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Abstract

In this paper we review some recent work on limit results on realised power variation, that
is sums of powers of absolute increments of various semimartingales. A special case of this
analysis is realised variance and its probability limit, quadratic variation. Such quantities
often appear in financial econometrics in the analysis of volatility. The paper also provides
some new results and discusses open issues.
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1 Introduction

The present paper provides an overview, including some new results and a discussion of open
problems, of the theory and use of (realised) power variations. Most of the results to be discussed
have been developed quite recently, as part of the quest to devise tools for more accurate
assessments of stochastic volatility, particularly in the field of financial economics.

In that field a very important and broad class of models for the log price process of a financial
asset is the following.

Definition 1 The class of stochastic volatility semimartingales (written SVSM) are those
which can be written as A + M , where A ∈ BV (the class of processes of locally bounded vari-
ation) with A(0) = 0 and M ∈ Mloc (the class of local martingales) with M(0) = 0, satisfying
the additional condition that M is a stochastic volatility (SV) process M = H · W where W is
standard Brownian motion and H, the so-called spot volatility, is càglàd and nonnegative. We
also assume that K∗(t) < ∞ for all t < ∞, where

K∗(t) =
∫ t

0
K(s)ds

and K, the so-called spot variance, is the squared volatility process, i.e. K = H2. The class of
continuous SVSM is denoted by SVSMc.

Note that our assumptions on A and H imply that these processes have locally Riemann
integrable sample paths, while M ∈ Mc

loc. Clearly SVSM ∈ SM (the class of semimartingales).
Overall if X ∈ SVSM then it can be written as

X = A + H • W. (1)

If we additionally impose the assumption that A ∈ BVc then X ∈ SVSMc ∈ SMc (the class of
continuous semimartingales). Note also that if X ∈ SVSMc, then X is a special semimartingale.

Reviews of the literature on stochastic volatility are given in Ghysels, Harvey, and Renault
(1996) and Shephard (1996). By allowing the spot volatility H to be random and serially depen-
dent, this model will imply its increments will exhibit volatility clustering and have unconditional
distributions which are fat tailed. This allows it to be used in finance and econometrics as a
model for log-prices. In turn, this provides the basis for option pricing models which overcome
some of the major failings in the Black-Scholes option pricing approach. Leading references in
this regard include Hull and White (1987), Heston (1993) and Renault (1997). See also the
recent work of Nicolato and Venardos (2002).

If X ∈ SVSMc then the quadratic variation [X] of the process X satisfies

[X](t) = K∗(t).

This quantity or other integrated powers of H(t) are the key objects of study for this type of
model. Econometric literature on the use of quadratic variation includes Andersen, Bollerslev,
Diebold, and Labys (2003), Andersen, Bollerslev, and Diebold (2003), Barndorff-Nielsen and
Shephard (2002a) and Barndorff-Nielsen and Shephard (2002b).

Section 2 recalls the concept of power variation and its basic probabilistic limit properties,
which are subject to three main regularity assumptions. The roles of these assumptions in the
proofs are outlined and then, in Sections 3 and 4 we briefly address the question of how the
first two assumptions, that respectively prescribe a smoothness property of the sample paths
of H and stochastic independence of H and W , may be relaxed. A number of other types of
extension are reviewed in Section 5, and Section 6 concludes.
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2 Power variation: basic limit laws

Let ∆ denote a subdivision 0 = t0 < t1 < · · · < tn = t of [0, t] and let δj = tj − tj−1 and
|∆| = max δj . For arbitrary real functions f and g on the interval [0, t] we introduce the
notation

[f∆][r] =
∑

|f (tj) − f(tj−1)|r , (2)

where the sum is over j = 1, ..., n. We call [f∆][r] the r-th order power variation of f relative to
∆. In the special case where the subdivision ∆ is equidistant, whence δj = δ for all j, we will
write fδ instead of f∆, etc. Thus when δ occurs as an index the subdivision is understood to be
equidistant.

