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Abstract

Functional Signal plus Noise (FSN) time series models are introduced for the econometric
analysis of the dynamics of a large cross-section of prices in which contemporaneous observa-
tions are functionally related. A semiparametric FSN model is developed in which a smooth,
cubic spline signal function is used to approximate the price curve data. Estimation may
then be performed using quasi-maximum likelihood methods based on the Kalman filter.

The model is used to provide one of the first studies of the dynamics of the bid and ask
curves of an electronic limit order book and enables the comprehensive measurement of the
dynamic determinants of traders’ execution costs. It is found that the differences between
the bid and ask curves and their intercepts (i.e. the immediate price impacts of market
orders) are well described by covariance stationary processes. The in-sample, 1-step ahead
point predictions for these curves perform well and motivate the development of parametric
FSN models that take into account the monotonicity of the price curves and can be used to
form predictive distributions.

Keywords: functional time series, bid and ask curves, liquidity, electronic limit order
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1 Introduction

The quoted prices available on a financial market at any given time can often usefully be viewed
as a function of some feature of the asset traded such as the volume of the transaction or the
maturity date of the asset in question. Prominent examples include the bid and ask curves of an
automated exchange and the yield curve for pure discount bonds. A record of such asset prices is
thus a panel dataset of high cross-sectional dimension, in which contemporaneous observations
are related to one another in a functional manner. This paper develops a novel econometric
framework for the coherent, joint modelling of both the cross-sectional and dynamic aspects of

such asset price functions.

*Comments are welcome and should be directed to the above e-mail address.



We apply our approach in a study of the dynamic evolution of the bid and ask curves of a
fully automated financial market or ‘electronic limit order book.” Electronic limit order books
have become an important means of trading equities, derivatives and bonds worldwide and their
increasing use seems set to continue. For example, the London Stock Exchange’s electronic order
book SETS accounted on average for 59% of the daily total value traded on the exchange in 2001
and for 62% during the first nine months of 2002 (London Stock Exchange plc (2003b)). Analysis
of the dynamics of the bid and ask curves of the limit order book is of crucial importance for
the control of traders’ execution costs and for an understanding of the dynamics of liquidity.

The main contributions of the paper may be summarised as follows. First, Functional Signal
plus Noise (FSN) time series models are introduced for analysing the dynamics of a large cross-
section of prices in which contemporaneous observations are functionally related. Applied to the
average price (i.e. bid and ask) curves of an electronic limit order book market, these enable
the comprehensive measurement of the determinants of traders’ execution costs (i.e. ‘liquidity’)
in a way that takes the dynamic aspects of the problem into account. The FSN models specify
the evolution over time of stochastic functions, a problem that has received relatively little
attention in the econometrics and statistics literature. Second, a semiparametric FSN model is
developed in which a smooth, cubic spline signal function is used to approximate the price curve
data. The use of cubic splines results in models that may be estimated using quasi-maximum
likelihood (QML) methods based on the Kalman filter. Third, this FSN model is then used
to provide one of the first studies of the dynamics of the bid and ask curves of a limit order
book (LOB). It is found that the average price curves that give the immediate price impact
of market orders are well described by covariance stationary processes which lack deterministic
time-of-day effects. The in-sample, one-step ahead point predictions for these curves perform
well. Finally, we consider the specification of fully parametric FSN models that take into account
the monotonicity property of the bid and ask curves and that can potentially be used to form
predictive distributions (or ‘density forecasts’) for the econometric solution of trading decision
problems.

The bid and ask curves of the LOB at time ¢ have a straightforward definition: they express
the average price per unit volume of instantaneously selling and buying the security respectively

(using a so-called ‘market order’), as a function of the volume, v, of the security traded. They



are denoted here by p?(v) and p¢(v) respectively. To understand the need for a dynamic model
of these curves in order to provide econometric solutions to trading decision problems, consider
an agency trader acting on behalf of a client who is instructed to buy or sell a large volume
of shares in a particular security by the end of the current trading day. Assuming that the
trader restricts attention to market orders and wishes to buy, she must decide how to split up
the volume over the course of the day in order to minimise her expected loss. The current ask
curve at time ¢ determines the cost of purchasing various volumes at time ¢, and is available
from the electronic trading screen that the trader views. Note that the ask curve thus provides
the immediate price impact of a market order to buy volume v, in excess of the best ask — i.e.
the price difference pf(v) — p?(1). This is an important aspect of most definitions of liquidity,
sometimes known as ‘depth’ (see Kyle (1985)). In solving her decision problem, the trader will
also be concerned with dynamic issues such as the degree of persistence of the slope of the ask
curve (“Over what time horizon can low price impact now be expected to imply low price impact
in the future?”) and the effect of her market orders on the future evolution of the curve (“To
what extent does the consumption of liquidity now affect future price impact and the future
level of the best ask?”). Such questions form the motivation for the time series models of bid
and ask curves developed here.

The work presented is also a contribution to applied functional time series analysis. Each
average price curve may be regarded as a finite-dimensional vector, albeit of very high dimension.
However, the standard approaches of multivariate time series or panel data econometrics are
of little help in this setting, owing to the high dimensionality of the curves and the close,
functional relationship between the observations lying on those curves. Indeed, the analysis of
time series of stochastic functions such as {p¢(v)}; is in a state of relative infancy.! Previous
work in the statistics literature includes the use of Functional AutoRegressive (FAR) models for
forecasting entire smooth, continuous functions by Besse and Cardot (1996) and Besse, Cardot,
and Stephenson (2000). We are aware of only two previous functional time series studies in the
econometrics literature. In concurrent, independent work, Diebold and Li (2003) introduce a
dynamic version of the Nelson and Siegel (1987) yield curve in which the three parameters or

‘factors’ describing the curve follow an autoregressive process. Their approach thus has features

! Punctional Data Analysis by Ramsay and Silverman (1997) is a landmark in this area but does not consider
the time series case in which the functions are dependent.



in common with our own, although we view the use of cubic spline signal functions as offering
considerable flexibility in a broad range of empirical applications. Gouriéroux, Le Fol, and
Meyer (1998) also analyse the dynamics of the bid and ask curves of a financial market, but in
transaction time. A comparison with their two factor model is provided towards the end of the
paper.

In the Functional Signal plus Noise (FSN) models developed here, the information about
the functional, cross-sectional relationship between contemporaneous observations is captured
by modelling the observed curves as the sum of a smooth signal function, S(v), and a noise
process. The signal function used is a cubic spline uniquely determined by its knot-prices —
i.e. the prices that correspond to the volumes at which the knots of the spline are positioned.
The state equation of the FSN model determines the stochastic evolution of the low-dimensional
vector of knot-prices and hence of the entire spline signal. The choice of a cubic spline for the
signal function is advantageous since the FSN model can then be written in linear state space
form, thus allowing the use of the Kalman filter to perform both QML estimation and 1-step
ahead linear point prediction. Harvey and Koopman (1993) were the first to describe a linear
state space model with a state equation determining the stochastic evolution of a cubic spline
function. There, as in Koopman and Ooms (2001), the stochastic spline is used to model the
latent, time-varying periodic pattern of a scalar time series. This contrasts the present work in
which the stochastic splines are used as a tool in functional time series analysis and assume the
role of smooth approximations to the observed functional data.

