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Abstract

Several aspects of GARCHl(g) models that are relevant for empirical applications are in
vestigated. In particular, it is noted that the inclusiordammy variables as regressors can lead
to multimodality in the GARCH likelihood. This invalidatessandard inference on the estimated
coefficients. Next, the implementation of different restidns on the GARCH parameter space
is considered. A refinement to the Nelson and Cao (1992) tiondifor a GARCHZ, g) model
is presented, and it is shown how these can then be implethbgtparameter transformations.
It is argued that these conditions may also be too resteicwnd a simpler alternative is intro-
duced which is formulated in terms of the unconditional amce. Finally, examples show that
multimodality is a real concern for models of thé& exchange rate, especially wheer 2.
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1 Introduction

The ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) modetgehifound widespread application
since their introduction. Indeed, there have been so mabijigations involving GARCH models,
that we expect that most users consider their estimatioe @ foutine operation. This paper should
undermine that belief somewhat. Particular issues of @lctelevance are multimodality of the
likelihood, of which we shall give several examples, andpdidm of restrictions on the parameter
space — issues to which the literature has paid relativélg lattention, despite the popularity of
GARCH models.
We write the regression model with normal-GARGHY) errors as:

v = ¢+ ey,

e = & &|Fi ~ N(0,1),

. ) (1)
he = a0+ e+ ) Bilu—i, t=1,....T,
i=1 1=1

where F; is the filtration up to timg. The ARCHg) model corresponds to GARCBHI(g). Recent
surveys include Bollerslev, Engle, and Nelson (1994), 8hep(1996), and Gourieroux (1997).

At first sight, it would appear that variables entering theamequation of a GARCH regression
model do not seriously affect the properties of the moded, standard results for explanatory vari-
ables in linear dynamic regression models would apply. imghper, however, we illustrate how mul-
timodality in the likelihood of GARCH-type models is induteshen correcting for an additive outlier
in the mean equation through a dummy variable. The cormredtioan additive outlier corresponds
to treating one observation as missing. Surprisingly, riinigtimodality does not always happen. We
provide analytical and empirical results §&. Multimodality is more likely to occur when volatil-
ity, according to estimated GARCH parameters, is perdisted when dummies are added before or
within volatile periods, i.e. precisely in those periodsemhthey are considered most relevant. We
show that the multimodality problem may remain when addingchies that are nonzero for more
than one period. Replacing a GARCH by an EGARCH specificafioes not remove the problem
either. We do show i§2.5 that adding the corresponding dummy one period laggéukivariance
equation can solve the problem of multimodality. Doornikl @oms (2002) use this to implement a
procedure for outlier detection in GARCH models.

Section 3 further investigates whether multimodality ipiefctical relevance, even without dummy
variables in the mean equation. This requires us to be maeifgpabout the model, in particular
about possible restrictions on the GARCH parameter spaeeprdsent a refinement to the Nelson

and Cao (1992) conditions, which relax the original Bolerg1986) positivity conditions, and show
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how these can be implemented by parameter transformatibhe.major benefit of this is that we
can estimate the model using standard unconstrained neatiomn, and that the original analytical
derivatives can be used (see Fiorentini, Calzolari, ancét®am, 1996), in combination with the Ja-
cobian of the transformation. Because the Nelson and C&2jlbnstraints are very complex for
higher order models, we suggest another set of constraiitsse relax the positivity restrictions in
a different way, and are easier to implement and interpres. cdmpare the impact of the different
parameter sets in GARCRI(2) models. Using four choices of the parameter space, we tacts
for multimodality in samples from simulated GARCH@) processes and in an empirical application
using daily British Pound/US Dollar exchange rates. We haie that multimodality is a potential
problem in applications, and recommend the adoption of édusearch using random starting values

whenever estimating a higher-order GARCH model.

2 Multimodality caused by dummy variables

In a normal linear regression model, the effect of introdgca single dummy variable is to set the
residual,z,, for that observationy,, to zero. The same effect is obtained by replacindy v,

its conditional expectation given all other observatiofs= E(ys|y1,---,Ys—1,Ys+1,---,yr), and
leaving all other values unchanged. Effectively, the oletewn is treated as missing and replaced
by the ML estimate. Essentially, the same effect of intrady@ dummy applies whes follows a
linear Gaussian time-series process, see Gomez, MarandlPefia (1999) for a systematic overview
of this topic for ARMA processes. At first sight, it is not uasmnable to think that this also applies
to a regression model with ARCH or GARCH errors. The next gdamhowever, shows that this is
not the case.

As an illustration, we use the Dow—Jones index (Dow Jonegsinidl Average: close at midweek
from Janary 1980 to September 1994, 770 observations if);ttta figures are for Wednesday (or
Tuesday if the stock market was closed on Wednesday; theadafaom www.djindexes.com). The
returns,log Y; — log Y;_1, are given in the top panel of Figure 1. The large negativametf —17.4%
corresponds to the Black Monday crash of 19 October 1987.

We start by estimating an ARCH(1) model, where the mean aquabnsists of a constant and a

dummy variable (or impulse intervention) for the 1987 crash

Yt = C+yderash+ ¢,

_ 2
hi = ap+ arerq,

wheredash takes value one for the Wednesday after the crash, zerowosiger Lete, ag, a1,7 be



ALog(DowJones), 9-Jan-1980 to 28-Sep-1994
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Figure 1:Log-returns on Dow—Jones index (top), with likelihood godthe dummy parameter, correspond-
ing to the 1987 crash (bottom}ys = —(ys — 7).

the maximum likelihood estimates, also see equation (2weTl he bottom panel of Figure 1 plots
the log-likelihood values as a function of with the remaining coefficients kept fixed atay, a; .
The figure shows a pronounced bimodal shape of the likelined@t a local minimum afy,, and two
maxima aty; andy, (¥ = 71 = 5»). The corresponding interpolated value is given on the towe
horizontal axis of the bottom graph. Quite surprisinglyliad an ARCH term to a regression model
with a dummy variable clearly changes the role of that véeiabable 1 provides details on the two

maxima and single minimum.

Table 1: Extremes of the ARCH(1) likelihood from Figure 1b.

Ys v ys(v) &)
—0.174 —0.244 -0.242 0.068 left mode~;
—-0.174 —-0.176 —-0.174 0 local minimum 5y
—0.174 —0.108 —0.106 —0.068 right mode-

Even in the simplest ARCH model the estimate for a missingolagion does not always corre-
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spond to its conditional expectation given the other ole@ns. For interpolation in this casg, is
not determined by its expectation. An exceptional retunplicit in 57 or5,, can be more likely than

an average return, implicit ify. We provide an analytical explanation below.

