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1. Introduction

In recent years, the methods of lattice programming have been used widely and with consid-

erable success to deal with problems in economic theory.1 The contribution of these methods

are twofold. First, they have turned out be very useful in addressing comparative statics

problems which arise in many optimization or game theoretic models. Second, they have

contributed to our understanding of these problems because they have helped us to identify

the key mathematical features which permit their solution. The success of these methods

have highlighted the underlying structural similarity of many of the seemingly different

comparative statics problems which arise in economic theory.

In this paper we develop the theory of lattice programming in several directions. Our

motivation is to extend the applicability of these techniques to cover an important family

of comparative statics problems which have hitherto proved resistant to these methods. To

explain this paper’s contribution, we first consider a comparative statics problem which

standard lattice programming methods can deal with very successfully.

Imagine a small firm producing a single good priced by the market at 1; producing

this good requires inputs, represented by some vector x in Rl
+, whose transformation into

output is captured by the production function f . Formally, the firm purchases x at prices

p (in Rl
++) to make a profit of Π(x) = f(x)− p · x. Imagine that in the short run, the first

input is bounded by some number X1. So the firm’s problem is the following:

maximize Π(x) = f(x)− p · x subject to x ∈ C = {x ∈ Rl
+ : x1 ≤ X1}.

Suppose that the optimum solution at X1 = X ′ is x∗ and the optimum solution at X1 = X ′′
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is x∗∗. If X ′′ > X ′, when can we say that x∗∗ ≥ x∗?

To this problem, standard lattice programming techniques provide an easy answer: the

optimal solution will increase with X1 if f is supermodular with respect to the product

order on Rl. For two points x and y in Rl, x ≥ y in the product order if xi ≥ yi for all

i = 1, 2, ...l. With this order, Rl is a lattice, i.e., it is a partially ordered set where every

pair of points has a supremum and an infimum. Assuming f is C2, supermodularity with

respect to this order is equivalent to saying that the cross derivative is positive; informally,

this means that all inputs are complements in the production process.

With the product order on Rl
+, the constraint sets C ′ = {x ∈ Rl

+ : x1 ≤ X ′} and

C ′′ = {x ∈ Rl
+ : x1 ≤ X ′′} are related to each other in a very nice way: for any x′ in C ′

and x′′ in C ′′, the supremum of x′ and x′′ is in C ′′, while their infimum is in C ′. Whenever

such a property holds, we say that C ′′ is greater than C ′ in the strong set order induced

by the product order. That the constraint sets in our little problem can be ordered in this

way is very convenient because the basic comparative statics result of lattice programming

says the following: whenever the objective function is supermodular, optimal solutions will

increase with the constraint sets. In other words, if we compare the optimal solutions at two

constraint sets, with one constraint set greater than another in the strong set order, then

the optimal solution at the greater constraint set will be greater than the optimal solution

at the lesser constraint set. Applied to our simple example, we see that the optimal choice

of all inputs will increase as the constraint on input 1 is relaxed.

The reason why the standard result can be applied so successfully over here has to do
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with the fact that an order on the choice space Rl
+ has been found which satisfies three

conditions: (i) the choice variables are ordered in a way which captures the comparative

statics relation the modeler is hoping to find; (ii) supermodularity with respect to this order

is a reasonable condition to impose on the objective function; and (iii) this order induces a

strong set order which in turn successfully orders the two constraint sets being considered.

It is a remarkable fact that with so many comparative statics problems in economic theory,

an order on the choice space can be found in which these three conditions are simultaneously

satisfied.

But not all. A basic problem where the standard results do not apply in any obvious

way is the following. Consider a consumer with a utility function U : Rl
+ → R defined over l

goods, with income w and facing prices p (in Rl
++). Formally, he maximizes U by choosing

x from the budget set B(p, w) = {x ∈ Rl
+ : p · x ≤ w}. Suppose his utility is maximized

at the bundle x∗ when income is w′ and at the bundle x∗∗ when his income is w′′, with

w′′ > w′ and prices held fixed at p in both cases. When can we say that the agent’s demand

is normal, i.e., x∗∗ ≥ x∗?

To apply the standard techniques we must first pick an order on Rl
+. Given that we wish

to compare x∗∗ and x∗ with the product order, the natural order to pick for this problem

is again the product order. Furthermore, with this order, the supermodularity of U has

a nice interpretation in terms of complementarity, so conditions (i) and (ii) are satisfied.

Unfortunately, condition (iii) is not, because the budget sets B(p, w′) and B(p, w′′) are not

ordered in the strong set order: if x′ is in B(p, w′) and x′′ is in B(p, w′′), their infimum is
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indeed in B(p, w′) but it is not hard to see that their supremum need not be in B(p, w′′).

Consequently, at least when using the product order on Rl
+, this basic problem in consumer

theory cannot be addressed using the standard comparative statics results.2

The contribution of this paper is to extend lattice programming techniques to deal with

problems of this sort. The key idea is that the choice spaces in many comparative statics

problems, including the utility maximization problem above are not just lattices - they are

also vector spaces. On vector spaces, concavity and convexity makes sense. When these

properties are added to supermodularity, they interact in way which permits the solution

to a large class of comparative statics problems. So, for example, we show that demand is

normal if the utility function is both concave and supermodular.

Section 2 is devoted to developing the theory of comparative statics in Rl, considered

as a vector space and a lattice with the product order. The principal result of that section

is a comparative statics theorem with different features from the one highlighted above.

In our result, the conditions on the objective functions are strengthened and in particular,

concavity type restrictions have to be imposed, but the requirements on the constraint sets

are weakened so they only have to be comparable in what we call the generalized strong set

order. For example, a sufficient condition for a set C ′′ to be greater than C ′ in this order

is for there to be an increasing, convex, submodular and continuous function G : Rl
+ → R

such that C ′′ = G−1(−∞, c′′]) and C ′ = G−1(−∞, c′]) with c′′ > c′.3 Clearly the budget

sets considered in our example, B(p, w′) and B(p, w′′), are indeed comparable in this sense

since B(p, w′) = E−1((−∞, w′]) and B(p, w′′) = E−1(−∞, w′′]) where E : Rl
+ → R defined
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by E(x) = p · x is just the expenditure function.

The sections following Section 2 are devoted to applications: section 3 deals with appli-

cations to demand theory, section 4 deals with applications to producer theory, and Section

5 is devoted to other applications.

In this paper we concentrate on developing the theory, and finding applications, in a

finite dimensional Euclidean space, but one suspects that many of the theoretical results

will go through in Riesz spaces, i.e., in not necessarily finite dimensional vector spaces which

also has a lattice structure. This is a potentially fruitful area for future work.

2. The Theory

We endow Rl with the product order, which says that x ≥ y if xi ≥ yi for i = 1, 2, ...l.

With this order, Rl becomes a lattice, i.e., it is a partially ordered set where there is a

supremum and an infimum to every pair of points in Rl. We denote the supremum and

infimum of x and y by x ∨ y and x ∧ y respectively; it is not hard to see that

x ∨ y = (max{x1, y1}, max{x2, y2}, ...,max{xl, yl}) and

x ∧ y = (min{x1, y1}, min{x2, y2}, ...,min{xl, yl})

A subset X of Rl is a sublattice (of Rl) if for every pair of points x and y in X, both

x ∨ y and x ∧ y are also contained in X. A function f : X → R is supermodular if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y). It is known that supermodularity can be characterized

by the property of increasing differences (see Topkis (1998)). Consider two pairs of points

(x′, x′′) and (z′, z′′), both in X × X. We say that (z′, z′′) has a greater/larger difference
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than (x′, x′′) under f if f(z′) − f(z′′) ≥ f(x′) − f(x′′). The function f is said to have the

increasing differences property (or simply has increasing differences) if for all v < 0 and

v′ > 0 and orthogonal to v, (x + v′, x + v + v′) has a greater difference than (x, x + v), i.e.,

f(x + v′)− f(x + v + v′) ≥ f(x)− f(x + v).

(Note that since all the entries in −v and v′ are non-negative, a particular entry in v′ must

be zero if the corresponding entry in v is strictly negative.) When f is C2 function defined

on Rl, the supermodularity of f is equivalent to ∂2f/∂xi∂xj ≥ 0 for all i 6= j (see Topkis

(1978)).

A more broadly conceived notion of increasing differences is also useful in understanding

concavity. Assuming that X is convex, the standard definition of concavity says that f is

concave if f(tx + (1 − t)y) ≥ tf(x) + (1 − t)f(y) for all t in [0, 1] and x and y in X. For

our purpose it is convenient to use a different and equivalent formulation of concavity. We

say that f is concave at x in the direction v if, for any positive scalar t such that x, x + v,

x + tv and x + v + tv are all in X, the pair (x + tv, x + v + tv) has a greater difference than

(x, x + v), i.e,

f(x + tv)− f(x + v + tv) ≥ f(x)− f(x + v).

