™ +¢. B,

2Often the observed information is defined as minus the second derivative of the log-likelihood, evaluated at the maximum
likelihood estimate. Here we use the term to refer to minus the second derivative, evaluated at an arbitrary parameter point;
also some terms with expectation zero (when evaluated at the true value) have been omitted.
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whereB is a(p; — r) x r freely varying (and identified) parameter matrix, with maximum likelihood
estimatorB = (¢, ¢, )~'¢, B.. LettingY; = (c'c)~'¢'X; andZ, = —¢, X}, it follows that in this new
parametrization,

BX; =Y, ~ B'Z,
which allowsB to be interpreted as the equilibrium or long-run effecZpbnY; (see Johansen, 2002b,
for a further discussion of such interpretations). Lettng (vec(al)’, vec(B)’)’, it follows that the
observed information matrix corresponding to this parametrization becomes

L wesy ]
w - a e oo en - o]
_ [ @ressup @ laedSuc) o
(@t ed Supf) (Qra®d Sucl) .

Provided that the true value ofsatisfies3'c| # 0, this matrix is non-singular.

The asymptotic properties of. and B may now be characterized as follows, see Johansen (1991,
1995a), using a sequence of norming matrifgs = diag(T~'/21,,, Dor), where the form ofDyr
depends on the specification of the deterministic components itn particular, wheni; = 1 then
Dor = diag(T~'I(,_p,, T~Y/2I,), and whend, = t, we useDop = diag(T ', T3/2I,).
Then asl" — oo,

o T2 vec(al, — o)
‘DTl(& - 5) = ( 1 ~
Dy vec(B — B)

0 Qe Xt 0
4 N | s , (10)
0 0 (@Q 7 ta) te V-l
QOleoyn 0
Dy IsDp —% © 250 , (11)
0 0 eV

whereXgs = plimg_, 3’5118, and whereV is a random matrix, which may be expressed as a
functional of a vector Brownian motion. Thus the limiting distribution]fblf/Q(ééC — «) is normal,
whereasDQ‘%(B — B) has amixednormal limiting distribution. The limiting result fafs implies that

(6 — 6)Z5(6 — 6) <, x2((p + p1 — r)r), and from the consistency éfit follows that the same result
holds withZ; replaced byZy, i.e., ©) evaluated af = &. Similarly it can be shown that Wald, likelihood
ratio and Lagrange-multiplier tests for hypothesesyamill have an asymptotig? distribution under
the null hypothesis.

3 General Restrictions

3.1 Parametrization and Identification

Following Doornik (1995), we consider a general class of the restrictiorns amd 3 of the following
form, where the cointegrating ramks given:

Hy o = fa(0), B = fs(6), 6eoOcR, (12)
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whered is ani-dimensional parameter vector with parameter sgacand wheref,(-) and f3(-) are
matrix-valued functions o® of appropriate dimensions, satisfying the following conditions:

Condition 1 The functionsf,, () and fz(-) and the parameter space satisfy:

1. rank f,(0) = rank f3(0) = r, for all # € © except a possible set of Lebesgue measure zero;

2. fa(-) and fg(-) are continuously differentiable of, with Jacobian matrices

_Ovec fo(0)

Fa(p) = 20, _ Ovec/s6)

The first condition is imposed to avoid restrictions that are in conflict with the cointegrating rank
The second condition is standard, and allows the identificatightofbe analysed from the properties
of the Jacobian matrices.
Observe thatr and 3 depend on the same parameter veétonence restrictions linking: and 3
are possible in this general set-up. However, in many empirically relevant cases such restrictions are
excluded, and we may partitighas(z)’, ¢')’, with

o' = fo(0) = g(), B = fs(0) =h(9), (¥, ¢) € ¥ x @, (13)

so that
Fa(0) = {‘W:o]:[cxw):o], (14)
Fs3(0) = [o W]:[O:H(@] (15)

The decomposition of the parameter spéce- ¥ x & entails that the two parameter vectarsaand
¢ are variation free, which simplifies the maximization of the log-likelihood considerably, as discussed
below.
From the fact thatl = o8’ = f,(6)'f3(6)’, and using the notation = (vec(a')’, vec(3)’)" and
J = 0vec(ll') /0y = [(I, ® B) : (a ® I,)] introduced in the previous section, we obtain from the

chain rule,
_ Ovec(Il')  Ovec(Il') 9y
J(0) = 08’ N oy 00
= J(F()
= (L, ®B) Fa(0) + (a® I,) Fp(0), (16)

whereF (6) = [F.(0) : F3(6)]'. Analogously to the derivations in the previous section, this leads to
the following expression for the observed information matrixdon

Iy = Tj(@), (Qfl ® 511) J(0)
(Qfl ® ﬁ/511ﬂ> (Qfla X ﬂ/SH)

— TF(8Y
(@' @Sup) (@O 'a® Sh)

F(6). 17)
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When restrictions linkingx and3 are excluded, such that3)—(15) holds, then the expressions for
J(0) andZ, simplify to

IO = [LeH6w : @) HE) |, 18)

G)(Q '@ Fsup)G) GW)(Q la® ('Su)H(¢)

19
H(¢)('Q7' @ SuB)G(v) H(¢) ('Q ' ® Si1)H(¢) 19)

The following theorem, adapted from Doornik (1995, Proposition 1) and based on Rothenberg
(1971), discusses local identificationébfLet N (6y) denote a neighbourhood é.