2.1 GARCH models with a dummy variable in the mean

The following proposition explains the effect of the dumnayiable for the GARCH{, ¢) model.

Proposition 1 Consider the GARCH( ¢) regression model with mean specifiedyas= z;¢ + dyy +
g¢. The additional regressor is a dummdy, whered; = 1 whent = 5,1 < s < T, andd; = 0

otherwise. Define
q p
Gs = — |hsy1 — o — Zaifgﬂ—z‘ - Z@'hsﬂ—i
i=2 i=1
@) WhenG, = 0 the log-likelihood/(#) has aunique maximundfor ~:
:Y\O =Ys — .’L‘;E,
with g, = 0.

(b) WhenG, > 0, £(0) hastwo maxima which are only different in the value of

~ - ~N1/2
Yi,s = Ys — -TISC - Gs/ )
~ = ~1/2
Y2,s = Ys — -IJSC + s/ .

Both modes have identical likelihood values and secondvdtiwves, and have otherwise the

same parameter values. In this cagge, = ys — z,¢ corresponds to a local minimum.

The role of G, and the properties of the likelihood are discussed in thé sention.

Proposition 1 indicates that the dummy variable does natydvead to multimodality. In the first
casey = ys — a:’sf, and the dummy plays a similar role as in the linear regrassiodel without
GARCH errors. However, whe@'; is positive at the maximum, there are two identical modes Th
value of G, depends on the parameter values and on past and futureaissitiuan ARCH(1) model
we can conside6”; (defined in (11) below) as a function of the parameters (ogjust evaluated at
the values corresponding to the maximum). The next sedtiem $hows that negative’ leads to one
maximum, and positive to two. Alsd;; depends only on the residuals immediately after and before
the time of the impulse and bo®G? /9e%_; > 0 anddG*%/de2,, > 0. Proposition 1 states that the

likelihood derivatives are identical at both maxima. As asexjuence, both estimatesyohave the



same estimated standard error, which results in two differgalues. The estimation procedure may
pick either maximum, but deciding significance by lookindreg¢-value is problematic. Note that a
dummy at the end of the sample cannot lead to multimodality.

When a dummy is included as regressor, standard econoreefticare may find the local mini-
mum instead of one of the maxima: if the starting value fordbenmy parameter (often determined
by a prior regression) corresponds to the local minimumderévative is zero. Then, during subse-
guent iterations, the dummy coefficient will not move, andwergence is to the local minimum. This
will show up when the standard error is computed, becausesatii@nce matrix is negative definite.

Bimodality leads to two residualsz; ; = @i/Q andéy; = _@;/2 corresponding to twa;:
Yis = Ys — @iﬂ, Yos = Ys + A§/2. In Table 1, the solutioly, s might be more appealing from an
economic point of view, but this does not follow from the miital model. Diagnostic tests based on
the residuals (or standardized residuals: there is onlywahe forh,) will have different outcomes,

unless only the squared values are used.

0-0050f ésfor s=3,...,770
‘ ' J\W’J‘l‘ 1 | .

I W ST P S P
L L L L L L L L L L L L L L L L
0 100 200 300 400 500 600 700

0157 corresponding, .—{

0.10- 2s s

0.05f
0 100 200 300 400 500 600 700

Figure 2: ARCH(1) model for growth rates of Dow-Jones with moving duyrwariable:éz (top), 2,5 — V1.5
(bottom).

To assess the relevance of Proposition 1, we run a singly dutinrough the data, re-estimating
the ARCH(1) model every time (the mean is specified asyd;, d, = 1fort =s, s =3,...,770).
Figure 2a plots the value 6?3 for the 768 estimated ARCH(1) models, with positive valueBadating
multiple maxima. There are 59 cases V\@la > 0, and correspondingly with two solutions for the
second graph displays the differerigg, — 7, s = 2@/2. For the cases without multimodality there
is only one estimate of andy, = ¢ + 7.

In Figure 3 we only consider the cases which have multimbdallrhe top graph shows the

t-values whenGG, > 0. Using a critical value of two, there are several cases with tostatistic
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Figure 3:t-values of left and right mode (top), and absolt#&alues (squares and circles) with square

root of likelihood-ratio test (continuous line). Both orftyr cases with multimodality.

insignificant, and the other significant. In a few cases @isg for example), the left mode has nearly
significant negative value, and the right mode a signifigapdsitive value if a critical value of 2

is used. The second panel shows the square root of the btkalihatio test, which has one degree
of freedom, together with the absolute values of ttsatistics. The LR test has only three of the
displayed observations significant. Interestingly, ildels very closely the lowest of the absolute
t-values, suggesting that the smallégt should be selected. Unfortunately, in practice it will be

unknown which of the twae-values is found, unless the modeller is aware of the problem

2.2 Proof of Proposition 1

The log-likelihood of (1) is given by:

T T
B B 1 z—:?
6(0) = th(e) =c¢—5 Z <log(ht) + h_t> : 2
t=1 t=1
Assuming that the start-up of the recursive process doedep®nd on the parameters, the score is
given by:
8&(9) i Et Bet 11 ) 8ht
90~ h 00 217 (e =25) 5g ®)

with e, = y; — x1¢ — dyy. Itis convenient to use the ARCHY) form. Define the lag polynomials
B(L)=1-"P_ 3L}, anda(L) = 3% | o;L?, such that

he=B(L)"" (a0 + a(L)e}) = af + > 5ie7;. 4)
j=1



This requires that the roots ¢fz) = 0 lie outside the unit circle. Furthermorg(z) anda(z) are

assumed to have no common roots to ensure identificatioredhtlividual GARCH parameters. As

discussed in detail i§3.1, nonnegativity of thé;s will ensure that, is always positive wheng > 0.
The main example is the GARCH(1,1) model Witk< 31 < 1, oy # apfy:

hy = ag + a15t2_1 + Brhi—1,

which can be written as
ht—a0+alzﬁ] el —j 5)
7j=1
given ey and hg, whereaj, = ag(1 — 31)/(1 — 51) + Biho, which does not depend on In the
ARCH(co) representation (4) of the GARCH(1,1) case:= a1, 62 = a1, 03 = a1 33, .. ..

The first order conditions (3) foy can be expressed as a functiorepindh,:

Dz O3 Ohy <
8_’}/ = —d;, a—/; = —2¢e:d;, thus W = —QZ(%'Et_jdt_j.