The structure of the paper is as follows. Section 2 explains the basic features of an electronic
LOB, defines its bid and ask curves in terms of the limit orders that make up the order book,
and provides a description and graphical display of the SETS bid and ask curve dataset analysed
later. Section 3 introduces the semiparametric FSN model and shows how it may be estimated
by QML. Section 4 then presents the results of fitting this FSN model to the SETS dataset.
An analysis of the one-step ahead prediction errors of the model motivates the development of
fully parametric FSN models taking into account the monotonicity of the bid and ask curves
in section 5. A comparison with previous research on the dynamics of liquidity and average
price curves, and a discussion of possible extensions to this work are given in section 6, before

concluding in section 7.



The Appendix provides the necessary mathematical details on cubic spline functions (see
section 8.1). These are denoted here, as a function of v, by S(v). The following additional
notation is used throughout the paper. For a vector or matrix 3, we write 8 > 0 (resp. 8 > 0)
if and only if every element of 3 is positive (resp. non-negative). The Hadamard or ‘element-
by-element’ product of two vectors z and gy, both of dimension m, is written x ® y, where
T Oy := (T1Y1, -, Tm¥Ym)'- Finally, Z ~ (u,,Q,) is used to mean that the random vector Z has

finite mean p, and finite covariance matrix €2,.
2 Limit Order Book Data and Bid and Ask Curves

The following section briefly explains the roles of market and limit orders in the operation of an
electronic LOB and provides a definition of its bid and ask curves in terms of the limit orders
present on the book. A description and graphical display of the London Stock Exchange SETS
(Stock-exchange Electronic Trading Service) limit order book dataset analysed later in section

4 is then provided.
2.1 Institutional background and general definitions

As was noted above, the bid (ask) curve of the limit order book at time ¢, p;(v), is a function
of volume that gives the average price per unit volume of instantaneously selling (buying) the
security using a market order. When a trader submits, say, a buy market order to the electronic
system, it is matched against and results in the removal of an equal limit order volume from the
sell side of the book. The sequence in which limit orders are matched against incoming market
orders is determined by price, with higher (lower) priced limit buy (sell) orders having priority.
As the name suggests, limit orders reside on the LOB awaiting execution. The operation of
such ‘order driven’ markets is described in detail by Gouriéroux and Jasiak (2001, Ch.14) and
Bauwens and Giot (2001).2

A buy market order with volume v is taken here to refer simply to an order to buy v shares
that results in immediate execution at the best price available. A buy limit order with volume
v and price P represents a firm offer to buy v shares at a price (less than or) equal to P. Sell

orders are defined analogously. At any point in time the ‘bid’ or buy side of the LOB can be

*Further details concerning the SETS trading system in particular are given in London Stock Exchange plc
(2003a).



viewed as the collection of all buy limit orders present on the book, grouped according to their
price. Similarly, the ‘ask’ or sell side consists of the collection of all sell limit orders. The best
bid is defined as the maximum price associated with any buy limit order, and the best ask as
the minimum price associated with any sell limit order. These prices represent the best priced
offers on the book and are denoted here by p?* and p¢* respectively. Defining m; := [p{* + p?*]/2
and s; := p{* — p’g*, my and s; are referred to as the mid-quote and bid-ask spread respectively.

Let the ‘tick size’ be the minimum price difference between any two limit orders having
different prices.?> Then, normalising the tick size to be one and defining V2 (i = 0,1,...) as the
total volume of buy limit orders at time ¢ whose price is exactly ¢ ticks away from the best bid
(i.e. whose price is p?* + i), the bid side of the LOB can be written simply as {V%:i = 0,1,...}.
Similarly the ask side of the book is given by the collection of volumes {V$;i = 0,1,...}. Now
consider what happens when a sell market order with volume v = (V[ﬁt + Vlbt), say, is submitted
at t. The market order will execute against all of the buy limit orders present at or one tick
away from the best bid, resulting in a trade with an average price of [V4p?* + Vi (p?* + 1)jv.

This is the basic idea behind the formal definition of the average price curves given below,
the only complication being that market orders with a volume v that only partially exhausts

the total volume of limit orders present at some price must also be considered.

Definition 1 Average Price Curves. The bid (resp. ask) curve at time t expresses the
average price per unit volume that would result from instantaneously selling (resp. buying) v
shares by submitting a market order at t.* Let Vi; be the total volume of buy (resp. sell) limit
orders at time t whose price is exactly i ticks away from the best bid (resp. ask), i =0,1,2,...,

and let pf be the best bid (resp. ask). Then the average price curve is given as a function of v

by
1 S S
pi(v) = " l(U—ZVit) (pf+s+1)+Z(p2‘+i)Vit ; (1)
1=0 1=0
where s := sup{k : Ef:[] Vie < v, k =0,1,2,...} provided this set is not empty, s = —1

otherwise and empty sums are equal to zero. When the need arises to distinguish the bid and

ask curves explicitly, the notation p?(v) and p¢(v) is used respectively.

3For the dataset analysed in section 4 the tick size is equal to one penny.
It is assumed that this price is known given observation of the LOB at time ¢, thus abstracting from the
possibility of time lags between submission and execution of a market order.



Equation (1) can readily be deduced by noting that a market order with volume v fully
exhausts the total volume of all limit orders whose price is within s ticks of the best priced
limit order, and then is matched against some but not all of the limit order volume present at
(s + 1) ticks from the best price. It follows from (1) that the bid (ask) curve is non-increasing
(non-decreasing).’?

To avoid confusion, it is noted that the domain of the average price function or curve at time
t is the finite set {1, 2, ...,vn(t)}, or for practical purposes some subset of that set, where v,
is the aggregate volume of limit orders present on the relevant side of the book at time ¢. The
on-screen information viewed by the trader includes both the bid and ask curves with domain
{1,2,..., Un(t)}- The average price curves may thus always be represented by finite dimensional
vectors, which is the practice adopted here. Furthermore, the domain of the price curve will
henceforth be written as the vector v = (vy,v2, ..., v,)’, where v,y is now assumed not to depend

on t for the sake of simplicity, and the price curve itself will be denoted for short by py(v).

2.2 SETS data

The dataset analysed in section 4 was extracted from the London Stock Exchange’s Transaction
Data Service (TDS) database and covers the period from 2 January 2002 to 31 January 2002
inclusive for the heavily-traded FTSE100 stock AstraZeneca. The TDS database allows the
reconstruction of the SETS limit order book and its associated average price curves at any given
time (for further details of which see section 8.3 of the Appendix). The dataset consists for each
trading day of the bid and ask curves observed at 1 minute intervals during the 8.25 hour period
from 08:15 GMT to 16:30 GMT inclusive, giving 496 pairs of curves per day. This 8.25 hour
period includes almost all of the period of continuous trading on SETS each day.

A graphical display of the ask and bid curves at 5 minute intervals for the entirety of one
randomly selected day of the dataset, namely 30 January 2002, is given in Figure 1. Time is
shown on the horizontal axis, and increases from right to left. Particularly noticeable are the
high degree of variability of the average price that is observed right across the volume range

and the lack of any obvious relationship between the bid and ask sides. As in the Paris CAC

®Considering v as a continuous variable, equation (1) also implies that p¢(v) is continuous, not differentiable
everywhere and for a bid (ask) curve piecewise convex (concave).