Theorem 1 Consider the model
AXt = fa(G)’fg(O)'Xttl + FWt + &¢, gt~ ii.d. N(O, Q), t= 17 ce ,T,

where f,(-) and f5(-) satisfy Condition 1, and whei € ©, an open subset @', with ¢ variation
independent of the (unrestricted) parametErand 2. A sufficient condition for the parameter value
0y € O to be locally identified is that

vank 7 (0) = rank {[I, ® f5(0)] Fa(0) + [fa(0) ® I, F5(0)} =1, € N(6) CO. (20)

Proof. LetIly = fo(60) f3(00)’. Inthe modeA X, = 11X} | +T'W; + &, with IT unrestricted]I,
is globally identified, since this is a regression model, where the regressgrs, ;) are perfectly
multicollinear with probability zero. The global identification1dj still applies in the restricted model
defined byll = f,(0)' f3(0)’,0 € ©, simply because no matric€s+# II exist that are observationally
equivalent tdl, (neither inside nor outside the restricted parameter space). Therefore, local identifica-
tion of 6y requires that we can uniquely solik = f,(0) f3(0)’ for 6, and a sufficient condition for
this is that the Jacobian matrix(#) has full row rank in a neighbourhood 6. O

Note that the theorem only provides a sufficient condition for local identification, which is not
necessary. In particular, a parameter valyean be identified even ifank 7 (6y) < [, as long a¥, is
a single point where rank deficiency occurs. For example, the equatio® can be uniquely solved
for 6 atmy = 6y = 0, even though the derivativer /00 is zero atd, = 0. However, in such cases
the asymptotic properties of the maximum likelihood estimatdrwfll be different from the “regular”
cases defined by Theorem 1.

Because the relationship between the Jacobian m&i#) and the observed information matrix
Ty, an equivalent requirement for local identification is thatis non-singular in a neighbourhood of
fy. The non-singularity of the information matrix was proposed by Rothenberg (1971) as a condition
for local identification, although he focussed on the usxglectednformation matrix, instead of the
observednformation matrixZy which is more natural for non-ergodic models.

In the previous section we have shown thatk J(v) = (p+p1—r)r, and since7 (0) = J(v)F(6),
it follows that (p + p1 — r)r is an upper bound to the number of identified parameteés ifhus an
order conditionfor identification isl < (p + p1 — r)r.
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Johansen (1991, Appendix C), Elliott (2000) and Pesaran and Shin (2002), consider a subclass of
the type of restrictions here, whetieis unrestricted, but general restriction are imposegoidence
this corresponds tdB)—(15) with ¢ = vec(a’), such thatec g(¢)) = ¢ andG(y) = I,,.. This leads
to the rank condition

rank [ Ipy®p) : (a®I,)H(p) } =1,

in a neighbourhood of,. The matrix(, ® /) has full column ranlr; if we eliminate these columns
by pre-multiplying with (I, ® 3), then we arrive at the conditionank [(a ® 8 )H(8)] =
rank [(a ® I, —,)(I, ® 3 )H(¢)] = | — pr =: ls, Wherel, is the dimension ofy. And since
(v ® I, —) has full column rank, the rank condition becomes

rank [(I ® B ) H($)] =1y, & € N(dy). (21)

This rank condition was derived by Boswijk (1995) for the case witérg is linear. It also corre-
sponds to the conditiorank {[I, ® C(1)'|H(¢)} = I, considered by Pesaran and Shin (2002), where
CQ) =p, | (I, — Zf;ll Fi)ﬁl} B o/, (in this cases only contains coefficients ak;_;, not of
any restricted deterministic componerit}.

Both rank conditions20) and 21) involve unknown parameters. One can check whether these con-
ditions are generically satisfied by drawing random elements &@an®, and numerically determining
the rank for those parameter values. If the rank condition is satisfied outside a set of Lebesgue mea-
sure zero, then the probability of drawing an element from this set is zero (assuming that a continuous
distribution on® or ® is used). Alternatively, one can check the rank condition by evalua2@girg
6, which is any (possibly non-unique) value that maximizes the likelihood function. In that case one
does not investigate generic identification, but rather the possibility of identification problems at the
maximum likelihood estimate (MLE); this clearly requires an algorithm to maximize the likelihood that
does not require a full rank information matrix.

Instead of investigating the rank gf(6) at a random elemes or the MLE#, one could investigate
the rank of the observed information matfixat such points, as proposed by Boswijk (1995). However,
as argued by Doornik (1995), we may expect numerical evaluation of the rafikdgfto be somewhat
more reliable than that afy, because the latter will be contaminated by the possible near-singularities
in Q! orSy.

A method to establish the numerical rank @f6) or Z, is proposed by Doornik (1995, Defini-
tion 1): the rank of anm x n matrix A is determined by the number of singular values sat-
isfying w; > 10%¢,, maxi<;<m Z?:1 la;;|, wheree,, is the machine accuracy for double precision
(em =~ 2 x 10716). The singular values are obtained from the singular value decomposition, available
in matrix programming languages such as Ox (Doornik, 2001).