Sinced; = 0 for t # s andd; = 1:

% = —20;_se, fort>s,
Oy

and zero otherwise. The full score with respect tis:

0¢(0) €s 01hs
—:——I-ES (5t3 Et):— 1+
oy tzs;rl h2 hg h§+1

(het1 —€241) + s | » (6)

wherex; = hg ZtT:s+2 Or—shy (ht —e2). In (6), e, is a function ofy; h,,; depends or?, and is

therefore also a function of, as are alk; for t > s + 1, and therefore:,. Define
Q1(hs+1) = (1 + ks) hg—rl + d1hshs+1 — 51h55§+17 (7)

so that maximizing the log-likelihood w.r4. requires solving:

o) e B
o " h hzﬂ@l(hsﬂ) =0. (8)

In order to prove that a solution leads to a minimum or maximuemeed the second derivative

of the log-likelihood with respect tg:

020(0) 1+ ks 01 262 — Iy
@ = R, (e ) =p3rd (e

t=s+1

Two situations can attain when solving (8):



e £, = 0 is the only solution of (8), corresponding4o= y, — z.(.

For s = 0, the second derivative matrix at the solution is block dredawvith respect toy,
because all terms in the derivative of (6) w.r.t. the GARCliapzeters contain a factar;.
The last term in (9) drops out whef) = 0. The first two terms add up tQ;(hs-1) divided
by —hsh?, . SinceQ:(hs+1) is monotonically increasing for positive values faf;; when
1+ ks > 0, we can infer that it must be positive f6r = 0 to be the only solution. This makes

the Hessian element negative, as required for a maximum.

Although1 + kappa could be negative, we have not seen any cases whgre 0 at~.
e There is ah,. such thatQ; (hs+1) = 0.
Two additional solutions to (8) can then be derived from:

5, 1

q p
_ ) B ~ e
Es = o hsi1—ap — g Qi€ 1 — g Bihsi1-i| = Gs <h3+1) = Gs.
i—2 =1

This is now positive, and the additional two solutions are

5=y, — i+ G2

In that case, the log-likelihood and its derivatives areitbal for both values.

Now £; = 0 leads to a negativ€);(hs+1). This creates a positive diagonal element in the

Hessian, violating the conditions for a maximum.

A necessary condition for bimodality is that the solutiorg(hs41) = 0:

42 1 . 1/2
14+ 1+M (10)
d1hs

sk o h551
s+1 — 2 (1 i /fs)

is positive. In addition, the implied:> must be non-negative. Therefore, whes «, is positive, the
negative solution can be ignored. Whenr- «, is negative, there are two solutioh$, ;. However,

only one of these correspondsiNtQH. O

The expression fof7; merits further discussion.
In the ARCH(1) model we hav& = 0 for ¢t > 1, so thatx; = 0 for all s. Now (7) can be solved

42 1/2
1+ (1 - ﬁ)
Oélhs

expicitly for~. It is zero when

% o hsal
S+]. - 2




is positive (the negative solution can be discarded). Then

42 1/2
G::E[—lJr(H— ES“) - (11)

2 Oélhs Oéo’

and it is easy to see that; depends positively on bo@l‘fJrl ande2_,. Dummies in a volatile period
can lead to multimodality.

In the GARCH(1,1) model, we can no longer solve (7) analiiicaWe can only derive some
properties that a solution will have. In particular, knogif, there will be two modes if (10) has
a positive solution, which can not be ruled out, in particdnene,; is (also) large. The fact
that dummies shortly before a volatile period can lead taimoldality is illustrated in our empirical
application in the next subsection. In practice, if estiorabf the model with a dummy yields = 0,
then this is either a local minimum or a global maximum, whietm be verified be inspecting the
second derivative. Otherwise,

N R
Gs = — hs+1 — Qo — ﬁlhs]
g

is positive and there are two global maxima.

2.3 Dummy variables in EGARCH models

The proof in§2.2 makes it clear that multimodality may occur in GAR@H{) models, especially
when a sequence of large squared standardized residualssisnp and a dummy is introduced in
the preceding period. A similar effect could be expectedttfier EGARCH model (Nelson, 1991),
although not necessarily symmetric multimodality.

Figure 4 shows the likelihood grid when specifying the exbrgf Figure 1 as GARCH and
EGARCH. The EGARCHY, ¢q) parameterisation for the conditional variance reads:

q p
loghe = ag+ Y _ o {016 + U2 (|G| — El&e)} + D Bilog he s, (12)
i=1 1=1

with a; = 1. The main added flexibility of the EGARCH model derives frame asymmetry term
Y1&—4, which usually implies larger effects di from negativeé;_; than from positive;,. As
before, we plot the likelihood grid as a function pfwith the other parameters fixed at their values
found at the global maximum.

Both plots in Figure 4 exhibit bimodality. For EGARCH, thedwnaxima are at different like-
lihood values, owing to the asymmetry term. When imposing= 0 in (12) both modes are at the
same likelihood value. Because of the appearance of absadiiie in (12), the local minimum is at

a point where the likelihood is non-differentiable. Unldiss iterative estimation procedure starts at
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1926
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1928+
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Figure 4:Likelihood grid for the dummy parameter corresponding ® 1887 crash, GARCH(1,1) (left) and
EGARCH(1,1) (right).

the local minimum, this non-differentiability will not caa problems in practice. However, now it
matters whether the local or the global maximum is found.

Figure 5 plotsy, s —7 , for the GARCH(1,1) and EGARCH(1,1) models. Now there areuaB0
cases with two modes in the likelihood. Note that the valoes{f ; — 7, ; = 2(3;/2 for the GARCH
model are much larger in the four weeks before the 1987 cteshih the week of the crash itself.

Effects of shifting and extending the dummy are considenetié next subsection.

0.155 ¥, s~ s for GARCH(1,1) model

0.10r

= 1 d B ]

- 9,  for EGARCH(1,1) model

ST N T L | YO |

Figure 5:Estimates ofj2 s — 71,5 for the GARCH(1,1) model (top) and the EGARCH(1,1) model(bm).
For completeness, we remark that GARCH models with Stutlemters can also exhibit multi-

modality, although we had to try another data set (UK quigrieflation for 1955Q1 — 2000Q4) to

find some examples.
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2.4 Extended dummy variables in GARCH models

Up to this point, all dummy variables had only one non-zerseptation. Here, we consider a dummy
variable that is unity forj consecutive observations:, ..., s + j — 1. The score (6) fory in the
GARCH(p, ) model becomes:

1+

O1hs ik
p

s+k+1

(hstha1 = €oppr1) + Hstk (13)

For example, whep = 2, the dummy variable is unity for two observations in a row.eft{13) is
zero wherg; = £,4.1 = 0, but also has a solution wher; > 0 andGs,; > 0. In general, any
dummy variable that picks out observations with positizewill have two modes. In such a situation

there may even be more than two modes.

