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Abstract

OLS estimation of an impulse-indicator coefficient is insistent, but its variance can be con-
sistently estimated. Although the ratio of the inconsis&stimator to its standard error has-a
distribution, that test is inconsistent: one solution ifdom an index of indicators. We provide
Monte Carlo evidence that including a plethora of indicateeed not distort model selection, per-
mitting the use of many dummies in a general-to-specific &aork. Although White's (1980)
heteroskedasticity test is incorrectly sized in that cetitee suggest an improvement. Finally, a
possible modification to impulse ‘intercept correctiorsstonsidered.

JEL classificationsC51, C22.
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1 Introduction

Indicator variables, also called impulse dummies, and éoations thereof, regularly occur in estimated
time-series relationships, eliminating residuals thatilatherwise be outliers (usually in excess of 2
standard errors in absolute value). Any location shiftstbeochanges in the coefficients of determin-
istic variables can induce such outliers, (usually call@tbization outliers), as can data measurement
or recording errors (additive outliers). These are eqgaiviain static regression models with strongly
exogenous variables, but have different consequencesamuig models.

Despite the prevalence of indicators in models, severaasof their use do not seem to have
been fully investigated, and here we address some of the peotieent of these. First, although OLS
estimation is unbiased for the coefficient of an indicatoiis iinconsistent—yet its variance can be
consistently estimated. Nonetheless, the ratio of thensistent estimator to its consistently estimated
standard error has the usualistribution when the errors are normally distributed;, tme power of the
t-test does not rise as the sample size increases. The ist@rsi results from the lack of divergence in
the Fisher information, as there is only a single obsermativthe indicator, so we consider overcoming
this by forming linear combinations of indicators. We e$isfibnecessary conditions for consistent
estimation of the parameter of an index of indicators, shgwhat consistency can occur even with
mis-specified weights. We also report Monte Carlo evideheg¢ inclusion of a plethora of indicators
does not distort model selection, permitting the use of nduymies in a general-to-specifiGét9
framework. However, when large numbers of indicators aeel Lisferences from mis-specification tests
might be distorted, and we note the low power of normalityst@s this setting. The heteroskedasticity
test proposed by White (1980) in fact has the wrong size inrapatricted dummies model (also see
Messer and White, 1984), so we suggest an improvement teshatthat context. The use of an index
could also alleviate such a distributional problem. Lasily indicator for the final observation in a
sample is considered in relation to intercept corrections.

The aim of the paper is to investigate the impact of selectatg-based indicators on other parameter
estimates and on mis-specification tests. To do so, we firsider the properties of estimators of
coefficients of indicators and tests thereon in section Zmwip selection is involved. Then the impact
of combining indicators into an index based on sample edes considered in section 3. In section
4, the effects of adding many dummies are discussed undemidit(section 4.1, when no dummies
matter) and alternative (when the error comes from a mixbigistributions, one of which generates
outliers: section 4.2). Potential distortions to the disttion of the heteroskedasticity test are then
examined in section 5, and possible corrections considéfiedlly, in section 6, we note the role of an
indicator added for a discrepant final sample observatiSection 7 concludes.

2 OLS estimation in an unrestricted dummies model

We consider models of the form:
y=XB8+Dy+v ()

wherev ~ IN7 [0,021] is aT x 1 random vector wheff’ is the sample size, ar¥l (T" x k;) andD

(T x k) are matrices of strongly exogenous regressors with k; + ko, SOk is the total number of
regressors including a constant. The columnB@ire zero-one observation-specific indicators, denoted
11—} When unity at observatiot), and zero otherwise, angland~ arek; x 1 andk; x 1 vectors of

LAl of the computations were undertaken usigGetsand Ox (see Hendry and Krolzig, 2001, and Doornik, 2001).



constant parameters. We assume that:

in (%) - @ @

T

whereQ is a finite positive-definite matrix. Equation (1) is refefr® as the unrestricted dummies
model (UDM).