5The first 15 minutes of the standard period of continuous trading are omitted in order to guarantee that any
extensions to the opening auction have been completed and continuous trading has begun.
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Figure 1: The ask and bid curves plotted at 5 minute intervals for AstraZeneca on 30 January
2002. The curves are in pence relative to the best bid and ask respectively; minus the bid curve is shown
for visual clarity; time, t, is in minutes after 08:15 GMT and volume, v, is in number of shares.



(Cotation Assistée en Continu) dataset analysed by Gouriéroux, Le Fol, and Meyer (1998), the

bid and ask curves are far from being always symmetric about the volume axis.
3 Functional Signal plus Noise Models

We now present the new Functional Signal plus Noise (FSN) model for analysing time series of
cross-sectional price functions. The exposition is given for the bid and ask curves of a LOB.
With minor modification, however, the FSN framework is potentially broadly applicable to
the empirical analysis of time series of price functions due to the flexibility of cubic splines as
approximating functions. In this section a semiparametric FSN model is considered in which a
smooth, cubic spline signal function is used to approximate the price curve data. The parameters
of the model determine completely the mean and autocovariance structure of the time series
of price functions and so this type of model can be estimated by QML. It is shown below
how to write the FSN model in linear state space form, thus allowing the use of the Kalman
filter to compute both the Gaussian quasi-likelihood function and one-step ahead, linear point
predictions.” A discussion of the specification of fully parametric FSN models is deferred until

section 5.
3.1 Semiparametric FSIN model

FSN models are presented here for the difference between the bid (ask) curve as given by
Definition 1 and the best bid (ask) price, that is for {p;(v) — pj};. Furthermore, the models
are for a time series of either bid or ask curves.® The extension to joint models incorporating
the best quoted prices and dependence between the bid and ask curves is discussed in section
6.2. Henceforth, except where indicated otherwise, the notation p;(v) is thus used for the
difference between the bid (ask) curve as given by Definition 1 and the best bid (ask), that
is pe(v) := (pe(v1) — pfy ey pe(vn) — p7)', where v = (vy,...,v,)" is the vector of volumes under

consideration. Observation of the curves is assumed to take place at t = 1,2, ..., T.°

"The term Kalman filter should always be taken here to refer to the recursions as they are conveniently stated
in Koopman, Shephard, and Doornik (1999, Section 4.3, pp. 122-123). For a textbook exposition of the Kalman
filtering procedure, see Harvey (1989, Ch. 3).

8Note that the primary object of interest from the perspective of the agency trading decision problem discussed
in section 1 is either the bid or ask curve, depending on whether the trader is instructed to sell or buy the security.
Agency traders instructed to sell, say, are not permitted by clients to buy the security as part of an overall trading
strategy.

In the empirical analysis of section 4 the price curves corresponding to the dth day, (pgd)(z/)’7 ...,p(;.i)(l/)’)’ are
modelled as being independent and identically distributed across days.
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Figure 2: An illustrative spline signal function, Sg; (1), for an ask curve. The prices at the knots,
aj;, are plotted using filled circles; the knots are given by k = (1,2500, 5000, 10000, 20000); the states,
aji (j = 2,3,4), are the vertical distances between the horizontal dashed lines and aq; is the vertical
distance between the abscissa and the first horizontal dashed line.

The semiparametric FSN model consists of a stochastic, smooth, cubic spline signal function,
denoted here by Su: (v) = (Saz (v1), -..; Sa; (va))’, Plus a noise process. A cubic spline is essentially
a piecewise cubic function with pieces that join together to form a smooth function overall. The
essential aspects of cubic spline theory and related definitions needed here are described in
the Appendix (see section 8.1). The spline signal S,:(v) has knots positioned at the volumes
k= (1,k1,...,kn)" — these are deterministic and fixed over time. The notation S,: () is used to
imply that the spline interpolates to af = (0,7, ..., ;) —i.e. Sar(kj) = o, for j =0,...,m.
The o], can thus be thought of as the ‘latent prices at the knots’ or more concisely as the
knot-prices of the spline.'9 The state equation of the FSN model then determines the stochastic
evolution of these knot prices over time. An illustrative spline signal function for an ask curve

at time ¢ is shown in Figure 2.

A formal definition of the semiparametric FSN model now follows.

10Note that the spline signal function is constrained here to pass through the point (1,0) for all ¢. Fixed
intercepts other than zero create no difficulty. The extension to the case where the spline function has a stochastic
intercept is also straightforward.

10



Definition 2 Semiparametric Functional Signal plus Noise (FSN) Model. The model

for the observable n-vectors, p1(v),...,pr(v), is given by

p(v) = Sa;(v) +e
= Zoy+ €, (2)
iyl = (5 + CI)at + e (3)

fort =1,..,T, where Sy; (v) is a natural cubic spline on (k;ay) and Z is determined uniquely
by Zay = Waj, where the n x (m + 1) matriz W is given by Theorem 2 of the Appendiz. For
all t, the state vector oy = (o, — &f_y )7y, with af, = 0. The initial condition ay ~ (a1, )

applies. The series {u := (€}, m})'} satisfies

() =10) (5 e )f z

E[uiul] =0 Vs # t, and E[usa)] = 0 Vt. Note that {us} is a vector white noise process.
The Gaussian FSN Model is the semiparametric FSN model with the additional condition

imposed that both u; and a1 have multivariate Normal distributions.

The state vector of the FSN model is given by a; = (a;‘ft — a;fl’t)g”:l for j =1,...,m. The
jth state is thus the price differential between the jth and (5 — 1)th knot-prices. It is important
to note from Theorem 2 of the Appendix that the spline signal S,:(v) can be written as a
linear function Waj of the vector of knot-prices, af, and hence as a linear function Zay of the
state vector (where Z follows directly from the fact that aj; = o — a;fl’t). Importantly, the
deterministic matrices W and Z depend only on the vector v and the knots &k, and do not depend
on the price differentials a;. The consequence is that the FSN model has the linear state space
form, as described by Harvey (1989, pp. 100-104).

The choice of a cubic spline as the signal function in the FSN model thus has two advan-
tageous features. First, the stochastic evolution over time of the signal function is determined
completely by the time series properties of the m-dimensional state vector «y, where m is rel-
atively small (e.g. m = 4), thus allowing the construction of a parsimonious model even when

the dimension of p;(v) is very much larger. Second, since the model has the linear state space

form, the Kalman filter may be used to perform both QMLE and 1-step ahead, linear point

11



prediction. These two features, together with the flexibility of cubic splines as approximating
functions, make the cubic spline framework adopted here a particularly attractive one.

