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Abstract

OLS estimation of an impulse-indicator coefficient is inconsistent, but its variance can be con-
sistently estimated. Although the ratio of the inconsistent estimator to its standard error has at-
distribution, that test is inconsistent: one solution is toform an index of indicators. We provide
Monte Carlo evidence that including a plethora of indicators need not distort model selection, per-
mitting the use of many dummies in a general-to-specific framework. Although White’s (1980)
heteroskedasticity test is incorrectly sized in that context, we suggest an improvement. Finally, a
possible modification to impulse ‘intercept corrections’ is considered.

JEL classifications:C51, C22.
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1 Introduction

Indicator variables, also called impulse dummies, and combinations thereof, regularly occur in estimated
time-series relationships, eliminating residuals that would otherwise be outliers (usually in excess of 2
standard errors in absolute value). Any location shifts or other changes in the coefficients of determin-
istic variables can induce such outliers, (usually called innovation outliers), as can data measurement
or recording errors (additive outliers). These are equivalent in static regression models with strongly
exogenous variables, but have different consequences in dynamic models.

Despite the prevalence of indicators in models, several aspects of their use do not seem to have
been fully investigated, and here we address some of the morepertinent of these. First, although OLS
estimation is unbiased for the coefficient of an indicator, it is inconsistent—yet its variance can be
consistently estimated. Nonetheless, the ratio of the inconsistent estimator to its consistently estimated
standard error has the usualt-distribution when the errors are normally distributed, but the power of the
t-test does not rise as the sample size increases. The inconsistency results from the lack of divergence in
the Fisher information, as there is only a single observation on the indicator, so we consider overcoming
this by forming linear combinations of indicators. We establish necessary conditions for consistent
estimation of the parameter of an index of indicators, showing that consistency can occur even with
mis-specified weights. We also report Monte Carlo evidence that inclusion of a plethora of indicators
does not distort model selection, permitting the use of manydummies in a general-to-specific (Gets)
framework. However, when large numbers of indicators are used, inferences from mis-specification tests
might be distorted, and we note the low power of normality tests in this setting. The heteroskedasticity
test proposed by White (1980) in fact has the wrong size in an unrestricted dummies model (also see
Messer and White, 1984), so we suggest an improvement to the test in that context. The use of an index
could also alleviate such a distributional problem. Lastly, an indicator for the final observation in a
sample is considered in relation to intercept corrections.

The aim of the paper is to investigate the impact of selectingdata-based indicators on other parameter
estimates and on mis-specification tests. To do so, we first consider the properties of estimators of
coefficients of indicators and tests thereon in section 2, when no selection is involved. Then the impact
of combining indicators into an index based on sample evidence is considered in section 3. In section
4, the effects of adding many dummies are discussed under both null (section 4.1, when no dummies
matter) and alternative (when the error comes from a mixtureof distributions, one of which generates
outliers: section 4.2). Potential distortions to the distribution of the heteroskedasticity test are then
examined in section 5, and possible corrections considered. Finally, in section 6, we note the role of an
indicator added for a discrepant final sample observation.1 Section 7 concludes.

2 OLS estimation in an unrestricted dummies model

We consider models of the form:
y = Xβ + Dγ + v (1)

wherev ∼ INT

[
0, σ2

vI
]

is aT × 1 random vector whenT is the sample size, andX (T × k1) andD

(T × k2) are matrices of strongly exogenous regressors withk = k1 + k2, sok is the total number of
regressors including a constant. The columns ofD are zero-one observation-specific indicators, denoted
1{t=tb} when unity at observationtb and zero otherwise, andβ andγ arek1 × 1 andk2 × 1 vectors of

1All of the computations were undertaken usingPcGetsand Ox (see Hendry and Krolzig, 2001, and Doornik, 2001).
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constant parameters. We assume that:

lim

(
X′X
T

)
= Q, (2)

whereQ is a finite positive-definite matrix. Equation (1) is referred to as the unrestricted dummies
model (UDM).

2.1 Properties ofD

The matrixD acts to select elements in cross products, so that when (e.g.) k2 = 1 there is a single
indicatordt = 1{t=tb}, then:

D′D = d′d = 1, X′d = xtb and d′y = ytb ,

wherextb is ak1 × 1 vector. LetM = IT − X (X′X)−1
X′ soMX = 0T then:

d′Md = 1 − x′
tb

(
X′X

)−1
xtb .

Thus:

limd′Md = lim

(
1 − d′X

T

(
X′X
T

)−1

X′d

)
=
(
1 − 0′

1×k1
Q−1xtb

)
= 1, (3)

so:
lim T−1d′Md = 0, (4)

in contrast to (2).

2.2 Properties ofγ̂

For a single indicator, from the Frisch and Waugh (1933) theorem, the OLS estimator of the parameter
γ is given by:

γ̂ =
(
d′Mx

)−1
x′My. (5)

Substituting (1) into (5) and simplifying:

γ̂ − γ =
(
d′Mx

)−1
d′v −

(
d′Mx

)−1
d′X

(
X′X

)−1
X′v. (6)

That the OLS estimator ofγ is unbiased follows immediately from applying expectations to (6) as both
E[d′v] = 0 andE[X′v] = 0.

