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Abstract

In this paper we provide an asymptotic distribution theory for some non-parametric tests
of the hypothesis that asset prices have continuous sample paths. We study the behaviour
of the tests using simulated data and see that certain versions of the tests have good finite
sample behaviour. We also apply the tests to exchange rate data and show that the null of a
continuous sample path is frequently rejected. Most of the jumps the statistics identify are
associated with governmental macroeconomic announcements.
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1 Introduction

In this paper we will show how to use a time series of prices recorded at short time intervals to

estimate the contribution of jumps to the variation of asset prices and form robust tests of the

hypothesis that it is statistically satisfactory to regard the data as if it had a continuous sample

path. Being able to distinguish between jumps and continuous sample path price movements is

important as it has implications for risk management and asset allocation. A stream of recent

papers in financial econometrics has addressed this issue using low frequency return data (e.g.

the parametric models of Eraker, Johannes, and Polson (2003), Andersen, Benzoni, and Lund

(2002), Chernov, Gallant, Ghysels, and Tauchen (2003) and the Markovian, non-parametric

analysis of Aı̈t-Sahalia (2002), Johannes (2004) and Bandi and Nguyen (2003)) and options

data (e.g. Bates (1996) and the review by Garcia, Ghysels, and Renault (2004)). Our approach

will be non-parametric and exploit high frequency data. Monte Carlo results suggest that it

performs well when based on empirically relevant sample sizes. Furthermore, empirical work

points us to the conclusion that jumps are common.
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Traditionally in the theory of financial economics the variation of asset prices is measured by

looking at sums of products of returns calculated over very small time periods. The mathematics

of this is based on the quadratic variation process (e.g. Back (1991)). Asset pricing theory links

the dynamics of increments of quadratic variation to the increments of the risk premium. The re-

cent econometric work on this topic, estimating quadratic variation using discrete returns, under

the general heading of realized quadratic variation, realized volatility and realized variances, was

discussed in independent and concurrent work by Andersen and Bollerslev (1998), Barndorff-

Nielsen and Shephard (2001) and Comte and Renault (1998). It was later developed in the

context of the methodology of forecasting by Andersen, Bollerslev, Diebold, and Labys (2001),

while central limit theorems for realized variances were developed by Jacod (1994), Barndorff-

Nielsen and Shephard (2002) and Mykland and Zhang (2005). Multivariate generalizations to

realized covariation are discussed by, for example, Barndorff-Nielsen and Shephard (2004a) and

Andersen, Bollerslev, Diebold, and Labys (2003). See Andersen, Bollerslev, and Diebold (2004)

for an incisive survey of this area and references to related work.

Recently Barndorff-Nielsen and Shephard (2004b) introduced a partial generalisation of

quadratic variation called bipower variation (BPV). They showed that in some cases relevant

to financial economics BPV can be used, in theory, to split up the individual components of

quadratic variation into that due to the continuous part of prices and that due to jumps. In

turn the bipower variation process can be consistently estimated using an equally spaced dis-

cretisation of financial data. This estimator is called the realized bipower variation process.

In this paper we study the difference or ratio of realized BPV and realized quadratic variation.

We show we can use these statistics to construct non-parametric tests for the presence of jumps.

We derive the asymptotic distributional theory for these Hausman (1978) type tests under quite

weak conditions. This is the main contribution of the paper. We will also illustrate the jump tests

using both simulations and exchange rate data. We relate some of the jumps to macroeconomic

announcements by Government agencies.

A by-product of our research is an Appendix which records a proof of the consistency of

realized BPV under substantially weaker conditions than those used by Barndorff-Nielsen and

Shephard (2004b) and a joint limiting distribution for realized BPV and the corresponding

realized quadratic variation process under the assumption that there are no jumps in the price

process. The latter result demonstrates the expected conclusion that realized BPV is slightly

less efficient than realized quadratic variation as an estimator of quadratic variation in the case

where prices have a continuous sample path.

In the next Section we will set out our notation and recall the definitions of quadratic
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variation and BPV. In Section 3 we will give the main Theorem of the paper, which is the

asymptotic distribution of the proposed tests. In Section 4 we will extend the analysis to cover

the case of a time series of daily statistics for testing for jumps. In Section 5 we study how the

jump tests behave in simulation studies, while in Section 6 we apply the theory to two exchange

rate series. In Section 7 we discuss various additional issues, while Section 8 concludes. The

proofs of the main results in the paper are given in the Appendix.

2 Definitions and previous work

2.1 Notation & quadratic variation

Let the log-price of a single asset be written as Yt for continuous time t ≥ 0. Y is assumed to

be a semimartingale. For a discussion of economic aspects of this see Back (1991). Further, Y d

will denote the purely discontinuous component of Y , while Y c will be the continuous part of

the local martingale component of Y .

The quadratic variation (QV) process of Y can be defined as

[Y ]t = p− lim
n→∞

n−1∑

j=0

(
Ytj+1

− Ytj

)2
, (1)

(e.g. Jacod and Shiryaev (1987, p. 55)) for any sequence of partitions t0 = 0 < t1 < ... < tn = t

with supj{tj+1 − tj} → 0 for n→ ∞. It is well known that

[Y ]t = [Y c]t + [Y d]t, where [Y d]t =
∑

0≤u≤t

∆Y 2
u (2)

where ∆Yt = Yt − Yt− are the jumps in Y . We will test for jumps by asking if [Y ] = [Y c].

We estimate [Y ] using a discretised version of Y based on intervals of time of length δ > 0.

The resulting process, which we write as Yδ, is Yδbt/δc, for t ≥ 0, recalling that bxc is the integer

part of x. This allows us to construct δ-returns

yj = Yjδ − Y(j−1)δ, j = 1, 2, ..., bt/δc ,

which are used in the realized quadratic variation process

[Yδ]t =

bt/δc∑

j=1

y2
j ,

the QV of Yδ. Clearly the QV theory means that, as δ ↓ 0, [Yδ]t
p→ [Y ]t.

Our analysis of jumps will often be based on the special case where Y is a member of the

Brownian semimartingale plus jump (BSMJ ) class:

Yt =

∫ t

0
asds+

∫ t

0
σsdWs +

Nt∑

j=1

cj , (3)
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where a is càdlàg, the volatility σ is càdlàg, W is a standard Brownian motion, N is a simple

counting process (which is assumed finite for all t) and the cj are non-zero random variables.

When N ≡ 0 we write Y ∈ BSM, which is a stochastic volatility plus drift model (e.g. Ghysels,

Harvey, and Renault (1996)). In this case [Y c]t =
∫ t
0 σ

2
sds and

[
Y d
]
t
=
∑Nt

j=1 c
2
j , so

[Y ]t =

∫ t

0
σ2

sds+

Nt∑

j=1

c2j .