3.2 Estimation and Testing

Consider again the log-likelihood functiof)( The maximum likelihood estimator 6f for a fixed value
of fis
Q(0) = Soo — So1II(A)" — T1(0)S1o + I(A)S11II(H), 11(6) = g(0)'h(0),
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which leads to the concentrated log-likelihood in terms ofly:

££0) =~ 1og [0)] (22

omitting an additive constant. Using the rules of matrix differential calculus, see Magnus and Neudecker
(1988), and in particuladlog |A| = tr A~!dA, the (concentrated) score vector is

g(0) == aggé‘)) = TI(0) [0) " @ 1] vee [Si — SuTI(6)

= TJ®) [Q(a)*l ® sn} vec [ﬁ/LS - H(e)/} . (23)

A (local) maximum of the likelihood function is obtained by any rootqf) = 0 (provided that
the Hessian is negative semi-definite at this root). When the Jacobian midtt)xis of full column
rank for all§ € ©, then this maximum may be found by Newton-type methods, where minus the
Hessian matrix might be approximated By = 7.7 (6)’ [Q(G)*l ® S11| J(0). In practice the BFGS
(Broyden-Fletcher-Goldfarb-Shanno; see, e.g., Fletcher, 1987) method is known to be more robust, and
furthermore this method does not require an invertible Hessian matrix. Cleaflyf)fhas a deficient
column rank throughout the entire parameter space, such thabt fully identified, then the iterations
can only be expected to converge to one out of a continuum of roots.

Of particular interest is the case where there are no restrictions linkagd 5, see [13)—(15). In
that case the score vector may be partitioned into

a(b0) = TGW) [A6) " @ #'su] vee [fTs — 11(0)] . (24)
a(¥.6) = TH(6) [a/Q(0)™ @ Sun vee 1175 — 11(0)] . (25)

where of course’’ = g(¢) and’ = h(¢)'. Now the equationg, (¢, ¢) = 0 may be solved to obtain
{ﬁ(qb), i.e., the maximum likelihood estimator gffor a given value ofp (and hence5), and similarly
46(¢,¢) = 0 may be solved to obtail;%w). This suggests a so-callesvitching algorithm which
means alternating between optimizing ovefor a given value ofy, and optimizing ovep for a given

value ofy. Thus, for a starting valug),, ¢, ), the iterations involve evaluating
1%1 = {ﬁ(&o)v <~b1 = %(@1)7 -~~71Lj = @(&j-l)v Eﬁj = Eb(d}]),

until the value of the likelihood function converges. This algorithm was proposed by Doornik (1995). In

a different context, such switching algorithms were considered earlier by Sargan (1964) and Oberhofer
and Kmenta (1974). As discussed in the next section, Johansen and Juselius (1994) introduced this idea
into cointegration modelling. Because the value of the log-likelihood function is non-decreasing in each
step, the algorithm will eventually converge to a point where no further improvements are possible in
the directions ofp and+ (provided that there are no numerical problems preventing us from reaching
this point). Such a point may be a global maximum, but could also be a local maximum or even a saddle
point (when likelihood improvements are possible in directions associated with combinatio@n df

). Therefore, careful selection of starting values is required as always, and positive semi-definiteness of
the observed information matrix needs to be checked. Uglesslh are linear (considered in the next
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section), each step involves a BFGS or Newton optimization, which might suggest that this procedure
will be computationally more intensive than direct maximization over the full parameter vector. The
advantage of this procedure however, is that for all reasonable specificatignanofr, v is fully
identified given a known value af, and conversely is identified giver). In other words,G (%))
and H (¢) will have full column rank even if7 (6) does not have full column rank, which makes the
algorithms particularly suited for partially identified models.

Once the MLE) has been obtained, its covariance matrix may be estimated by

1t =gy (07 @ su) @) (26)

and the restrictions implied bz, in (12) relative to the unrestricted cointegration mo@gl may be
tested using the likelihood ratio statistic

LR(H,[Hy) = 2 [0(B) - £:(0)]

T

log ’Q’ —log |Soo| — Zlog(l - 5\1)] . (27)
=1
The asymptotic justification of this is provided in the next theorem:

Theorem 2 Consider the modeB] under the restrictionsl(2), and assume that the parameter spéce
is compact, that the true valug lies in the interior of©, and thatrank 7 (0) = s,0 € N(6p) . Then,
asT — oo,

LR(Hy|Hy) =5 x*((p+p1 — 1) — 5). (28)

If, in addition, s = [, thend is consistent and asymptotically mixed normal, i.e.,
0 -2 6o, (29)

and for any vector # 0,
~ —-1/2 ~
(a'zgla) P 20— 00) - N0, 1). (30)

The proof of this theorem is given in the appendix. Note that the theorem does not explicitly specify
the rate of consistency. In the absence of restrictions linkiagd 3, seellL3)—(15), we may in general
expecty) and hencer = f,(1)’ to be O,(T~'/?)-consistent and asymptotically normal, wheréas
and henced = fg(&b) is expected to have a faster rate of convergence and to be asymptotically mixed
normal. However, whether this is indeed the case depends on whether the parameters are fully identified
by restrictions on3, which corresponds to the conditicR1j. As an example of a case where this is
violated, suppose thdt is unrestricted and’ = (I, o), with s an unrestrictedp — r) x r matrix.

It can be checked that this corresponds to a just-identified model, but the corresponding estimfiator of
will not be super-consistent, since the identifying restrictions.amply that part of the information on
the adjustment toward equilibrium is containedsin

The result/28), which does not require a fully identified model, will be particularly useful in the next

section, where we consider various specific classes of restrictionsaod 5 which are not necessarily
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fully identifying. It may be emphasized however, that all results of Theorem 2 break downdylea
singular point of7(6y), i.e., when the rank of the Jacobian matrix is lowetghan in a neighbourhood

of fp. Such cases are associated with local non-identifiability. Although the asymptotic distributions
of maximum likelihood estimators and likelihood ratio test statistics may be derived for such cases in
specific models, these distributions are typically non-normal and non-chi-squared, respectively.