1900 ==
1850 1850
o " o
Dy L e I i
ARCH(1) . Dy | ARCH(1)
18007 " .| 1800] e
I ) L o ‘ o
01 -0.2 -0.1 0.0 0.1
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DtJ+l L Dl Dt
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b ‘Pt+1 . ‘:"Dt ] ‘
. I . L I R . b e Y S
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Figure 6: Concentrated likelihood grid for the coefficient B . D{H starts in the week before the 1987

crash (left graphs)D{ starts in the week of the crash (right graphs). Dummy coesnforj periods,j =

1,2,3,5,10,50. The thick solid lines are for one-period dummigs={ 1). The thin solid lines are for the two

period dummies{ = 2). The dashed lines fgr= 3, 5, 10, 50 are below each other within each panel.

To investigate the case with extended dummies, defamethe week of the 1987 crash (this is as
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before; remember that we use weekly data). We now constradotlowing variable:

D] =

1 fort=s,...,s4+j—1,
0 otherwise,

We also use this dummy variable with a lead of one perDZLl, which now starts one observation
prior to the crash.

Figure 6 show the effect of shifting and extending the dummyhe ARCH(1) and GARCH(1,1)
profile likelihoods fory. The thick solid lines in the right graphs are By and correspond to the
dummy variabled; used in Figures 1 and 4. In Figures 1 and 4 we fixed the remapangmeters
in the construction of the likelihood grids, but Figure 6tplthe concentrated log-likelihoods: for a
range of values foty, constructy; = y; — yD{ and estimate an ARCH(1) model (top two panels)
and a GARCH(1,1) model (bottom two panels) fgr We expect the GARCH parameter estimates to
depend more strongly on the dummy parameter when the dumtegds<over a longer period, and
we therefore choose to re-estimate the GARCH parametehésicdse. In all cases, a constant is the
only other regressor in the mean. The circles in the bottoogmphs match the solution that would
be found if the coefficient of the dummy variable is fixed by @pregression ofy; on a constant and
Df, i.e. the solution corresponding Ef:g_l g =0.

The symmetric bimodalities of the thick solid lines cormesg to the single period dummies. By
comparing left and right figures, one observes that the batityds more pronounced when the single
dummy is added in the week before the crash. For the GARCH intde multimodality largely
disappears as the dummy is extended. Note that the modethittihree period dummy, attains the
highest likelihood of all models where the dummy starts oeeopl before the crashD? ;. When
the dummy starts with the crash, the two period dummy hasititesht likelihoods:D?. The profile
likelihoods for the ARCH(1) models reveal many cases withtiple modes once the dummy is unity

over two or more periods.

2.5 GARCH with a dummy variable in the conditional variance

Proposition 2 Consider the GARCH( ¢) regression model specified with a lagged variance dummy
as follows:

Yt = 2 +vdi + &,

B(LYhy = oo+ a(L)e? +7d; 1,
whered; = 1 whent = s,1 < s < T, andd; = 0 otherwise. This combination of dummy variables

does not induce multimodality in the log-likelihood fupati
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Proof
We extend the proof i§2.2. The crucial term in the likelihood functioh, 1, is now a function
of both~ andr. The ARCHEo) equation (4) is extended to

t t—1
he=af+ > 8t +7 > didij, (14)
j=1 Jj=1
whereg(L) = ¢1L + ... = L[B(L)]"". In particularg; = 1. So
aht(77 T)

—— = Qt— fOI’t>S,
or ¢t s

and zero otherwised/(6)/0~ was given in equation (6) and does not change by the intramuof

the variance dummy. From (3), we find the full score with resper as:

(O) 1 1 17 1
9r 9 Z ¢t—sh—% (ht—Eg) =75 hg—ﬂ(hs+1—€§+1)+)\s )
t=s+1 s

where), = ZtT:5+2 gzbt_sht‘z(ht — £2). This leads to a second quadratic equatiorvifar; (v, 7):
Q2(hs+1) = Ash? | + hsy1 — 2,1 = 0. (15)

Although Ay = Xs(v,7) (unless an ARCH(1) model is considered), an additionalt®wiuvould
solve @, = 0, which can be expressed in terms?ghl. @2 has a positive real solution jA;| > 0

1_-2 .
and\s > —ze 7!

Bt = (@A) [T+ (14+4e2,0) %] A >0

~

(16)
hosr = DT 1 (1+4e2000) 2], —ie <A <0

while gy 1 = g2, is the solution ifA, = 0.

The multimodality result fory only extends to the current model if the root@$ simultaneously
solvesQ:(hs+1) = 0, givenin (7), because the extra stationary point§ 6f were caused by solutions
to Q1(hs+1) = 0. Otherwise, multimodality is avoided, agd = 0 in (6) provides the single solution
for .

If A\s = 0, the solution to (15) simplifies tasﬂ = E§+1. Substitutingﬁsﬂ into (7) shows
that@1(hsy+1) = 0 then requiresz’iirl = hsy1 = 0, which is not a feasible solution to the maximum
likelihood problem as the log-likelihood becomes minusiityifor 51 = 0. If |A\s| > 0 substitution
of (16) into (7) shows this is not a solution either, unleﬁs1 = hs+1 = 0, which again can be ruled
out. g
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Proposition 2 shows that adding the corresponding dummily evie lag to the variance equation
provides a way to avoid the bimodality in the GARGHY{) model that was detected in Proposition 1.
It is instructive to see what happens for= 0. The ARCHg) model has\; = 0, and therefore

hsy1 = £2,4. A straightforward solution for follows:
~_ 22 22
T =68, —ap—a(L)E;,,.

Finally, consider another relative timing of the two dumsi# the dummy enters both the mean
and variance without lag, the solution € (-) = 0 applies toh instead ofh,,1, which does not
immediately interfere with the first order conditions fgrso bimodality remains a potential issue. If
Gs < 0 andp = 0 the first order condtions foy andr lead toz? = hs = 0 and a log-likelihood of

minus infinity results.