2.2 Bipower variation

The 1, 1-order bipower variation (BPV) process is defined, when it exists, as

{Y }[1,1]
t = p− lim

δ↓0

bt/δc∑

j=2

|yj−1| |yj| . (4)

Barndorff-Nielsen and Shephard (2004b) showed that if Y ∈ BSMJ , a ≡ 0 and σ is independent

from W then

{Y }[1,1]
t = µ2

1

∫ t

0
σ2

sds = µ2
1 [Y c]t ,

where

µ1 = E |u| =
√

2/
√
π ' 0.79788 (5)

and u ∼ N(0, 1). Hence µ−2
1 {Y }[1,1] = [Y c]. This result is quite robust as it does not depend

on any other assumptions concerning the structure of N , the distribution of the jumps or the

relationship between the jump process and the SV component. The reason for this is that only

a finite number of terms in the sum (4) are affected by jumps, while each return which does not

have a jump goes to zero in probability. Therefore, since the probability of jumps in contiguous

time intervals goes to zero as δ ↓ 0, those terms do not impact the probability limit.

Clearly, {Y }[1,1]
t can be consistently estimated by the realized BPV process

{Yδ}[1,1]
t =

bt/δc∑

j=2

|yj−1| |yj| ,

as δ ↓ 0. One would expect these results on BPV to continue to hold when we extend the

analysis to allow a 6= 0. This is indeed the case, as will be discussed in the next section.

Barndorff-Nielsen and Shephard (2004b) point out that

[Y ]t − µ−2
1 {Y }[1,1]

t =

Nt∑

j=1

c2j = [Y d]t.

This can be consistently estimated by [Yδ]t − µ−2
1 {Yδ}[1,1]

t . Hence, in theory, the realized BPV

process can be used to consistently estimate the continuous and discontinuous components of
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QV or, if augmented with the appropriate asymptotic distribution theory, as a basis for testing

the hypothesis that prices have continuous sample paths.

The only other work we know which tries to split QV into that due to the continuous

and the jump components is Mancini (2003). She does this via the introduction of a jump

threshold whose absolute value goes to zero as the number of observations within each day goes

to infinity. Related work includes Coulin (1994). Following Barndorff-Nielsen and Shephard

(2004b), Woerner (2004) has studied the robustness of realized power variation δ1−r/2∑bt/δc
j=1 |yj|r

to an infinite number of jumps in finite time periods showing that the robustness property of

realized power variation goes through in that case. A related paper is Aı̈t-Sahalia (2004),

which shows that maximum likelihood estimation can disentangle a homoskedastic diffusive

component from a purely discontinuous infinite activity Lévy component of prices. Outside the

likelihood framework, the paper also studies the optimal combinations of moment functions for

the generalized method of moment estimation of homoskedastic jump-diffusions.

3 A theory for testing for jumps

3.1 Infeasible tests

In this Section we give the main contribution of the paper, Theorem 1. It gives the asymptotic

distribution for a linear jump statistic, G, based on µ−2
1 {Yδ}[1,1]

t −[Yδ]t and a ratio jump statistic,

H, based on1 µ−2
1 {Yδ}[1,1]

t /[Yδ ]t. Their distributions, under the null of Y ∈ BSM, will be seen

to depend upon the unknown integrated quarticity
∫ t
0 σ

4
udu and so we will say the results of the

Theorem are statistically infeasible. We will overcome this problem in the next subsection.

Recall the definition µ1 =
√

2/
√
π in (5) and let

ϑ =
(
π2/4

)
+ π − 5 ' 0.6090. (6)

Theorem 1 Let Y ∈ BSM and let t be a fixed, arbitrary time. Suppose the following conditions

are satisfied:

(a) The volatility process σ2 is pathwise bounded away from 0.

(b) The joint process (a, σ) is independent of the Brownian motion W .

Then as δ ↓ 0

G =
δ−1/2

(
µ−2

1 {Yδ}[1,1]
t − [Yδ]t

)

√∫ t

0
σ4

udu

L→ N (0, ϑ) , (7)

1Following Barndorff-Nielsen and Shephard (2004b), Huang and Tauchen (2003) have independently and con-
currently used simulations to study the behaviour of this type of ratio, although they do not provide the corre-
sponding asymptotic theory.
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and

H =

δ−1/2

(
µ−2

1 {Yδ}[1,1]
t

[Yδ]t
− 1

)

√√√√√

∫ t
0 σ

4
sds{∫ t

0 σ
2
sds
}2

L→ N (0, ϑ) . (8)

Further, if Y ∈ BSMJ and (a)-(b) hold, then

{Y }[1,1]
t = µ2

1

∫ t

0
σ2

sds. (9)

Remark 1 (i) Condition (a) in Theorem 1 holds, for instance, for the square root process

(due to it having a reflecting barrier at zero) and the Ornstein-Uhlenbeck volatility processes

considered in Barndorff-Nielsen and Shephard (2001). More generally (a) does not rule out

jumps, diurnal effects, long-memory or breaks in the volatility process.

(ii) Result (9) is a generalisation of Barndorff-Nielsen and Shephard (2004b) which showed

this result in the case where a ≡ 0.

(iii) It is clear from the proof of Theorem 1 that in realized BPV we can replace the subscript

j − 1 with j − q where q is any positive but finite integer.

(iv) Condition (b) rules out leverage effects (e.g. Black (1976), Nelson (1991) and Ghysels,

Harvey, and Renault (1996)) and feedback between previous innovations in W and the risk

premium in a. This is an unfortunate important limitation of the result. This is empirically

reasonable with exchange rates but clashes with what we observe for equity data. Simulation

results in Huang and Tauchen (2003) suggests the behaviour of the test statistic is not affected

by leverage effects.

(v) Result (9) means that under the alternative hypothesis of jumps

µ−2
1 {Yδ}[1,1]

t − [Yδ]t
p→ −

Nt∑

j=1

c2j ≤ 0

and
µ−2

1 {Yδ}[1,1]
t

[Yδ]t
− 1

p→ −
∑Nt

j=1 c
2
j∫ t

0 σ
2
sds+

∑Nt

j=1 c
2
j

≤ 0.

This implies the linear and ratio tests will be consistent.