4 Specific Classes of Restrictions

4.1 Weak Exogeneity Restrictions
Johansen and Juselius (1990) considered the hypothesis
Heo : o = A, (31)

whereA is a knownp x m, matrix of full column rank, withr < m, < p, and( is am, x r freely
varying parameter matrix. Letting, = A’'X; andZ; = A’ X; (with A = A(A’A)™1), this hypothesis
implies that the model3) may be written as

AYt = wﬂ/Xf_l + Fth + 8yta
AZy, = LWy + e,

where [, : I,] = I'[A : A ] and(e),;,¢,,) = ei[A : A1]. Thus there is no adjustment toward
equilibrium in the equations describidg, which implies thatZ; is weakly exogenousr the parameter
0, see Johansen (1995a, Chapter 8).

The maximum likelihood estimator under this restriction may again be obtained by reduced rank
regression, in a conditional model &Y; given AZ,. For details, see Johansen (1995a, Section
8.2.1). This results in a new set of eigenvalugswith corresponding eigenvectots defining the
restricted estimatab = (@1, ..., %), and the concentrated restricted log-likelihdp@l3) = —0.57" x
<log |Soo| + >0y log(1 — S\i)>, so that the likelihood ratio statistic becomes

R(H4H,) =T Z log (32)

Note that the null hypothesis may be reformulated@ga’) = (A ® I,.) vec(¢') = G, which
implies that the Jacobian matrix(6) in this case is a special case @8), given by

IO =] A®p) : (el |

The left null space of this matrix is now spannedby ® 3, : A; ® ], which means thatink 7 (6) =
pp1—(p—7)(p1—7)—(p—my)r = (Mma+p1—r)r = s, whereas the number of columngis,+p1)r =

[. Thus the restrictions are not identifying: indeed, we still have (ihat) is observationally equivalent
to (¢*, 8%) = (¢CQ~1, BQ’) for arbitrary non-singula€). From Theorem 2, we find that the degrees of
freedom for the likelihood ratio test ($ + p1 — r)r — s = (p — mg)r. In fact, the null hypothesis is
equivalent tod’, o = 0, which amounts to exactlip — m,)r restrictions on.
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4.2 Linear Restrictions on the Cointegrating Space

Johansen (1988) and Johansen and Juselius (1990) considered hypotheses of the following form:
Hy : 5= Hpp, (33)

whereH} is a knownp, x my matrix of full column rank, withr < my, < p1, andy is a freely varying
myp X T parameter matrix. This hypothesis restricts the column spag@amfie in sp(H). Again, the
restrictions are not identifying, singg = H,p is equivalent ta3* = Hyp* = HypQ' for arbitrary
non-singulai), (accommodated by changingto o* = aQ ™).

Writing the model8) under this restriction as

AXt = OégOlHéXt*_l + FWt + Et, (34)

it is easily seen that the statistical analysis of this restricted model is entirely analogous to the reduced
rank regression procedure discussed in Section 3, vithd X;* ;| replaced byp andH; X/ |, respec-

tively, and similarly with(S11, S10, S01) replaced by H}S11Hy, H; S10, So1Hp). This again results in
restricted eigenvaluel, and a likelihood ratio statisti& R(H|H,) = T S, log(1 — A;)/(1 = \p).

Whens = r, thensp(H}) is anr-dimensional subspace, which therefore fully specifies the column
space ofs. Given thats is only identified up to its column space, this means that in this gaséully
specified (after appropriate normalization). Newnay be set td,. in (34) without loss of generality,
and the remaining parametersI” and{) may be estimated simply by least-squares.

The Jacobian matrix in this case becorge®) = [(I, ® ) : (¢ ® H,.)]. Analogously to the pre-
vious sub-section, it can be shown that the rank/é#) is (p + m, — r)r = s, so that the degrees of
freedom for the likelihood ratio test {$p + p1 — 7)r — s = (p1 — mp) 7.

Johansen and Juselius (1992) considered:

He:fB=(He: o), (35)

whereH., is a knownp; x r; matrix of full column rank, and wherg is a freely varyingp; x (r — 1)
parameter matrix, witlh < r; < r. This corresponds to the case wheyecointegrating vectors are
fully known, and the remaining; — r1 vectors are unrestricted. Partitioniagconformably withg, we
may write the model under this restriction as

AXt = O[lHéXt*_l + OZQQS/X:_l + FWt + Et. (36)

By adding the termH/ X/ , to the stationary regressol¥;, this is again recognized as a reduced
rank regression problem. The resulting eigenvalues may again be used to construct the likelihood ratio
statistic, and the degrees of freedom, following from the rank of the Jacobian matrix, is giyen-by

)71
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4.3 Linear ldentifying Restrictions on Separate Cointegrating Vectors

The restrictions org discussed in the previous sub-section are testable, but not identifying. Johansen
and Juselius (1994) and Johansen (1995) considered linear identifying restrictions on each of the
cointegrating vectog, separately, of the form3;, = H;p,;, and hence

Hd : ﬁ = (ngplv s 7H7’907‘)7 (37)

whereH; arep; x m; matrices of full column rank, angd, arem;-vectors. These restrictions can only
be identifying up to a scale factor; the scale can be fixed by restricting the first compongribaf,
i.e., ¢l = (1,¢)) and writing H; = [h; : H}], so that3; = h; + H} ;.
Johansen (1995) developed conditions under which such restrictions are generically identifying. The
appropriate rank condition for identification of titl cointegrating vector is that

rank [Hz{l(Hlsoia-"yHrgpr)] =r—1, (38)
for all parameter valuegp, . . ., ¢, ) except a possible set of measure zero. Johansen showed how this
condition may be checked froep(H,), ...,sp(H,), without having to evaluate38) at an arbitrary

point(¢y,..., ¢, ).