3 Multimodality without dummy variables

We have shown how the introduction of dummy variables, wiigctegularly done in practice, can
cause multimodallity in the GARCH likelihood. However, &gl dummy variables may not be the
only cause of multimodality. The objective in this sectisrto investigate the incidence of multiple
modes without a regression part for the mean. As modes may atainreasonable values for the
GARCH parameters, we first discuss restrictions on the GAR@&tdmeter space §8.1. Implemen-
tation details will also be provided. NexX{3.2 discusses the effects of the restrictions on the number
and type of modes found in samples from simulated GARCH @& @}esses, and in an empirical data

set concerning daily British Pound/US Dollar exchangesiate

3.1 Parameter restrictions

In order to investigate the incidence of multimodalitysiimportant to know what restrictions are im-
posed on the parameter space. In practice, the GARCH modféis estimated without restrictions,
but Bollerslev (1986) formulated the model wiily > 0, and the remaining parameters nonnegative.
Nelson and Cao (1992) argued that imposing all coefficiemtsetnonnegative is overly restric-
tive, and that negative estimates occur in practice (thetyséveral examples). Subsequently, He and
Terasvirta (1999) have shown that such negative coefteigiow for richer shapes of the autocorre-
lation function. Nelson and Cao (1992) gave sufficient ciois such that the conditional variance

is always nonnegative for the GARCH(), and GARCH, ¢) case! The restrictions are imposed in

!Instead of nonnegativie;, we use positive; wheh; is zero, the log-likelihood is minus infinity.
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the ARCHEo) form, which was introduced earlier in equation (4) in coeti@ with multimodality
caused by dummy variables. The parameter restrictions @may &n impact in that context as well,
but in the remaining part of this paper we focus on multimibgd#@h the absence of dummy variables.
Nelson and Cao (1992) requitg, = ao/F(1) > 0 andd; > 0 Vi. This implies that the roots of
B(z) = 0 lie outside the unit circle. Furthermorg(z) anda(z) are assumed to have no common
roots.

In Appendix 2 we refine the Nelson and Cao (1992) conditiomgife GARCHE, ¢) case, i.e.
for p = 2, by removing redundant conditions. Table 2 summarizes ék&ictions for low-order
GARCH models. The conditions on the roots wheg: 2, as given in Table 2, can also be expressed
asfy + 31 < 1, B2 + 46, > 0. In the original formulation, the restriction for GARCH3,which
is unnecessary i8; (as + Biaq) + aq > 0; alsoag; > 0 reduces tayy > 0.2 In addition, Appendix
2 shows how the restrictions can be imposed by parametesféramations forp < 2, which allows

implementation in the form of unconstrained optimization.

Table 2: Nelson & Cao conditions for some GARCH models.

GARCH(l,l) ap >0, a1 >0 0<p1 <1
GARCH(].,Z) ag >0, a1 >0 0<p <1 a2 + prag > 0.

GARCH(Z,].) ag >0, ag >

)

0 < |p2| < p1 <1, p1,p2 real.
GARCH(Z,Z) ag >0, a1 >0 0L |p2| < p1 <1, p1,p2 real a9+ (pl + pQ)Oél >0,

andas 4+ prag > 0.

Notes:

1: B(L) = (1 — p1L), B1 = p1;
2: (L) = (L = p1L)(1 = p2L), Br = p1+ p2, B2 = —p1p2.
(L) andB3(L) have no common rootg; is largest absolute (inverse) root.

p
p
«

It could be argued that even the Nelson and Cao (1992) conditire too restrictivé.For exam-
ple, the restrictions imply; > «f. And, when the initialj; are positive and dominate the coefficients
at higher lags, the probability of obtaining a negative ¢oowdal variance becomes essentially zero.

Because the Nelson and Cao (1992) constraints are very egrfgnl higher order models, we
now suggest another set of constraints. These relax thévigsiestrictions in a different way, and

are easier to implement and interpret. They are based onRiMAArepresentation for the variance

2This slightly simplifies the derivations in the Appendix afidle and Lee (1999), where, in a component GARCH(1,1)

model, the component (which itself follows a GARCH(2,2)¢ess) is shown to be positive.
3This point was also made by Drost and Nijman (1993).
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process. The equation fég of can be written in ARMA form using,; = 7 — hy = (£2 — 1)hy:

m p
€2 = oy + Z(ai + Bi)er; — Z Bit—i + ug, (17)

=1 =1
wherem = max(p, q) andg; = 0fori > p, a; = 0 for i > ¢; note thatE[u¢|F;—1] = 0.
Taking unconditional expectations of (17), we can ensusgigiy and invertibility by the condi-

tions:
ag > 0,

a; + B3 >0, fori=1,...,m. (18)
0< > i+ i <1,
where, as beforep = max(p, ¢). Note that estimation automatically ensures that in-samaplues
of h; are positive, otherwise the log-likelihood would be mimuignity or undefined. The coefficients

in the ARMA representation (17) are:
et = (a+ B)(L) " (a0 + B(L)u) = af* + > yiuri, (19)
i=0

where3(L) =1-Y2_ BiL, (a+B)(L) =1 -3, (e + ;) L%, andyo = 1. The~; coefficients
show the IGARCH boundary: if they remain constant after dtreirperiod, then) " | o; + 5; = 1.

Table 3: Types of GARCH parameter restriction.

UNR Unrestricted, except fokyy > 0;
N&C  Positive conditional variance: conditions (DO1)—(DO4&e Appendix 2;
uv Positive and finite unconditional variance: restrictioh8)( see Appendix 3;

POS All coefficients positiveig > 0,; > 0, 5; > 0, also see Appendix 1.

Table 4. GARCH processes A-D.

Process oy sz B B p1 P2 Yoo+ 5
A 010 0 085 0 0.85 0 0.95
B 010 0.0 0.10 0.65 0.85777 —0.75777  0.95
C 010 010 —-0.10 0.85  —0.97331  0.87331 0.95
D 035 —0.20 0.70 0.10 0.82170 —0.12170  0.95
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Table 3 summarizes the parameter restrictions that aredsoad here. The relevant appendices
show how these restrictions can be implemented throughhedea transformations. Then, restricted
estimation can be implemented as an extension to unrestregtimation, using the Jacobian of the
transformation (which can be computed analytically or nucadly).

To compare the impact of these restrictions, we use a GARQMHéhd three GARCH(2,2) pro-
cesses, see Table 4. Processes C and D are not allowed witeeféitients are forced to be non-
negative (POS). Process D is not allowed by parametrizatMrbecausexs + 32 < 0, but is fine for
N&C. Process C is just allowed by UV, but not by N&C becauseléingest absolute root is negative.

Figure 7: Coefficients; (top) andy; (bottom) for GARCH(2,2) processes B,C,D and GARCH(1,1)

process A.