(vi) A by-product of the Proof of Theorem 1 is Theorem 3, given in the Appendix, which is

a joint central limit theorem for scaled realized BPV and QV processes. This is proved under

the assumption that Y ∈ BSM and shows that they, of course, both estimate
∫ t
0 σ

2
sds with the

efficient realized QV having a slightly smaller asymptotic variance. Thus we can think of (7)

as a Hausman (1978) type test, a point first made by Huang and Tauchen (2003) following the

initial draft of this paper.
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3.2 Feasible tests

To construct computable linear and ratio jump tests we need to estimate the integrated quarticity
∫ t
0 σ

4
udu under the null hypothesis of Y ∈ BSM. However, in order to ensure the test has power

under the alternative it is preferable to have an estimator of integrated quarticity which is

also consistent under the alternative BSMJ . This is straightforward using realized quadpower

variation

{Yδ}[1,1,1,1]
t = δ−1

bt/δc∑

j=4

|yj−3| |yj−2| |yj−1| |yj|
p→ µ4

1

∫ t

0
σ4

sds.

The above discussion allows us to define the feasible linear jump test statistic, Ĝ, which has

the asymptotic distribution

Ĝ =
δ−1/2

(
µ−2

1 {Yδ}[1,1]
t − [Yδ]t

)

√
µ−4

1 {Yδ}[1,1,1,1]
t

L→ N (0, ϑ) , (10)

where we would reject the null of a continuous sample path if (10) is significantly negative.

Likewise, the ratio jump test statistic, Ĥ, defined as

Ĥ =
δ−1/2

√
{Yδ}[1,1,1,1]

t

/{
{Yδ}[1,1]

t

}2

(
µ−2

1 {Yδ}[1,1]
t

[Yδ]t
− 1

)
L→ N (0, ϑ) , (11)

rejects the null if significantly negative.

The ratio {Yδ}[1,1]
t / [Yδ]t is asymptotically equivalent to the realized correlation between

|yj−1| and |yj|. It converges to µ2
1 ' 0.6366 under BSM. Estimates below µ2

1 provide evidence

for jumps. Its asymptotic distribution under the null follows trivially from (11). Further, in (8)

clearly the ratio
∫ t
0 σ

4
sds
/(∫ t

0 σ
2
sds
)2

≥ 1/t, with equality obtained in the homoskedastic case.

This suggests replacing Ĥ by the adjusted ratio jump test

Ĵ =
δ−1/2

√
max

(
t−1, {Yδ}[1,1,1,1]

t

/{
{Yδ}[1,1]

t

}2
)

(
µ−2

1 {Yδ}[1,1]
t

[Yδ]t
− 1

)
L→ N (0, ϑ) .

4 Time series of realized quantities

To ease the exposition we will use t = 1 to denote the period of a day. Then we define

v̂i =

b1/δc∑

j=1

(
Yδj+(i−1) − Yδ(j−1)+(i−1)

)2
= [Yδ]i − [Yδ](i−1) , i = 1, 2, ..., T,

the daily increments of realised QV, so as δ ↓ 0 then v̂i
p→ [Y ]i − [Y ](i−1). The v̂i and

√
v̂i are

called the daily realized variance and volatility in financial economics, respectively. Here we give
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the corresponding results for realized BPV and then discuss the asymptotic theory for a time

series of such sequences. These results follow straightforwardly from our previous theoretical

results.

Clearly we can define a sequence of T daily realized bipower variations

ṽi =

b1/δc∑

j=2

|yj−1,i| |yj,i| , i = 1, 2, ..., T,

where we assume δ satisfies δ b1/δc = 1 for ease of exposition and

yj,i = Yδj+(i−1) − Yδ(j−1)+(i−1).

Clearly µ−2
1 ṽi

p→ [Y c]i− [Y c](i−1). In order to develop a feasible limit theory it will be convenient

to introduce a sequence of daily realized quadpower variations

q̃i = δ−1

b1/δc∑

j=4

|yj−3,i| |yj−2,i| |yj−1,i| |yj,i| , i = 1, 2, ..., T.

The above sequences of realized quantities suggest constructing a sequence of non-overlapping,

feasible daily jump test statistics

Ĝδi =
δ−1/2

(
µ−2

1 ṽi − v̂i

)
√
µ−4

1 q̃i

, (12)

Ĥδi =
δ−1/2

√
q̃i/ {ṽi}2

(
µ−2

1 ṽi

v̂i
− 1

)
, (13)

Ĵδi =
δ−1/2

√
max

(
1, q̃i/ {ṽi}2

)
(
µ−2

1 ṽi

v̂i
− 1

)
. (14)

By inspecting the proof of Theorem 1 it is clear that as well as each of these individual tests

converging to N (0, ϑ) as δ ↓ 0, they converge as a sequence in time jointly to a multivariate

normal distribution. For example, define a sequence of feasible ratio tests Ĥδ = (Ĥδ1, ..., ĤδT )′,

then as δ ↓ 0 so Ĥδ
L→ N (0, ϑIT ). Likewise Ĝδ

L→ N (0, ϑIT ) and Ĵδ
L→ N (0, ϑIT ). Thus each of

these tests have the property that they are asymptotically serially independent through time,

under the null hypothesis that there are no jumps.

5 Simulation study

5.1 Simulation design

In this section we document some Monte Carlo experiments which assess the finite sample

performance of our asymptotic theory for the feasible tests for jumps. Throughout we assume
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Y ∈ BSMJ , but set a ≡ 0 and the component processes σ, W , N and c to be independent.

Before we start we should mention that in independent and concurrent work Huang and Tauchen

(2003) have also studied the finite sample behaviour of our central limit theory using an extensive

simulation experiment. Their conclusions are broadly in line with the ones we reach here2.

Our model for σ is derived from some empirical work reported in Barndorff-Nielsen and

Shephard (2002) who used realized variances to fit the spot variance of the DM/Dollar rate

from 1986 to 1996 by the sum of two uncorrelated, stationary processes σ2 = σ2
1 + σ2

2. Their

results are compatible with using CIR processes for the σ2
1 and σ2

2 processes. In particular we

will write these, for s = 1, 2, as the solutions to

dσ2
t,s = −λs

{
σ2

t,s − ξs

}
dt+ ωsσt,sdBλst,s, ξs ≥ ω2

s/2, (15)

where B = (B1, B2)
′ is a vector standard Brownian motion, independent from W . The process

(15) has a gamma marginal distribution

σ2
t,s ∼ Ga(2ω−2

s ξs, 2ω
−2
s ) = Ga (νs, as) , νs ≥ 1,

with a mean of νs/as and a variance of νs/a
2
s (Cox, Ingersoll, and Ross (1985)). The parameters

ωs, λs and ξs were calibrated by Barndorff-Nielsen and Shephard (2002) as follows. Setting

p1 + p2 = 1, they estimated

E(σ2
s) = ps0.509, Var(σ2

s) = ps0.461, s = 1, 2,

with p1 = 0.218, p2 = 0.782, λ1 = 0.0429 and λ2 = 3.74, which means the first, smaller

component of the variance process is slowly reverting with a half-life of around 16 days while

the second has a half-life of around 4 hours.