Johansen and Juselius (1994) considered the case where thé/sauaeix applies to a number of
cointegrating vectors, leading 1. : 3 = (Hapq, He. ), Wherep, andy, are matrices, collecting the
; vectors corresponding td; and H., respectively. In such cases these restrictions clearly cannot be
fully identifying. They proposed a switching algorithm to maximize the likelihood, alternating between
maximization overp, for a given value ofp,_, and the converse maximization problem; both maximiza-
tion problems are solved by reduced rank regression. This algorithm was subsequently generalized to
(37) by Johansen (1995), where the algorithm cycles through the different vegtors

An expression for the asymptotic covariance matrix of the MLE of the normalized parameters
(¢7,...,¢.), assuming that the rank conditid®8) holds, may be obtained from the general expression
(19), as discussed in the next sub-section. The degrees of freedom for the likelihood ratio tégt for
in case of full identification, igp1 — r)r — > _;_, (m; — 1), wherem; = dim(y;) = dim(¢;) + 1.

4.4 General Linear Restrictions

Boswijk (1995) considered the case whefe= g(¢)) and3 = h(¢) are linear and affine, respectively,
i.e.,
H; = vec(d') = Gy, vec3 = Ho + hy, (39)

whereG and H are constant matrices of full column rank, aiaglis a constant vector. This class of
hypotheses encompasses all hypotheses considered in the previous subsections. For this case, Boswijk
(1995) proposed a switching algorithm that is explicit in each step, replabiag* in (24)-(25) by

Qj_l = Q(éj_l); this is justified by starting from the log-likelihood)(instead of the concentrated
log-likelihood 22). Then the switching algorithm involves alternating over the following three explicit
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steps:

<

(6,92 = [@'(Q ' @5u8)G] " G (2" ©85) vec (ﬂ’LS> ,
(¥, Q) = [H’ (O/Q—la & 511) H}*l H' (O/Q—l ® 5’11) [Vec (ﬂlLS> —(a®Ip )ho| ,
(,¢) = Soo — So18a’ — ¥ S10 + ' S118c.

O

Starting from a set of initial values),, ¢, (), the iterations then become
G; = o(h; 1,Q5-1), Uy =1v(d;,Q1), Q5 = QP 0),

(The order of the evaluation @f(¢, ) and¢(¢4, Q) could also be reversed.) Recently Hansen (2002)
provided a generalization of this algorithm, allowing for non-homogeneous linear restrictidasion
and a possibly time-varying covariance matslx labelling thisgeneralized reduced rank regression
The same approach may also be applied in/{t2¢ cointegration model, see Boswijk (2000), and in the
seasonal cointegration model, see Johansen and Schaumburg (1999).

The expressionsl@)-(19) for the Jacobian matriy/ () and the observed information mattiy
apply to this case, witly and H constant matrices instead of functionsgodindq):

JO) = | (LeAHE : (@el)H |, (40)

GO e 58G G lawBS)H ]

T, —
’ H(/Q ' @ Sup)G H'(/Q 'a® Siy)H

(41)

Generic identification may be investigated by checking wheffi@) has full column rank for randomly
chosery. If this is satisfied, the asymptotic covariance matrix of the Mi, Eollowing from Theorem
2, is given byi;l. The degrees of freedom for the likelihood ratio test again follows from Theorem 2.

4.5 Non-Causality Restrictions

An important class of non-linear restrictions that does not fit easily in the framework of Theorems 1
and 2 of this paper, is given by Ganger-non-causality restrictions in cointegrated models, see Toda and
Phillips (1993). LetX; be partitioned as{; = (X7,, X5,)’, and leta, g, ITandl’;,i = 1,...,k — 1,

be partitioned conformably (assuming tlfatis void, so thatX;” = X;). Then the hypothesis thafy;

does not Granger-causé ; corresponds to the null hypothesis

chiﬂlgzoqﬁé:o, Plg,izo, 1= 1,...,k—1. (42)

The restrictions oi'; do not lead to statistical complications, so we will focus on the restrietigt}, =
0. Furthermore, for ease of exposition we concentrate on theycase, » = 1, so thatn; andg3, are
both scalars. We could formulate this hypothesis.as f.(0), 3 = f3(6), whered € © C R?, and

01 93
aelz ) 0) = ;
wor=(r ). wo=( ")
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however, it is clear thafg is not continuously differentiable, and furthermore the dimensio@ dbes
not reflect the number of restrictions.
Alternatively, we may write the hypothesis @gy) = a1 3, = 0 (recall thaty = (o/, 3')), and use
a Wald test statistic
W =gMNIEHL; ' GHT (), (43)

whereG(~) is the Jacobian matrix

o/ =( 4 00 o).

If either 8, # 0 or a; # 0, this Wald statistic can be shown to have a limitigggnull distribution, and

to be asymptotically equivalent to the LR statistic. However, the null hypothesis also contains parameter
values witha; = 5 = 0, so thatG(«y) is zero; in such cases the asymptotic distributiomloand L R

will be non-standard, and these tests will no longer be asymptotically equivalent. For more details we
refer to Phillips and Toda (1993).