It should be noted that the dynamics of o implied by the state equation of the FSN model
differ greatly from the corresponding specification in Harvey and Koopman (1993). There the
‘knot-ordinates’, a;, follow a multivariate random walk whereas in (3) their dynamics are deter-
mined by a first order vector autoregression (VAR) in the spline ‘differentials’, ay. It is found in
the empirical analysis of bid and ask curves in section 4 that this focus on the differentials be-
tween the knot prices works well in practice. More generally, finite order VARs in the knot-prices

or spline differentials can be accommodated within the linear state space FSN framework.
3.2 QMLE and prediction using the Kalman filter

The FSN model is a semiparametric model whose parameters determine completely the mean
and autocovariance structure of the time series of price curves. Dunsmuir (1979) has shown
how to estimate such vector linear time series models by QML, the quasi-likelihood function
being derived under the assumption that the time series has a multivariate Gaussian distri-
bution. Such a quasi-likelihood function is obtained here by computing the likelihood of the
Gaussian FSN model of Definition 2 using the Kalman filter. Under the Gaussian FSN model,
the price curves {p1(v),...,pr(v)} have a nT-variate Gaussian density (likelihood) which may be
evaluated for a particular set of observed curves using the prediction error decomposition and
fpe(@)|pi-1(v),...,p1(v)) from the Kalman filter for ¢t =1, ..., T.

Dunsmuir (1979, pp.499-503) considers the QMLE of models for a vector signal observed

with noise of the form

Pt = St + €, (5)

where both the signal s; and noise ¢; are strictly stationary multivariate ARMA processes, and
the signal and noise are ‘incoherent’, i.e. E[sie)] = 0 Vr,t. He establishes the strong consistency
and asymptotic normality of the QMLESs for such a model obtained by maximising frequency
domain approximations to the Gaussian likelihood. Under the additional restriction that the
processes {ay} and {e;} are strictly stationary, the semiparametric FSN model of Definition 2
has exactly this form. Since {a;} is a VAR process, it is necessary but not sufficient for the

strict stationarity of {c;} that the roots of the matrix polynomial h(z) = I,,, — ®z all lie outside

12



the unit circle (a condition that is satisfied by the point estimate of ® obtained in the empirical
analysis of section 4.1). Also, it would not be overly restrictive to take {€;} to be i.i.d. in the
semiparametric FSN model, which would obviously satisfy the strict stationarity requirement.
The asymptotic results of Dunsmuir (1979) thus provide a theoretical justification for the QML
method of inference employed here for the semiparametric FSN model.!!

Finally it is noted that since the semiparametric FSN model in Definition 2 is in the lin-
ear state space form, the one-step ahead point predictor given by the Kalman filter, [p;(v)]
pi—1(v), ..y 01(¥)]kF, is @ minimum mean square error predictor in the class of predictors that

12

are a linear function of the past observations (p;—1(v),...,p1(v)).* Furthermore, the one-step

ahead prediction errors e; := p(v)— [pi(v)|pi—1(v), ..., p1(V)]| k F satisfy
E[e:] = 0, Var[e;] = F, E[etel] =0Vt # s, (6)

where F; = ZP,Z' + Q. is constant for all ¢ > 1. The matrix P; is the unconditional covariance
matrix of the error of the minimum mean square linear estimator of a; and is given by the
output of the Kalman filter. These results hold exactly when the parameters of the model are
known (for details see Harvey (1989, pp. 110-112)). Use is made of the properties in (6) when
evaluating the in-sample predictive performance of the semiparametric FSN model in section

4.2 below.
4 Empirical Analysis of the SETS Average Price Curves

The growing importance of electronic LOBs as a means of trading financial securities worldwide
has already been noted. However, empirical work analysing the data produced by such LOBs is
relatively sparse compared, for example, with the volume of literature analysing NYSE equity
data. We partially address this lacuna by presenting an analysis of the London Stock Exchange’s
SETS electronic limit order book for the heavily-traded FTSE100 stock AstraZeneca. Further-
more, this is one of the first studies to focus on the times series properties of the bid and ask

curves, as opposed to those of the mid-quote or bid and ask prices.

"'Note that in a semiparametric FSN model of ask curves, say, {at} is not thought to have zero mean since on
average the ask curves are strictly increasing. Dunsmuir (1979) assumes that E[s;] = 0 but it is conjectured here
that his results will continue to hold in the case of a constant, non-zero mean.

2Note that [p(v)|pi—1(¥), ..., p1(¥)]kF is only guaranteed to equal E[p;(v)|pi—1(v), ..., p1(v)] for the Gaussian
FSN model.

13



The dataset covers the period from 2 January 2002 to 31 January 2002 inclusive and was de-
scribed previously in section 2.2. In the empirical analysis, each price curve is taken to be the vec-
tor of dimension 40 consisting of the prices corresponding to the volumes v = (500, 1000, ...., 19
500,20 000)'. The maximum volume of 20 000 was chosen so as to be less than the total volume
of limit orders on the relevant side of the book for the majority of trading days but very rarely
exceeded by the size of an individual market order.'?

There follows a discussion of the QML estimates obtained using a restricted semiparametric
FSN model and then an evaluation of the in-sample, 1-step ahead predictions given by that

model.
4.1 QML estimates of the FSNN model

Recall that the semiparametric FSN model discussed in section 3 is applied here as a marginal
model for a time series of either bid or ask curves. The primary relevance of one or the other to
an agency trader has already been noted (see footnote 8). The results of fitting a restricted semi-
parametric FSN model to both the AstraZeneca bid and ask curve datasets in turn are presented
below. In each case, the average price curves corresponding to the dth day, (pgd) (v), ...,p(Td) )",
are modelled as being independent and identically distributed across days. The extension to a
joint model of both bid and ask curves that nests the marginal models is discussed in section
6.2. Tt is noted that no assumption of independence between the bid and ask curves is being
invoked here.

The semiparametric FSN model used imposes the following additional restrictions to those
in Definition 2: ® = diag(¢y,...,$,,)", Qe = 021, and a; ~ (ar,Q;) with a; and Q; chosen
so that {ay}, is covariance stationary when |¢;| < 1 Vj. The knots of the cubic spline are
positioned at the volumes k£ = (1, 2500, 5000, 10 000,20 000)’. Thus the dimension of the state
vector, m = 4, is considerably smaller than that of the observations pgd)(u) at n = 40. The
quasi log-likelihood may then be computed by applying the Kalman filter to the Gaussian FSN

model with the same additional restrictions imposed.

Numerical optimisation of the log-likelihood was performed using the MaxBFGS algorithm

13Trading days on which the total depth on the relevant side of the market fell below 20 000 at some time were
excluded from the analysis. This resulted in there being 21 and 19 days in the final datasets for the bid and ask
curves respectively.
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§' -0.267 -0.243 -0.371 -0.486 | o 0.018
¢ 0363 0.431 0.595 0.774

Q, 0598 0123 0.054 0.051 | Corr, 1.000 0.298 0.087 0.054

- 0.286 0.213  0.046 - 1.000 0.495 0.070
- - 0.649 0473 - - 1.000 0.480
- - - 1.490 - - - 1.000