All jumps will be generated by taking N as a stratified Poisson process so that there are

K jumps uniformly scattered in each unit of time. This setup means that when K > 0 we

can view power conditionally, as the probability of rejection in time units where there actually

were jumps. We specify cj
i.i.d.∼ N(0, σ2

c), so the variance of Y d
t and Y c

t are tKσ2
c and t0.509,

respectively. We will vary K and σ2
c , which allows us to see the impact of the frequency of jumps

and their size on the behaviour of the realized bipower variation process. To start off we will

fix K = 2 and σ2
c = 0.2 × 0.509, which means that the jump process will account for 28% of the

variation of the process. Clearly this is a high proportion. Later we will study the cases when

K = 1 and σ2
c = 0.1 × 0.509 and 0.05 × 0.509.

Finally, the results will be indexed by n = 1/δ, the number of observations per unit of time.

2Huang and Tauchen (2003) also report results on the finite sample behaviour of the test when it is carried
out over long stretches of data, such as a year or ten years. In this case the results differ from the ones given
here with significant size distortions. As Huang and Tauchen (2003) explain this is not surprising and this effect
is also present when we look at the behaviour of the asymptotic theory for realised quadratic variation. See also
the work of Corradi and Distaso (2004).
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5.2 Null distribution

We will use 5,000 simulated days to assess the finite sample behaviour of the jump tests given

in (12), (13) and (14). We start with looking at their null distributions when N ≡ 0.

The left hand side of Figure 1 shows the results from the first 300 days in the sample. The

crosses depict the linear jump test, µ−2
1 ṽi − v̂i, while the feasible 95% one sided critical values

(using (12)) of the statistics are given by the solid line. As we go down the graph n increases

and so, as the null hypothesis is true, the magnitude of µ−2
1 ṽi − v̂i and corresponding critical

values tend to fall towards zero. The most important aspect of these graphs is that the critical

values of the tests change dramatically through time, reflecting the volatility clustering in the

data.

0 100 200 300

−0.5

0.0

0.5
n=12. Linear jump test

95% one−sided critical value 

0 100 200 300

−0.5

0.0

0.5 Ratio jump test

−2.5 0.0 2.5

−20

−10

0

10 QQ plot

Linear t test 
Ratio t test 
45 degrees 

0 100 200 300

−0.2

0.0

0.2
n=72

0 100 200 300

−0.25

0.00

0.25

−2.5 0.0 2.5

−5.0

−2.5

0.0

2.5 Linear t test 
Ratio t test 
45 degrees 

0 100 200 300

−0.1

0.0

0.1 n=288.

Days 0 100 200 300

−0.1

0.0

0.1

Days −2.5 0.0 2.5

−2.5

0.0

2.5
Linear t test 
Ratio t test 
45 degrees 

Figure 1: Simulation from the null distribution of the feasible limit theory for the linear and ratio
jump tests for a variety of values of n. Right hand side gives the QQ plots of the t-statistics.

The middle column of Figure 1 repeats this analysis, but now using the ratio jump test,

µ−2
1 ṽi/v̂i − 1, which tends to fall as n increases. The feasible critical values of this test are more

10



stable through time, reflecting the natural scaling of the denominator for the ratio jump test.

The right hand part of Figure 1 shows the QQ plots of the two t-tests. On the y-axis are the

ranked values of the simulated t-tests, while on the x-axis are the corresponding expected values

under Gaussian sampling. We see a very poor QQ plot for the linear test even when n = 72.

For larger values of n the asymptotics seem to have some substantial bite. The ratio test has

quite good QQ plots for n equal to 72 or above.

Standard setup

linear test ratio test adjusted ratio test

n bias S.D. Accept bias S.D. Accept bias S.D. Accept
12 -.597 2.68 .813 -.102 1.41 .877 -.017 0.99 .929
72 -.169 1.18 .891 -.053 1.07 .919 -.033 1.01 .933
288 -.084 1.05 .918 -.029 1.02 .935 -.025 1.01 .938
1152 -.059 1.00 .935 -.035 0.99 .943 -.035 0.99 .944

Robustness check λ2 = 5 × 3.74

linear test ratio test adjusted ratio test

n bias S.D. Accept bias S.D. Accept bias S.D. Accept
12 -.637 2.61 .804 -.151 1.41 .865 -.056 0.99 .926
72 -.257 1.23 .875 -.133 1.09 .906 -.108 1.03 .922
288 -.132 1.06 .908 -.077 1.03 .926 -.073 1.02 .929
1152 -.098 1.00 .932 -.073 0.99 .939 -.073 0.99 .939

Table 1: Finite sample behaviour of the feasible linear, ratio and adjusted ratio tests based on
5, 000 seperate days under the null hypothesis. Accept denotes acceptance rate, designed level is
0.95. Top block: standard setup with λ2 = 3.74. Bottom block: changes λ2 to 5 × 3.74.

In the upper part of Table 1 we show the biases, standard deviations and acceptance rates

(defined as the probability of not rejecting the null hypothesis) of (12), (13) and (14). All three

statistics have a negative mean, leading to overrejection of the null due to the one sided nature

of the test. Even when n = 288 the linear test rejects the null around 8% of the time. The small

sample performance of the adjusted ratio test is better for a range of values of n.

As a final check on the null distribution of the jump tests, we repeat the above analysis but

increasing λ2, the mean reversion parameter of the fast decaying volatility process, by a factor

of five. This reduces its half life down to 20 minutes. This case of an extremely short half-life is

quite a challenge as a number of econometricians view very short memory SV models as being

good proxies for processes with jumps. Table 1 shows the results. The linear test has a negative

bias which reduces as n becomes very large. The ratio test has a smaller negative bias and

over reject less than the linear test. The degree of overrejection is modest but more important

than in the first simulation design. Hence this testing procedure can be challenged by very fast

reverting volatility components.
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5.3 Impact of jumps: the alternative distribution

We now introduce some jumps into the process and see how the tests react. The stratified

Poisson process is setup to have either 1 or 2 jumps per day, while the variance of the jumps is

either 5%, 10% or 20% of E
(
σ2

t

)
.

The results are given in Table 2 and they are in line with expectations. There is little

difference in the nominal power of the linear and adjusted ratio tests. As the number of jumps

or the variance of the jumps increases, so the rate of accepting the null falls. In the case where

there is a single jump a day and the jump is 5% of the variability of the continuous component

of prices, we reject the null 20% of the time when n = 288.