We say that the function f is concave if it is concave at x in direction v for all x in X and v

in Rl. It is not hard to see that this notion of concavity is equivalent to the standard one,

but this simple reformulation has the advantage that it emphasizes the formal similarity

between concavity and supermodularity: both can be characterized by the behavior of

difference terms of the form f(x) − f(x + v). Our first theorem characterizes functions
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which are both concave and supermodular by identifying all the directions in which the

difference term f(x)− f(x + v) is increasing.

Any vector v in Rl can be decomposed into its positive and negative parts, i.e., v =

v+ + v−, where v+ = v ∨ 0 and v− = −[(−v) ∨ 0]. We define the sets Sv
+ and Sv− by

Sv
+ = {v ∈ Rl : v · v− = 0, v ≥ 0, λv = v+, λ ∈ R} and

Sv
− = {v ∈ Rl : v · v+ = 0, v ≤ 0, λv = v−, λ ∈ R}.

In other words, Sv
+ consists of those vectors which are orthogonal to v−, non-negative, and

parallel to v+. Note in particular that v+ is in Sv
+. Similarly, Sv− consists of vectors which

are orthogonal to v+, non-positive and parallel to v−, which certainly contains v−.

Theorem 1: Let X be a convex sublattice of Rl. Then f : X → R is concave and

supermodular if and only if it has the following property: for all x in X, v in Rl, and v′ in

Sv
+ ∪ Sv−, the pair (x + v′, x + v + v′) has a greater difference than (x, x + v), i.e.,

f(x + v′)− f(x + v + v′) ≥ f(x)− f(x + v), (1)

provided x, x + v, x + v′ and x + v + v′ are all in X.

Proof: We write

f(x)− f(x + v) = [f(x)− f(x + v+)] + [f(x + v+)− f(x + v)].

Consider the first difference term on the right as we add v′ in Sv
+. If v+ = 0, it is clear that

this term remains unchanged when we add v′. If v+ 6= 0, then v′ is some positive multiple

of v+, so the concavity of f guarantees that adding v′ will increase the term. Now consider
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the second difference term. We can re-write it as f(x + v+) − f(x + v+ + v−). Note that

v− ≤ 0, while v′ ≥ 0 and orthogonal to v−, so adding v′ will increase this term, by the

supermodularity of f . This establishes our claim for v′ in Sv+. The case of v′ in Sv− can be

handled in an analogous manner.

This leaves us with the proof of necessity. Let t be a positive scalar. Assume that x,

x + v, x + tv, x + v + tv are all in X. Then with tv+ and tv− in Sv
+ and Sv− respectively for

any t > 0, applying (1) twice gives us

f(x)− f(x + v) ≤ f(x + tv+)− f(x + v + tv+)−

≤ f(x + tv+ + tv−)− f(x + v + tv+ + tv−)

= f(x + tv)− f(x + v + tv),

which shows that f is concave. (Note that all the elements referred to in the inequalities

are in X because it is a convex lattice.) That the supermodularity of f also follows from

(1) is obvious, since when v < 0, Sv
+ consists precisely of all those vectors v′ which are

non-negative and orthogonal to v. QED

Concavemodular Functions

For the purposes of comparative statics, it is convenient to have a slightly different way

of presenting the structure which concavity and supermodularity gives to a function. Let

x′ and y be two elements in X; then the vectors vx′ = x′ ∨ y − x′ and wx′ = y − x′ ∨ y are

both nonzero, and positive and negative respectively. In Figure 1, we have the picture of a

rectangle, with x′ and y being opposite corners, whose other corners are x′∨y and x′∧y, and
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with the vectors vx′ and wx′ forming the sides. Supermodularity is equivalent to saying that

f(x′+vx′)−f(y) ≥ f(x′)−f(x′+wx′) since x′∨y = x′+vx′ and x′∧y = x+wx′ , while the

property represented by (1) implies that f(x′+vx′−λvx′)−f(y) ≥ f(x′)−f(x+wx′ +λvx′)

where λ is in [0, 1]. This is easily obtained from (1) by substituting v = wx′ + λvx′ and

v′ = (1− λ)vx′ . Since x′ + vx′ − λvx′ = x′ ∨ y − λvx′ and x + wx′ + λvx′ = x′ ∧ y + λvx′ , we

can rewrite this inequality as

f(x′ ∨ y − λvx′)− f(y) ≥ f(x′)− f(x′ ∧ y + λvx′); (2)

in other words, for any λ in [0, 1], the pair (x′ ∨ y − λvx′ , y) has a greater difference than

(x′, x′∧y+λvx′). Now it is clear that the two pairs of points form a parallelogram rather than

a rectangle: it is this little twist to the geometry which is at the heart of the comparative

statics results in this paper.

We call the function f i-concavemodular if for any x′ and y in X with x′i > yi, the

inequality (2) holds for all λ in [0, 1]. Note that (2) holds trivially if x′ > y since in this case

vx′ = x′ ∨ y − x′ = 0. So checking for i-concavemodularity really involves checking for (2)

for x′ and y which are unordered. The next result states formally the connection between

i-concavemodularity and the generalized notion of increasing differences as represented by

inequality (1). We omit the straightforward proof.

Proposition 1: Let X be a convex lattice. The function f : X → R is i-concavemodular

if and only if for all x in X, v in Rl, with vi < 0 and v 6< 0, and v′ in Sv
+ ∪ Sv−, the pair

(x+v′, x+v +v′) has a greater difference than (x, x+v), i.e., inequality (1) holds, provided

x, x + v, x + v′ and x + v + v′ are all in X.
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It follows immediately from this proposition and Theorem 1 that the function f will

be i-concavemodular if it is concave and supermodular. But notice that these conditions

are probably a bit stronger than necessary since in Proposition 1 the generalized increasing

differences property is only required for those vectors v satisfying vi < 0 and v 6< 0 (rather

than for all v as in Theorem 1). Indeed a careful examination of the proof of Theorem 1

will show that to guarantee (1) for v satisfying vi < 0 and v 6< 0 it is sufficient that at every

x in X, the function f be concave in all directions v̄ such that v̄ > 0 and v̄i = 0. The next

result restates the sufficiency part of Theorem 1 under this weakened concavity assumption.

Proposition 2: Let X ⊂ Rl be a convex sublattice. Then f : X → R is i-concavemodular

if it is supermodular and satisfies the following concavity assumption: for every x in X, f

is concave in every direction v̄ satisfying v̄ > 0 and v̄i = 0.

We call the function f concavemodular if it is i-concavemodular for all i = 1, 2, ..l. We

say that f is partially concave if it is concave in x−i for i = 1, 2, ...l. (Note that ‘concave in

x−i’ has the standard meaning, namely, that f is concave when viewed as a function of the

other l−1 variables, with the ith variable held fixed.) Note that partial concavity is certainly

different from concavity. The function f : Rl
++ → R given by f(x1, x2) = x1x2 is partially

concave but not concave. For differentiable functions defined on open and convex subsets of

R2, checking partial concavity is especially convenient since it only requires checking that

the second derivatives of the function with respect to each argument is negative.

The next result follows immediately from Proposition 2.

Corollary 1: Let X ⊂ Rl be a convex sublattice. Then the function f : X → R is

12



concavemodular if it is supermodular and partially concave.

Given Proposition 2, one may get the impression that partial concavity is a stronger than

necessary to guarantee concavemodularity, so that Corollary 1 is a little crude. But that is

wrong. In the next two results, we establish the full implications of concavemodularity for

concavity. We first show that the concavity assumption in Corollary 1 is, in essence, also

necessary for i-concavemodularity.

Lemma 1: Let X ⊂ Rl be a convex and open sublattice and suppose that f : X → R is

an i-concavemodular function which is also continuous in xi. Then for every x in X, f is

concave in every direction v̄ satisfying v̄i = 0 and either v̄ > 0 or v̄ < 0.

Proof: Suppose, by way of contradiction, that there is v̄ > 0 with v̄i = 0 such that

f(x)− f(x + v̄) > f(x + tv̄)− f(x + v̄ + tv̄). Since f is continuous in xi, there is δ > 0 and

sufficiently close to zero such that f(x)−f(x+v̄−δei) > f(x+tv̄)−f(x+v̄+tv̄−δei), where

ei is the unit vector pointing in direction i. This is a violation of i-concavemodularity: we

see that (2) is violated once we set x′ = x and y = x + v̄ + tv̄ − δei, and λ = 1/(1 + t).

(Note that in this case, x′ ∨ y = x + v̄ + tv̄, x′ ∧ y = x− δei, and vx′ = (1 + t)v̄.) The case

of v < 0 with vi = 0 can be proven in a similar way. QED

The next result is the converse of Corollary 1.

Proposition 3: Let X ⊂ Rl be a convex and open sublattice and suppose that f : X →

R is a concavemodular function which is also continuous in each of its arguments (but not

necessarily jointly continuous). Then f is supermodular and has the following concavity

property: for all x in X, f is concave at x in all directions v satisfying v 6À 0 and v 6¿ 0.
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In particular, f must be partially concave.