Furthermore, when f ≥ 0, we use the notation

f∗(t) =
∫ t

0
f(s)ds (3)

and, more generally,

f r∗(t) =
∫ t

0
f r(s)ds. (4)

To formulate the basic limit laws we introduce the following four conditions.

(I) The processes A and H are jointly independent of W .

(V) The volatility process H is (pathwise) locally bounded away from 0 and has, moreover,
the property that for some γ > 0

lim
δ↓0

δ1/2
n∑

j=1

|Hγ(ηj) − Hγ(ξj)| = 0 (5)

for any sequences ξj = ξj(δ) and ηj = ηj(δ) satisfying

0 ≤ ξ1 ≤ η1 ≤ δ ≤ ξ2 ≤ η2 ≤ 2δ ≤ · · · ≤ ξn ≤ ηn ≤ t.

(M) The mean process A satisfies (pathwise)

lim
δ↓0

max
1≤j≤n

δ−1|A(jδ) − A((j − 1)δ)| < ∞.

Remark 1 On account of the local Riemann integrability of H, the equality (5) is satisfied for
all positive γ if and only if it holds for one such γ. �

In Barndorff-Nielsen and Shephard (2003a) the following result was proved (recall the nota-
tion (4)), extending an earlier result of Barndorff-Nielsen and Shephard (2002a) established in
the special r = 2 case.

Theorem 1 Let X = A + H • W be of class SVSM and assume that the conditions (I), (V)
and (M) are satisfied.

Then X ∈ SVSMc and, for any t > 0 and δ ↓ 0, we have

δ1−r/2[Xδ][r](t)
p→ µrH

r∗(t), (6)

where µr = E{|u|r} and u ∼ N(0, 1).
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Furthermore,
δ1−r/2[Xδ][r](t) − µrH

r∗(t)

δ1−r/2

√
µ−1

2r vr[Xδ][2r](t)

law→ N(0, 1), (7)

where vr = Var{|u|r} is the variance of |u|r. �1

Remark 2 The conditions of Theorem 1 allow the volatility process H to have, for example, de-
terministic diurnal effects, jumps, long memory, no unconditional mean or to be non-stationary.
�

In particular, we have that when r = 2

[Xδ][2](t) − H2∗(t)√
2
3 [Xδ][4](t)

law→ N(0, 1). (8)

Taking sums of squares of increments of log-prices has a very long tradition in financial economics
— see, for example, Poterba and Summers (1986), Schwert (1989), Taylor and Xu (1997), Chris-
tensen and Prabhala (1998), Dacorogna, Müller, Olsen, and Pictet (1998), Andersen, Bollerslev,
Diebold, and Labys (2001) and Andersen, Bollerslev, Diebold, and Ebens (2001). However, for
a long time no theory was known for the behaviour of such sums outside the Brownian motion
case. Since the link to quadratic variation has been made there has been a remarkably fast
development in this field. Contributions include Andersen and Bollerslev (1998a), Barndorff-
Nielsen and Shephard (2001) and Andersen, Bollerslev, Diebold, and Labys (2001). The limit
result (8) was first given in Barndorff-Nielsen and Shephard (2002a).

When r = 1 we have that

δ1/2[Xδ][1](t) −
√

2/πH∗(t)√
(1 − 2/π)δ[Xδ][2](t)

law→ N(0, 1). (9)

Andersen and Bollerslev (1998b) and Andersen and Bollerslev (1997) empirically studied the
properties of [Xδ][1](t) computed using sums of absolute values of intra-day returns on speculative
assets. This was empirically attractive, for using absolute values is less sensitive to possible
large movements in high frequency data. There is evidence that if returns do not possess fourth
moments then using absolute values rather than squares would be more reliable (see, for example,
the work on the distributional behaviour of the correlogram of squared returns by Davis and
Mikosch (1998) and Mikosch and Starica (2000)). However, the approach was abandoned in
their subsequent work reported in Andersen and Bollerslev (1998a), and Andersen, Bollerslev,
Diebold, and Labys (2001) due to the lack of appropriate theory for the sum of absolute returns
as δ ↓ 0, although recently Andreou and Ghysels (2002) have performed some interesting Monte
Carlo studies in this context, while Shiryaev (1999, pp. 349–350) and Maheswaran and Sims
(1993) mention interests in the limit of sums of absolute returns. The above general limit theory,
including the case r = 1, was first given in Barndorff-Nielsen and Shephard (2003a).