However, in the UDM, the OLS estimator ofγ is inconsistent. AsT → ∞, the last term in (6)
vanishes since the probability limit of a non-stochastic sequence is equal to its non-probabilistic limit,
and:

lim

[
d′X
T

(
X′X
T

)−1
]

= 0′
1×k1

Q−1 = 0′
1×k1

with:

plim
T→∞

X′v
T

= 0k1×1, (7)

using Slutsky’s theorem (see Sargan, 1988). Hence using (3):

plim
T→∞

γ̂ = γ + plim
T→∞

d′v = γ + plim
T→∞

vtb . (8)

Sinceplim vtb = vtb 6= 0, asvtb has a non-degenerate limiting distribution:

plim
T→∞

γ̂ 6= γ. (9)

The non-degeneracy ofV[γ̂] shown in (16) below confirms (9).
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2.3 Properties ofV[γ̂]

In spite of the inconsistency of̂γ, the estimator of its variance is unbiased and consistent. Consider for
simplicity the casek1 = 0 andk2 = 1, that is the DGP:

yt = γdt + vt (10)

wheredt = 1{t=tb}. The OLS estimator ofγ is simply:

γ̂ =

∑T
t=1 dtyt∑T
t=1 d2

t

= γ +

∑T
t=1 dtvt∑T
t=1 d2

t

= γ + vtb = ytb (11)

implying v̂tb = 0, and thatV[γ̂] = E[v2
tb

] = σ2
v so:

V̂ [γ̂] = σ̂2
v =

∑T
t=1 (yt − γ̂dt)

2

T − 1
=

∑tb−1
t=1 v2

t +
∑T

t=tb+1 v2
t

T − 1
+

(ytb − γ̂)2

T − 1
. (12)

As γ̂ = ytb , from (12):

E
[
σ̂2

v

]
= E

[∑tb−1
t=1 v2

t +
∑T

t=tb+1 v2
t

T − 1

]
= σ2

v, (13)

confirming that the estimator of the residual variance is unbiased. Further, since(vt/σv)
2 ∼ χ2

(1), and
as the{vt} are independent:

tb−1∑

t=1

(
vt

σv

)2

∼ χ2
(tb−1),

hence: 
σ2

v

tb−1∑

t=1

(
vt

σv

)2

+ σ2
v

T∑

t=tb+1

(
vt

σv

)2

 ∼ χ2

(T−1). (14)

Thus,V[σ̂2
v] converges to zero as the sample size increases

V
[
σ̂2

v

]
= V

[
χ2

(T−1)

T − 1

]
=

2

T − 1
→ 0. (15)

From (13) and (15), the estimator of the variance of the OLS estimator of the indicator variable param-
eter is mean-square convergent to the true variance, so:

plim
T→∞

V̂ [γ̂] = V [γ̂] = σ2
v, (16)

also confirming the inconsistency ofγ̂. Such a result contrasts with what would occur forβ̂ (say) when
k1 = 1 andk2 = 0 asplimT→∞ V[β̂] = 0.

2.4 Properties of inference onγ

Surprisingly, despite the inconsistency ofγ̂ in the UDM, under the assumption thatvtb ∼ N
[
0, σ2

v

]
:

γ̂ − γ√
V̂ [γ̂]

∼ t(T−1). (17)
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To show this, for simplicity again consider the model in (10), where:

γ̂ ∼ N
[
γ, σ2

v

]
, (18)

with σ̂2
v ∼ χ2

(T−1), and(γ̂ − γ) and σ̂2
v are independently distributed, so the results in (e.g.) Hendry

(1995, section A2.9.4), imply:
γ̂ − γ√

V̂ [γ̂]

=
γ̂ − γ

σ̂v
∼ t(T−1). (19)

Thus, tests onγ can be conducted whenvtb is normal with mean zero and varianceσ2
v.

2.5 t-test inconsistency

Let W be a test statistic. The test is consistent if, for any fixed significance levelα, and for any fixed
alternativeH1:

Pr (|W | > cα;H1) → 1 (20)

asT → ∞ (see Cox and Hinkley, 1974), wherecα is the critical value.
Consider the UDM, assuming for simplicity thatk2 = 1 andk1 = 0. Then, when testing the null

hypothesis:
H0 : γ = γ∗ (21)

versus the alternative:
H1 : γ 6= γ∗ (22)

the power of thet-test is given by:

Pr

(∣∣∣∣
γ̂ − γ∗

σ̂γ

∣∣∣∣ > cα

)
(23)

Sinceσ̂γ → σγ 6= 0, there are significance levels and values ofγ∗ for which (23) does not converge to
unity. Therefore the test on an impulse is not consistent.