4.6 Implementation in Econometric Software

Many of the algorithms to maximize the likelihood function under various parameters restrictions, dis-
cussed in the previous sub-sections, have been implemented in econometric software packages. Clearly,
as long as the likelihood function under the restriction can be programmed, it may be maximized in
any matrix programming language containing a good numerical optimization routine (such as Ox, see
Doornik, 2001). Many programs and modules written in such languages have becomes available over
the years. However, most practitioners will prefer an interactive econometric package with built-in
routines, that require only a minimal amount of programming. Here we discuss the most widely used
candidates to fill this need that are currently available.

The most flexible software within this class is PcGive (see Doornik and Hendry, 2001). Over the past
fifteen years, PcGive (and its companion PcFiml) have regularly been updated to include the most recent
classes of cointegration restrictions as they became available. The switching algorithm for the class of
general restrictions discussed in Section 3, and the associated method to check the rank condition and
compute the degrees of freedom for the likelihood ratio test via the numerical rank of the Jacobian
matrix, were developed by Doornik (1995) with the purpose of implementing them in PcGive. The
most recent version (PcGive 10.1) includes a refined version of those algorithms, but also allows the
hypotheses discussed in Sections 4.1 and 4.2 to be analysed using the reduced rank regression algorithms
mentioned in those sections. The empirical results in the next section have all been obtained using
PcGive 10.1.

A close competitor is EViews (Quantitative Micro Software, Irvine (Chttp://www.eviews.com
The most recent version 4.1 allows for the class of general linear restrictions discussed in Section 4.4,
implementing the linear switching algorithm of Boswijk (1995). Thus non-linear restrictions, and linear
restrictions linkingx and are not allowed. The program does check the rank condition, and allows for
partially identified systems.
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The Cats in Rats package was developed by Hansen and Juselius (1995), and was used to empirically
implement the estimation and testing procedures discussed in Sections 4.1-4.3 as they were developed.
The more general hypotheses and algorithms discussed in Sections 3 and 4.4 are not implemented. Un-
like the competitors discussed here, which are all general-purpose time-series econometrics packages,
Cats in Rats focuses exclusively on cointegration analysis. It is essentially a module within Rats (see
http://www.estima.coiwhich does allow for more general econometric analyses of time series.

General (non-linear) restrictions on the cointegrating vectors, as analysed by Pesaran and Shin
(2002), may be empirically implemented using Microfit 4.0, see Pesaran and Pesaran (1997). The
program does not allow for restrictions anAlso, it does not allow for partially identified models: first
the user should impose a set of just-identifying linear restrictions, after which general over-identifying
restrictions on the remaining parameters may be imposed and tested. The program also allows for the
classes of restrictions ghdiscussed in Sections 4.2 and 4.3.

Finally, it may be noted that none of these packages have a built-in option to test non-causality
hypotheses of the type discussed in Section 4.5.

5 An Empirical Application: UK M1

As an application of the various approaches to identifying and restricting cointegrated systems, we
consider a model of the demand for narrow money in the UK. We use quarterly seasonally adjusted data
over the sample period 1963(1)— 1989(2) that was originally analysed by Hendry and Ericsson (1991),
and subsequently by many others, including Dooatidil. (1998). Following these authors, we consider

the following variables:

e m — p: log of real M1, deflated by the total final expenditure deflator;

y: real total final expenditure;

Ap: rate of inflation;

R: interest rate differential, i.e., the three-month local authority interest rate minus the learning-
adjusted own interest rate;

dout: dummy variable for output shifts, zero except unity in 1972(4), 1973(1), and 1979(2);

doil: dummy variable for price shocks, zero except unity in 1973(3), 1973(4), and 1979(3).

See Hendry and Ericsson (1991) for details on data sources and transformations.

Following Doorniket al.(1998), we specify a VAR(2) model fox; = [(m — p), yt, Apt, Ry]’ with
deterministic variabled, = ¢ (restricted trend) ang, = (1, dout;, doil;)" (unrestricted constant and
dummy variables); the estimation sample is 1964(3)-1989(2). Furthermore, we assume that the cointe-
grating rank is given by = 2, although the likelihood ratio tests within this specification formally only
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supportr = 1. (In a model without the dummy variables, there is empirical support for a second cointe-

grating vector at thé0% significance level.) The unrestricted estimates ahd (with normalizations

B11 = P99 = 1 imposed) are

1 —0.064 m—p
—0.088 —0.010
—0.997 1 Y
) —0.022 —0.097 .
o= 8= 7.343 —3.383 Ap
—0.001  0.078
7.651  0.858 R
—0.002 —0.062
—0.051 —0.593 /100

All numerical results have been obtained using PcGive version 10.1, see Doornik and Hendry (2001).

No standard errors are given for the estimates ahdg, since these parameters are not identified yet.

The rank of the Jacobian matrix(#) is s = 14, whereas the number of estimated parametersand

Gisl =16.

As a first sub-model, we test the hypothesis that the rate of inflation and the interest rate differential

are weakly exogenous. This is a hypothesis of the fafprdiscussed in Section 4.1, with = [I5 : 0]'.

Using the algorithm referred to in Section 4.1, we obtain the following restricted estimates (imposing

the same normalization as before) and likelihood ratio statistic:

1 —0.164
—0.090  0.065
—0.952 1
B ~0.022 —0.151 8
a = 0 0 B = 7.234 —1.764 |, LR =4.8860.30].
7.692  0.131
0 0
—0.082 —0.555

The same restriction may also be imposed using the switching algorithm for general restrictions dis-

cussed in Section 3. The resulting likelihood ratio statistic is identical, whereas the estimatasf

[ are rotations of the ones given above. Giverythalue 0f0.3, the weak exogeneity hypothesis is not

rejected.