Figure 7a plots the coefficiends from (4) for the three GARCH(2,2) processes. The sectiomfro
lag 30 to 60 is shown as a separate inset. Process B starta wiijlzag pattern, but becomes smooth
as it approaches zero. Process C, on the other hand, ortlytstaeally zig-zag as the lag-length gets
beyond 15. The fact that it moves around zero, while gettmglker, is not allowed by N&C-type
restrictions. Moving process C onto the N&C bounday & 0, 5> = 0.75) makes the coefficients
behave like a step-function, with increasingly smallepstas they approach zero. A feature of D is

thatd, is smaller thards. Figure 7b plots the; coefficients from (19), omittingg (= 1).
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3.2 Searching for multiple modes

This section presents some evidence on the possible ooceroé multimodality when the mean only
consists of a constant term. We consider the four types @fnpater restrictions UNR, N&C, UV
and POS, as discussed in the previous section. ImplemamtafiN&C is explained at the end of
Appendix 2; for implementation details of UV see AppendiXT®e choice of parameter restrictions
will affect the outcome: restricting the parameter spacg reduce the number of modes, but could
also introduce additional solutions on the boundary of gn@meter space.

To look for multimodality, we estimate a GARCH model, givipgrameter estimat@s(say). We
then re-estimate with + ¢ as starting values, with drawn from the standard normal distributitn.
In case restrictions are imposed, the transformed estinfiaien the first estimation are randomized
(there are no restrictions in the transformed space, sedpbendices) to provide starting values
for subsequent estimations. This automatically keeps éestarting values within the constraints.
We sample starting value until 250 GARCH models have beeoesstully estimated. If any local
solutions are found, the models are then re-estimated todbepecific properties. For example, the
second derivative at the solution must be negative defiaita focal maximum.

We start by considering a single sample16f0 replications for GARCH processes A-D. For
each process, this is generated from the same random ncemagrce, and 250 initial observations
are discarded. Table 5 gives the maximum values that weradfatter this search. For each pro-
cess, the same log-likelihood was found when estimating GA(1,1) model. The table lists the
improvement in log-likelihood when moving from GARCH(1,t) GARCH(2,2): !7272 — 571,1, and
from GARCH(2,2) to GARCH(3,3)£A373 — Zg,g. A single star indicates that the likelihood-ratio is
significant at5% on ax?(2) test, while two stars indicates significancel .

A notable feature, which we also found in other samples, as tlverparametrized unrestricted
estimation finds maxima at ‘strange’ parameter values. § hesxima tend to be considerably better,
therefore likely to be accepted on LR or AIC criteria.

For N&C there are two cases in Table 5 where the more genemdhhas a lower log-likelihood.
This indicates a local maximum, because the more restritiedel witha; = 33 = 0 would be
better. In the random search for GARCH(2,2) maxima on thegs® A data, the overall maximum
was found90% of the time, and the local in the remainin@%. For the GARCH(3,3) estimates of

process A, the overall maximum was only found3i# of the cases, the next bestirb%, and the

“We could have considered using the estimated variance éondhmal distribution. However, there is no guarantee
that a local optimum would provide a good estimate of thearare. Moreover, this would not allow parameters with low

‘standard errors’ to move very much.
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Table 5: Changes in likelihood vaIué%,, at located maxima for GARCH(p) models,p = 1,2,3

for a single replication from processes A-D.

UNR N&C uv POS

process A
oo — 011 3.0678% 11473 04637  0.4290
l33— 0y 9.2421xx  0.1022  0.6982  0.7296

process B
Uy — 011 2.6383 1.6220  0.9074  0.8567
l33— Uy 85432« —0.4132 03014  0.3521
process C
Uy — 011 2.3391 1.5305  0.6626  0.6122
l33— LUy T.6686%x —0.2400  0.6279  0.6783
process D

oo — 011 6.1170%%  6.1170%x 6.1170% 4.4192x
l33—Llyy 0.7556 0.7556  0.3146  1.2327

~

£y pis the log-likelihood for GARCHy, p) model.

worst in95%. Note that, when searching, the most common solution watoraized (i.e. that found
from default starting values). In general, our experienes that the global maxima of unrestricted
estimation can be hard to find. For the restricted paranzaetésns, on the other hand, the most
commonly found solution is also usually the best.

Figure 8a shows the coefficienisfor all unrestricted GARCH(1,1) and GARCH(2,2) estimates
that converged when using the realization from the GARCH(process A. The corresponding
GARCH(3,3) results are in Figure 8b. The different patteresquite surprising.

Figure 9 shows the coefficientg for N&C and UV. In this case UV and POS are identical,
except that UV found a small number (abddt) of local solutions on the IGARCH boundary. The
corresponding figures for the realization of processes BGlwbk very similar.

Finally, we look at selecting a GARCH(q) model for the British pound to US dollar daily ex-
change raté.The sample has 2915 observations (7-Jun-1973 to 28-J&5);18& is similar to some

5The data source is: Federal Reserve Statistical Releas® Blailable on the web from www.frbchi.org/econinfo

[finance/for-exchange/welcome.html
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Figure 8: Coefficients; unrestricted GARCH(2,2) (left) and GARCH(3,3) (right) iesites, for all

(local) maxima. Data is from process A.

Yi Y,

L 1L

0.1001- N&C 0.100- f. UV and POS
Eoh —— GARCH(1,1): -2820.6 i ;‘| —— GARCH(1,1): -2820.6
B GARCH(2,2): -2819.4 I GARCH(2,2): -2820.1
r \‘ —— GARCH(3,3): -2819.3 | 5 9751 — — GARCH(3,3): -2819.4

Figure 9: Coefficients; of GARCH(2,2) and GARCH(3,3) estimates for N&C, UV and PO&i®

is from process A.

of the estimations in Nelson and Cao (1992). For GARCH(IGARCH(2,1), and GARCH(1,2) we
found no multimodality, but for higher order models, we drtifimultiple solutions, even with such a
large sample size. Table 6 lists some of the maxima that weredffor selected GARCH models. The
columns labelled ‘robustness’ give the percentage of tireesame solution was found when using it
as a starting point for a randomized search. Again this isdas 250 successful estimations. A low
robustness value could indicate that it is difficult to l@cttat particular mode.

In the unrestricted case in particular, the random searreded considerably higher likelihoods.
The same happened with GARCH(3,3) estimation for the N&@ cksr the other cases, the solutions
are very close in terms of the log-likelihood. Testing dowa tiag length is problematic when there are

many local maxima: it can easily happen that a sequence t#dkgpotheses is not nested in terms of
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likelihood values (as happened for the GARCH(3,3) estimateler UV). None of our GARCH(1,1)
estimates, either on the artificial processes or actual dataaled multiple modes.

Table 7 reports the models that are selected on the AlCioniteT he last column is for the ‘global’
maximum (although we cannot rule out that even better smigtéxist). Each parameterization selects
a different model: the estimated GARCH(3,3) for the unietgd case is quite different from the
Nelson&Cao restrictions. The column labelled ‘Robust’yonbnsiders those modes which were
found at leas60% of the time when re-estimating from that solution with ramilzation. This yields a
different GARCH(3,3) model for unrestricted estimationda GARCH(3,1) instead of GARCH(3,3)
for N&C. In the remaining two cases the solution does not geamll modes are very robust.