2.6 Fisher information

The Fisher information for an observation-specific indicator variable is asymptotically negligible. As-
sume for simplicity thatk2 = 1. Given thatvt ∼ IN

[
0, σ2

v

]
∀t, the log-likelihood for one observation is

given by:

lnL
(
yt,xt, dt;β, γ, σ2

v

)
= − ln

(
1

σv

√
2π

)
− 1

2σ2
v

(
yt −

k1∑

i=1

βixi,t − γdt

)2

. (24)

If that observation ist = tb, then:

∂ lnL
∂β2

=
1

σ2
v

(
ytb −

k1∑

i=1

βixi,tb − γ

)
. (25)

Hence, the information equality implies:

E

[
−∂2 lnL

(
yt,xt, dt;β, γ, σ2

v

)

∂γ2
|γ=γ0

]
=

1

σ2
v

(26)

whereγ0 denotes the true parameter value. The Fisher information about the parameterγ0 is zero for
all other observations. Since thevt are independent, the sample Fisher information equals the sum of
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the information for each random variable, so the sample information aboutγ0 is still σ−2
v . Hence, as

T → ∞, the sample information about the indicator variable parameter is negligible:

lim
1

Tσ2
v

= 0. (27)

As a corollary, the OLS estimator of the observation-specific dummy variable parameter estimator is
efficient: the Cramér–Rao lower bound forV[γ̂] in the model defined by (10) isσ2

v, and we established
above thatV[γ̂] = σ2

v.
Given these properties of estimation and inference about indicator coefficients, we consider selecting

them from data evidence, and first discuss forming a data-based index of indicators.

3 The properties of linear combinations of indicators

The idea of forming an index to substitute for the original dummies was used by Hendry (1999) in
analyzing US Food Expenditure, 1931–1989, and Hendry (2001) in an empirical study of UK inflation
from 1865 to 1991. Replacing the indicators by a linear combination was, in the context of these papers,
motivated by the excessive number of dummies initially needed in each model. In the first paper, the
indicators were almost contiguous over 1931–1945 so were anapplication of the forecast (actually,
backcast) approach in Salkever (1976), but were then simplified to two indexes. Earlier research on
the second topic had also revealed an abundance of outliers,perhaps unsurprising in a sample that
comprises two world wars and two oil crises, the breakdown ofthe Bretton Woods system, and a many
legislative and technological changes. Twenty-two indicators remained in the final model using data-
based restrictions which were acceptable at a 5% significance level, inducing 22 zero residuals. Three
groups of dummies were formed, roughly matching ‘very big (12%)’, ‘large (6%)’ and ‘medium (4%)’
outliers, then each group was assigned a weight, where 4% mapped to unity, to form an index. After
this reduction to a single index, the model remained congruent.

Neither the theoretical properties nor the small-sample behaviour of test statistics and estimators
are known when both large residuals and the ensuing zero clusters have been eliminated. Section 3.1
establishes overly strong sufficient conditions for consistent estimation of the index parameter, and
section 3.2 allows for mis-specified weights. Both sectionstake the ‘significant’ indicators as known,
but allow for omitting some of the shifts that actually occurred.

3.1 OLS estimation of an index parameter

We postulate the following simplified DGP:

yt =

KT∑

i=1

φidi,t + vt (28)

wherevt ∼ IN
[
0, σ2

v

]
. This is an unrestricted dummies DGP, where for simplicity,k1 = 0 and

k2 = KT . The di,t are observation-specific indicators, zero except for1{t=ti} for some set ofKT

time occurrences in a setSKT
= {t1 . . . tK}. Hence, the DGP foryt is a white-noise stochastic process

perturbed at some points in time by transient location shifts. We assume that asT → ∞, KT → ∞,
but KT < T such that1 > KT /T → cK > 0, wherecK denotes the ‘average arrival rate of shifts’.
Based on realistic historical foundations, outliers are assumed to keep occurring in the future. We do
not assume a specific arrival process for such shocks, which would generate a meta-stationary process
(e.g., a Poisson process): rather shocks are assumed to keepon happening, but not every period.
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In the absence of data revisions, either a dummy has a significant effect immediately or never,
since information on the individual indicators does not accrue. Thus, even with these assumptions,
dummies will usually only be included in an econometric model of {yt} for ‘significant’ shocks. Several
criteria could be used to assess that need, such as|φi + vti | /σv > 2.0 (say).2 Let kT be the number of
significant shocks in a setSkT

⊆ SKT
, and hence the number of indicators in the econometric model.

Then we also assume that asT → ∞, thenkT → ∞ with kT < KT andkT /TT → ck > 0. This
assumption ensures that as the sample size increases, significant shocks also keep occurring, so would
be included in the UDM according to the given criterion.

Re-write (28) as:
yt =

∑

j∈SkT

φjdj,t + ωt = φ′dt + ωt (29)

where there areKT − kT omitted indicators, with:

ωt =
∑

j∈SKT
−SkT

φjdj,t + vt,

so:

E [ωt] =

{
φj for j ∈ SKT

− SkT

0 otherwise
and E

[
ω2

t

]
=

{
φ2

j + σ2
v for j ∈ SKT

− SkT

σ2
v otherwise

.