N1 = 1 N1 = 2

20% linear test adjusted ratio test linear test adjusted ratio test

n mean S.D. Accept mean S.D. Accept bias S.D. Accept mean S.D. Accept

12 -1.05 3.93 .760 -.156 1.07 .894 -1.31 4.54 .730 -.251 1.10 .881
72 -1.61 3.53 .676 -.891 1.64 .735 -2.84 4.33 .521 -1.55 1.88 .573
288 -3.63 6.60 .526 -2.27 3.06 .546 -6.76 8.58 .292 -4.00 3.55 .310

10%

12 -0.772 3.22 .790 -.073 1.02 .916 -.893 3.41 .774 -.110 1.04 .911
72 -0.797 2.07 .781 -.465 1.30 .837 -1.35 2.45 .673 -.835 1.46 .739
288 -1.73 3.43 .654 -1.25 2.14 .679 -3.21 4.43 .457 -2.29 2.55 .484

5%

12 -0.642 2.84 .802 -.035 0.99 .926 -.723 2.97 .797 -.0566 1.01 .920
72 -0.423 1.46 .842 -.226 1.11 .895 -.657 1.62 .789 -.405 1.19 .847
288 -0.820 1.94 .776 -.640 1.52 .799 -1.49 2.39 .646 -1.18 1.76 .677

Table 2: Effect of jumps on the linear and adjusted ratio tests. On the right hand side we show
results for the case where there are 2 jumps per day. On the left hand side, there is a single
jump per day. The variance of the jumps are 20%, 10% and 5% respectively of the expectation
of σ2, with the results for the 20% case given at the top of the Table.

One of the interesting features of Table 2 is that the probability of accepting the null is

roughly similar if N = 2 and each jump is 10% of the variation of σ2 compared to the case

where N = 1 and we look at the 20% example. This is repeated when we move to the N = 2

and 5% case and compare it to the N = 1 and 10% case. This suggests the rejection rate is

heavily influenced by the variance of the jump process, not just the frequency of the jumps or

the size of the individual jumps.

6 Testing for jumps empirically

6.1 Dataset

We now turn our attention to using the adjusted ratio jump test (14) on economic data. We use

the bivariate United States Dollar/ German Deutsche Mark and Dollar/ Japanese Yen exchange

rate series, which covers the ten year period from 1st December 1986 until 30th November 1996.

12



The original dataset records every 5 minutes the most recent mid-quote to appear on the Reuters

screen. We have multiplied all returns by 100 in order to make them easier to present. The

database has been kindly supplied to us by Olsen and Associates in Zurich, who document their

pathbreaking work in this area in Dacorogna, Gencay, Müller, Olsen, and Pictet (2001).

6.2 Ratio jump test

Figure 2 plots the ratio test µ−2
1 ṽi/v̂i and its corresponding 99% critical values, computed under

the assumption of no jump using the adjusted theory given in (14), for each of the first 250

working days in the sample for n = 12 and n = 72. We reject the null if the ratio is significantly

below one. The values of n are quite small, corresponding to 2 hour and 20 minute returns,

respectively. Results for larger values of n will be reported in a moment. Importantly the critical

values do not change very much between different days.

0 50 100 150 200 250

0.5

1.0

1.5 n=12. Dollar/DM
Ratio statistic 
Critical value 

0 50 100 150 200 250

0.25

0.50

0.75

1.00

1.25

Dollar/Yen

0 50 100 150 200 250

0.50

0.75

1.00

1.25
n=72.

Days 0 50 100 150 200 250

0.25

0.50

0.75

1.00

1.25

Days

Figure 2: Based on the 1st year of the sample for the Dollar/DM (left hand side) and Dollar/Yen
(right hand side) using n = 12 and n = 72. Index plot shows the ratio statistic computed each
day, which should be around 1 if the null of no jumps is true. The corresponding 99% adjusted
asymptotic critical value is also shown.
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Figure 2 shows quite a lot of rejections of the null of no jumps, although the times when the

rejections happen change sometimes change with n. When n is small the rejections are marginal

(note the Monte Carlo results suggest one should not trust the decisions based on the test with

such small samples unless the test is absolutely overwhelming, which is not the case here), but

by the time n = 72 there is strong evidence for the presence of some specific jumps. In both

cases and for both series, the average ratio is below one. When n is 12 the percentage of ratios

below 1 is 70% and 73%, while when n increases to 72 these percentages become 71% in both

cases.

Table 3 reports the corresponding results for the whole 10 year sample. This Table, which

provides a warning of the use of too high a value of n, shows the sum, denoted r., of the first

to fifth serial correlation coefficients of the high frequency data. We see that in the Dollar/DM

series as n increases this correlation builds up, probably due to bid/ask bounce effects. By

the time n has reached 288 the summed correlation has reached nearly −0.1, which means

the realized variance overestimates the variability of prices by around 20%. Of course this

effect could be removed by using a further level of pre-filtering before we analyse the data. The

situation is worse for the Dollar/Yen series which has a moderate amount of negative correlation

amongst the high frequency returns even when n is quite small. We will ignore these market

microstructure effects here.

Dollar/DM Dollar/Yen

n r. BPV QV jump % 5% rej 1% rej r. BPV QV jump % 5% rej 1% rej
12 .001 .355 .452 21.5 .202 .090 -.041 .328 .420 21.9 .201 .086
48 .012 .408 .467 12.6 .219 .114 -.032 .409 .458 10.7 .209 .101
72 -.001 .437 .487 10.2 .225 .120 -.032 .429 .471 8.9 .195 .095
144 -.056 .471 .510 7.6 .220 .116 -.077 .473 .506 6.5 .223 .107
288 -.092 .502 .531 5.4 .181 .092 -.100 .512 .539 5.0 .187 .095

Table 3: r. denotes the sum of the first five serial correlation coefficients of the high frequency

data. BPV denotes the average value of µ−2
1 {Yδ}[1,1]

i over the sample. QV gives the correspond-
ing result for [Yδ]i. jump % is the percentage of the quadratic variation due to jumps in the
sample. 5% rej and 1% rej shows the proportion of rejections at the 5% and 1% levels.

Table 3 shows the average value of µ−2
1 ṽi and v̂i as well as the proportion of times the null

is rejected using 95% and 99% asymptotic tests. These values are given for a variety of values

of n and for both exchange rates. The results are reasonably stable with respect to n, although

the percentage due to jumps does drift as n changes.

The Table shows that for the Dollar/DM series the variation of the jumps is estimated to

contribute between around 5% and 20% of the QV. On 20% of days the hypothesis of no jumps

is rejected at the 5% asymptotic level, while at the 1% asymptotic level this falls to 10%. The

results for the Dollar/Yen are rather similar. These results should be viewed tentatively as the
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Monte Carlo results suggest there are finite sample biases in the critical values, even when we

ignore market microstructure effects. However, the statistical evidence does push us towards

believing there are jumps in the price processes. Interestingly the percentage of rejections and

proportions due to jumps seem rather stable as we move between the two exchange rates.