Figure 10 expresses the models in terms of the estimateticieefs~;. Note that the UV model
is IGARCH, and the best unrestricted model goes beyond titatavsum of GARCH parameters
equal to1.005.

Yi r Yi ¢
I —— UNR: GARCH(3,3) I —UNR gﬁggggg;
————— N&C: GARCH(3,1 —— N&C: ,
. Robust | uv: GARCH(Z(,Z) ) : Best |7 UV: GARCH(2,2)
o2 | POS:GARCHB) | ool | [ POS: GARCH(3,1)

Figure 10: Coefficients; for models corresponding to Table 7.

4 Conclusion

We found that inclusion of a dummy variable in the mean equatif a GARCH regression model
could lead to multimodality in the likelihood. Interestlggwhether this happens depends on the data,
but it is likely when correcting for large outliers. We betethat this curiosity, while of empirical
relevance, has not yet been explicitly noted in the litesatu

This finding has important consequences for empirical miodelFirst, at-test on the coefficient
of a dummy variable cannot be used in GARCH regression mod#lsen there are two maxima,
they will both have the same estimated standard errors, amcehpotentially very differentvalues.

Consequently, it is possible that one is significant, andbther insignificant. Asymptotic likelihood
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Table 6: GARCH(3,3), GARCH(2,3), GARCH(2,2) likelihoodluas at located maxima fd/$ re-
turns (" = 2915). And the percentage of occurrence based on 250 model ¢sifram random

starting values.

UNR N&C uv POS
loglik robustness loglik robustness loglik robustness likogrobustness
GARCH(3,3)
—2093.7 4.0% —2128.0 47.6% —2141.3 84.4% —2142.3 98.0%
—2109.5 8.4% —2130.8 84.8% —2144.1 99.6%
—2123.7 65.2% —2139.1 96.8% —2145.1 55.6%
—2134.5 3.6%

—21384  60.8%
—2140.9  39.6%

GARCH(2,3)
—2095.9  6.8%  —2141.3  100% = —2139.0  96.4% = —2142.6  74.0%
21127 3.2% —2142.6  94.4%  —2143.9  77.2%
—2141.3  8L.0%

GARCH(2,2)
21131 7.6% = —2142.3  100% = —2139.0 94.4% = —2142.6  72.8%
—21348  1.2% —2142.6  92.8% —2143.9  70.4%
—21426  92.4% —2144.9  99.6%

Robustness is the percentage of estimates that found sadeimmndomization.
loglik is the log-likelihood; see Table 3 for UNR, N&C, UV, FD

theory is affected by this violation of the regularity camoiis. Secondly, all model statistics which
involve the value of the dummy are affected. We also notetiwlita only dummies as regressors,
standard software may find a local minimum of the likelihoddnally, we showed that adding the
dummy with one lag in the conditional variance equation @edithe multimodality. We use this
result in Doornik and Ooms (2002) to develop a procedure titliey detection in GARCH models.
Next, we considered several types of restrictions on the GARarameters. In particular, we
presented a small refinement to the Nelson & Cao constraints showed how these can be made
operational within an unconstrained maximization settiMge proposed a simpler alternative which

allows imposition of the IGARCH boundary, while also beingna general than forcing all coeffi-
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Table 7: GARCH model fof/$ returns selected by AIC, for GARCHIK 3, ¢ < 3).

Robust Best

UNR: unrestricted (3,3) (3,3)
N&C: positive conditional variance (3,1) (3,3
UV: positive and finite unconditional variance(2,2) (2,2)
POS: all coefficients positive (3,1) (3,1)

Robust is outcome with robustness50%.
Best is outcome using best solution.

cients to be positive. This seems to behave as well in ouicgbians, albeit with a somewhat higher
incidence of boundary solutions.

We have shown that multimodality of the GARCH likelihood fgppactical relevance. It is likely
that applied results have been published without the asitheing aware of the possibility of multiple
modes. Our results indicate that, especially when goingieyhe GARCH(1,1) model, a search for
local maxima is important. We have also investigated theobtlifferent restrictions on the parameter
space. Unrestricted estimation is especially likely tosshaultimodality (for example with a unit root
in the 8 lag-polynomial, or with the sum of the GARCH coefficientsaer than one). In light of this,

it is important that restrictions are imposed on the paransiace.
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Appendix 1 Implementing the GARCH likelihood

Implementation of the GARCH likelihood involves severatidens, often only summarily discussed

in the literature:
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1. How to select initial values for the variance recursion;

Evaluation of the likelihood requires presample valuessfoand ;. In this paper we follow

the suggestion of Bollerslev (1986) to use the mean of tharegiresiduals:

T
ef=h;=T"") ¢, fori<o. (20)
t=1

2. Which restrictions to impose;

Bollerslev (1986) proposed the GARCH model with > 0, a; > 0, and3; > 0. This
ensures thak; > 0, and can easily be implemented. l¢g}, . .., ¢,4+, be the parameters used
in estimation, thewy, a1, ..., 5, = e®o ... e®s+r will ensure that all coefficients are positive.
The Jacobian matrix of this transformation is(dg, o1, ..., 5,). More general formulations

are discussed i§3.1, and below.

3. Which maximization technique to use;

We have found BFGS (see e.g. Fletcher, 1987 or Gill, Murrag, Wright, 1981) to be the
most successful numerical maximization method. This spwads with the consensus view
in the numerical analysis literature that BFGS is the pretequasi—-Newton method, see e.g.
Fletcher (1987, p.71) and Nocedal and Wright (1999, p.1BF5S avoids the need for second
derivatives. It is supplemented by a line search when, ateaation step, the likelihood does
not increase. BFGS was not considered by Fiorentini, Calza@nd Panattoni (1996), but we
found 100% convergence when replicating their Table 1 wi®Qlreplications (requiring about
17 iterations on average, whether starting from the DGPeglar from a starting value rou-
tine). BFGS may be somewhat slower than some other methotegbelieve that robustness

(i.e. success in convergence) is more important.

4. How to compute starting values for the parameters;

We use the ARMA parameterization of the variance process {f¥) and apply the method of
Galbraith and Zinde-Walsh (1997), developed for estinmtibARMA models, to the squared
data, after removing regression effects in the mean. Ifsezng, the resulting parameter values

are adjusted to enforce the unconditional variance to.exist

5. Whether to use numerical or analytical derivatives;

All estimates in this paper use analytical derivatives,epkavhen imposing all positive or
Nelson&Cao-type restrictions, and for EGARCH-type modelghen the Hessian matrix is

required for the variance-covariance matrix this is alsmpoted numerically.
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6. Which estimate of the variance-covariance matrix to use.