2.1 Properties ofD

The matrixD acts to select elements in cross products, so that when (e:g= 1 there is a single
indicatord; = 1(4—y,y, then:

DD=dd=1, X'd=x, andd'y =y,

wherex,, is ak; x 1 vector. LetM = Iy — X (X’X)_1 X’ soMX = 07 then:

dMd=1-x, (X'X) 'x

b

Thus: .
!/ !/ -
lim d’'Md = lim (1 - dTX (XTX> X’d) = (1= 0754, Q 'xy,) = 1, 3)
SO:
lim7'd'Md = 0, (4)

in contrast to (2).

2.2 Properties ofy

For a single indicator, from the Frisch and Waugh (1933) i the OLS estimator of the parameter
~v is given by:
7 = (d'Mx) ' x'My. (5)
Substituting (1) into (5) and simplifying:
J -y = (d'Mx)"'d'v - (dMx) " d'X (X'X) ' X'v. (6)
That the OLS estimator of is unbiased follows immediately from applying expectagion (6) as both
E[d'v] = 0 andE[X'v] = 0.
However, in the UDM, the OLS estimator ofis inconsistent. A" — oo, the last term in (6)
vanishes since the probability limit of a non-stochastigussce is equal to its non-probabilistic limit,

and: )
. dX /[ X'X\™ _
fim T < T > ]ZO,IX’“Q t= IIXkl
with:
) v
ghm T = Okl X1 (7)
— 00

using Slutsky’s theorem (see Sargan, 1988). Hence using (3)

plimy = v + plimd'v = v + plim v, . (8)
T—o0 T—o0 T—o0
Sinceplim vy, = vy, # 0, asvy, has a non-degenerate limiting distribution:
plim 7 # . ©)
T—o00

The non-degeneracy d7] shown in (16) below confirms (9).



2.3 Properties ofV[7]

In spite of the inconsistency éf, the estimator of its variance is unbiased and consistemsider for
simplicity the casé:; = 0 andk, = 1, that is the DGP:

yr = ydi + v (10)
whered; = 14,_,y. The OLS estimator of is simply:

T T
. d > oy dyv
~ =1 QtYt =1 @t Ut
7:771 :’}/—‘—7,1., :’7+Utb:ytb (11)
> d7 > 47

implying v;, = 0, and thatV[y] = E[v{ ] = o7 so:

~ tpy—1 T ~
V/> _~2 Zthl (yt - ’Ydt)2 . th:1 Utz + Zt:tb+1 Ut2 (?th - 7)2
=0, = — = — —
T-1 T-1 T-1

(12)

Asy =y, from (12):

T_1 =0 (13)

v

tp—1 2 T 2
21 v+ § _ v
E [812)] _ [ t=1 “t t=tp+1 "t ] 2

confirming that the estimator of the residual variance isiaseal. Further, since,/o,)* ~ X%l)’ and
as the{v,} are independent:

tb—l 2
S () -
oy X(tpy—1)

t=1

ty—1 v 2 T v 2
2 t 2 t 2
- ~ ) 14
lop - <0v> + o, - <Uu> X(T-1) (14)

Thus,V[5?] converges to zero as the sample size increases

hence:

X@4>

T-1

2
= ————0. (15)

V5] =V

v

From (13) and (15), the estimator of the variance of the Olti&nasor of the indicator variable param-
eter is mean-square convergent to the true variance, so:

—

plim V3] = V[ = o} (16)

v
T—o00

also confirming the inconsistency f Such a result contrasts with what would occurfﬁqlsay) when

-~

k1 = 1 andky = 0 asplimy_, ., V[5] = 0.

2.4 Properties of inference ony

Surprisingly, despite the inconsistency~oin the UDM, under the assumption that ~ N [0, a%]:

~ . (7)



To show this, for simplicity again consider the model in (A@here:

with 52 ~ X%T—l)' and(3 — ~) anda? are independently distributed, so the results in (e.g.)dren
(1995, section A2.9.4), imply: R R
T2 T gy, (19)

— o
Ov

Vil

Thus, tests ory can be conducted when, is normal with mean zero and varianeg.