6.3 Case studies

In this subsection we will look at some specific days in the sample which have large realized

variances to see if we can link together the outcomes from the formal statistical analysis with

more informal discussions. Throughout we focus on the Dollar/DM rate. To start we will give

a detailed discussion of an extreme day, which we will put in context by analysing it together

with a few days each side of the extreme events. We plot Yδ for a variety of values of n using

dots, rather than the more standard time series lines, as well as giving the adjusted ratio jump

statistics with their corresponding 99% critical values.

In Figure 3 there is a large uptick in the Dollar against the D-mark, with a movement of

nearly two percent in a five minute period. This occurred on January 15th 1988. The Financial

Times reported on its front page the next day

“The dollar and share prices soared in hectic trading on world financial markets yesterday

after the release of official figures showing that the US trade deficit had fallen to $13.22 bn

in November from October’s record level of $17.63 bn. The US currency surged 4 pfennigs

and 4 yen within 10 minutes of the release of the figures and maintained the day’s highest

levels in late New York business ... .”

The data for January 15th had a large realized variance but a much smaller estimate of

the integrated variance. Hence the statistics are attributing a large component of the realized

variance to the jump, with the adjusted ratio statistic being larger than the corresponding 99%

critical value. When n is small the statistic is on the borderline of being significant, while the

situation becomes much clearer as n becomes large.

An important question is whether this day is typical of extreme days on the foreign exchange

market. Here the focus will be on days where the ratio statistic is small and the realized variance

is quite large. Throughout n = 288 is used.

Figure 4 plots results for all the 8 days when the ratio statistic µ−2
1 {Yδ}[1,1]

i / [Yδ]i is less than

0.6, suggesting a jump, and where the realized variance is above 1.2. On each day the Figure

shows a single big movement which is much larger in magnitude than the others on that day.

These large changes are listed below.
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Figure 3: Example of small stretch of data with a day on which we see a large realised variance.
Left: Yδ−Y240 for t ∈ [240, 249] for a variety of values of n. Right: adjusted ratio jump statistic,
together with 99% critical values. The large step change in the prices, occurred on 15th January
1988 when surprising U.S. balance of payment figures were announced.

Sequence Day GMT move
173th Friday 11th September, 1987 12.35 −.967
234th Thursday, 10th December, 1987 13.35 −1.44
253th Friday, 15th January, 1988 13.35 2.03
273th Friday, 12th February, 1988 13.35 1.16
312th Thursday, 14th April, 1988 12.35 −1.65
333th Tuesday, 17th May, 1988 12.35 1.14
416th Wednesday, 14th September, 1988 12.35 0.955
683th Tuesday, 17th October, 1989 12.35 −0.714

Most U.S. macroeconomic announcements are made at 8.30 EST, which is 12.30 GMT from

early April to late October and 13.30 otherwise. This means that all the jumps observed in Figure

4 correspond to macroeconomic announcements. There is a substantial economic literature

trying to relate movements in exchange rates to macroeconomic announcements (e.g. Ederington

and Lee (1993) and Andersen, Bollerslev, Diebold, and Vega (2003)). Generally this concludes

that such news is quickly absorbed into the market, moving the rates vigourously, but with little
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Figure 4: Days on which [Yδ]i is high & the adjusted ratio jump test found a jump using n = 288.

Depicted is Yδ − Yi, the corresponding jump test µ−2
1 {Yδ}[1,1]

i / [Yδ]i & 99% critical values.

long term impact on the subsequent volatility of the rates.

7 Conclusions

In this paper we provide a test to ask, for a given a time series of prices recorded every δ time

periods, if it is statistically satisfactory to regard the data as if it had a continuous sample path.

We derive the asymptotic distribution of the testing procedure as δ ↓ 0 under the null of no

jumps and ignoring the possible impact of market microstructure effects. Monte Carlo results

suggest an adjusted ratio jump statistic can be reliably used to test for jumps if δ is moderately

small and the test is carried out over relatively short periods such as a day. We applied this test

to some exchange rate data and found many rejections of the null of no jumps. In some case

studies we related the rejections to macroeconomic news.

The paper opens up a number of technical questions. Can the assumptions used in Theorem

1 be relaxed so the test can be applied when there are leverage effects? Can an asymptotic theory
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be developed for bipower variation under the alternative of there being jumps? Can multivariate

versions of these ideas be developed, so one can detect common jumps across assets? How robust

is bipower variation to market microstructure effects and can these effects be moderated in some

way? We are currently researching on these topics with various coauthors and hope to report

results on them soon. The paper also naturally points to a number of economic issues. Can

specific types of economic news be formally linked to the jumps indicated by these tests? Can

the tests for jumps be used to improve volatility forecasts? Research on the second of these

points has been recently reported by Andersen, Bollerslev, and Diebold (2003) and Forsberg

and Ghysels (2004).
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A Proof of theorem 1

A.1 Assumptions and statement of two theorems

In this Appendix we prove two results we state in this subsection: (i) Theorem 2 which shows

consistency of realized BPV, (ii) Theorem 3 which gives a joint central limit theory for realized

BPV and QV under BSM. These two results then deliver Theorem 1 immediately.

We will derive the limit results for a fixed value of t, and without loss of generality we assume

that bt/δc is integer, writing t = δn. So as δ ↓ 0 then necessarily n→ ∞. The general approach

in our proofs is to study the limit theory conditionally on (α, σ). The unconditional limit results

then follow trivially as, in the present circumstances, conditional convergence implies global

convergence.

Recall the two assumptions we use in Theorem 1.

(a) The volatility process σ is pathwise bounded away from 0.

(b) The joint process (a, σ) is independent of the Brownian motion W .

Note also that our general precondition that σ is càdlàg implies that σ is pathwise bounded

away from ∞.
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Theorem 2 Let Y ∈ BSMJ and suppose conditions (a) and (b) hold, then

{Y }[1,1]
t = µ2

1

∫ t

0
σ2

sds. (16)

Theorem 3 Let Y ∈ BSM and suppose conditions (a) and (b) hold. Then conditionally on

(a, σ), the realized BPV and QV processes

[Yδ]t and µ−2
1 {Yδ}[1,1]

t (17)

follow asymptotically, as δ ↓ 0, a bivariate normal law with common mean
∫ t
0 σ

2
sds. The asymp-

totic covariance of

δ−1/2

{(
[Yδ]t

µ−2
1 {Yδ}[1,1]

t

)
−
( ∫ t

0 σ
2
sds∫ t

0 σ
2
sds

)}

is

Π

∫ t

0
σ4

sds (18)

where

Π =

(
Var(u2) 2µ−2

1 Cov
(
u2, |u||u′|

)

2µ−2
1 Cov

(
u2, |u||u′|

)
µ−4

1 {Var (|u||u′|) + 2Cov (|u||u′|, |u′| |u′′|)}

)

=

(
2 2
2
(
π2/4

)
+ π − 3

)
'
(

2 2
2 2.6090

)

with u, u′, u′′ being independent standard normals.