Proof: That concavemodularity implies supermodularity is obvious, so we need only

establish that the concavity condition also follows. For v > 0 (or < 0) such that vi = 0 for

some i, we can appeal to Lemma 1. (Note that this is the only place where the continuity

property on f is used.) For v that satisfies v 6> 0 and v 6< 0, we can use the characterization

of concavemodularity in Proposition 1 and then repeat that part of the proof in Theorem

1 which establishes concavity. QED

As a simple illustration, consider again the function f : R2
++ → R given by f(x1, x2) =

x1x2. As we had pointed out, this function is partially concave; clearly, it is also supermod-

ular. By Corollary 2, it is concavemodular, which means by Proposition 3 that it is concave

in all directions except possibly those which are strictly positive or strictly negative. To

check this, consider the behavior of the function along the ray emanating from the point

(x̄1, x̄2) and in the direction (a, b): f(x̄1 + at, x̄2 + bt) = x̄1x̄2 +(bx̄1 + ax̄2)t+ abt2, which is

a concave function of t whenever a and b are of different signs, but convex whenever a and

b are both strictly positive or strictly negative.

Quasiconcavemodular Functions

It has been emphasized by Milgrom and Shannon (1994) in their wide ranging and

influential study of comparative statics that the core comparative statics theorems rely

not on supermodularity as such, but rather on an ordinal version of that property which

they refer to as quasisupermodularity: the function f : X → R is quasisupermodular if

f(x′) ≥ (>)f(x′ ∧ y) implies f(x′ ∨ y) ≥ (>)f(y). Following Milgrom and Shannon (1994),
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we say that the function f is i-quasiconcavemodular if for any x′ and y in X with x
′
i > yi,

and for any λ in [0, 1],

f(x′) ≥ (>)f(x′ ∧ y + λvx′) =⇒ f(x′ ∨ y − λvx′) ≥ (>)f(y) (3)

(Recall that vx′ = x′∨y−x′.) We call a function quasiconcavemodular if it is i-quasiconcavemodular

for i = 1, 2, ...l. Clearly, quasiconcavemodularity is stronger than quasisupermodularity. It

is also clear that any i-quasiconcavemodular function is i-concavemodular; the former is an

ordinal property in the sense that if f is i-quasiconcavemodular then so is φ ◦ f , for any

strictly increasing function φ : R → R.

Since i-concavemodularity is preserved by addition, we know that, for any w in Rl, the

map gw : X → R given by gw(x) = f(x) − w · x is also an i-concavemodular function

provided f is i-concavemodular. The next result shows that i-concavemodularity of the

functions gw imply the i-concavemodularity of f . This result is analogous to Theorem 10

in Milgrom and Shannon (1994).

Proposition 4: Let X be a convex sublattice of Rl and let f be a map from X to R.

(i) Then f is i-concavemodular if for all wi in R, the map gwi, bringing x in X to f(x)−wixi

is i-quasiconcavemodular. (ii) Provided f is increasing, f is i-concavemodular if for all w

in Rl
+, the map gw, bring x in X to f(x)− w · x is i-quasiconcavemodular.

Proof: Suppose that there is x′ and y, with x′i > yi and λ such that (2) is violated, so

f(x′ ∨ y − λvx′)− f(y) < f(x′)− f(x′ ∧ y + λvx′). (4)

Choose w̄i such that w̄i[x′i − (x′ ∧ y + λvx′)i] = f(x′)− f(x′ ∧ y + λvx′). Furthermore, since

x′−(x′∧y+λvx′) = (x′∨y−λvx′)−y, we have w̄i[x′i−(x′∧y+λvx′)i] = w̄i[(x′∨y−λvx′)i−yi].
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Deducting this term from both sides of (4), we obtain

gw̄i(x
′ ∨ y − λvx′)− gw̄i(y) < gw̄i(x

′)− gw̄i(x
′ ∧ y + λvx′) = 0.

So gw̄i violates i-quasiconcavemodularity and we have a contradiction.

The proof of (ii) is similar. Note firstly that if (4) is true for λ = 0, then the right hand

side of (4) is nonnegative (since f is increasing), while x′i − (x′ ∧ y + λvx′)i > 0, so that,

in the proof above, one could choose w̄i ≥ 0 and we are done. (The other entries of the

vector w̄ can be chosen to be 0). So we consider the case when (4) is true for λ > 0. This

implies that x′ and y must be unordered, and with λ > 0, x′ and (x′ ∧ y + λvx′) must also

be unordered. Therefore, x′ − (x′ ∧ y + λvx′) has both positive and negative entries, and

there is w̄ in Rl
+ such that w̄ · [x′− (x′∧y +λvx′)] = f(x′)−f(x′∧y +λvx′). Now repeating

the steps in our proof of (i), we see that gw̄ must violate i-quasiconcavemodularity. QED

The significance of this proposition is that in those situations where we require quasi-

concavemodularity for all functions in the class {gw}w∈Rl or {gw}w∈Rl
+
, we must necessarily

impose concavemodularity on f . Of course these classes of functions do indeed arise natu-

rally in comparative statics problems, since it can be interpreted as a profit function, with

f(x) as the revenue of the firm when it produces the output vector x and with wi as the

unit cost of producing good i (so w · x is the total cost of producing x).

The Generalized Strong Set Order

Given that our ultimate goal is to obtain results which say how optimal solutions vary

with parameters and constraints, we must first develop some way of comparing constraint
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sets. In standard monotone comparative statics, the order typically used is the strong set

order introduced by A. Veinott (see Topkis (1998)). In this order, a set V ′′ is greater than

V ′ if for any y in V ′′ and x′ in V ′, x′ ∨ y is in V ′′ and x′ ∧ y is in V ′. As we had indicated in

the introduction, the strong set order is, in a sense, too strong because it does not always

successfully order pairs of constraint sets whose optimal solutions we wish to compare.

What we need is a weaker notion of order, which we now define.

Let C ′ and C ′′ be subsets of the convex sublattice X. We say that C ′′ is i-greater than

C ′ in the generalized strong set order (and write C ′′ >i C ′) if for any x′ be in C ′ and y in

C ′′, with x′i > yi, there is λ in [0, 1] such that x′ ∧ y + λvx′ is in C ′ and x′ ∨ y − λvx′ is in

C ′′. Pictorially, this condition just means that one can find two other points, in addition

to x′ and y, one in C ′ and one in C ′′ such that the four points form a parallelogram. For

the special case of x′ > y, vx′ = 0, so this condition requires that y be in C ′ and x′ be in

C ′′. We say that C ′′ is greater than C ′ in the generalized strong order (and write C ′′ > C ′)

if C ′′ >i C ′ for all i = 1, 2, ...l.

Notice that the point x′∨y−λvx′ which lies in C ′′ is greater than x′, and that the point

x′ ∧ y + λvx′ which lies in C ′ is smaller than y. Our next claim is then obvious.

Proposition 5: Let C ′ and C ′′ be nonempty subsets of a convex sublattice X in Rl.

(i) If C ′′ >i C ′, then for any x′ in C ′, there is x′′ in C ′′ such that x′′i ≥ x′i and for any x′′

in C ′′ there is x′ in C ′ such that x′′i ≥ x′i.

(ii) If C ′′ > C ′, then for any x′ in C ′, there is x′′ in C ′′ such that x′′ ≥ x′ and for any x′′

in C ′′ there is x′ in C ′ such that x′′ ≥ x′.
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As a simple illustration, let C ′′ = {(1 + t, 2), (2 + t, 1)} and C ′ = {(1, 2), (2, 1)}. For

any t > 0 it is easy to see that C ′′ >2 C ′, though for t in (0, 1), C ′′ 6>1 C ′. We do have

C ′′ >1 C ′ if t ≥ 1 so in this case C ′′ > C ′. Thus for t ≥ 1, C ′′ > C ′. Note that C ′′ is

certainly not a superset of C ′, so a set can be greater than another in the generalized strong

set order without it being a superset of the other set. Having said that, the constraint sets

one encounters in applications are often ordered in the set-theoretic sense, or at least can be

understood in that manner. The next result gives sufficient conditions for C ′′ >i C ′ when

C ′′ contains C ′.

Proposition 6: Let C ′ and C ′′ be subsets of a convex sublattice X of Rl. Then C ′′ >i C ′

if the following conditions hold:

(i) C ′ ⊂ C ′′,

(ii) C ′ is closed;

(iii) C ′ satisfies free disposal, i.e., if y < x and x is in C ′ then y is in C ′,

(iv) let x and u be positive vectors with ui = 0, x in C ′, x + u in C ′′ and x + tu /∈ C ′ for

all t in (0, 1]; then for any µ > 0, and u′ > 0 with u′i > 0 and orthogonal to u,

x− µu + u′ ∈ C ′ =⇒ (x + u)− µu + u′ ∈ C ′′.