We take the omitted
{
φj

}
to have an average of zero, which would arise if (e.g.) the smaller outliers were

randomly drawn from a symmetric distribution. Thus,ωt ∼ ID
[
0, σ2

ωt

]
, and is assumed independent of

the retained{di,t}. In effect, smaller shocks are subsumed in the equation’s error process, making{ωt}
heteroskedastic with an average variance greater thanσ2

v. Let σ2
ωt

< B ∈ R
+ ∀t, so the variance of the

combined error never exceeds an upper boundB, even asymptotically, noting that largeφj are removed
by indicator dummies.

Given the unrestricted dummies DGP as in (29), consider the econometric model:

yt = δIt + ut (30)

with δ 6= 0 where:
It =

∑

j∈SkT

wjdj,t = w′dt. (31)

We first assume that the weights{wj} are correctly specified for the ‘significant outliers’, so that:

wj =
φj

δ
, (32)

and henceφ = δw (section 3.2 considers a class of mis-specified weights). Then, δ̂ is a weakly
consistent estimator ofδ. The proof requires the error term to be the same in (29) and (30), so the two
representations are isomorphic provided (32) holds. Then asφ′dt = δw′dt = δIt:

δ̂ =

∑T
t=1 Ityt∑T
t=1 I2

t

=

∑T
t=1 It

(
φ′dt + ωt

)
∑T

t=1 I2
t

= δ +

∑T
t=1 Itωt∑T
t=1 I2

t

. (33)

2As σv will be unknown, there is the potential problem of detectingoutliers usinĝσv which initially reflects the omitted
outliers; this is one reason we allow for ‘smaller’ transient shifts to be omitted.
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Taking expectations of both sides of (33) shows thatδ̂ is unbiased whenE[
∑T

t=1 Itωt] = 0:

E
[
δ̂
]

= δ +
E
[∑T

t=1 Itωt

]

∑T
t=1 I2

t

= δ. (34)

Further, as:

E



(

T∑

t=1

Itωt

)2

 = E

[
T∑

t=1

T∑

s=1

ItIsωtωs

]
=

T∑

t=1

I2
t σ2

ωt
,

then:

V
[
δ̂
]

= E

[(
δ̂ − δ

)2
]

= E



(∑T

t=1 Itωt∑T
t=1 I2

t

)2

 =

∑T
t=1 I2

t σ2
ωt(∑T

t=1 I2
t

)2 . (35)

Next (see e.g., White, 1984):

1

kT

T∑

t=1

I2
t =

1

kT

T∑

t=1

∑

j∈SkT

w2
j dj,t =

1

kT

∑

j∈SkT

w2
j

T∑

t=1

dj,t =
1

kT

∑

j∈SkT

w2
j → w2 > 0.

Further:
1

kT

T∑

t=1

I2
t σ2

ωt
< B

1

kT

T∑

t=1

I2
t → Bw2 > 0,

so that:

lim
T→∞

V
[
δ̂
]

= lim
T→∞

1

kT

1
kT

∑T
t=1 I2

t σ2
ωt(

1
kT

∑T
t=1 I2

t

)2 = lim
T→∞

1

kT

Bw2

(
w2
)2 = 0. (36)

Sufficient conditions for mean-square convergence ofδ̂ to δ are, therefore, verified, so that:

plim
T→∞

δ̂ = δ. (37)

Indeed:

√
T
(
δ̂ − δ

)
=
√

kT

√
kT√
T

∑T
t=1 Itωt

kT

T

∑T
t=1 I2

t

→ 1√
ck


√kT

∑

i∈SkT

ωti




ã N

[
0,

σ2
ω

ck

]
. (38)

3.2 Mis-specified weights

Unfortunately, this result is of little practical value, asthe index model will not in general be isomorphic
to the UDM, sinceδ is unknown when defining the weights. In any empirical application, the index
weights are bound to be mis-specified, so we establish sufficient conditions for consistent estimation of
δ even though the index weights are mis-specified. The analysis is close to that mapping (28) to (29).
Let:

φi = δwi + µi for i ∈ SkT
,

so that: ∑

i∈SkT

φidi,t = δ
∑

i∈SkT

widi,t + εt = δIt + εt (39)

where:
εt =

∑

i∈SkT

µidi,t,
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so:
yt = δIt + vt + εt = δIt + ηt (40)

where:

E [ηt] =

{
µj for j ∈ SkT

0 otherwise
and E

[
η2

t

]
=

{
µ2

j + σ2
v for j ∈ SkT

σ2
v otherwise

.

For the mis-specification not to affect consistency, the omitted components must continue to act like
random errors. As before, we assumeσ2

η,t < L ∈ R
+ ∀t andC

[
ηt, ηt−s

]
= 0, ∀s 6= t, and require that

the
{
µj

}
average to zero. Also,E [Itvt] = 0 so the key is thatE [Itεt] = 0 and we have:

E [Itεt] = E


 ∑

i∈SkT

widi,t

∑

j∈SkT

µjdj,t


 =

∑

i∈SkT

wiµi.