A.2 Consistency of realized bipower variation: Theorem 2

Once the theorem is proved in the no jumps case the general result follows trivially using

the argument given in Barndorff-Nielsen and Shephard (2004b). Here we therefore assume

Y ∈ BSM. The proof goes in three stages. We provide some preliminary results on discretisation

of integrated variance. Then we prove consistency of bipower variation when a = 0, and finally

we show that allowing a 6= 0 has negligible impact.

For the latter conclusion we only need to establish that the impact of a is of order op(1).

However, for the proof of Theorem 3 we require order op(δ
1/2). That this holds is verified

separately in the next subsection.

We first recall a result, which is obtained in the course of the proof of Theorem 2 of Barndorff-

Nielsen and Shephard (2004b, cf. equation (13)).

Proposition 1 (Barndorff-Nielsen and Shephard (2004b)). Under (a) we have for any

r > 0 and σ2
j =

∫ jδ
(j−1)δ σ

2
sds that

δ1−r





n∑

j=2

σr
j−1σ

r
j −

n∑

j=1

σ2r
j



 = Op(δ).
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Corollary 1 Under (a) we have that

n∑

j=2

σj−1σj −
∫ t

0
σ2

sds = Op(δ).

This Corollary is a special case of the previous Proposition and follows from the fact that
∑n

j=1 σ
2
j =

∫ t
0 σ

2
sds.

The following is a restatement of Theorem 2 in Barndorff-Nielsen and Shephard (2004b) in

the case where r = s = 1.

Theorem 4 Suppose Y ∈ BSM and additionally (a), (b) and a = 0, then




n∑

j=2

|yj−1||yj |


− µ2

1

∫ t

0
σ2

sds = op(1).

To complete the Proof of Theorem 2 we need to show that the impact of the drift is negligible.

As already mentioned, this follows from the stronger result, Proposition 2, which we derive in

the next subsection.

A.3 Neglibility of drift

For simplicity of notation we now write Mt =
∫ t
0 σsdWs which, conditional on σ, has a Gaussian

law with a zero mean and variance of
∫ t
0 σ

2
sds. To establish that the effect of the drift is negligible

in the contexts of Theorems 2 and 3 it suffices to show that, under conditions (a) and (b),

[Yδ]
[1,1]
t − [Mδ ]

[1,1]
t = op(δ

1/2).

We shall in fact prove the following stronger result, which covers a variety of versions of

realised bipower variation. To do this we will use the notation

hr(u; ρ) = |ρδ1/2 + u|r − |u|r,

hr,s(u, v; ρ1, ρ2) = |ρ1δ
1/2 + u|r|ρ2δ

1/2 + v|s − |u|r|v|s.

Proposition 2 Under conditions (a) and (b), for any r, s > 0 and for every ε ∈
(
0, 1

4

)

[Yδ]
[r,s] − [Mδ]

[r,s] = Op(δ
(r+s−1)/2+ε).

Proof. Let σ2 = inf0≤s≤t σ
2
s and σ2 = sup0≤s≤t σ

2
s, mj = Mjδ −M(j−1)δ and σ2

j =
∫ δj
δ(j−1) σ

2
sds,

γj = δ−1aj , aj =

∫ δj

δ(j−1)
asds, j = 1, 2, ..., n.
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Note that (pathwise for (a, σ)), by assumption (a), 0 < σ2 ≤ σ2 <∞, implying if θjδ = σ2
j that

0 < minj θj ≤ maxj θj < ∞, while, due to a being càdlàg, there exists (pathwise) a constant c

for which maxj |γj | ≤ cδ, whatever the value of n.

We have, using (b) and writing now mj
L
= σj|uj | where the uj

i.i.d.∼ N(0, 1), that

[Yδ]
[r,s]
t − [Mδ ]

[r,s]
t =

n∑

j=2

(|aj−1 +mj−1|s|aj +mj |r − |mj−1|s|mj |r)

=

n∑

j=2

{|δγj−1 + δ1/2θ
1/2
j−1uj−1|s|δγj + δ1/2θ

1/2
j uj |r

−|δ1/2θ
1/2
j−1uj−1|s|δ1/2θ

1/2
j uj |r}

= δr/2δs/2
n∑

j=2

θ
s/2
j−1θ

r/2
j {|(γj−1/θ

1/2
j−1)δ

1/2 + uj−1|s

·|(γj/θ
1/2
j )δ1/2 + uj|r − |uj−1|s|uj|r}

and hence

δ−(r+s)/2
{
[Yδ]

[r,s]
t − [Mδ ]

[r,s]
t

}
=

n∑

j=2

θ
s/2
j−1θ

r/2
j hr,s

(
uj−1, uj ; γj−1/θ

1/2
j−1, γj/θ

1/2
j

)
.

As
∣∣∣γj/θ

1/2
j

∣∣∣ is bounded for all j, the conclusion of Proposition 2 now follows from Corollary

2, below. �

To obtain that Corollary we establish three Lemmas, 1, 2 and 3. Lemma 1 collates several

results from Barndorff-Nielsen and Shephard (2003) which are used to prove Lemmas 2 and 3.

Lemma 1 (Barndorff-Nielsen and Shephard (2003)) For any r > 0 and ρ ≥ 0, we have

E{hr(u; ρ)} = O(δ), E{|u|rhr(u; ρ)} = O(δ(1+1∧r)/2),

E{h2
r(u; ρ)} = O(δ(1+1∧r)/2), Var{hr(u; ρ} = O(δ(1+1∧r)/2).

The results given in Lemma 1 are derived in the course of the proof of Proposition 3.3 in

Barndorff-Nielsen and Shephard (2003), so a separate proof will not be given here.

We proceed to state and prove Lemmas 2 and 3.

Lemma 2 For any r, s > 0, u, v
i.i.d.∼ N(0, 1) and ρ1 and ρ2 nonnegative constants, we have

E{hr,s(u, v; ρ1, ρ2)} = O(δ).
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Proof. The independence of u, v together with the first equation in Lemma 1 implies

E {hr,s(u, v; ρ)} = E
{
|ρ1δ

1/2 + u|r
}

E
{
|ρ2δ

1/2 + v|s
}
− E {|u|r}E {|v|s}

= E{hr(u; ρ1)}E{hr(v; ρ2)} + E{hr(u; ρ1)}E {|v|s} + E {|u|s}E{hs(v; ρ2)}

= O(δ). �

Lemma 3 For u, v independent standard normal random variables and ρ1 and ρ2 nonnegative

constants, we have

E{h2
r,s(u, v; ρ1, ρ2)} = O

(
δ(1+1∧r∧s)/2

)
.