2.5t-test inconsistency

Let W be a test statistic. The test is consistent if, for any fixgaificance levelky, and for any fixed
alternativeH;:
Pr(|W| > cq;H1) — 1 (20)

asT — oo (see Cox and Hinkley, 1974), whetg is the critical value.
Consider the UDM, assuming for simplicity that = 1 andk; = 0. Then, when testing the null
hypothesis:

Ho:v=7" (21)
versus the alternative:
Hi:v # 7" (22)

the power of the-test is given by:
=

Oy

> ca> (23)

Sinces., — o, # 0, there are significance levels and values/ofor which (23) does not converge to
unity. Therefore the test on an impulse is not consistent.

2.6 Fisher information

The Fisher information for an observation-specific indicatariable is asymptotically negligible. As-
sume for simplicity thak, = 1. Given that; ~ IN [0,03} vt, the log-likelihood for one observation is
given by:

2

k1
1 1
In L (y¢, x¢,ds; B, ,012) :—ln<7>—— - iTit — yd . 24
(yt £y Ut 16 Y ) O'U\/% 20_12) Yt ;ﬁ t yat ( )
If that observation i$ = t;, then:
Oln L 1 il
aﬁ2 = ; (ytb - Zﬁil‘@tb - 7) . (25)
v i=1
Hence, the information equality implies:
0?InL dy; 2
E [_ n (yt7xt72 t7/37'770-11) |,7:,70] _ iz (26)
oy oz

where~? denotes the true parameter value. The Fisher informationtahe parametey® is zero for
all other observations. Since the are independent, the sample Fisher information equalsutmea$



the information for each random variable, so the samplermnétion abouty’ is still o, 2. Hence, as
T — oo, the sample information about the indicator variable patamis negligible:

li — 0. 27)

T
As a corollary, the OLS estimator of the observation-spedfimmy variable parameter estimator is
efficient: the Cramér—Rao lower bound #8[7] in the model defined by (10) is?, and we established
above thaV[§] = o2.

Given these properties of estimation and inference abdidator coefficients, we consider selecting
them from data evidence, and first discuss forming a dateebiasiex of indicators.

3 The properties of linear combinations of indicators

The idea of forming an index to substitute for the originahuies was used by Hendry (1999) in
analyzing US Food Expenditure, 1931-1989, and Hendry (Rid0dn empirical study of UK inflation
from 1865 to 1991. Replacing the indicators by a linear coration was, in the context of these papers,
motivated by the excessive number of dummies initially eeeith each model. In the first paper, the
indicators were almost contiguous over 1931-1945 so werapalication of the forecast (actually,
backcast) approach in Salkever (1976), but were then diegblio two indexes. Earlier research on
the second topic had also revealed an abundance of outliersaps unsurprising in a sample that
comprises two world wars and two oil crises, the breakdowtheBretton Woods system, and a many
legislative and technological changes. Twenty-two inicsaremained in the final model using data-
based restrictions which were acceptable at a 5% signickevel, inducing 22 zero residuals. Three
groups of dummies were formed, roughly matching ‘very bigeg)’, ‘large (6%)’ and ‘medium (4%)’
outliers, then each group was assigned a weight, where 4%edap unity, to form an index. After
this reduction to a single index, the model remained comngrue

Neither the theoretical properties nor the small-sampleabieur of test statistics and estimators
are known when both large residuals and the ensuing zerterdusave been eliminated. Section 3.1
establishes overly strong sufficient conditions for caesis estimation of the index parameter, and
section 3.2 allows for mis-specified weights. Both sectiah® the ‘significant’ indicators as known,
but allow for omitting some of the shifts that actually oaceat.

3.1 OLS estimation of an index parameter

We postulate the following simplified DGP:
Kr
Y = Z Gid;t + vy (28)
i=1

wherev, ~ IN[0,02]. This is an unrestricted dummies DGP, where for simplicity, = 0 and

ko = Kr. Thed;, are observation-specific indicators, zero exceptlfgr,,, for some set ofKr
time occurrences in a 8, = {1 ...tx}. Hence, the DGP foy, is a white-noise stochastic process
perturbed at some points in time by transient location shift/e assume that & — oo, K — o0,

but K < T such thatl > Kr/T — cx > 0, whereci denotes the ‘average arrival rate of shifts’.
Based on realistic historical foundations, outliers auased to keep occurring in the future. We do
not assume a specific arrival process for such shocks, whithdvwgenerate a meta-stationary process
(e.g., a Poisson process): rather shocks are assumed torkéappening, but not every period.