Proof: Let x′ be in C ′ and y be in C ′′ with x′i > yi. If x′ > y, the condition for C ′′ >i C ′

requires x′ to be in C ′′ and y to be in C ′, which follows from (i) and (iii) respectively. So

we assume that x′ and y are unordered. If y is in C ′, the condition for C ′′ >i C ′ holds with

λ = 1. This leaves us with the case of x and y are unordered, with y not in C ′. Since x′ ∧ y
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is in X and less than x′, we know that it is in C ′. By (ii) and (iii) there λ∗ in [0, 1) such that

x′ ∧ y + λ∗vx′ is in C ′ and x′ ∧ y + λvx′ is not in C ′ for λ in (λ∗, 1]. Define u = (1− λ∗)vx′ .

Choose µ = λ∗/(1− λ∗) and u′ = x′ − x′ ∧ y. Note that ui = 0 and u′i > 0. We then have

x′ ∧ y + λ∗vx′ in C ′, (x′ ∧ y + λ∗vx′)− µu + u′ = x in C ′, and x + u = y in C ′′; so by (iv),

(x + u)− µu + u′ = x′ ∨ y − λ∗vx′ must also be C ′′. So we conclude that C ′′ >i C ′. QED

Conditions (i), (ii) and (iii) in the proposition are quite standard. Condition (iv) is the

more substantive condition, but it also seems entirely natural, given that we are working

towards monotone comparative statics. It says, in a specific formal sense, that the set of

substitution possibilities which favor good i in the constraint set C ′′ is larger than the set

of substitution possibilities which favor good i in the constraint set C ′: if at the point x,

it possible to substitute λu with u′ and still stay within the constraint set C ′ then it is

possible to make the same substitution at the point x+u and stay within the constraint set

C ′′.

The next theorem gives us a simple way of generating a class of ordered sets via qua-

siconvexmodular functions. A real-valued function f defined on a convex sublattice X is

i-quasiconvexmodular if for any x′ and y in X, with x
′
i > yi, and for any λ in [0, 1],

f(x′) ≤ (<)f(x′ ∧ y + λvx′) =⇒ f(x′ ∨ y − λvx′) ≤ (<)f(y) (5)

We say that f is quasiconvexmodular if it is i-quasiconvexmodular for i = 1, 2, ...l.

Theorem 2: Let X ⊂ Rl be a convex sublattice and let S be a interval in R. Suppose that

the function C : X×S → R is decreasing in s, and as a function of x, i-quasiconvexmodular,

increasing and continuous. Suppose also that it has the following property: whenever x′i > yi
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for x′ and y in X, the expression C(x′, s) − C(y, s) decreases with s. Then the sets C ′ =

{x ∈ X : C(x, s′) ≤ k′} and C ′′ = {x ∈ X : C(x, s′′) ≤ k′′} will satisfy conditions (i)-(iv) in

Proposition 6 provided (k′′, s′′) > (k′, s′). Consequently, C ′′ >i C ′.

Proof: Condition (i) of Proposition 1 is true because C is a decreasing function of s.

Condition (ii) follows from the continuity of C, while (iii) holds because C is an increasing

function. This leaves us with condition (iv). Suppose now that the vectors x and u satisfy x

in C ′, u > 0, ui = 0, x+u in C ′′, and x+tu /∈ C ′ for all t in (0, 1]. In this case, C(x, s′) = k′,

by the continuity of C. If for µ > 0, and u′, with u′ > 0, u′i > 0, and orthogonal to u, we

have x− µu + u′ in C ′, then C(x− µu + u′, s′) ≤ k′. Since C is i-quasiconvexmodular in x,

and C(x−µu+u′, s′)−C(x, s′) ≤ 0, we also have C((x+u)−µu+u′, s′)−C(x+u, s′) ≤ 0.

Since the difference term decreases with s, we have C((x+u)−µu+u′, s′′)−C(x+u, s′′) ≤ 0.

So C((x + u)− µu + u′, s′′) ≤ k′′, as required. QED

We wish to identify a class of functions C which obey the conditions of Theorem 2. To

this end, we first prove the next lemma, which we will be useful in other places as well. The

lemma refers to the set Xi: given any set X in Rl, Xi is the set {r ∈ R : xi = r for some x ∈

X}. Provided X is convex, this set will be an interval.

Lemma 2: Let X ⊂ Rl be a convex set, S an interval of R, and suppose that C :

X×T → R is given by C(x, s) = C̄(x)+ c(xi, s) where C̄ is any real valued function defined

on X and c : Xi × S → R is supermodular (submodular) in (xi, s). Provided x′i ≥ yi,

C(x′, s)− C(y, s) increases (decreases) with s.
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Proof: We write

C(x′, s)− C(y, s) = [C(x′, s)− C(x′ ∨ y, s)] + [C(x′ ∨ y, s)− C(y, s)].

Since x′i = (x′∨y)i, the term in the first square brackets simply equals C̄(x′)− C̄(x′∨y) and

does not vary with s, while the second term equals C̄(x∨y)− C̄(y)+ c((x∨y)i, s)− c(yi, s),

which increases with s when c is supermodular and decreases with s when f is submodular.

. QED

Proposition 7: Let X ⊂ Rl be a convex sublattice and let S be an interval in R. The

function C : X × S → R defined by C(x, s) = C̄(x) + c(xi, s) will satisfy all the conditions

of Theorem 2, provided the following holds:

(a) the function C̄ : X → R is submodular, increasing and continuous in x, and convex in

x−i and

(b) the function c : Xi × S → R is submodular in (xi, s), and increasing and continuous in

xi, and decreasing in s.

Proof: The fact that C is increasing and continuous in x is obvious from the assumptions

on C̄ and c. It is also decreasing in s by assumption. By Proposition 2 (or rather its obvious

analog) C̄ is i-convexmodular, which also means that C is i-convexmodular. Finally, from

Lemma 2 we know that C(x′, s)− C(y, s) decreases with s when x′i ≥ yi. QED

The next very useful corollary follows immediately from Theorem 2 and Proposition 7.

Corollary 2: Let C : X → R be a continuous, increasing, and quasiconvexmodular

function. (A sufficient condition for the latter property is that C is partially convex, and

submodular.) Then C−1((−∞, k′′]) > C−1((−∞, k′]) if k′′ > k′.
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Another way of generating comparable sets is given in the next result.

Corollary 3: Let X̃ be a convex sublattice of Rl−1 and I an interval of R, and let

G : X̃ → R be a continuous, supermodular, concave and decreasing function. Then if

s′′ > s′ > 0,

{(x̃, xl) ∈ Rl−1 × I : x̃ ∈ X̃, xl ≤ s′′G(x̃)} >l {(x̃, xl ∈ Rl−1 × I : x̃ ∈ X̃, xl ≤ k′G(x̃)}.

Proof: Define the function C acting on X̃ × I ×R+ by C(x̃, xl, s) = xl/s−G(x̃). Notice

that −G is a continuous, submodular, convex and increasing function. Furthermore, the

map from xl to xl/s is submodular in (xl, s), increasing and continuous in xl and decreasing

in s. By Proposition 7 and Theorem 2, the set {(x̃, xl ∈ Rl−1 × I : C(x̃, xl, k
′′) ≤ 0} is

l-greater than the set {(x̃, xl ∈ Rl−1 × I : C(x̃, xl, k
′) ≤ 0}, exactly as the corollary claims .

QED

Our final result shows that the quasiconvexmodularity condition in Corollary 2 is, in

essence, a necessary condition.

Proposition 8: Let X be a convex sublattice of Rl and let C : X → R be a continuous

and strictly increasing function. If C−1((−∞, k′′]) >i C−1((−∞, k′]) whenever k′′ > k′,

then C is i-quasiconvexmodular.

Proof: Consider x′ and y, unordered, with x′i > yi and suppose that C(x′) = k′ and

C(y) = k′′. If k′′ < k′, then by the fact that C is strictly increasing, C(x′ ∧ y + λvx′) ≤

C(y) = k′′ < k′ = C(x′) for all λ in [0, 1], which means that (5) is vacuously true for all λ

in [0, 1]. If k′′ = k′, (5) is vacuously true for λ in [0, 1), while it is trivially true at λ = 1.
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So we assume that k′′ > k′; since C−1((−∞, k′′]) >i C−1((−∞, k′]) we know that there

is λ̄ such that x′ ∧ y + λ̄vx′ is in C−1((−∞, k′]) and x′ ∨ y − λ̄vx′ is in C−1((−∞, k′′]).

Since C is continuous and increasing, there is λ∗ ≥ λ̄ such that C(x′ ∧ y + λ∗vx′) = k′ and

C(x′ ∨ y − λ∗vx′) ≤ k′′. Furthermore, since C is strictly increasing, for λ < λ∗, we have

C(x′∧y+λvx′) < k′ and for λ > λ∗, we have C(x′∧y+λ∗vx′) > k′ and C(x′∨y−λ∗vx′) < k′′.

Together, this means that (5) holds. QED

Comparative Statics Theorems

Let X be a convex sublattice of Rl and let F be a real valued function defined on X.