Suppose now that we wish to identify the long-run money demand relation (corresponding to the

first cointegrating vectorg;) by the restriction of a unit long-run income elasticitg,{ = —(;;)

and the exclusion of a trend termd ;¢ = 0), with no other restrictions (other than the normalizations)

imposed. Using the switching algorithm once more, this leads to

1 0.235
—0.095  0.004 . .
- —0.002 —0.070 ,
a= ; B=| 6643 —2.395 |, LR =0.333[0.56].
—0.020  0.059
7.444  3.499
0.012 —0.047
0 —0.780

Note that these restrictions generically (over-) identify The rank of the Jacobian matrix in this

model iss = 13, showing that there is a single over-identifying restriction, which is not rejected by

the likelihood ratio test. Note that becausgis identified, so isv,, but nota; (sincea; 3] + as/3,
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is observationally equivalent t@v; + cas2)B) + az(85 — ¢3)) = aif) + a3%, for arbitraryc). A
possible local identification problem arises if the restrictions imposed,ocare also satisfied bg,.

As discussed in Boswijk (1996), this hypothesis of local non-identifiability may be tested in the form
Hy : B = Hyp, where

Hy

I
o

0

-1 0
1 (44)
0

_ o o O

00

[es}

The likelihood ratio statistic for this hypothesis, obtained from the algorithm referred to in Section 4.2, is
given by LR = 5.889 [0.21], which shows that we cannot reject this hypothesis, and identification based
on the restrictions of¥; only is fragile. A possible explanation for this unexpected result is as follows.
The first cqumnB1 of the unrestricted estimatat, which would be the MLE of the cointegrating
vector under the hypothesis= 1, almost satisfies the restrictigh = Hy¢, for some vectok, .
Therefore, the evidence against the hypothgsis H,p should come from the second cointegrating
vector. However, since the empirical support for this second cointegrating vector is rather weak, it might
not be estimated very precisely, which would imply that the resulting test will not be very powerful.

As a final model, we consider the case where in addition to the restrigtigns 3,,, 3,5 = 0 and
the normalizations, we also impose the restriction that adjustment towards money demand equilibrium
occurs only in the equation fak(m — p);, i.e.,a12 = a13 = a1q4 = 0. The Jacobian matrix for this
model has ranlk = 11, and since the number of unrestricted paramdteiso equald 1, this is an
identified model. The likelihood ratio statistic (3 over-identifying restrictiong) & = 4.240 [0.24],
so that the restrictions cannot be rejected. The estimates, with their standard errors in parentheses, are

given by
1 0.006
—0.107 0.059 (0.075)
(0.013)  (0.066)
-1 1
0 Okt 6.401 —1.739
~ (0.033) - ) —1.
0= , 0= . . (45)
0 0018 (1.360) ~ (0.765)
(0.023) 7.409 1.650
0 —0.040 (0.528) (0.502)
(0.043) 0 —0.651
(0.037)

The striking result is that we may obtain full identification by only imposing restrictions,canda;,

the cointegrating vector and adjustment coefficients associated with the money demand relation. The

second relation, for which we have less identifying information, is left unrestricted, but still is identified.
Although the final model is generically identified, local identification problems could still arise if

0B+ would satisfy the same identifying restrictions@s In other words, the final model, corresponding

Another explanation might be that the asymptotfedistribution of theL R test provides an inaccurate approximation to
its actual null distribution, such that the reporgeslalue of0.21 deviates from the actual marginal significance level. We have
investigated this possibility using a bootstrap analysis (following the approach of Omtzigt and Fachin, 2002), but this leads to
a largerp-value, and hence even weaker evidence against the hypothesis of local non-identifiability.
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to the hypothesi®{, : a2 = a13 = a1q = 0, 5 = Hyppy, With Hy, as given in'44), contains a further
sub-modelHy : a2 = a13 = a4 = 0,8 = Hyp, which is not identified. The likelihood ratio test for
Hoin'H, is LR = 4.489 [0.21], so that this hypothesis is not rejected (note that the rank of the Jacobian
matrix for the null model is; = 8, so this is ay?(3) test). Again this result is surprising, since #&Y
it appears thayf‘}21 and 325 differ significantly from—1 andO0, respectively. Indeed, thBR statistics
for the individual restrictiong,; = —1 and 3,5 = 0 in modelH, both have g-value of aboud.04.
Apparently the estimator@21 andB25 are strongly correlated, leading to the non-rejection of the joint
hypothesis in conjunction with rejection of the individual hypotheses.

To avoid such problems, we may follow Doorrakal. (1998) in imposing the additional restrictions
az1 = 0 andfy; = 0 within the modelH,. The likelihood ratio statistic for the resulting model against
the unrestricted model (5 over-identifying restrictions)i® = 4.763 [0.45], which shows that the
likelihood has hardly decreased by imposing these two additional restrictions, and indeed the estimates
are very close to those reported above. The advantage of this further restriction is that is does not contain
any non-identified sub-models; i.e., no problems of local non-identifiability can occur.

Appendix: Proof of Theorem 2

Consider first the case whese= [, such that) is identified and7 (6y) has full column rank. To prove
consistency of, we follow the approach of Saikkonen (1995). et (vec(II'), vec(I")’, vech(Q)'),
and let the unrestricted parameter spaca bé

Ay={)e RP(P1+P2+(p+1)/2) . T ¢ RP*PL T € RPXP2 () € RP*P ) > 0},

wherepy = pdim(W;) = p[(k — 1)p + dim(q;)]. Analogously, define the restricted parameter space
A, as

Ay = {\ e RPPHP2HEHD/2) T = 1, (0) f5(0),0 € ©,T € RP*P2 O € RP*P, Q) > 0}.