Remark 3 Relation (7) may be rewritten as

δ1−r/2µ−1
r [Xδ][r](t) − Hr∗(t)

δ1/2

√
µ−2

r νrµ
−1
2r δ1−r[Xδ][2r](t)

law→ N(0, 1).

1In Barndorff-Nielsen and Shephard (2003a) the limit distribution result was stated under the additional
condition that r ≥ 1

2
or A = 0. However, as has kindly been pointed out to us by Jeanette Woerner, there is an

error in the proof of the result given there, arising from an error in the inequality (22) of that paper. With a
correct proof, see Barndorff-Nielsen and Shephard (2004), the additional condition is not needed.
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Here,
µ−1

2r δ1−r[Xδ][2r](t)
p→ H2r∗(t)

so that
δ1−r/2µ−1

r [Xδ][r](t) − Hr∗(t)

δ1/2

√
µ−2

r νrH2r∗(t)

law→ N(0, 1).

In other words, δ1−r/2µ−1
r [Xδ][r](t)−Hr∗(t) follows asymptotically a mixed normal distribution.

�

The following Sections discuss possible extensions of Theorem 1, in particular the question
of weakening the conditions (I) and (V). Here, partly as a basis for the further discussion, we
shall briefly indicate the main steps in the proof of the above results. For the rest of this Section
we suppose that condition (I) is satisfied.

Recall that, by the Dambis-Dubins-Schwartz Theorem, any continuous local martingale M
is representable as M = B(T ) (a.s.) where B is another Brownian motion and T = [M ]. Thus
M has the form of a time-changed Brownian motion. In particular, we may rewrite (1) as

X = A + B(K∗) (10)

a special case of the form
X = A + B(T ), (11)

where T denotes a continuous increasing time change. It can be shown2 that under (I) not only
are K∗ and W independent but the same is true of K∗ and B.

For the time being let us consider the general form (11) with T independent of B. Initially,
we also assume that A = 0. As above, let µr and νr denote the mean and variance of |u|r where
u is a standard normal variable. We then have that conditionally on T

[Xδ][r](t) − µr[Tδ][r/2](t) law=
n∑

j=1

T
r/2
δj (|uj |r − µr),

where Tδj = T (δj) − T ((j − 1)δ) and the uj are i.i.d. standard normal. This relation is the
basis for the derivation of the subsequent limit law results. As the right hand side is a sum
of independent random variables it is fairly clear that minor regularity requirements on T will
imply that

δ1−r/2
(
[Xδ][r](t) − µr[Tδ][r/2](t)

)
p→ 0. (12)

and
[Xδ][r](t) − µr[Tδ][r/2](t)√

νr[Tδ][r](t)
law→ N(0, 1) (13)

and, combining the two previous relations,

δ1−r/2
(
[Xδ][r] − µr[Tδ][r/2]

)
δ1/2

√
µ−1

2r νrδ1−r[Xδ][2r]

law→ N(0, 1). (14)

Specifically, for (12) to hold it is sufficient that (a.s.) for δ ↓ 0

sup
n

δ1−r/2
n∑

j=1

T
r/2
δj < ∞

2See, for example, Barndorff-Nielsen and Shephard (2004, Ch. 4).
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while (13) is valid provided only
maxj T

r/2
δj√

[Tδ][r](t)
→ 0

see Barndorff-Nielsen and Shephard (2003b).3

Now, when T is of the form

T = K∗(t) =
∫ t

0
K(s)ds

the Riemann integrability of H implies

δ1−r/2[Tδ][r/2] →
∫ t

0
Kr/2(s)ds = Kr/2∗(t) = Hr∗(t).

On account of (14) there is therefore reason to expect that, subject to a suitable regularity
condition,