We say that F has the monotonic property in variable i (respectively, monotonic property)

if whenever C ′′ >i (>)C ′ we also have arg maxx∈C′′ F (x) >i (>) arg maxx∈C′ F (x).4 If F

has the monotonic property, then Proposition 5 tells us the following:

(a) whenever C ′′ >i C ′ (C ′′ > C ′) and x′ is in arg maxx∈C′ F (x), and arg maxx∈C′′ F (x) is

nonempty, then there is x′′ in arg maxx∈C′′ F (x) such that x′′i ≥ x′i (x′′ ≥ x′);

(b) whenever C ′′ >i C ′ (C ′′ > C ′) and x′′ is in arg maxx∈C′′ F (x), and arg maxx∈C′ F (x) is

nonempty, then there is x′ in arg maxx∈C′ F (x) such that x′′i ≥ x′i (x′′ ≥ x′).

The main comparative statics result of this paper says that the monotonic property

in variable i is equivalent to the i-quasiconcavemodularity of the objective function. This

result, once we have laid out the relevant groundwork, is very easy to prove - a feature it

shares with the standard comparative statics theorems. It is well known that greater sets

(in the sense of the strong set order) lead to greater solution sets (with respect to the same

set order) when the objective function is supermodular. (The first version of this result is
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due to A. Veinott; see Topkis (1978) for an early statement of this result). More precisely,

the quasisupermodularity of the objective function is both sufficient and necessary for this

property (see Milgrom and Shannon (1994)). The proof of our comparative statics theorem

has a similar structure to those earlier proofs. Indeed, we have developed the theory in the

way we did precisely so that we can now adopt the arguments they employed in their proofs,

subject to certain natural modifications. We begin with a fundamental lemma needed for

the main theorem.

Theorem 3: Let X be a convex sublattice of Rl and let F be a real valued function

defined on X. Then F is i-quasiconcavemodular if and only if it has the monotonic property

in variable i.

Proof: We first proof sufficiency. Assume that C ′′ >i C ′ and let x′ be in arg maxx∈C′ F (x)

and let y be in arg maxx∈C′′ F (x). Suppose that x′i > yi; there is some λ̃ in [0, 1] such

that x′ ∧ y + λ̃vx′ is in C ′ and x′ ∨ y − λ̃vx′ is in C ′′. By revealed preference, F (x′) ≥

F (x′ ∧ y + λ̃vx′) and by i-quasiconcavemodularity, F (x′ ∨ y− λ̃vx′) ≥ F (y), so x′ ∨ y− λ̃vx′

is in arg maxx∈C′′ F (x). If F (x′) > F (x′ ∧ y + λ̃vx′), then i-quasiconcavemodularity implies

that F (x′ ∨ y − λ̃vx′) > F (y) which contradicts the assumption that y maximizes F in C ′′.

So we must also have x′ ∧ y + λ̃vx′ in arg maxx∈C′ F (x).

We prove the necessity part of the theorem by contradiction. Let x′ and y be elements

in X with x′i > yi. There are two possible violations of i-quasiconcavemodularity. One

possibility is that there is λ∗ in [0, 1] such that F (x′) ≥ F (x′∧y+λ∗vx′) but F (x′∨y−λ∗vx′) <

F (y). In this case, let C ′ be the set with elements x′ and x′ ∧ y + λ∗vx′ and let C ′′ be the
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set with elements x′ ∨ y − λ∗vx′ and y. Then, clearly, C ′′ >i C ′, x′ maximizes F in C ′ and

y uniquely maximizes F in C ′′. This violates the monotonic property since x′i > yi.

The other possible violation of quasiconcavemodularity is that there is λ∗ in [0, 1] such

that F (x′) > F (x′ ∧ y + λ∗vx′) but F (x′ ∨ y − λ∗vx′) = F (y). In this case, with C ′ and C ′′

defined as above, y maximizes F in C ′′ while x′ is the unique maximizer of F in C ′. Again

this violates the monotonic property. QED

The next result follows immediately from Theorem 3 and Corollary 2. Note also that

by Corollary 1 we can easily modify the assumptions in the next result: instead of quasi-

concavemodularity, we can assume that F is partially concave and supermodular, while we

can replace the quasiconvexmodularity of C by its partial convexity and submodularity.

Corollary 4: Let F : X → R be a quasiconcavemodular function and let C : X → be

a continuous, increasing and quasiconvexmodular function. Then the optimal solutions to

maxx∈C−1(−∞,k]) F (x) vary monotonically with respect to k in the following sense: whenever

k′′ > k′, we have arg maxx∈C′′ F (x) > arg maxx∈C′ F (x).

In certain comparative statics problems both the constraint sets and the objective func-

tions are allowed to change. The next result addresses those situations. Loosely speaking,

it captures the idea that if the change in the objective function and the constraint set both

favor variable i, then the optimal value of i will rise.

Theorem 4: Let X be a convex sublattice in Rl and T and S be intervals on R. The

functions F and C (representing families of objective and constraint functions respectively)

are defined in the following way:

25



(i) F maps X × T to R, with F (x, t) = F̄ (x) + f(xi, t) where F̄ : X → R is supermodular

and concave in x−i and f : Xi × T → R is supermodular in (xi, t);

(ii) C maps X × S to R, with C(x, s) = C̄(x) + c(xi, s) where C̄ : X → R is submodular,

increasing and continuous in x, and convex in x−i, and c : Xi × S → R is submodular in

(x1, s), increasing and continuous in x1, and decreasing in s.

Then the i-value of the optimal solution varies monotonically with (k, t, s) in the sense that

whenever (k′′, s′′, t′′) > (k′, t′, s′), we have

argmax{x∈X:C(x,s′′)≤k′′}F (x, t′′) >i argmax{x∈X:C(x,s′)≤k′}F (x, t′).

Proof: By Theorem 2 and Proposition 7, C ′′ >i C ′, where C ′′ = {x ∈ X : C(x, s′′) ≤ k′′}

and C ′ = {x ∈ X : C(x, s′) ≤ k′}. Let y be in arg maxC′′ F (x, t′′) and let x′ be in

arg maxC′ F (x, t′) and assume that x′i > yi. There is some λ̃ in [0, 1] such that x′ ∧ y + λ̃vx′

is in C ′ and x′∨y−λ̃vx′ is in C ′′. By revealed preference, F (x′, t′) ≥ F (x′∧y+λ̃vx′ , t
′). Since

F (·, t′) is i-concavemodular, F (x′ ∨ y − λ̃vx′ , t
′) ≥ F (y, t′). Note that (x′ ∨ y − λ̃vx′ , t

′)i =

x′i > yi. By Lemma 2, we have F (x′∨y− λ̃vx′ , t
′′) ≥ F (y, t′′), so x′∨y− λ̃vx′ also maximizes

F (·, t′′) in C ′′.

We claim that x′∧y+ λ̃vx′ maximizes F (·, t′) in C ′. If not, F (x′, t′) > F (x′∧y+ λ̃vx′ , t
′),

which implies, by the i-concavemodularity of F (·, t′), that F (x′∨ y− λ̃vx′ , t
′) > F (y, t′). By

Lemma 2, we obtain F (x′ ∨ y − λ̃vx′ , t
′′) > F (y, t′′), contradicting the assumption that y

maximizes F (·, t′′) in C ′′. QED

Our final comparative statics result applies specifically to R2. Loosely speaking, it
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captures the idea that if the objective function changes in a way which is unfavorable to

variable 1, while the constraint set expands but in a way which raises the marginal cost of

variable 1, then the optimal value of variable 2 will rise.

Theorem 5: Let X be a convex lattice in R2 and T and S be intervals on R. The

functions F and C (representing families of objective and constraint functions respectively)

are defined in the following way:

(i) F maps X × T to R, with F (x, t) = F̄ (x) + f(x1, t) where F̄ : X → R is supermodular

in (x1, x2) and concave in x1, f : X1×T → R is submodular in (x1, t), and F is increasing

in x1;

(ii) C maps X × S to R, with C(x, s) = C̄(x) + c(x1, s) where C̄ : X → R is submodular,

increasing and continuous in x and convex in x1, and c : X1 × S → R is supermodular in

(x1, s), increasing and continuous in x1, and decreasing in s.

Then the 2-value of the optimal solution varies monotonically with (k, s, t) (in the sense

defined in Theorem 4).

The proof of the theorem relies on the next lemma.

Lemma 3: Let X be a convex lattice in R2 and S an interval on R. The function C

maps X×S to R and satisfies the assumptions (under (ii)) in Theorem 5. Then C ′′ >2 C ′,

where C ′ = {x ∈ X : C(x, s′) ≤ k′}, C ′′ = {x ∈ X : C(x, s′′) ≤ k′′} and (k′′, s′′) ≥ (k′, s′).