Thus, mistakes in assigning weights must on average be ‘uncorrelated’ with the weight assigned. If so,
then (40) satisfies the assumptions of section 3.1, and hencethe OLS estimator ofδ is weakly consistent.

4 Model selection in the UDM

The Monte Carlo study developed in this section addresses the issue of whether or not adding dummies
that do not actually matter will distort model selection. Weconsidered a rather extreme scenario where
the number of dummies represents 62.5% of the sample size. Here,T = 40, and apart from the 25 zero-
one observation-specific dummy variables, only one other regressor was considered: for each replication
these were drawings from the uniform distribution with support in the unit interval. M = 10000

replications were conducted. We first note the null distribution for ‘near-saturated’ regressions, then
consider the alternative when the errors come from a mixtureof distributions, one of which generates
outliers.

4.1 Null distribution

The DGP is given by the following UDM:

yt = βxt + vt (41)

wherevt ∼ IN
[
0, σ2

v

]
. Thus, no dummies were included in the DGP (41) to generate outliers in the

data, althoughPr
(
v2
t /σ

2
v > 4

)
' 0.05.

As a baseline, first consider adding one unnecessary impulsedummy to (41). There is no bias, but
an efficiency loss of O(T−1). Next, consider a model wherext = 1 andT − 2 impulse dummiesdj,t,
j = 1, . . . , T − 2 are added, leaving just one degree of freedom:

yt = β +

T−2∑

j=1

γjdj,t + vt. (42)

Although it is difficult to saturate the problem any more than(42) without a perfect fit, nevertheless the
dummies merely reduce the sample size to 2, withβ̂ = 1

2 (yT−1 + yT ) so that̂γj = vj+β−β̂. Providing
the last 2 observations are representative (sovT−1 and vT are neither outliers nor very small), then
0.05T dummies will be significant by chance on average, but with considerable variability. Moreover,
the number of significant values will be altered only marginally if a selection routine eliminates the
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insignificantγ̂j . While simplistic, this reasoning seems to characterize why there need not be a major
problem under the null from adding many dummies.

In the Monte Carlo,σ2
v = 1 andβ = 1 in 41) without loss of generality. However, the econometric

model contains dummies that are ‘randomly’ added, in the sense that there is noa priori reason to think
they correspond to outliers. The observations for which thedummies are introduced were selected by
simulating a Bernoulli distribution with parameter 0.6, and were the same across the 10000 replications.

Individual significance tests on the indicators should havea t-distribution with 14 degrees of free-
dom, so the nominal critical values used are±1.76. The resulting empirical critical values for the
indicators were close to the theoretical ones, and average rejection frequencies were virtually identical
to the postulated significance levels. Furthermore, the inclusion of 25 dummy variables did not affect the
bias of the estimator of the coefficientβ on x, nor its significance. The number of irrelevant dummies
retained at each replication followed a binomial distribution with parametersp = 0.01 (when a rule
close to 2.5̂σ was used) andN = 25.3 Hence, on average, only 0.25 irrelevant dummies were retained
in each regression despite nearly ‘saturating’ the model with indicators. In practice, therefore, almost no
irrelevant dummy variable will be retained, revealing low costs of inference and search in this context
(see Hendry, 2000).

4.2 Mixture of distributions

An alternative DGP is one where the errors come from a mixtureof distributions, one of which generates
relatively rare outliers relative to the other. We worked with a version of the unrestricted dummies model
whereX contained a constant and a uniformly distributed regressorwith support in the unit interval:
the parameter values were set toβ0 = 0.25 andβ1 = 0.45 respectively. The sample size wasT = 200,
andM = 1000 replications were conducted. Three key features are worth noticing in the design of this
Monte Carlo experiment:

1.The vectorv was generated from a mixture of a standard normal distribution and a member of
Student’st family of distributions.4 The probability that a drawing from the standard normal would be
generated was chosen to be equal to:

Pr (Z = 0) (43)

where
Z ∼ Poisson(λ = 0.2) (44)

2.The alternative distribution in the mixture varied across experiments. We conducted simulations
for drawings fromt(4), t(3) andt(2). These choices reflect that the lower the degrees of freedom of the t
distribution, the heavier its tails, and hence the more likely it is that many outliers will be generated.

3.Outliers were defined as observations with associated OLSresiduals greater than 2.5σ̂ in absolute
value.

After generatingv as the mixture just described, the model without dummies wasestimated. The
times of residuals greater than 2.5σ̂ in absolute value were used to create the matrix of dummy variables
D of dimensionT × n (for n outliers). Finally, that UDM was estimated by OLS at every replication.
The mean estimates andt-values, and those from the regression without dummies, arereported in tables
1 and 2, together with the rejection frequencies of thet-tests using one-sided 5% critical values of 1.645.