δ1−r/2[Xδ][r] − µrK
r/2∗(t)

δ1/2

√
µ−1

2r νrδ1−r[Xδ][2r]

law→ N(0, 1)

which is a statistically feasible result allowing us to draw inference about the volatility process
H. The requirement for this latter conclusion to hold is that δ1−r/2[Tδ][r/2] − Kr/2∗(t) tends to
0 sufficiently fast, specifically we need that

δ1−r/2[Tδ][r/2] − Kr/2∗(t) = o
(
δ1/2

)
. (15)

In the quadratic variation case, i.e. r = 2, this relation is trivially satisfied since [Tδ][1] = K∗(t).
In general, condition (V) ensures the validity of (15), as is seen via the rewrite

δ1−r/2[Tδ][r/2] − Kr/2∗(t) = δ


 n∑

j=1




(
δ−1

∫ jδ

(j−1)δ
H2(s)ds

)r/2

− δ−1

∫ jδ

(j−1)δ
Hr(s)ds





 .

The final (and most intricate) step consists in showing that the main result (7) still holds if
the process A is not identically 0. Assumption (M) provides a necessary condition for this; for
the proof, see Barndorff-Nielsen and Shephard (2004).

3 Stochastic volatility of unbounded variation

Condition (V) refers to each sample path of the volatility process individually. However, our
main results concern limit distributions, for which a weaker condition could suffice. In fact, the
following result holds.

Theorem 2 Let X = H • W with H and W independent and such that H is nonnegative and
has continuous sample paths. Fix t > 0 and r ≥ 2 and assume that, possibly under a locally
equivalent probability measure,

(i) Hρ is a submartingale for all ρ ≥ 1

(ii) s → E{Hr(s)} belongs to Lipq([0, t]) for some q > 1
2

3The conclusions (12), (13) and (14) could also, under slightly different conditions, be reached using general
martingale limit theory as discussed in Hall and Heyde (1980; Section 3.2).
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Then
δ1−r/2[Xδ][r](t) − µrH

r∗(t)
δ1−r/2{µ−1

2r vr[Xδ][2r](t)}1/2

law→ N(0, 1).

�
We conjecture that the result does, in fact, hold for all r > 0 but have not been able to verify

this. It appears likely that the theorem could, essentially, be obtained as a corollary from the
extremely general theoretical framework discussed in an unpublished thesis by Becker (1998).
However, in view of the generality and relative inaccessibility of that work is seems, in any case,
desirable to have available a direct verification of Theorem 2 and we refer to Graversen (2003)
for an independent proof. For a brief indication of the contents of Becker’s thesis see Subsection
5.5 below.

With Theorem 2 at hand we can now, at least for r ≥ 2, extend the validity of the conclusions
of the original power variation Theorem to include for instance the square root (or Cox-Ingersoll-
Ross) process as model for the spot variance K.

4 Influence of leverage

In models encompassing leverage effects the volatility process (here H) and the innovation
process (here W ) will be correlated, such as is the case for the Heston (1993) model, for instance.
Now, we know that under leverage we still have

δ1−r/2[Xδ][r](t)
p→ µrH

r∗(t),

when r = 2 through the usual quadratic variation result, while Woerner (2002) has extended
the above convergence result to cover the case where 1 < r < 2. Further, at first sight it seems
plausible that the limit behaviour of

δ1−r/2[Xδ][r](t) − µrH
r∗(t) (16)

will still be mixed normal (cf. general martingale limit theory, see Hall and Heyde (1980, Section
3.2)) whereas dependency between (16) and its asymptotic variance will prevent modification
into a feasible standard normal limit as was done under the independence assumption in Section
2. However, the situation is even more intricate, as indicated by the following Theorem. There
we consider the process

X = |W |a • W,

where a ≥ 1. We have in mind ultimately to be able to handle more general cases, in particular
that of the Heston model where H is the square root, or CIR, process and is correlated with W .
Again, it appears possible that this kind of setting is, at least in essence, covered by the general
theory developed by Becker (1998, Subsection 5.5) but we have not been able to decide this and
it is, moreover, illuminating to have a separate proof of the following Theorem; for such a proof,
see Graversen (2003).