Proof: The claim is trivially true if (k′′, s′′) = (k′, s′), so we assume that (k′′, s′′) >

(k′, s′). Assume that x′ is in C ′ and y is in C ′′, with x′2 > y2. Since C is decreasing in

s, we can easily show that C ′ ⊂ C ′′, while the fact that C and c are both increasing in x
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guarantees that C ′ satisfies free disposal. This means that if y < x′ then y is also in C ′. If

y < x′, then the generalized strong set order requires precisely that y be in C ′ and x′ be in

C ′′, both of which are certainly satisfied. So we assume that x′ and y are not ordered. If y

is in C ′, the condition for C ′′ >2 C ′ holds for λ = 1.

So we assume that y is not in C ′, which means in particular that y1 > x′1. Since C is

increasing in x, C(x′ ∧ y, s′) ≤ C(x′, s′) ≤ k′. Again because C is increasing in x and also

because it is continuous in x, there is λ̃ in [0, 1] such that C(x∧y + λ̃vx′ , s
′) = k′. Note that

C(x′, s′) ≤ k′, so the 2-quasiconvexmodularity of C(·, s′) guarantees that C(x′∨y−λ̃vx′ , s
′) ≤

C(y, s′). Since (x′ ∨ y − λ̃vx′)1 ≤ y1, applying Lemma 2, the supermodularity of c implies

that C(x′ ∨ y − λ̃vx′ , s
′′) ≤ C(y, s′′). With y in C ′′, we have C(y, s′′) ≤ k′′, so x′ ∨ y − λ̃vx′

is also in C ′′. QED

Proof of Theorem 5: By Lemma 3, C ′′ >2 C ′. Let x′ maximize F (x, t′) for x in C ′ and

let z maximize F (·, t′′) in C ′′, and assume that x′2 > z2. Note that we can always find y

which maximizes F (·, t′′) in C ′′ such that y1 ≥ x′1 and y2 = z2 < x′2. If z1 ≥ x′1 simply let

z = y. If z1 < x′1, let y = (x′1, z2). Since F is increasing in x1, F (y) ≥ F (z). Furthermore,

by the free disposal property on C ′, y is in C ′ and therefore in C ′′.

We now assume that x′2 > y2 and x′1 ≥ y1. Since C ′′ >2 C ′, there is λ̃ in [0, 1] such

that x′ ∧ y + λ̃vx′ is in C ′ and x′ ∨ y − λ̃vx′ is in C ′′. By revealed preference, F (x′, t′) ≥

F (x′ ∧ y + λ̃vx′ , t
′). Since F (·, t′) is 2-concavemodular, F (x′ ∨ y − λ̃vx′ , t

′) ≥ F (y, t′). Note

that (x′∨y−λ̃vx′)1 ≤ y1 and f is submodular, so Lemma 2 implies that F (x′∨y−λ̃vx′ , t
′′) ≥

F (y, t′′). So x′ ∨ y − λ̃vx′ also maximizes F (·, t′′) in C ′′.
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We claim that x′∧y+ λ̃vx′ maximizes F (·, t′) in C ′. If not, F (x′, t′) > F (x′∧y+ λ̃vx′ , t
′),

which implies, by the 2-concavemodularity of F (·, t′), that F (x′ ∨ y − λ̃vx′ , t
′) > F (y, t′).

By Lemma 2, we obtain F (x′ ∨ y − λ̃vx′ , t
′′) > F (y, t′′), contradicting the assumption that

y maximizes F (·, t′′) in C ′′. QED

To motivate the formal results we have developed so far, we will now consider their

applications, beginning with their applications to demand theory.

3. Applications to Classical Demand Theory

We have in mind a consumer who maximizes a utility function U : Rl
+ → R, while facing

a budget constraint. At the price p in Rl
+, and income w > 0, we denote his budget set by

B(p, w), where B(p, w) = {x ∈ Rl
+ : p · x ≤ w}. A solution to maximizing U in B(p, w) is

referred to as a demand at (p, w).

Example 1. We say that the agent has normal demand if the demand for all goods

increase with his income. It is natural to ask when demand will be normal, but this is not a

question to which standard monotone comparative statics theorems can be straightforwardly

applied to yield an answer.5 This is because to apply those theorems, budget sets have to

be ordered in the strong set order, but with the usual order on Rl
+, budget sets are clearly

not ordered in this sense. Specifically, consider two budget sets B(p, w′) and B(p, w′′) with

w′ < w′′; if x′ is in B(p, w′) and y is in B(p, w′′), we know that x ∧ y is in B(p, w′), but

x ∨ y need not be in B(p, w′′).

On the other hand, the theorems developed in the last section can easily address this

question. First we note that the map C : Rl
+ → R given by C(x) = p · x is continuous,
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increasing, convex and submodular, and B(p, w) = C−1(−∞, w]. By Corollary 4, we know

that provided U is supermodular and partially concave, then demand will be normal in the

following sense: assuming that demand at (p, w′′) exists, then if x′ is a demand bundle at

(p, w′), where w′′ > w′, there is a demand x′′ at (p, w′′) such that x′′ ≥ x′; analogously,

assuming that demand at (p, w′) exists, then for any demand x′′ at (p, w′′), where w′′ > w′,

there is a demand x′ at (p, w′) such that x′′ ≥ x′.

It is worth saying a bit about what we have not assumed to arrive at this conclusion.

Firstly we have not made any of the assumptions needed to guarantee the existence of

demand, since our result is a statement on the monotone response of demand to income

change, if demand exists. In particular, U need not be continuous and the budget set need

not be compact since we allow for some prices to be zero. (Of course, demand can still exist

in a noncompact budget set provided U is not strictly increasing in all arguments.) Because

we have not assumed that U is increasing in all arguments, or more generally, that U obeys

local non-satiation, demand need not obey the budget identity, i.e., demand may be valued

by p at strictly less than income.

Strengthening our assumptions with other assumptions usually made in demand theory

will lead to slightly stronger results. We know that if U is strictly quasi-concave, demand

must be unique if it exists. So if we add this assumption to the concavity and supermodu-

larity of U , we can say that if x′ is the demand at (p, w′) and x′′ is the demand at (p, w′′),

with w′′ > w′, then x′′ ≥ x′. If we also know that demand obeys the budget identity (for

example, because U obeys local non-satiation) then we can say that x′′ > x′.
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As a special case of our result, we know that demand is normal if U is additive and

concave, i.e., U(x) =
∑l

i=1 ui(xi), where ui : R+ → R is a concave function, for i = 1, 2, ..l.

Normality in this special case is well known, though a standard proof will assume that the

uis are differentiable and increasing; as we have shown, while these assumptions may serve

other useful purposes, they are not crucial to the comparative statics as such.

The conditions we have imposed on U are not the weakest possible - for example, we

could just require U to be quasiconcavemodular - but they are quite natural in some sense.

In demand theory, it is typical to assume that preferences are quasiconvex to guarantee

that the demand correspondence is convex valued, or even strongly quasiconvex to guaran-

tee that demand at any particular price-income situation is unique. With these assumptions

(and conditional on certain technical assumptions like smoothness), preferences are always

representable by concave (rather than just quasiconcave) utility functions (see Mas-Colell

(1985)). Clearly it follows that concave utility functions alone do not guarantee normality;

but the property is guaranteed by utility functions which are both concave and supermod-

ular.

Example 2. Another basic question in demand theory is whether the law of demand

holds. We would like to say that as the price of good 1 falls, with other prices and income

held fixed, that the demand for 1 rises.6 More generally, one ought to be able to identify

conditions under which, holding all other prices fixed, the demand for i increases if all or

any of the following occur: the price of 1 falls, income goes up, and tastes change in a way

which is favorable to good 1. Those conditions are identified by Theorem 4.
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To capture the change in tastes in favor of - say - good 1, we construct a family of

utility functions by defining U , which maps Rl
+ × T to R, with U(x, t) = Ū(x) + u(x1, t).

We assume that T is an interval in R, Ū : Rl
+ → R is supermodular and concave in x−1,

and u : R+×T → R is supermodular in (x1, t), so the conditions on the objective functions

in Theorem 4 are satisfied. The family of constraint functions is C : Rl
+ ×R+ → R, where

C(x, s) = (x1/s) +
∑l

i=2 pixi. Note that an increase in s corresponds to a fall in the price

of good 1 and it is also not hard to see that C in this case does satisfy the conditions on

the constraint functions in Theorem 4. So we conclude that demand for good 1 increases

with (t, s, w) in the sense of that theorem.7

Example 3. A demand function is said to exhibit the gross substitutability property

if a fall in the price of good i causes the demand for all other goods to decrease. This

property is important because, amongst other things, it helps to guarantee the uniqueness

and stability of the equilibrium price in general equilibrium models (see, for example, Mas-

Colell et al (1995)). The most well known conditions guaranteeing gross substitutability are

the following. Let U : Rl
++ → R be of the form U(x) =

∑l
i=1 ui(xi) where each ui : R+ → R

is C2, with u′i(xi) > 0 and u′′i ≤ 0 for i = 1, 2, ...l. Then if f : Rl
++ × R+ → Rl

++ is the

demand function generated by U , f will obey gross substitutability if −xiu
′′
i (xi)/u′i(xi) < 1

for all i and xi > 0.