Table 1: QMLESs of the semiparametric FSN model for the bid curves of AstraZeneca in January
2002. Results based on 21 independent trading days; ¢ = (¢4, ..., ¢,,)"; Corry is the correlation matrix
corresponding to €2,,.
with numerical derivatives in Ox (see Doornik (2001)).!* In order to provide confidence in the
numerical robustness of the results, the quasi log-likelihood resulting from a slight variant of
the Gaussian FSN model just described was optimised using a method incorporating an EM
algorithm step. The variant model differs only in the initialisation used, namely a; ~ N(a1, ;)
where a1 = (J;/[1—¢;])7L; as before, so that {ay}I_, is still mean stationary but not covariance
stationary. This model is useful because it permits the analytical derivation of an EM step for
the estimation of the parameters of the two covariance matrices. The method gave very similar
QMLEs (not reported here) and is described in detail in the Appendix (see section 8.2).
Tables 1 and 2 show the QMLEs for the bid and ask curves respectively. The results exhibit
a considerable degree of symmetry between the bid and ask sides of the market and so are
discussed together. First recall that the knots of the spline are not equally spaced, and that
the inter-knot volume differentials, Ak; := k; — k;_1, satisfy Ak; = Aky < Akz < Ak4. The
covariance stationary AR(1) processes for the inter-knot price differentials, {a;;}, obtained by
setting the parameter values equal to their QMLEs have the following properties. The mean is
negative (positive) for the bid (ask) curves and increases in absolute magnitude as j increases.
The variance of a;; is also increasing in j (except for the decrease on going from j =1 to j = 2),
as 1s the autoregressive parameter ¢;. The increase in persistence can be partially explained
in terms of limit orders being added to and removed from the book (due to order placement,

execution and cancellation) less frequently at prices that are further from the best ask and bid.

14 Approximate standard errors could be computed here using a sandwich-type estimate incorporating an ‘outer
product of gradients’ (or OPG). However, evaluation of the OPG estimate for the semiparametric FSN model is
computationally very intensive when the number of time series observations is large, as is the case here. Future
work will instead focus directly on the impact of parameter uncertainty on the out-of-sample, point forecasts and
predictive distributions of the FSN model.
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8 0276 0.246 0.361 0.452 | o2 0.026
¢ 0.424 0.499 0.651 0.80

Q, 0774 0.125 0.008 0.027 | Corr, 1.000 0.238 0.010 0.023

- 0.356 0.201 0.015 - 1.000 0.393 0.019
- - 0.731  0.475 - - 1.000 0.418
- - - 1.771 - - - 1.000

Table 2: QMLESs of the semiparametric FSN model for the ask curves of AstraZeneca in January
2002. Results based on 19 independent trading days; ¢ = (¢4, ..., ¢,,)"; Corry is the correlation matrix
corresponding to €2,,.

For j = 4 there is a high degree of persistence.

The inter-knot price differentials are also contemporaneously positively correlated across 7,
with the highest correlations occurring for immediately neighbouring parts of the spline and
with other correlations being relatively small. This is an interesting feature of the results —
for example, a ‘steeper’ than average tail end of the price curve does not tend to be strongly
associated with a ‘steeper’ than average curve for smaller volumes (i.e. those less than or equal
to 2500 shares). Another important feature is that since the state vector «y appears to be
covariance stationary, so then are the spline signal, Su: (v) = Zay, and the average price curve,
pt(v). Furthermore, the evaluation of the in-sample prediction errors of the model presented
below strongly suggests that it is not necessary to incorporate a deterministic, time-of-day ‘level
effect’ in the model specification. This is quite surprising and suggests that while bid-ask spreads
exhibit well-known intradaily deterministic patterns, the differences between the price curves and

their intercepts (i.e. the immediate price impacts of market orders) are covariance stationary.'?
4.2 In-sample predictive evaluation of the FSN model

The specification of the semiparametric FSN model may be evaluated by analysing the in-sample,
1-step ahead point predictions, [ﬁgd)(u)| pﬁd_)l(u), ...,pgd)(u)] K F, given by the Kalman filter for
each trading day d. It was noted previously that, since the model has the linear state space form,
this one-step ahead predictor is a minimum mean square linear predictor. The analysis below of

the 1-step ahead prediction errors, egd) = pgd)(y)— [ﬁgd)(y)| p,@l(y), ...,pgd)(y)]KF, reveals that

the semiparametric FSN model performs well in an in-sample predictive evaluation.

15 Coppejans, Domowitz, and Madhavan (2003) also report that the considerable variation over time in aggregate
volume on the book at various (price) distances from the mid-quote is not readily explicable in terms of simple
time-of-day effects.

16



volume (v) Mean® Var® MAPE® RMSE® | Mean® Var® MAPE® RMSE?
2000 0.007 1.034 0.457 0.791 -0.003  1.023 0.411 0.686
4000 -0.007  0.953 0.660 1.065 0.006 0.963 0.599 0.954
6000 -0.005  0.984 0.808 1.273 0.003 0.990 0.731 1.166
8000 0.001 1.005 0.929 1.445 -0.002  1.006 0.853 1.356
10 000 0.003 0.998 1.034 1.600 -0.002  0.999 0.962 1.529
12 000 0.001 0.993 1.122 1.754 0.001 0.994 1.057 1.689
14 000 -0.006 1.008 1.208 1.904 0.004 1.004 1.149 1.836
16 000 -0.009  1.013 1.287 2.036 0.007 1.010 1.229 1.969
18 000 -0.005  0.997 1.357 2.159 0.004 1.003 1.300 2.093
20 000 0.004 0.985 1.432 2.311 -0.002  0.980 1.368 2.219

Table 3: Properties of in-sample, 1-step ahead prediction errors from the Kalman filter for the
AstraZeneca dataset in January 2002. A superscript ‘a’ indicates the ask side, and a ‘b’ the bid side.
The mean and variance (Var) are for the standardised errors, and the RMSE and MAPE are for the
errors without standardisation.

Let egd) (v) be the element of the egd) vector corresponding to volume v, and similarly denote
by Ft(d) (v) the element of the diagonal of the Ft(d) matrix that gives the variance of egd) (v)
under the assumption that the semiparametric FSN model is correctly specified (see equation
(6)). We may then consider the standardised prediction errors, égd) (v) :== egd) (v)/(Ft(d) (v))1/2.
It follows from the discussion in section 3.2 that, under correct specification, E[égd) (v)] =0
and Var[égd) (v)] = 1 ¥(v,t,d), and E[égc) (v)égd) (v)] = 0 ¥Y(v,s,t,¢,d) such that s # t if ¢ = d.
Clearly each series, {égd) (v), ...,ég,:i) (v)}d=1,,..., formed by concatenating the individual series
corresponding to each trading day is white noise. The in-sample predictive performance of the
semiparametric FSN model may thus be assessed by examining the sample mean, variance and
autocorrelations of the standardised 1-step ahead prediction errors for a range of volumes, v.'6

Table 3 reports, using both the bid and ask datasets, the sample mean and sample vari-
ance of the standardised errors for v € {2000, 4000, ...,20 000}, together with the root mean
square error (RMSE) and mean absolute prediction error (MAPE) corresponding to the non-
standardised errors, {e,gd) (v) }1,4- Figures 3 and 4 plot, for the bid and ask curves respectively,

5(d)

the autocorrelation functions of the series {égd) (v), ... €y’ (v) }q for lags up to a time period of
30 minutes and compare them to those for the data, {pgd) (v), ...,péﬂi) (v) }q- The means and vari-
ances of the standardised errors are all close to zero and one respectively, revealing no model

misspecification. Furthermore, the model is rather successful at ‘whitening’ the autocorrelation

functions of the original data (particularly at higher volumes v), although there appears to be

16For this purpose, the parameter values are set equal to the QMLEs obtained above before applying the
Kalman filter.
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some residual positive autocorrelation of the prediction errors.!” Overall, the point predictions
are unbiased and the in-sample predictive performance of the restricted semiparametric FSN
model estimated in section 4.1 above is pleasing. Finally, note that the RMSEs and MAPEs are
similar when comparing the bid and ask sides, and are increasing in the volume, v.