In both cases, the parameters are unbiasedly estimated. However, not including dummies to account
for the outliers induces a loss of power for rejecting the nulls for β0 andβ1. The parameter values

3The complete results of this Monte Carlo experiment are available in Santos (2003).
4This is a common method of simulating aberrant observationsfor Monte Carlo studies (see Abraham and Chuang, 1989)

which does not entail that this is the true economic mechanism generating thevt.
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t(4) t(3) t(2)
β0 0.25 0.24 0.24

β1 0.44 0.46 0.45

tβ0
1.85 1.75 1.68

tβ1
1.84 1.90 1.80

RFβ0
0.57 0.54 0.51

RFβ1
0.56 0.58 0.56

Table 1 Model with Outlier Generated Dummies.

t(4) t(3) t(2)
β0 0.25 0.25 0.25

β1 0.45 0.46 0.42

tβ0
1.58 1.44 1.17

tβ1
1.6 1.52 1.21

RFβ0
0.46 0.42 0.32

RFβ1
0.48 0.47 0.35

Table 2 Model without dummies.

in the DGP imply relatively low non-centralities of thet-tests, so for thet(2) simulation, the rejection
frequency ofβ1 = 0 when outliers are ignored is 62% of the rejection frequency when the dummies are
included. Thus, including the dummies in the model, when thedata suggests doing so, seems beneficial,
relative to not keeping the dummies when they matter.

5 The behaviour of White’s heteroskedasticity test

The inclusion of a large number of dummy variables, relativeto the sample size, generates many zero
residuals which might give rise to misleading inference when using residual-based mis-specification
tests. Following this intuition, we developed a Monte Carloexperiment to assess how close were nom-
inal and empirical critical values in the heteroskedasticity test suggested by White (1980). The DGP
is:

yt = β0 + β1x1,t + β2x2,t +

k2∑

i=1

γidi,t + vt (45)

so (45) is a UDM, and we focus on the size of White’s test.
x1,t andx2,t are strongly exogenous regressors, so,k1 = 3. di,t is an observation-specific indicator,

andk2 is allowed to vary across experiments.x1,t was generated as a set of drawings from a uniform
distribution in the unit interval, scaled up by a factor of 100, andx2,t was generated as a set of drawings
from N [0, 4]. The same drawings forx1,t andx2,t were used in every replication. The sample sizeT

was first allowed to vary across experiments using 50, 60, 70,80 (for local variation; below we also
consider more ‘asymptotic samples’ of 800, 2000 and 10000).

We chose the parameter values reported in table 3 for the simulations, sok2 = 9.

Given the asymptotic nature of White’s test statistic, we first conducted an experiment with no
dummies in either the DGP or econometric model (sok2 = 0) to assess the closeness of the theoretical
and empirical quantiles.M = 10000 replications were used throughout. Table 4 reports our results for
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β0 β1 β2 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9

4 3.3 5 14 22 35 19 24 19 27 12 25

Table 3 DGP parameter values - 9 dummies.

T \ α 1% 5% 10%

80 13.42 9.29 7.53

70 13.02 9.14 7.58

60 13.03 9.15 7.54

50 13.06 9.19 7.58

χ2
(4) 13.28 9.49 7.78

Table 4 Baseline model.

White’s test without cross products.α is the significance level.
We conclude from table 4 that, even for the small sample sizeswe are considering, the limiting

distribution χ2
(q), whereq is the number of regressors in the auxiliary regression, is agood approxi-

mation to the empirical distribution. This provides the baseline for assessing the impact on the test of
including dummy variables in the DGP and econometric model.The number of dummies represents
approximately 18%, 15%, 12% and 11% of the sample sizes. The outliers in the DGP were introduced
at observations 9, 13, 19, 21, 22, 33, 36, 38 and 41, held constant across replications

Table 5 reports the empirical critical values of White’s heteroskedasticity test without cross products,
for each sample size, and when the DGP and the econometric model have 9 observation-specific dummy
variables. The nominal critical values are also reported (the test statistic asymptotically has aχ2

(13)).
Comparing tables 4 and 5 reveals a striking difference, at all relevant quantiles, between the nominal

and the empirical critical values.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150 Density

Empirical density 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Density χ2

(13) 

Figure 1 Empirical and Nominal Sampling Distributions.

In figure 1, the first graph reports the empirical distribution of White’s test statistic, forT = 50 and
k2 = 9. The second reports the actualχ2

(13) density. The empirical critical values are always lower than
the nominal critical values, implying that the use of the theoretical distribution would lead to substantial
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T \ α 1% 5% 10%

80 19.07 14.78 12.99

70 18.84 14.95 13.04

60 18.97 14.87 13.15

50 19.16 15.09 13.44

χ2
(13) 27.69 22.36 19.81

Table 5 No cross products, 9 dummies.

T\ α 1% 5% 10%

800 17.88 14.06 12.27

2000 17.68 13.78 12.17

10000 17.55 14.05 12.33

χ2
(13) 27.69 22.36 19.81

Table 6 Large samples, no cross products, 9 dummies.

under-rejection of the null hypothesis of homoskedasticity.