One can easily obtain this result using the techniques developed here. Assume that

income is held fixed at w and consider a price change from p′ to p′′, where p′′i = p′i for i ≥ 2

and p′′1 < p′1. Suppose that demand exists at both prices, with x′ being a demand at p′. We
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wish to show that there is a demand at p′′ in which the demand for good i rises and that

of all other goods fall.

First, observe that x∗ solves the following problem: (i) maximizing
∑l

i ui(xi) subject to

x satisfying p · x = w if and only if (s∗1, x∗2, ..., x∗l ), where s∗1 = p1x
∗
1, solves the following

problem: (ii) maximizing u1(s1/p1)+
∑l

i=2 ui(xi) subject to s1 +
∑l

i=2 pixi = w. So we can

focus on problem (ii).

Since x′ solves (i) at p = p′ we know that (s′1, x′2, x′3, ..., x′l), with s′1 = p′1x′1 is a solution

to (ii) at p = p′. Provided the map from (x1, 1/p1) to u1(x1/p1) is supermodular, and

since demand exists at p′′ by assumption, we know from Lemma 2 that there is a solution

(s′′1, x2,
′′ , ..., x′′l ) to (ii) at p = p′′ such that s′′1 ≥ s′1. In other words, there must be a demand

at p = p′′ in which the expenditure on good 1 is higher than that at p = p′. In particular,

x′′1 > x′1.

Since U is additive, we know that (x′2, x′3, ...x′l) maximizes Ū(x2, x3, ...xl) =
∑l

i=2 ui(xi)

subject to
∑l

i=2 pixi ≤ w − s′1. If uis are concave, so is Ū ; furthermore, Ū is additive and

therefore supermodular. From our discussion in Example 1, we know that Ū generates

normal demand. When more is spent on good 1, the expenditure available for other goods

is reduced from w − s′1 to w − s′′1, and so there must be (x′′′2 , x′′′3 , ..., x′′′l ) which maximizes

Ū(x2, x3, ...xl) subject to
∑l

i=2 pixi ≤ w − s′′1 such that x′′′i ≤ x′i for i ≥ 2. Furthermore,

(s′′1, x′′′2 , x′′′3 , ..., x′′′l ) solves (ii) at p = p′′, which establishes gross substitutability.

It remains for us to point out what it means for the map from (x1, a) in R2
++ to u1(ax1)

to be supermodular. It is not hard to check that this is equivalent to the convexity of the
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map ũ1 : R → R given by ũ1(z1) = u1(ez1). In short, we have shown that the additive

utility function U will generate demand satisfying gross substitutability if for all i ≥ 1, ui

is concave and ũi is convex. It is also not hard to check that when ui is C2 with u′i > 0,

then ũi is convex if and only if −xiu
′′
i (xi)/u′i(xi) ≤ 1 for all xi > 0. In other words, we have

obtained the non-differentiable version of the well known result.

4. Applications to Producer Theory

We begin with the most basic and obvious application of Theorem 3.

Example 4. A producer chooses the production vector q̄, drawn from the production

possibility set Q′ in Rl. The vector q̄ is chosen to maximize the firm’s profit. To each good

i is associated a price, which we assume is a function of q̄, so we write it as pi(q̄). We denote

the vector of l prices by p(q̄). The firm’s problem is to maximize profit, Π(q̄) = p(q̄) · q̄,

subject to q̄ in Q′. If we write the revenue derived from good i as Ri, so Ri(q̄) = pi(q̄)q̄i,

the profit function may also be written as Π(q̄) =
∑l

i=1 Ri(q̄).

Theorem 3 tells us that if Π is quasiconcavemodular then it has the monotonic property.

For Π to be quasiconcavemodular, it is sufficient that it is supermodular and partially

concave. This will certainly occur if perfect competition is assumed, so p(q̄) is identically

constant and, in particular, independent of q̄. More general it will be true if the price of each

good is a function only of its output level, i.e., pi is a function only of q̄i, and the revenue

function Ri is a concave function of q̄i. In this situation, Π is additive, hence supermodular,

and concave. More generally, a sufficient condition for Π to be supermodular and concave

is for each Ri to satisfy these properties.
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Consider now an expansion of the firm’s production possibility set, to Q′′ , satisfying the

assumptions of Proposition 6 for every i. So Q′′ > Q′ and Theorem 3 will tells us that the

optimal production vector will increase with this technological change. The word ‘increase’

here has to be interpreted correctly: typically, q̄ will have positive and negative entries,

corresponding to outputs and inputs. The ‘increase’ in q means that outputs will increase

and inputs will fall.

For a precise example of a technological change with an effect of this kind, assume that

there are n inputs, collectively denoted by the vector l in Rn
+ (the letter ‘l’ being suggestive

of ‘labor’, to produce m outputs, to be denoted by the vector q in Rm
+ . We assume that

there is a continuous, increasing, convex, and submodular function φ : Rm
+ → R, and a

continuous, increasing, concave and supermodular function ψ : Rn
+ → R, so that the firm’s

production possibility set, QK is given by the elements q̄ = (q,−l) such that φ(q) ≤ ψ(l)+K.

Varying K will vary the firm’s production possibilities. In fact we have chosen an

example where K has a very simple interpretation. One can think of the vector l of inputs

being converted into a single composite input, whose level is given by ψ(l) + K. With

this level of composite input, the possible output vectors is given by those q for which

φ(q) ≤ ψ(l)+K. An increase in K of - say - δ, corresponds to a technological change which

raises the level of the composite input by a constant amount δ for every input vector l.

Notice that QK = Γ−1(−∞,K] where the function Γ : Rm
+ × Rn− → R is given by

Γ(q,−l) = φ(q) − ψ(l). With our assumptions on φ and ψ, it is not hard to see that Γ is

a continuous, increasing, convex, and submodular function. So by Corollary 4, q̄ increases
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with K.

Example 5. Consider a firm producing just one good, whose revenue when q units of

output are produced is given by R(q, a), where a is parameter drawn from an interval A

contained in R. Producing this good requires n inputs; we denote the typical input vector

by l, the vector of input prices by w, and let F : Rn
+ → R+ be the firm’s production

function. The firm’s objective is to maximize profit; formally, it chooses (q, l) to maximize

Π(q, l, a) = R(q, a)−w · l subject to (q, l) in the set {(q, l) ∈ R+×Rn
+ : q ≤ F (l)}. We wish

to identify conditions under which we can sign the effect of a on q and l.

Let (q′, l′) be a solution when a = a′ and (q′′, l′′) be a solution when a = a′′, with a′′ > a′.

Assume that R is a supermodular function of (q, a). Our first claim is that if q′′ ≤ q′, then

(q′, l′) also maximizes Π at a = a′′. Revealed preference says that Π(q′, l′, a′) ≥ Π(q′′, l′′, a′).

Note that R enters additively in the objective function, so that if q′′ ≤ q′, Lemma 2 tells us

that Π(q′, l′, a′′) ≥ Π(q′′, l′′, a′′), which means that (q′, l′) also maximizes Π at a = a′′.

So we assume that q′′ > q′. Let F̃ : Rn
+ → R be some representation of the firm’s

isoquants in Rn
+; note that F̃ may or may not be the real production function F . Since

profit maximization implies cost minimization, l′ and l′′ must minimize w · l subject to

l satisfying q′ ≤ F̃ (l) and q′′ · F̃ (l) respectively, or equivalently, maximize −w · l subject

to −F̃ (l) ≤ −q′ and −F̃ (l) ≤ −q′′. Applying Corollary 4, we know that −l increases

monotonically with −q (equivalently, l increases with q) provided the map from −l in Rn−

to −F̃ (l) is submodular, partially convex, increasing and continuous. This is equivalent to

having F̃ supermodular, partially concave, increasing, and continuous.
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In short, assuming that the revenue function R is supermodular in (q, a), and that the

firm’s isoquants have a supermodular, concave, increasing and continuous representation

will guarantee that the profit maximizing choice of q and l both rise with a.

Example 6. Consider a firm with a single input, whose level we denote by L > 0, and m

outputs, whose output level is denoted by the vector q in Rm
+ . The firm’s goal is to choose

(q, L) to maximize profit, given by Π(q, L, w) =
∑m

i=1 Ri(q) − wL, where Ri is the income

derived from good i if the output vector is q and w is the unit cost of the input. We assume

there are increasing functions φ : Rm
+ → R and ψ : R+ → R constraining the firm’s choice

of (q,−L) to those satisfying φ(q) ≤ ψ(L).

We can employ arguments similar to those in the previous example to sign the change

in q and L following a change in w. Assume that w rises from w′ to w′′. Firstly, by

applying Lemma 2 again, we may restrict our attention to the case when the optimal

level of output falls strictly from L′ to L′′. To determine its impact on output, we must

compare the optimal choices at two constrained maximization problems: in the first case,

total revenue R(q) =
∑m

i=1 Ri(q) is maximized while constraining q to the set Q′ = {q ∈

Rn
+ : φ(q) ≤ ψ(L′)} and in the second case, R(q) is maximized with q constrained to

Q′′ = {q ∈ Rn
+ : φ(q) ≤ ψ(L′′)}. Since ψ is increasing, ψ(L′′) ≤ ψ(l′) and Q′′ ⊂ Q′.