With the Gaussian FSN model as the DGP, the standardised errors {égd) (v) }1,q are i.i.d.
N(0,1). A graphical analysis of these errors (not shown here) immediately reveals that they are
far from Gaussian and strongly asymmetric. The histograms of the standardised errors for the
ask curves, for example, are skewed to the left with long right tails. Intuitively, this can be
explained in terms of the Gaussian model attaching positive probability mass to negative inter-
knot price differentials for the ask splines despite the fact that downward sloping ask curves are
never observed in practice. This then results in fewer large over-predictions than are expected
under Gaussianity. Similarly, the histograms of the standardised errors for the bid curves are
skewed to the right with long left tails. In both cases the extent of the observed asymmetry
decreases as v increases. Clearly these observations do not invalidate the use of the Gaussian FSN
model as the auziliary model in the QML estimation procedure. They do however emphasise
the need to move away from Gaussianity in order to develop fully parametric FSN models that
appropriately address the monotonicity property of the average price curves. This is the subject

matter of the following section.
5 Towards Fully Parametric FSN Models

The motivation in terms of developing econometric models that can be used to provide decision
theoretic solutions to trading decision problems has already been emphasised. In general, this
requires that the econometric model deliver 1-step ahead, conditional predictive distributions for
the average price curves. More generally, such a predictive distribution can be seen as the most
complete solution to the forecasting problem. This section therefore develops fully parametric,
non-Gaussian FSN models contained in the semiparametric FSN model presented above that

take account of the monotonicity of the average price curves.

1"Tndeed, formal Box-Ljung tests reject the null of zero autocorrelation at the 1% level. Further development
of the model to accommodate this feature is left to future work.
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Figure 3: Autocorrelation functions of the 1-step ahead prediction errors from the Kalman filter

for the AstraZeneca bid curves in January 2002.

Autocorrelation function for the observed data

shown as a broken line and that for the prediction errors as a continuous line.
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Figure 4: Autocorrelation functions of the 1-step ahead prediction errors from the Kalman filter

for the AstraZeneca ask curves in January 2002.

Autocorrelation function for the observed data

shown as a broken line and that for the prediction errors as a continuous line.
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5.1 The FSN-MEM model

The FSN models presented in this section possess latent splines that are quasi-monotonic (in
the sense of Definition 5 of the Appendix) — i.e. the differentials between the knot-prices are
non-positive in the case of a bid curve and non-negative for an ask curve. This is achieved by
adopting a ‘multiplicative error’ specification for the state equation in which the multiplicative
error, (;, has non-negative elements with probability one.!® Engle (2002, pp. 428-434) has
stressed the potential usefulness of such multiplicative error models (MEMs) for non-negative
processes in financial econometrics. Non-positive processes may also be modelled using MEMs,
as is demonstrated below.

There now follows a formal definition of the so-called FSN-MEM model.

Definition 3 FSN-MEM Model. Let I3, = —1 if the model is for a bid curve and ;4. =

+1 for an ask curve. The FSN-MEM model is given by

pe(v) = Sa;(v) +e
= Zat + €, (7)
Ayl = ((5 + @at) O] Cta (8)

for t = 1,..,T, where Sy;(v) is a natural cubic spline on (k;af) and Z,af are defined as in
Definition 2; the random wvariables (a1, Cq,...,Cp_1, €1,...,€7) are independent; €, ~ (0,Q¢) Vi;
C; ~ (1m, Q¢) and has support [0,00)™ :=[0,00) X ... x [0,00) Vt; a1 ~ (a1,$) and has support

(=00, 0] if Isige = —1 and support [0,00) if Isige = +1; and 0 < ¢; V5, 0 siqe > 0.

The model is still semiparametric at this stage and it is shown below in Proposition 1
that it is in fact a restricted version of the semiparametric FSN model of Definition 2. The
most important restrictions are those ensuring that, with probability one, Iz 4,00 > 0 — i.e.
those ensuring the quasi-monotonicity of the spline signal function (see Definition 5). It also
follows from Proposition 1 and standard ARMA theory that {«;} is covariance stationary when

0<¢;<1Vy (and a1, 4 are chosen appropriately).

'8The approach taken here offers substantial gains in terms of the simplicity and parsimony of the resulting
model. We conjecture that this quasi-monotonic approach will also prove successful in empirical forecasting
since non-monotonic signal functions are assigned a small probability under the model for empirically reasonable
parameter estimates.
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Proposition 1 The FSN-MEM model in Definition 3 is a restricted version of the semipara-

metric FSN model of Definition 2.
Proof. Equation (8) may be written as
(072N ] :5+¢)at+lrlt7 t= 17"'1T7 (9)

where the random variable 7, := ay41 — (6 + ®Pay). Let Ff = o(a, ..., 41), t = 0,..., T — 1.
Then {7,} is a vector martingale difference sequence (MDS) with respect to {F/*} since (; is
independent of Ff*. Since 7, is a MDS, E[n,] = 0 and E[n,n},] = 0 Vs # t.

Since ¢, and «y are independent, and E|(;| < oo, E|ai| < oc, it follows by induction that

E|oy| < oo and E|aya}| < oo (t = 2,...,T).1 Similarly, since

it holds that E|n,n}| < co. It has now been established that {n,} is white noise. Note that the
sequence {¢;} is i.i.d. and hence also white noise.

It remains to show that E[n,e,] = 0, E[n,a’] = 0 V¢, s. The first again follows from (10) since
the elements of the matrix 7,€, are then the product of 3 independent random variables with
finite mean and E[(;; — 1] = 0. The second holds since ¢, is independent of o (a1,(y; .5 (1),
and by induction E|aa)| < oo Vi. m

The importance of Proposition 1 is that, since the semiparametric FSN model has been
shown to be useful in the empirical analysis of bid and ask curves, it is desirable to develop fully
parametric models taking into account the monotonicity of the average price curves that are
consistent with that semiparametric model. Such parametric FSN-MEM models may be specified
by taking Definition 3 and specifying distributions for ¢; and the non-negative random vectors
(; and Igjgecr1. Retaining the Gaussian distribution of €; would seem to be a reasonable first
approach, perhaps paying greater attention to the potential cross-sectional dependence amongst
the elements of ¢;. The specification of the non-negative random vectors is less straightforward.

Although there is a literature on distributions for such random vectors with marginal distri-
butions that all belong to the same parametric family (e.g. multivariate gamma distributions)

— see Kotz, Balakrishnan, and Johnson (2000) — none of these seem well-suited to an analysis

9The following fact is used repeatedly here: if the r.v.’s X and Y are independent and E|X| < oo, E|Y| < oo
then E|XY| < co and E[XY] = E[X]E[Y].
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in which 1-step ahead conditional densities play an important role. We are examining various
alternative approaches in ongoing research. The resultant parametric FSN-MEM models may
be estimated using either a variant of the QMLE approach described in section 3.2 or more
efficiently by Markov Chain Monte Carlo methods. An evaluation of the empirical forecasting
performance of the 1-step ahead predictive distributions given by these fully parametric models

is in progress.