5.1 Large sample sizes

We repeated the experiment for much larger sample sizes. Table 6 highlights that the problem remains
in large samples even fork2 = 9.

In table 7, we report the Monte Carlo results for a modified version of White’s test, whereby dum-
mies are included in the DGP and in the baseline econometric model, but are excluded from the auxiliary
regressions used to calculate the test:

e2
t = µ + η1x1,t + η2x2,t + η3x

2
1,t + η4x

2
2,t + ξt. (46)

This version does not appear to be suggested in the literature, although Messer and White (1984) con-
sider estimation of a heteroskedasticity-consistent covariance matrix when there is a singularity due to
zero residuals, and suggest dropping those residuals and the dummies from estimation of the covariance
matrix. In the test computed here, only the dummy variables are dropped from the auxiliary regression,
but the zero residuals are not. Defaults from the previous subsection apply, and table 7 refers to the
modified White test without cross products.

As can be seen, finite-sample distortions induce only small differences between nominal and empir-
ical critical values in this modified test. Although such a modified heteroskedasticity test need not be
the optimal solution to the problem of proliferating indicators, it shows that heteroskedasticity testing in
the UDM need not be problematic.

T \ α 1% 5% 10%

80 13.81 9.18 7.40

70 12.25 9.01 7.38

60 11.52 7.97 6.67

50 11.11 8.24 7.08

χ2
(4) 13.28 9.49 7.78

Table 7 Modified test, no cross products, 9 dummies.
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(47) (48)

T\α 1% 5% 10% T\α 1% 5% 10%

50 14.82 11.69 10.3 50 11.9 9.6 8.5

60 14.59 11.43 10.1 60 12 9.2 8.3

70 14.45 11.21 9.85 70 11.6 9.4 8.1

80 14.37 11.22 9.8 80 11.7 9.6 8

χ2
(11) 24.7 19.7 17.3 χ2

(4) 13.3 9.5 7.78

Table 8 White’s Test No Cross Products.

5.2 An index representation

Next, to assess whether conventional nominal critical values provide a useful guide for White’s test
when the index model is estimated as in section 3.1, we considered the following UDM as the DGP:

yt = β0 + β1x1,t +

k2∑

i=1

γidi,t + vt. (47)

The econometric models under study are therefore the same as(47) and:

yt = β0 + β1x1,t + δIt + ut (48)

where It is defined by (31) and (32), and the numerical weights deliberately allowed some mis-
specification.M = 10000 replications were used (details are provided in Santos, 2003). The unre-
stricted model includes 9 observation-specific dummy variables, and hence the index has 9 positive
weights. Table 8 reports the results for both models when White’s test is conducted without cross prod-
ucts.

The asymptotic distribution of White’s heteroskedasticity test is close to the empirical when the test
is conducted for this index model, in spite of the mis-specified weights. The intuition for such a result,
and for the noticeable difference relative to (47), is that the index no longer generates zero residuals,
unlike unrestricted dummies.

5.3 Power of normality test

We conducted a Monte Carlo study of the Bowman and Shenton (1975) test for non-normality, to evalu-
ate its power in the UDM setting. Such tests are primarily designed to detect leptokurtosis rather than the
mesokurtosis which will result in the present setting. Thus, the alternative was a mixture of a standard
Gaussian distribution with zeroes, to mimic the outcome of OLS estimation of the UDM whenσ2

v = 1.
M = 10000 replications were used. For each experiment, the power of the test was estimated by the
mean rejection rate of normality at a 5% significance level. For a model with 5 zeroes, the average
power of the test was 8% for sample sizes ranging from 20 to 40.This could be contrasted with a mean
rejection frequency of 64% when the alternative is at(2). The problem becomes less relevant as the sam-
ple size increases, although at each sample size, the power is smaller than against at(2). Nevertheless,
failure to reject normality in the UDM should be viewed cautiously.

6 Last sample-observation indicators

Intercept corrections of the form of setting a model ‘back ontrack’ prior to forecasting are widely used
in practice. It is well known that an indicator entered for the final observation in a sample and continued
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at unity into the forecast period doubles the forecast errorvariance (see e.g., Clements and Hendry,
1998). We re-establish that result to consider situations under which it would nevertheless be beneficial
to correct for a discrepant final observation.

Again the simplest regression model suffices as an illustration:

yt = βxt + vt where vt ∼ IN
[
0, σ2

v

]
,

for forecastingyT+1 using:
ŷT+1 = β̂xT+1,

wherexT+1 is known and:

β̂ =

∑T
t=1 xtyt∑T
t=1 x2

t

= β +

∑T
t=1 xtvt∑T
t=1 x2

t

. (49)

Under an unchanged process, the forecast error is:

v̂T+1 = yT+1 − ŷT+1 =
(
β − β̂

)
xT+1 + vT+1,

with mean-square forecast error (MSFE):

E
[
v̂2
T+1

]
= V

[
β̂
]
x2

T+1 + E
[
v2
T+1

]
.