Theorem 3 For t > 0 and a ≥ 1 let

X(t) =
∫ t

0
|W (s)|a dW (s)

(when a is a natural number the absolute sign may be dropped). Then

lim
n

(
√

n
n∑

i=1

(Xit/n − X(i−1)t/n)2 −
∫ t

0
|W (s)|2a ds

)
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exists in distribution for all t > 0. The limit is mixed Gaussian. More precisely it is the
distribution of ∫ t

0
|Y (s)|a dZ(s),

where Y and Z are two independent Wiener processes.

�
In relation to the martingale central limit theory one may ask whether the conclusions of

the above Theorem follow from Hall and Heyde (1980, Theorem 3.2). However, that is not the
case; specifically, neither of their conditions (3.19) and (3.21) are met in the present case.

5 Further extensions

This Section briefly reviews various further extensions of the basic results discussed in Section
2.

5.1 Bipower

In Barndorff-Nielsen and Shephard (2003c) the concept of power variation is extended to bipower,
and more generally multipower, variation. In Theorem 1 we considered the limiting behaviour
of

δ1−r/2[Xδ][r](t) = δ1−r/2
n∑

j=1

|X(jδ) − X((j − 1)δ)|r.

The corresponding bipower quantity is defined as

δ1−(r+s)/2[Xδ][r,s](t) = δ1−(r+s)/2
n−1∑
j=1

|X(jδ) − X((j − 1)δ)|r|X((j + 1)δ) − X(j)δ)|s.

It has similar limit properties for SVSMc models but generally differs when to a model of that
kind is added a jump process. In particular, in case the jump intensity is not too high, [Xδ][1,1](t)
will still converge to the integrated squared volatility K∗(t), and this allows separate estimation
of the jump component of [X](t).

5.2 General subdivisions

Let ∆ denote a subdivision 0 = t0 < t1 < · · · < tn = t of [0, t] and let δj = tj − tj−1 and
|∆| = max δj . When considering a sequence of such subdivisions ∆ we say that the sequence is
balanced if max δj/ min δj is bounded above and ε-balanced, ε ∈ (0, 1), if max δj/(min δj)ε → 0
as |∆| → 0. Note that here and in the following we have in mind a single, generally unspecified,
sequence of subdivisions ∆ with |∆| → 0; however, for notational simplicity, we do not indicate
this by attaching a sequence index to ∆. Clearly, if ∆ is balanced then it is a fortiori ε-balanced
for every ε ∈ (0, 1).

Suppose again that X is a process of the form X = H •W . It is now convenient to introduce
the notation

[X∆]
[r]

(t) =
∑

δ
1−r/2
j |X(tj) − X(tj−1)|r (17)

and the condition
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(V̄) The volatility process H is (pathwise) bounded away from 0 and has, moreover, the
property that for some γ > 0 (equivalently for all γ > 0)∑m

j=1 δj |Hγ(ηj) − Hγ(ξj)|√
min δj

→ 0 (18)

for any sequences ξj = ξj(∆) and ηj = ηj(∆) satisfying

0 ≤ ξ1 ≤ η1 ≤ t1 ≤ ξ2 ≤ η2 ≤ t2 ≤ · · · ≤ ξn ≤ ηn ≤ t.

In case ∆ is equidistant condition (V̄) reduces to condition (V).