6 Comparison with Previous Research and Possible Extensions

6.1 Previous literature on the dynamics of liquidity and price curves

Previous research on the dynamics of liquidity has concentrated on the dynamics of scalar
summary measures. For example, Coppejans, Domowitz, and Madhavan (2003) focus on the
time series properties of the aggregate volume on the book within six ticks of the mid-quote.
Engle and Lange (2001) seek to explain the determinants of VNET, their measure of the excess
of buyer- or seller-initiated volume occurring during the time taken for the mid-quote to move
by some predetermined, constant amount. Neither approach explicitly considers the bid and ask
curves, nor lends itself to the prediction of those curves in the future.

Coppejans, Domowitz, and Madhavan (2003) also report mean price impact functions on the
Swedish electronic LOB for stock index futures, but do not consider their dynamics. Indeed,
the paper by Gouriéroux, Le Fol, and Meyer (1998) is ostensibly the only previous study that
examines the dynamics of the bid and ask curves of an electronic LOB. It differs from the
modelling framework presented here in an important respect, namely that the model is set in
transaction time — i.e. the tth average price curve is now the curve observed at the time of the
tth trade. Letting p?(r) and p¢(v) now denote the tth bid and ask curves proper (as defined by
Definition 1), with v = (50, 100, ..., 5000)’, their two factor model for the logarithm of the curves
is given by

log pf'(v)

log p}(v) (1)

ag(v) + a1 (v) log m(50) + az(v) log 54(2000) + uf (v) }
bo(v) + by (v) log my(50) + ba(v) log 5¢(2000) + ul(v) [~

where the ‘mid-price’ and ‘spread’-type factors are given by m;(50) := [p$(50) + p?(50)]/2 and
5¢(2000) := p%(2000) — p?(2000) respectively, and (uf(v)’,u’(v)")" is white noise and indepen-

dent of both factors at time #.2° The coefficient functions {a,(v),b,(v)}2_, are approximated

20Note that log p¢ (v) := (log p§ (50), ...,log p§ (5000))’.
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by piecewise linear functions. Nomnlinear autoregressive models for the conditional mean of
(log m¢(50) — logm;_1(50)) and logs;(2000) then allow the 1-step ahead point prediction of
log p¢(v) and log p!(v) given the curves observed prior to time ¢.

In common with our FSN model, the two factor model specifies the dynamics of a low dimen-
sional vector which determines the price curve in a manner that is fixed over time. However, in
the FSN model this low dimensional vector contains latent price differentials (or ‘states’) rather
than observable factors. Other noteworthy differences are that the bid curve at ‘time’ (¢t — 1)
is necessarily informative about the ask curve at ‘time’ ¢ in (11) and that the two factor model
imposes no conditions that take into account the monotonicity of the price curves.?! Gouriéroux,
Le Fol, and Meyer (1998) do not discuss fully parametric specifications using their two factor

framework.
6.2 Suggestions for further research

The estimation of fully parametric FSN models and the empirical evaluation of their associated
predictive distributions has already been discussed. One further direction for future research
will be indicated here.

The FSN models can readily be expanded both to incorporate the dynamics of the best bid
and ask (i.e. the intercepts of the curves) and to allow dependence between the bid and ask
curves. For example, letting p?(v) and p{(v) again denote the tth bid and ask curves proper (as

defined by Definition 1), a possible model in linear state space form is:
) (20) 2 (3)
= +7Z +
< pi(v) mi — % af f
)= (5w ) (5)+ ()
=6+ + ) 12
(o o @ )\t ) 2

myp1 = my + g(al, of) + "
Sp41 = 0° + sy + i J

where my := [p?* +p$*]/2 and s; := p¢* —p?* are the mid-quote and bid-ask spread at time ¢, and
g is a linear function of the price differentials. The measurement equation is as before except
that an intercept term is now present and p¢(v) and pY(v) are modelled jointly. The random
variables m; and s; are considered as state variables, possibly observed without measurement

error. Note that the marginal models for {p¢(v) — p¢*} and {p?(v) — p?*} implied by equation

2! Although equation (11) appears to include a specification of the dynamics of the best bid and ask prices,
empirical results presented in the paper do not consider volumes less than 50 shares.
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(12) are, under the appropriate additional assumptions, the same as the semiparametric FSN
model of Definition 2 that was used for the empirical analysis of exactly these time series in
section 4.

The above formulation is intended to address two economic questions of interest. First, the
extent to which information about the entire bid and ask curves helps in predicting movements
in the mid-quote, as captured by the function g. For example, one possible specification for
the price pressure resulting from a limit order imbalance between the two sides of the market
is g(a?,af) = >y wiad, — |a;’-t|), w; > 0 Vj. Second, the extent to which ‘liquidity shocks’
on the bid and ask sides of the market are related — i.e. the degree of dependence between

the random vectors ¢ and n?. Previous work tentatively suggests that these shocks may be

uncorrelated or independent (see Danielsson and Payne (2001)).
7 Conclusion

This paper has developed a novel econometric framework for modelling a panel of prices of very
high cross-sectional dimension, in which contemporaneous observations are functionally related.
Given the growing importance of fully automated financial markets, the new Functional Signal
plus Noise (FSN) models are applied in an analysis of the bid and ask curves of an electronic
limit order book. This enables the comprehensive measurement of the determinants of traders’
execution costs (i.e. ‘liquidity’) in a way that takes the dynamic aspects of the problem into
account. The models should also prove useful in the solution of the decision problems faced by
traders in practice, either as the basis for automated trading algorithms or for trading ‘decision
support’ tools used by human traders.

A semiparametric FSN model is developed in which a smooth, cubic spline signal function
is used to approximate the price curve data. The state equation of the FSN model determines
the stochastic evolution of a low-dimensional vector of prices corresponding to the knots of
the spline, and hence the dynamics of the entire spline signal. The choice of a cubic spline
for the signal function results in models that may be written in linear state space form, thus
allowing the use of the Kalman filter to compute both 1-step ahead linear point predictions
and the Gaussian quasi-likelihood function for estimation. The flexibility of cubic splines as

approximating functions gives the FSN framework potentially broad applicability in modelling
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the dynamics of cross-sectional price functions in other settings.

The semiparametric FSN model is used here to provide one of the first studies of the dynamics
of the bid and ask (or ‘average price’) curves of a limit order book, namely the London Stock
Exchange’s fully electronic SETS order book. The differences between the average price curves
and their intercepts give the immediate price impact of a market order, as a function of the
volume of the order. It is found that, in contrast to the widely reported intraday behaviour of the
bid-ask spread, these price impact functions are well described by covariance stationary processes
which lack deterministic time-of-day effects. The price differentials between the knots of the
spline signal function are modelled by covariance stationary AR(1) processes whose persistence
is found to increase on moving towards higher volumes. Contemporaneous correlations between
the price differentials of the spline are positive and much larger for neighbouring parts of the
spline with the implication that, for example, a steeper than average tail end of the price curve
does not tend to be strongly associated with a steeper than average curve for smaller volumes.