Letting ¢(\) denote the unrestricted log-likelihood function, it is well known the unrestricted MLE
A= argmax, . /() is obtained from a least-squares regression. Furthermore, when the true value
Ao is such that the system i§1), it is known that) is consistent, and that there exists a sequence of
norming matricesBr with || Br|| — 0 such thatB; ' (A — \) = O,(1). Finally, from the simple form of

the log-likelihood/(\), it may easily be established that for a true valysatisfying thel (1) condition,

Vo >0: lim Py, sup  L(A) <Ll(Xo) p =1, (A1)
T—oo AEN(X0,0)

whereN (), §) is the complement of the neighbourhodd g, §) = {\ € A, : ||A — Ao < 6}. The
property A.1) is a sufficient condition for (weak) consistency bf see Wu (1981). However, since

SUP\e N (A0,6)NA, (N < SUD\E N (X0,0) £()), it follows that

Vo >0: lim Py, sup  L(A) < LX) p =1,
T—oo AEN(A0,8)NA,
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which in turn is sufficient for weak consistency of the restricted MLE= argmax A, £(A). And
sincell(#) is a continuously differentiable function with Jacobian magri¢d) of full column rank in a
neighbourhood of, consistency ofI = II(#) implies consistency df.

To obtain the asymptotic distribution 6f it is useful to write the functiofil(¢) asII(4(0)), where

56) = ( vec(al,) ) _ ( vec(d Ba) )
vec(B) vec [(c’J_cL)_lc’J_ﬁ(c’ﬁ)_l]
_ ( vee(c f3(0) fa(9) )
vee {(¢ e) 71 fo(O)c fa(0)) '} )
see Section 3. Recall th@t., B) is a just-identified parameterization, so that &Hy) = f.(0)' f3(0)’
may be written a$I(5(6)), provided thatc’ f3(0o)| # 0. Let K (0) = 95(6)/00’; since
0 vec(IT)
06
dvec(Il') 96
a8 o0’
= { (p®B: 1 ac®ey }K(@),
the concentrated score vector and observed information matrikrfay be written as

Q' ®pB.5n)
I (a1 ® d Si)
Qe 8SuB) (e ® BlSncy)
| (0@ d Sup) (e tae® | Siey)

J0) =

o) = TK(9) lvec {A’LS—H(G)’} (A.2)

I, = TK()

] K (). (A.3)

Now let Cr be any sequence of non-singular norming matrices suchDI;é]K(eo)CT — K,
whereK is a matrix of full column rank. Then it follows that

CrTyCr = CrK(0y) Dyt
X T Dy (' ®B.5116.) (Q . ® BLS11cy) Dr x DK (00)Cr
(e d SuB,) (a2 la.® | Siicy) g
-1
A g Q7" ®Xss 0 %
0 alQ la,. @V
= K'IK, (A.4)

whereZ = diag([Q™! ® 23], [a.Q e, ® V]), and furthermore
Clhq(0o) - K'TV?Z, (A.5)

whereZ is a standard normal vector.
Following Saikkonen (1995), the asymptotic distributiorfahay now be obtained from the usual
first-order Taylor series approximation of the score vector, leading to

Crl 0 —6) = [CLToCr] " Clra(8o) + 0p(1)
i) (K/jk)—lf(/fl/zz
~ N(0,[K'ZK]™). (A.6)
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Consistency of) at the rate determined b§;, and stochastic equicontinuity @ (see Saikkonen,
1995) implies thaC’ng(JT has the same limit aS’.ZyC'r. For any vector, let T be that power of”
such thafl?a’Cr converges to a non-zero row vector Then

N -1/2 . . ~1/2 -
(a’l’e_la) d0 -0y = (Tda’CT [C}IgCT]_lC}aTd) T4/ CrC7 (B — 6)
L W [K'IK]) b)Y K'IK] T KT 2

~ N(0,1). (A7)

The distribution of the likelihood ratio statistic follows from a quadratic approximation of the like-
lihood function, leading to

LR(Hy[H,) = 15— 3(8)]'Zs[5 — 5(8)] + 0,(1)
— 5 8(6)/ Dy DyZs DrD; (5 - 5(0)). (A.8)

Now it can be shown that

D75 —8(0) - (:2*1/2_1‘([;2/:21?]—112/:21/2)2

~ N@OI7'-K[K'IK] K.
The covariance matrix has rafk + p; — r)r — I, andZ is a generalized inverse of this covariance
matrix, which implies that

LR(Hy|H,) 5 2 (lp+ p1 — rlr — 1), (A.9)

Finally, consider the case whese< [, such thab is not fully identified. Since7 (#) has constant
rank s in a neighbourhood of, it follows that the rank deficiency and the associated identification
problem does not occur at an isolated point, but occurs generically, i.e., everywh@rexicept for
a possible set of measure zero where the rank is lower ¢harhis in turn may be interpreted @s
containingl — s redundant parameters. In such cases we may reparameasdn), wheren € H C
R%, such tha® = {0(n),n € H}, and wher&(n) is a continuously differentiable function. The model
then become$l(0) = 11(6(n)) = II*(n),n € H, whereIl* is a continuously differentiable function,
with Jacobian matrix of full column rankin a neighbourhood of the true valyg. This means that the
above result apply with replaced by, and in particularL R(H 4| H.) <, p+pr—rjr—s). O
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