Proof. Clearly

h2
r,s(u, v; ρ) = |ρ1δ

1/2 + u|2r|ρ2δ
1/2 + v|2s + |u|2r|v|2s − 2|ρ1δ

1/2 + u|r|ρ2δ
1/2 + v|s|u|r|v|s

= h2r,2s(u, v; ρ) + 2|u|2r |v|2s − 2|ρ1δ
1/2 + u|r|ρ2δ

1/2 + v|s|u|r|v|s,

so, by Lemma 2 and the independence of u and v,

E{h2
r,s(u, v; ρ)} = E{h2r,2s(u, v; ρ)} + 2E

{
|u|2r

}
E
{
|u|2s

}

−2E
{
|u|r|ρ1δ

1/2 + u|r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}

= O(δ) − 2
(
E
{
|u|r|ρ1δ

1/2 + u|r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

})
.

Furthermore,

E
{
|u|r|ρ1δ

1/2 + u|r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

}

= E
{
|u|r|ρ1δ

1/2 + u|r − |u|2r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}

+E
{
|u|2r

}
E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

}

= E
{
|u|r|ρ1δ

1/2 + u|r − |u|2r
}

E
{
|u|s|ρ2δ

1/2 + u|s − |u|2s
}

+E
{
|u|2s

}
E
{
|u|r|ρ1δ

1/2 + u|r − |u|2r
}

+E
{
|u|2r

}
E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

}

= E{|u|rhr(u; ρ1)}E{|u|shs(u; ρ2)}

+E
{
|u|2s

}
E{|u|rhr(u; ρ1)} + E

{
|u|2r

}
E{|u|shs(u; ρ2)}.

All in all, on account of Lemma 1, this means that

E{h2
r,s(u, v; ρ1, ρ2)} = O(δ) +O(δ(1+1∧r)/2)O(δ(1+1∧s)/2) +O(δ(1+1∧r)/2) +O(δ(1+1∧s)/2)

= O(δ(1+1∧r∧s)/2). �

Lemmas 2 and 3 and the Cauchy-Schwarz inequality together imply
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Corollary 2 For u, v, u′, v′ independent standard normal random variables and ρ1, ρ2, ρ
′
1, ρ

′
2

nonnegative constants, we have

Var{hr,s(u, v; ρ1, ρ2))} = O
(
δ(1+1∧r∧s)/2

)

and

Cov{hr,s(u, v; ρ1, ρ2))hr,s(u
′, v′; ρ′1, ρ

′
2))} = O

(
δ(1+1∧r∧s)/2

)
.

As already mentioned, the conclusion of Proposition 2 follows from Corollary 2.

Remark 2 From the final equation in the proof of Lemma 3 one sees that in the special case

when r = s = 1 then Var{hr(u; ρ)} = O(δ) and hence the conclusion of Proposition 2 may be

sharpened to [Yδ]
[1,1] − [Mδ ]

[1,1] = Op(δ).

A.4 Asymptotic distribution of bipower variation: Theorem 3

Given Proposition 2, what remains is to prove Theorem 3 when Y ∈ BSM and the additional

conditions (a), (b) and a = 0 hold. The key feature is that, ignoring the asymptotically negligible

y2
1 and conditioning on the σ process, we have that

( ∑n
j=2 y

2
j∑n

j=2 |yj−1| |yj|

)
−
( ∫ t

0 σ
2
sds

µ2
1

∫ t
0 σ

2
sds

)

is asymptotically equivalent in law to

n∑

j=2

(
σ2

jvj

σj−1σjwj

)

where vj = u2
j − 1, wj = |uj−1||uj | − µ2

1 and the uj
i.i.d.∼ N(0, 1). The sequences {vj} and {wj}

have zero means, with the former being i.i.d., while the latter satisfy wj ⊥⊥ wj+s for |s| > 1.

Then the Theorem follows if we can show that

δ−1/2
n∑

j=2

(
σ2

jvj

σj−1σjwj

)
L→ N

(
0,

∫ t

0
σ4

sds

(
Var(v1) 2Cov (v1, w1)
2Cov (v1, w1) Var (w1) + 2Cov (w1, w2)

))
.

(19)

Our strategy for proving this is to show3 the limiting Gaussian result that using any real con-

stants c1 and c2,

δ−1/2
n∑

j=2

(
c1σ

2
jvj + c2σj−1σjwj

)

L→ N

(
0,

∫ t

0
σ4

sds
[
c21Var(v1) + 4c1c2Cov (v1, w1) + c22 {Var (w1) + 2Cov (w1, w2)}

])
.

3Recall that if zn = (zn1, ..., znq) is a sequence of random vectors having mean 0 then to prove that zn
L
→

Nq(0, Ψ) for some nonnegative definite matrix Ψ it suffices to show that for arbitrary real constants c1, ..., cq we

have c′zn
L
→ Nq(0, c′Ψc), where c = (c1, ..., cq)

′. (This follows directly from the characterisation of convergence in
law in terms of convergence of the characteristic functions.)
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The asymptotic Gaussianity follows from standard calculations from the classical central limit

theorem for martingale sequences due to Lipster and Shiryaev (e.g. Shiryayev (1981, p. 216)).

What remains is to derive the asymptotic variance of this sum. Clearly

δ−1/2
n∑

j=2

(
c1σ

2
jvj + c2σj−1σjwj

)
= δ−1/2



δ

n∑

j=2

(
c1ψ

2
jvj + c2ψj−1ψjwj

)




has the variance

δ
n∑

j=2

Var
(
c1ψ

2
jvj + c2ψj−1ψjwj

)
+ 2δ

n∑

j=2

Cov
(
c2ψj−1ψjwj, c2ψj−2ψj−1wj−1

)
.

Now using Riemann integrability

δ

n∑

j=2

Var
(
c1ψ

2
jvj + c2ψj−1ψjwj

)

= Var (v1) c
2
1δ

n∑

j=2

ψ4
j + Var (w1) c

2
2δ

n∑

j=2

ψ2
j−1ψ

2
j

+2c1c2 {Cov(v1, w1) + Cov(v2, w1)} δ
n∑

j=2

ψj−1ψ
3
j

→
∫ t

0
σ4

sds
{
c21Var (v1) + c22Var (w1) + 4c1c2Cov(v1, w1)

}
.

Likewise

δ
n∑

j=3

Cov
(
c2ψj−1ψjwj , c2ψj−1ψj−2wj−1

)

= c22Cov (w1, w2) δ

n∑

j=3

ψj−2ψ
2
j−1ψj

→ c22Cov (w1, w2)

∫ t

0
σ4

sds.

This confirms the required covariance pattern stated in (19).
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