The in-sample, one-step ahead point predictions given by the semi-parametric FSN model
perform well. The prediction errors are unbiased, have low levels of auto-correlation and are able
to match the observed average price curves quite closely. The prediction errors are also found to
be highly non-Gaussian, thus motivating the development of parametric FSN models contained
in the original semiparametric model that explicitly take into account the monotonicity of the
average price curves. The proposed FSN-MEM model is based on a Multiplicative Error Model
for the state equation that ensures that the price differentials of the ask (bid) spline signal are
non-negative (non-positive). Future work will focus on the conditional predictive distributions
given by fully parametric FSN-MEM models and their empirical usefulness in deriving optimal

order submission and trading strategies.
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8 Appendix

8.1 A primer on cubic spline theory

A cubic spline is essentially a piecewise cubic function in which the pieces join together to form

a smooth function overall.

Definition 4 Cubic spline on (k;y). Consider an interval of the real line [a,b], subdivided by

a vector, k, of points

k= (kj);n:m

where ko = a,kym = b,kjp1 > kj for j = 0,...,m — 1. Each point k; 1is referred to as a knot.
Denote by y a vector of real-valued ordinates (y;)7". A function S(z) with domain [a,b] is a
cubic spline interpolating to y with knots k, or more concisely a cubic spline on (k;y),
if and only if:

(i) SUy) = 45 (G = 0,..com);

(11) S(x) coincides with a polynomial of degree at most three on the sub-intervals [k;, kji1]
(j=0,...,m —1); and

(i1i) S(z) is twice continuously differentiable on [a, b].
If, in addition, the second derivatives at the end knots, S" (ko) and S"(ky,), are both zero, S(x)

is said to be a natural cubic spline on (k;y).

In this context, since the knots are positioned at deterministic volumes that are fixed throughout
the analysis, whereas the states y to which the spline interpolates are stochastic, a cubic spline

S(z) on (k;y) is denoted here by Sy(x).

Definition 5 Let Sy(x) be a cubic spline on (k;y). Then Sy(x) is said to be quasi-monotonic

if and only if (yj—1 <y; Vj=1,..m) or (yj—1 >y; Vj=1,...,m).

Note that quasi-monotonicity is necessary but not sufficient for the monotonicity of the cubic
spline Sy(z) on [a, b].

The object of interest here is usually the restriction of Sy(z) to a finite vector of points
v = (v1,...,un)". The cubic spline is then written as the finite dimensional vector S,(v) :=
(Sy(v1)y ..y Sy(vp))'. A well known result that arises by combining conditions on S” (k) and

S" (kp,) with the ‘continuity restrictions’ implied by conditions (i), (ii) and (iii) of Definition 4
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is that Sy(v) is a linear function of the ordinate vector y. This result, stated for the case of a
natural cubic spline in the theorem below, allows the FSN models to be written in linear state

space form.

Theorem 2 Let Sy(x) be a natural cubic spline on (k;y), with k and y vectors of dimension m+
1. Also let v = (v1,...,v,)" be a finite vector of points in [a,b], and Sy(v) = (Sy(v1), ..., Sy(vn))".
Then

Sy(V) = Wya

where the n X (m + 1) weight matriz W depends only on v and the knot positions k.?> Details
of how to compute W may be found in equations (2.5),(2.6),(2.11),(2.12) and (2.14) of Poirier

(1973, pp. 517-518), where my and 7y, should be set to zero for the case of a natural cubic spline.

Proof. See, for example, Poirier (1973, pp. 517-518). =

8.2 Computation of QMLEs using the EM algorithm

As was noted in section 4, the quasi log-likelihood resulting from a slight variant of the Gaussian
FSN model described in that section may be optimised using a method involving the EM algo-
rithm. The variant model differs only in the initialisation used, namely a; ~ N(a1,2;) where
a1 = (6;/[1 — ¢;])jL, as before, so that {e}I_, is still mean stationary but no longer covariance
stationary. This alternative initialisation allows the analytical derivation of an EM step for the
covariance matrix {2, whose implementation relies on the moment and state smoothers for state
space models (see Koopman (1993) and Koopman, Shephard, and Doornik (1999)).

The optimisation method used involves two steps: an EM step in which the log-likelihood of
the ‘variant Gaussian FSN’ model is maximised with respect to the parameters of the covariance
matrices €, and €, (holding all other parameters fixed); and a numerical optimisation step in
which the log-likelihood is maximised with respect to these other parameters (holding only €,
and €, fixed). The method then consists of iterating between the two steps until convergence
is achieved. For the numerical optimisation step, the MaxBFGS algorithm with numerical

derivatives in Ox was used.

*2Tn particular, it is implicit in the statement that ‘S, (v) is a linear function of 3’ that W does not depend on
Y.
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The EM step comprises two updating equations which give a new set of covariance matrices,
Q;% and Qf = (02)'1,,, which always result in a non-decrease in the log-likelihood. The previous
values of the covariance matrices, prior to the application of the EM updating equations, are
denoted here by €2 and Qf = (02)*I,,. The two equations, stated for the simplest case of a time
series of bid or ask curves observed during a single trading day at times ¢t = 1,...,7T, are given

by

T
g rtrft — N
t=1

1
}Q;—F—(Vl—i-WlWl’), (13)

1
O =_—— 0+ _—
A e "{T+1 T+1

where Wy = & — (I, — ®)~'6, and

(02) = (o2)" +n”"tr {(03)*

T
Ty eel — Dt] (o—z)*} . (14)
t=1

The smoothed quantities (e;, Dy, 7, N;) and (&q,V;) are given by equations (20) and (30) of
Koopman, Shephard, and Doornik (1999) respectively, and are computed by the moment and
state smoothers using the parameters 2y and (0?)*. Equation (13) is a modified version of
equation (3.6) of Koopman (1993, p. 123), now including an additional term due to the fact
that the covariance of a1 depends here on the unknown parameters 2,. The proof of the EM
updating equations is along the lines of that given in Koopman (1993, pp. 125-126) and so is
omitted. Indeed, the point of interest here is rather that the chosen initialisation, oy ~ N(a1, £2,),
allows the use of this sort of analytical EM step whilst leaving the stationary mean of ;41 and
conditional distribution of a4 given «; implied by the Gaussian FSN model unchanged. The

extension to several, independent trading days is straightforward.
8.3 Details on the construction of the SETS dataset

The algorithm used to perform the reconstruction of the limit order book here correctly takes
account of the following features: (a) the existence of limit orders that are still ‘active’ after the
end of the day on which the order was first placed; and (b) the possibility of unexecuted, so-
called ‘market’ orders from the opening auction remaining on the book after the commencement
of continuous trading. Note that the TDS dataset for the year 2002 does not provide complete
details of limit orders that were entered prior to the first day of the dataset analysed in section
4 (i.e. 2 January 2002) but were still active on that date. Such orders only become apparent

when they are cancelled or executed against. However, although cancellations prior to 08:00
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GMT on 02.01.02 were observed, no further such executions or cancellations occurred during
the rest of the entire month, strongly suggesting that no limit orders entered prior to 02.01.02

were still active after 08:00 GMT on that date.
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