In a stationary environment,E
[
v2
T+1

]
= σ2

v in which case as above,V[β̂] ' σ2
v/
(
Tσ2

x

)
(where the

approximation is ofT−1
∑

x2
t by σ2

x), leading to the well-known result:

E
[
v̂2
T+1

]
' σ2

v

(
1 +

x2
T+1

Tσ2
x

)
. (50)

If instead, an indicator is added for the final, and future, observation the model becomes:

yt = βxt + δ1{t≥T} + vt, (51)

with:

β̃ =

∑T−1
t=1 xtyt∑T−1
t=1 x2

t

,

which is equivalent in this static context to ignoring the final data point, wherẽδ = ỹT − xT β̃ = ṽT .
Continuing the value of the indicator at unity forT + 1 leads to:

yT+1 = xT+1β̃ + δ̃,

so that:
yT+1 = ỹT + ∆xT+1β̃,

and hence:
vT+1 = yT+1 − yT+1 = vT+1 + xT+1

(
β − β̃

)
− ṽT . (52)

Thus, treating the terms in (52) as statistically independent:

E
[
v2

T+1

]
= x2

T+1V
[
β̃
]

+ E
[
v2
T+1

]
+ E

[
ṽ2
T

]
' 2σ2

v

(
1 +

x2
T+1

(T − 1) σ2
x

)
. (53)

Compared to (50), the error variance is doubled.



16

However, if the indicator is just added for the final observation and not extrapolated, namely
δ1{t=T}, then:

ỹT+1 = β̃xT+1

so:

E
[
ṽ2
T+1

]
= x2

T+1V
[
β̃
]

+ E
[
v2
T+1

]
' σ2

v

(
1 +

x2
T+1

(T − 1) σ2
x

)
. (54)

Consequently, relative to (50) and (53), it is not the ‘setting back on track’per sethat doubles the
error variance, but the assumption that the location shift persists into the forecast period as an intercept
correction. There is anMSFE loss of (54) over (50) of:

E
[
ṽ2
T+1

]
− E

[
v̂2
T+1

]
'

σ2
vx

2
T+1

T (T − 1) σ2
x

,

which is of orderO(T−2), so only a small cost ensues.
In practice, an indicator is often added to correct an outlier in the final observation, which is probably

measured less accurately than earlier ones, deriving from the DGP being the same as (51):

yt = βxt + δ1{t=T} + vt. (55)

The alternative of not including the indicator entails that(49) would become:

β̂δ = β̂ +
δxT∑T
t=1 x2

t

,

with forecastMSFE from ŷδ,T+1 = β̂δxT+1 of:

E
[
v̂2
δ,T+1

]
= x2

T+1E

[(
β − β̂δ

)2
]

+ E
[
v2
T+1

]
' σ2

v

(
1 +

x2
T+1

Tσ2
x

)
. (56)

Thus:

E
[
v̂2
δ,T+1

]
− E

[
ṽ2
T+1

]
=

σ2
vx

2
T+1

Tσ2
x

−
σ2

vx
2
T+1

(T − 1) σ2
x

+
σ2

vx
2
T+1

Tσ2
x

δ2x2
T

Tσ2
x

=
σ2

vx
2
T+1

Tσ2
x

(
δ2x2

T

Tσ2
x

− 1

(T − 1)

)

'
σ2

vx
2
T+1

Tσ2
x

(
T
(
δ2 − 1

)
− δ2

(T − 1) T

)
,

so that for a reasonable size of sample,E[v̂2
δ,T+1] ≥ E[ṽ2

T+1] whenδ2 > 1. Thus, a relatively small
outlier justifies setting the model back on track before forecasting, separately from the decision to ex-
trapolate the indicator into the future.

7 Conclusion

We have considered the addition of impulse indicators in static regressions, their combination in an
index, and their data-based selection, both when needed to correct outliers, and when unnecessary. The
implications seem remarkably benign. The coefficients of such dummies are unbiased but inconsistent;
their standard errors are consistent; the ratio of the first to the second has at-distribution for normally-
distributed errors, but provides an inconsistent test in general. Even nearly saturating a model with
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impulse dummies need not induce ‘spurious’ results, hence selecting the ‘most significant’ of these is
not problematic either. Although too many dummies can distort some mis-specification tests, solutions
exist, either by forming an index, or modifying the test. An index can be consistently estimated when
not ‘too mis-specified’ for the correct weights. Including dummies in a model, when the data suggests
doing so, seems beneficial, relative to not keeping the dummies when they matter; including dummies
when they don’t matter seems relatively harmless, althoughthere is a small efficiency loss.

The baseline case of a static regression plays a useful pedagogic role, but it is well known that
results on dummies in such models do not generalize easily toeither dynamic models or integrated data
processes: see e.g., Doornik, Hendry and Nielsen (1998) andNielsen (2003). Nevertheless, we believe
the above results serve to mitigate some of the fears we have encountered from referees on the role of
dummies in econometric modelling.
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