A comparison of various estimators is given in Fiorentira/Z®lari, and Panattoni, 1996.

Appendix 2 Positive conditional variance

Nelson and Cao (1992) (hereafter NC) formulated conditsm#hat the coefficients in (4) are always
positive. The conditions, expressed in terms of the lagrpmtyials (L) and«(L), require that the
roots of 3(z) = [[t_;(1 — piz) = 0 lie outside the unit circle. Furthermorg(z) and «(z) are

assumed to have no common roots. thim (4) can be derived recursively for= 1,2, .. .

0; =0, 1< 1,
0 = >0y Bidi—j +au, i<yq, (21)
51' = Z?:l Bjéi_j, 1> q.

S04; = ag.

GARCHK 2, ¢) case
The necessary and sufficient conditions fpp 0 Vi for the GARCHE, ¢) case are:

oy > 0; (DO1)

0<p1 <1, ppisreal (DO2.1)
lp2| < p1, poisreal  (DO2.2)
6:>0,i=1,...,¢q (DO3)

;]»:1 pT7a; > 0. (DO4)
NC Theorem 2 gives these conditions as:
ag > 0; (NC1)
0<p1, p1,p2arereal (NC2)
6:;>0,i=1,...,¢; (NC3.1)
dg+1 > 0; (NC3.2)
9 ey >0 (NC4)

Where it is assumed thgta| < |p1| without loss of generality. In the next proposition we shbatt

these two sets of conditions are identical.

Proposition 3 Conditions (NC1)—-(NC3.2) and (DO1)-(DO3) are equivalehewips| < |p1| < 1.
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Proof (DO2.1) and (DO2.2) combine (NC2) with the assumption thdt) is invertible, andp; is the
largest root in absolute value. Next, (DO2.x) imply tidt) = 1 — p; — p2 + p1p2 > 0, reducing
(NC1) to (DO1).

To see that (NC3.2) is redundant whenis negative use

Ogr1 = P10q + B2dq—1 = (p1 + p2)dq — p1P204-1,

anddg,4+1 > 0 follows from (NC3.1) and) < —ps < py.
If the roots are real and distinct (NC equation A.9):
mm(z,q o
5i = (p1 — (1+z] 1“_])0@-, i=1,....
7j=1
Writing a; = Z;n:lri(z,q) p%_jaj andb; = z;n:lri(z,q) p;_jaj:
07 = di (p1 — p2) = pla; — phbi.
Thend; > 0andps > 0 implies pap{a, > p2+1b Combining this with (NC4), which ia, > 0:
vy =0l ag — p§ by > plMag — paplag = plag (p1 — p2) > 0.

When the roots are equal; = p2 = p > 0 (NC equation A.6):

min(%,q)
0; = Z (1—|—i—j)pl+i_j04j, 1=1,....
j=1
So
P_15q+1 _ Zpl—i-q—J(l +q— j)aj + Zpl+q—jaj — (5q 4 p—qam
J=1 J=1
which is positive by (NC4) and (NC3.1). O

(DO1)-(DO4) has one restriction more than the number ofrpaters. Howeverpg_l(NC4)
= (DO4) is not always binding. For example, when= 1, it is automatically satisfied. In the

GARCH(2,2) case:
pra1 + ag >0, (NC4),

(p1+ p2)ag + ag >0, fromd, in (21).
Whenp, is negative (makings, positive), the first restriction is not binding.
The set of restrictions can implemented by transformatibew(DO4) and, > 0 are combined

in one restriction, obviating the need for constrainedhestion. The conditions

Zp 1qu jtoag>0,
Zq 1T a]+aq>0
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are both satisfied when, is sufficiently large. Therefore, we estimate the produca @mrameter
exp(¢,4) Which is always positive, and take, as the largest root.
To restrict any coefficient betweenp andp we can usé:

1—¢?

1—x/p
=PT—%>
14 e?

1+z/p

X

—p<zr<p & qﬁzlog( >,—oo<<b<oo.

See Marriott and Smith (1992) for the application of suchh&igype transformations to impose
stationarity in ARMA models.
The restrictions can be implemented as follows. beto: ..., ¢4, 1,12 be the unrestricted

parameters. Then:

a) o = exp(¢o),

(
) o= ISR = T en
©

(

(

b1 = p1+ p2, P2 = —p1p2,
d) o = 0; — Z?:l ﬂjéi_j usingéi = exp(qﬁi) forl1 <i< q—1, 6; =0fori < 1,
) .

1/2 1 g
e) ag=—3(x+y)+35[(x—y)+4exp(dy)] / ) l‘ZZ?:lﬁﬂq—ja yZZ?:}P? ‘.

This transformation imposes the necessary and sufficierdibons for GARCHK 2, ¢) models.

As NC point out, starting thé; recursion with the sample mean (20) will ensure positive- con
ditional variance. This is not necessarily the case whemgusiher methods to initialize pre-sample
values ofh;.

Appendix 3 Positive and finite unconditional variance

Estimation under restrictions (18) is achieved by tramafog the GARCH parameters. Writg

«; + f;, ands; for the partial sumss; = Z;- — 1 7. The restrictions imply thel < s; < s3--- <

Sm < 1, m = max(p, q). This can be implemented by introducifig< 6; < 1:

k m+1-k
Sr= I o
=1 =1
For example, form = 3:
m = 010203,
T + T2 = 91927
T + T+ T3 = 0.

6 ; it é —e? e -1 ; ; ;
Numerically, it is better to us1 7 wheng < 0, and 1 otherwise. This prevents overflow when evaluating
e e

the exponential.
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An unrestricted parameteris mapped td0, 1) usingd; = [1 + exp(—¢)] L.

If the unconstrained version &, = «g, 71,...,Tm, 51, .., 0n, n = min(p, q¢), and the trans-
formed parameterization = log «g, ¢1, ..., &m, B1,- - -, Bn, USiNgd; = loglhy /(1 — 61)], then the
Jacobian matrix can be used to move backwards and forwandexBmple, whem = 3:

-1

1 0 0 1 1 1

00 )

o = 0 (m + mo + ms3) 0 w3 w3 —1 |,
0 0 (71 + m2)? m —1 0

and8¢z/89, = [¢z(1 — gbi)]_l.
This allows the use of standard derivatives, as given indriimi, Calzolari, and Panattoni (1996)
for example. This representation also makes it easy to imfes 1, which estimates the IGARCH(q)

model.
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