Theorem 4 Let X be a semimartingale of the form X = H •W and suppose that the volatility
process H is independent of the Brownian motion W and satisfies conditions (I) and (V̄). Then,
for any t > 0 and for any 1

2 -balanced sequence of subdivisions ∆ we have

[X∆]
[r]

(t)
p→ µrH

r∗(t) (19)

as |∆| → 0 and where µr = E{|u|r} and u ∼ N(0, 1).
Furthermore, if the sequence of subdivisions ∆ is 2

3 -balanced then

[X∆]
[r]

(t) − µrH
r∗(t)√

µ−1
2r νr

∑
δ2−r
j |X(tj) − X(tj−1)|2r(t)

law→ N(0, 1) (20)

where νr = Var{|u|r} is the variance of |u|r. �

The result is proved in Barndorff-Nielsen and Shephard (2003b). A recent paper by Wo-
erner (2003) provides extensions of this, using techniques that are rather different from those of
Barndorff-Nielsen and Shephard (2003b).

5.3 Weighted variations

For some applications it may be useful to generalise the above setup to allow for weighted power
variations

[f∆][F,r] =
∑

|f (tj) − f(tj−1)|r (F (tj) − F (tj−1)).

where F denotes a function of locally bounded variation. Under regularity restrictions one can
show (cf. Barndorff-Nielsen and Shephard (2003b)) that, in notation similar to the above,

∑
δ
−r/2
j |Xj |rFj − µr

∫ t
0 Hr(s)dF (s)√

2µ−1
2r νr

∑
δ−r
j |Xj |2rF 2

j

law→ N(0, 1),

where Fj = F (tj) − F (tj−1).

5.4 Stable innovations

If the innovations come from a symmetric α-stable motion S (with 0 < α < 2) rather than from
Brownian motion W , somewhat similar, but statistically less satisfactory, results can still be
obtained, see Barndorff-Nielsen and Shephard (2003b).
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5.5 Multivariate versions

We are presently working on extensions of some of the above results to multivariate settings.
For the case r = 2, that is going from quadratic variation to quadratic covariation, this is rather
straightforward, though for feasibility a special argument (related to the idea of bipower) is
needed. This case is treated in considerable detail in Barndorff-Nielsen and Shephard (2002b).

5.6 f-variations

In a thesis from (1998) Etienne Becker has, in great depth, studied the limit behaviour as
M → ∞ of processes of the type

YM (t) =
[Mt]∑
j=1

f

(
j − 1
M

,
1√
M

{
X

(
j

M

)}
−

{
X

(
j − 1
M

)})

where f is a function of two variables and X is a semimartingale. He considers in particular the
case where X is of the form

X(t) =
∫ t

0
C(s)ds +

∫ t

0
H(s)dW (s),

where W is Brownian motion and C and H are predictable and subject to restrictions on their
variational behaviour, and as a key result he proves that, after a suitable centering, YM converges
to a stochastic process which is representable as a certain type of stochastic integral where the
integration is with respect to a ‘martingale-measure tangential to X’.

In comparing the results discussed in the previous sections to Becker’s work we note that for
the kind of functions, i.e. absolute powers, and regularity conditions we have considered more
explicit results are possible. Thus, under assumptions (I), (V) and (M), the limit behaviour
is identifiable as mixed Gaussian and random rescaling by observable scale factors leads to
statistically directly applicable standard normal limit statements (cf. in particular Theorems 1
and 2). Moreover, for the special power variation setting of Section 4 it would seem possible
to identify the ’tangential martingale-measure’. We hope, elsewhere, to discuss this latter point
further.

6 Conclusion

In this paper we have reviewed and extended various recent results on realised power variation,
a concept which appears useful in the context of changing volatility in financial economics. Key
extensions are given to deal with unbounded variation in the volatility process and leverage.

It would be desirable to extend several of the results discussed above to functional limit
theorems.

There are in the literature a considerable number of important results on power variations
of semimartingales generally, and Lévy processes in particular, that are related but not directly
relevant to what we have discussed above. A brief guide to those results are given in Barndorff-
Nielsen and Shephard (2003b).
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