Corollary 4 then identifies sufficient conditions for q to vary monotonically with L: R should

be partially concave and supermodular, and, in addition to being increasing, φ should be

partially convex, submodular and continuous. Of course, a sufficient condition for R to be

partially concave and supermodular is for Ri to be a concave function of qi.
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Example 7. Consider a firm who employs n inputs to produce one or several output

goods. When the vector of inputs is l in Rn
+ , the firm produces goods which generate

revenue of R(l). The unit cost of inputs is given by the vector w, so the firm’s profit

function is Π(l) = R(l) − w · l, which it maximizes by choosing the vector l. Suppose, in

addition, that the firm faces a constraint on the level of some input (let us say it is input 1)

that it can employ. Using standard monotone comparative statics techniques, one can show

that relaxing this constraint will cause all inputs to go up provided R is a supermodular

function of l. But suppose the constraint is of the form
∑k

i=1 li ≤ L. A constraint of this

type will make sense if, for example, goods 1 to k in fact represent different ways of deploying

a particular type of labor within the firm, whose total number in the short run cannot be

increased beyond L. Provided R is partially concave and supermodular, Corollary 4 tells

us that a relaxation of this constraint, i.e., an increase in L, will cause the demand for all

inputs to increase.

5. Other Applications

In Section 2, we developed our general monotone comparative statics results, and then

applied them, in ways which are in a sense quite obvious, to problems in demand and

producer theory in Sections 3 and 4. In this section, to demonstrate the usefulness of our

basic results, we will consider three somewhat less obvious applications, all taken from the

profit maximization problem of a monopolist.

Example 8. Consider a monopolist who produces a single good priced at p and maximizes

profit, Π(p, q) = pq − c(q), subject to the demand condition, φ(p, q) ≤ k. The function
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Π : R+ × R+ → R is supermodular in (p, q) and obviously concave in p; it will also

be concave in the output q if the cost function c is a convex function of q. Provided φ

is increasing, continuous, submodular, and partially convex, Corollary 4 tells us that an

increase in demand corresponding to an increase in k will cause both price and output of

the monopolist to rise.

For a specific example of the function φ, suppose that the demand curve has the form

p = G(k−H(q)) where H is increasing, continuous, and convex, and G is strictly increasing,

continuous, and concave. Then φ(p, q) = G−1(p) + H(q) is additive (hence submodular),

increasing, continuous and convex.

Example 9. We consider a single product monopolist again, but this time we are in-

terested in how the profit margin varies with unit cost, which is assumed to be constant

(over output). We write his profit function as Π(m, q) = mq, where m is the margin over

the unit cost c and q is the output level. He faces a demand function, p = φ(q), so we can

think of the monopolist as maximizing Π(m, q) subject to m + c ≤ φ(q). We can write this

constraint in a more familiar way as m − φ(q) ≤ −c. It is clear that Π is supermodular,

and concave in m and q separately. Provided φ is continuous, decreasing and concave, the

function C(m, q) = m−φ(q) will be continuous, increasing and convex. Since C is additive,

it is also submodular. Therefore, all the conditions of Corollary 4 are satisfied, and we may

conclude that m and q will both fall as c increases.

Example 10. We consider a profit-maximizing monopolist who produces two goods, 1

and 2 and we allow the price of one good to affect the demand for another. Formally,
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if x1 ≥ 0 is the price of good 1 and x2 ≥ 0 the price of good 2, the demand for good

i (i = 1, 2) is given by D̄i(x1, x2) ≥ 0. For reasons which will make themselves clear

later, it is convenient to re-write demand as a function of the price of good 1, x1 and the

negative of the price of good 2, y2; formally, we define new functions Di (i = 1, 2) such that

Di(x1, y2) = D̄i(x1,−y2). We assume that the marginal cost of producing goods 1 and 2

are constant over output levels, and equal c1 and c2 respectively. We wish to consider the

impact of a change in c1 on the optimal choice of y2; in other words, we want to know how

a change in the marginal cost of producing 1 affects the profit maximizing price of 2. We

assume that the goods are substitutes in the sense that demand for good 1 falls with the

price of good 2; for that reason, the price of 2 will never be chosen to be below the marginal

cost of c2, since raising it to c2 will unambiguously increase profits. Hence, without loss of

generality, we may restrict the domain of D1 and D2 to the set R+ × (−∞,−c2].

In this case, it is instructive to think of the monopolist as choosing x1 ≥ 0, y2 in

(−∞,−c2], and the output level of good 1, denoted by d1 ≥ 0, to maximize

Π(x1, y2, d1) = x1d1 − y2D2(x1, y2)− c1d1 − c2D2(x1, y2)

subject to the demand constraint on good 1, d1 ≤ D1(x1, y2). We wish to identify conditions

under which y2 increases with c2 (in other words, that the price of good 2 falls as the marginal

cost of good 1 increases).

Let (x′1, y′2, d′1) and (x′′1, y′′2 , d′′1) be solutions at c1 = c′1 and c1 = c′′1 respectively, with

c′′1 > c′1. If d′′1 ≥ d′1, one can argue, by appealing to Lemma 2, that (x′1, y′2, d′1) also maximizes

profit at c1 = c′′1 and we are done. (The argument is similar to that in Example 4; note also
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that this conclusion requires no assumptions at all on the demand functions.)

So we assume that d′′1 < d′1. The additive structure of the profit function means that

(x′1, y′2) must also maximize the function G′ : R+ × (−∞,−c2] → R given by

G′(x1, y2) = x1d
′
1 + (−y2 − c2)D2(x1, y2)

while subject to the constraint −D1(x1, y2) ≤ −d′1. Analogously, (x′′1, y′′2) maximizes the

function G′′ : R+ × (−∞,−c2] → R given by

G′′(x1, y2) = x1d
′′
1 + (−y2 − c2)D2(x1, y2)

while subject to the constraint −D1(x1, y2) ≤ −d′′1. We are now effectively in the setting

of Theorem 5. To guarantee that y2 falls with d1, i.e., y2 increases with −d1, Theorem

5 requires the constraint function −D1 to be submodular, continuous, and increasing in

(x1, y2) and convex in x1; more familiarly this means that the demand function D̄1 (which

you recall is a function of prices (x1, x2)) is submodular and continuous in both variables,

concave in x1, decreasing in x1, and increasing in x2. For the objective function, Theorem

5 requires that the map from (x1, d1) to x1d1 be increasing in x1, decreasing in −d1 and

submodular in (x1,−d1), all of which certainly hold. It also requires that the function

mapping (x1, y2) in R+ × (−∞,−c2] to (−y2 − c2)D2(x1, y2) be supermodular in (x1, y2)

and concave and increasing in x1. It is not hard to check that this is true if the function

Π : R+ × (c2,∞) → R given by Π2(x1, x2) = (x2 − c2)D̄2(x1, x2) is submodular in (x1, x2)

and concave and increasing in x1.
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Footnotes:

1. For a textbook introduction to these methods see Topkis (1998) or Vives (1999).

2. The product order is of course not the only possible order. For certain types of problems,

it can be helpful to turn to some other ordering of the Euclidean space. For a recent

discussion of this issue, with special reference to problems in consumer theory see the

interesting paper of Mirman and Ruble (2003). In particular, by ordering the Euclidean

space differently, they identify conditions under which a particular good is normal. In

contrast, our emphasis in this paper is on finding conditions under which all goods are

simultaneously normal. The work of Mirman and Ruble (2003) builds on Antoniadou

(1995), which was the first serious attempt at applying lattice programming techniques

to problems in consumer theory.

3. The function G is submodular if −G is supermodular.

4. According to our definitions, for F to have the monotonic property is not equivalent to

F having the monotonic property for all i = 1, 2, ..l; the latter property is stronger.

5. For a discussion of the role of normality in general equilibrium comparative statics, see

Quah (2003).

6. Note that this one good version of the law of demand is not the same as the multi-good

version, which requires the inner product of the price change and demand change vectors

to be negative. For more on this stronger version of the law of demand see Mas-Colell et al

(1995). It is an interesting question (to which we have no answer) how one may derive the

well known conditions on the utility function for this stronger property (due to Milleron,
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Mitjuschin and Polterovich) from lattice programming techniques.

7. There is a familiar and simple argument which shows that good i obeys the law of

demand if it is normal. The idea is to decompose the change in demand from the old to the

new price into changes arising from the substitution and income effects. With a fall in the

price of i, both the substitution and income effects act to increase the demand for good i

- the first follows from revealed preference and the second by the assumption of normality

- so the demand for i rises. Notice that this argument requires that demand be defined at

every price-income situation; in particular, it has to defined when the agent is given just

enough income to purchase his original demand bundle at the new price. Since we do not

make this assumption, we cannot simply repeat this argument in our example.
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