In the absence of data revisions, either a dummy has a smmnifeffect immediately or never,
since information on the individual indicators does notraec Thus, even with these assumptions,
dummies will usually only be included in an econometric mMadd y, } for ‘significant’ shocks. Several
criteria could be used to assess that need, sugh; asv;,| /o, > 2.0 (say)? Let kz be the number of
significant shocks in a s&t;,,, C Sk, and hence the number of indicators in the econometric model
Then we also assume that As— oo, thenky — oo with kr < Kp andkyp/Tr — ¢, > 0. This
assumption ensures that as the sample size increaseéicaignshocks also keep occurring, so would
be included in the UDM according to the given criterion.

Re-write (28) as:

ye= Y bidjetwi=¢di+w (29)

JESkp

where there aré&r — k7 omitted indicators, with:

wp = Z ¢jdjt + v,

JE€ESKp—Skp

SO:

E ] :{ 0; for j € S, — Siy and E 7] :{ ¢§2-+ag for j € Sy — S
0 otherwise o; otherwise

We take the omitte@ ¢>j} to have an average of zero, which would arise if (e.g.) thdlenautliers were
randomly drawn from a symmetric distribution. Thug,~ ID [O, ait], and is assumed independent of
the retainedd; ; }. In effect, smaller shocks are subsumed in the equatiorts process, makingw, }
heteroskedastic with an average variance greaterahabet ait < B € R" Vt, so the variance of the
combined error never exceeds an upper bolindven asymptotically, noting that large are removed
by indicator dummies.

Given the unrestricted dummies DGP as in (29), considerd¢bhaametric model:

yr = 01y + uy (30)
with & # 0 where:
=) wdj,=wd. (31)
JE€Skp

We first assume that the weighis; } are correctly specified for the ‘significant outliers’, saith

2]

5 (32)

wj =
and hencep = ow (section 3.2 considers a class of mis-specified weights)enﬁ] is a weakly
consistent estimator @. The proof requires the error term to be the same in (29) aby £8 the two
representations are isomorphic provided (32) holds. Thetldy = éw’'d; = §1;:

T
5 Sy Ly _ 2=l (#'ds + wr) — 54+ M (33)

S It S If i k7

2As o, will be unknown, there is the potential problem of detectingliers usings, which initially reflects the omitted
outliers; this is one reason we allow for ‘smaller’ transighifts to be omitted.




Taking expectations of both sides of (33) shows thiatunbiased wheE[Zthl Liw] = 0:

E[g}zﬂwzé "
> 17 '
Further, as:
T 2 T T T
E (Z ItWt) =E [Z Z ItIswtws] = foo'i”
t=1 t=1 s=1 t=1
hen:
- VI{s|=E|(6—0¢ ? —E Ztll]f“’t i _ thlftQUit 3
[}_ [<_)}_ ﬁ —m- (35)

Next (see e.g., White, 1984):

1 T T 1 —
2= Zden——Z 2 die =g 2w wr >0
t=1

t l]ESkT ]ESkT t=1 jGSkT
Further:
1 & 1 & —
— N 62 <B—Y I?! 5 Bu?>0,
so that:

T 2 2 5
o Ifo 2
tim v [3] = 1im 1 u im L BY . (36)

= lm ——
T—oo T—oo kp T T—oo kr (73)?
(&xr, ) (v?)
Sufficient conditions for mean-square convergencétofd are, therefore, verified, so that:

plim 5=06. (37)

T—00

Indeed:

\/EZ -[twt 2
= VIS ] e ] e
k

\/—( ) \/E kTZtTlI2 H\/@ €Sk,

3.2 Mis-specified weights

Unfortunately, this result is of little practical value, the index model will not in general be isomorphic
to the UDM, sinced is unknown when defining the weights. In any empirical agian, the index
weights are bound to be mis-specified, so we establish ®rfficonditions for consistent estimation of
0 even though the index weights are mis-specified. The asalysilose to that mapping (28) to (29).
Let:

¢; = ow; + p; for i € Sy,

so that:

> dudipg =0 widig+e=0L+¢ (39)

iESkT iESkT

£t = Z g,

iESkT

where:



SO:
Yt = (5It + Vt + gt = 5It + ur (40)

where:

w; forje s, 9 p2 4 o2 forj e Sy
Eln] = J . " and E = J _ r
] { 0 otherwise (i) { o2 otherwise

For the mis-specification not to affect consistency, thet@maicomponents must continue to act like
random errors. As before, we assunfg, < L € R* Vt andC [n,,n,_,] = 0, Vs # t, and require that
the{uj} average to zero. Alsd;, [I;v;] = 0 so the key is thaE [I;¢;] = 0 and we have:

Ellie/] =E Z widg Z pidie | = Z W .-

iESkT jESkT ’iESkT

Thus, mistakes in assigning weights must on average berreglated’ with the weight assigned. If so,
then (40) satisfies the assumptions of section 3.1, and lleacalL S estimator of is weakly consistent.

4 Model selection in the UDM

The Monte Carlo study developed in this section addresgeissie of whether or not adding dummies
that do not actually matter will distort model selection. ¥dmsidered a rather extreme scenario where
the number of dummies represents 62.5% of the sample size,’He- 40, and apart from the 25 zero-
one observation-specific dummy variables, only one otlggessor was considered: for each replication
these were drawings from the uniform distribution with sogpgn the unit interval. M = 10000
replications were conducted. We first note the null distrdyufor ‘near-saturated’ regressions, then
consider the alternative when the errors come from a mixtfigistributions, one of which generates
outliers.

4.1 Null distribution

The DGP is given by the following UDM:
Y = Bxe + v¢ (41)

wherev; ~ IN [0,02]. Thus, no dummies were included in the DGP (41) to generateuin the
data, althougtPr (v?/o? > 4) ~ 0.05.

As a baseline, first consider adding one unnecessary imgulseny to (41). There is no bias, but
an efficiency loss of (~!). Next, consider a model wherg = 1 andT" — 2 impulse dummieg; ,,

j=1,...,T —2are added, leaving just one degree of freedom:
T—2
v =B+ vdjs+ v (42)
j=1

Although it is difficult to saturate the problem any more tl{dR) without a perfect fit, nevertheless the
dummies merely reduce the sample size to 2, With 5 (yr—1 +yr) sothaty; = vj+ﬂ—§. Providing
the last 2 observations are representativeygo; and v are neither outliers nor very small), then
0.057 dummies will be significant by chance on average, but withsm®rable variability. Moreover,
the number of significant values will be altered only martijnd a selection routine eliminates the
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insignificanty ;. While simplistic, this reasoning seems to characterizg thiere need not be a major
problem under the null from adding many dummies.

In the Monte Carlog? = 1 and3 = 1 in 41) without loss of generality. However, the econometric
model contains dummies that are ‘randomly’ added, in theeséimat there is na priori reason to think
they correspond to outliers. The observations for whichdilmamies are introduced were selected by
simulating a Bernoulli distribution with parameter 0.6damere the same across the 10000 replications.

Individual significance tests on the indicators should hatslistribution with 14 degrees of free-
dom, so the nominal critical values used &fré.76. The resulting empirical critical values for the
indicators were close to the theoretical ones, and avegggetion frequencies were virtually identical
to the postulated significance levels. Furthermore, theéian of 25 dummy variables did not affect the
bias of the estimator of the coefficiefiton x, nor its significance. The number of irrelevant dummies
retained at each replication followed a binomial distiibatwith parameterg = 0.01 (when a rule
close to 2.5 was used) andv = 25.° Hence, on average, only 0.25 irrelevant dummies were edain
in each regression despite nearly ‘saturating’ the model idicators. In practice, therefore, almost no
irrelevant dummy variable will be retained, revealing loests of inference and search in this context
(see Hendry, 2000).

4.2 Mixture of distributions

An alternative DGP is one where the errors come from a mixatidestributions, one of which generates
relatively rare outliers relative to the other. We workedhvé version of the unrestricted dummies model
whereX contained a constant and a uniformly distributed regressibr support in the unit interval:
the parameter values were sefkp= 0.25 and3,; = 0.45 respectively. The sample size wAs= 200,
and M = 1000 replications were conducted. Three key features are watihing in the design of this
Monte Carlo experiment:

1.The vectorv was generated from a mixture of a standard normal distdbuind a member of
Student’st family of distributions? The probability that a drawing from the standard normal \ddag
generated was chosen to be equal to:

Pr(Z =0) (43)

where
Z ~ PoissonA = 0.2) (44)

2.The alternative distribution in the mixture varied asregperiments. We conducted simulations
for drawings fromt 4), t(3) andt(y). These choices reflect that the lower the degrees of freeditine o
distribution, the heavier its tails, and hence the mordylikas that many outliers will be generated.
3.0utliers were defined as observations with associatedr&iBuals greater than Z:.5n absolute
value.
After generatingv as the mixture just described, the model without dummieseasgéimated. The
times of residuals greater than 2.1 absolute value were used to create the matrix of dummuplvias
D of dimensionT' x n (for n outliers). Finally, that UDM was estimated by OLS at everplication.
The mean estimates atdalues, and those from the regression without dummiegsgep@ted in tables
1 and 2, together with the rejection frequencies oftttests using one-sided 5% critical values of 1.645.
In both cases, the parameters are unbiasedly estimatedevdgwnot including dummies to account
for the outliers induces a loss of power for rejecting thdstdr 3, and 3,. The parameter values

3The complete results of this Monte Carlo experiment arelavii in Santos (2003).
“4This is a common method of simulating aberrant observafionklonte Carlo studies (see Abraham and Chuang, 1989)
which does not entail that this is the true economic mechagisnerating the:.
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tw |t |t
B, |0.25]0.24]0.24
3, |o0.44]0.46] 0.45
ts, |1.85|1.75] 168
t;, |1.84]1.90]1.80
RF;, | 0.57] 054 0,51
RFs, | 0.56 | 0.58| 0.56

Table 1 Model with Outlier Generated Dummies.

b | le) | e
B, |0.25]0.25]0.25
3, | 0.45]046]0.42
ts, |1.58]1.44] 117
t5, |16 |152[121
RF5, | 0.46] 0.42] 0.32
RFs, | 0.48] 0.47] 0.35

Table 2 Model without dummies.

in the DGP imply relatively low non-centralities of tieests, so for the,) simulation, the rejection
frequency of3; = 0 when outliers are ignored is 62% of the rejection frequenbgmthe dummies are
included. Thus, including the dummies in the model, wherdita suggests doing so, seems beneficial,
relative to not keeping the dummies when they matter.

5 The behaviour of White’s heteroskedasticity test

The inclusion of a large number of dummy variables, relativéhe sample size, generates many zero
residuals which might give rise to misleading inference mvhsing residual-based mis-specification
tests. Following this intuition, we developed a Monte Carkperiment to assess how close were nom-
inal and empirical critical values in the heteroskedatstitést suggested by White (1980). The DGP

IS:
ko

e = Bo + Br1x1s + Bowas + > Vediy + vy (45)
=1

so (45) is a UDM, and we focus on the size of White's test.

x1+ andzy, are strongly exogenous regressors Ao 3. d; ; is an observation-specific indicator,
andk; is allowed to vary across experiments, ; was generated as a set of drawings from a uniform
distribution in the unit interval, scaled up by a factor oD1@ndz, ; was generated as a set of drawings
from N [0,4]. The same drawings far; ; andz2; were used in every replication. The sample size
was first allowed to vary across experiments using 50, 608@(Jfor local variation; below we also
consider more ‘asymptotic samples’ of 800, 2000 and 10000).

We chose the parameter values reported in table 3 for thdations, sok, = 9.

Given the asymptotic nature of White’s test statistic, wetfeonducted an experiment with no
dummies in either the DGP or econometric modelX{ge= 0) to assess the closeness of the theoretical
and empirical quantiles)/ = 10000 replications were used throughout. Table 4 reports ourtser



12

Bo | B | Ba| v | v | 3|77 |7 | 7|78 ]| Yo
4 33|5 141 22|135(19|24 19| 27| 12| 25

Table 3 DGP parameter values - 9 dummies.

T\a| 1% | 5% | 10%
80 | 13.42|9.29| 7.53
70 | 13.02| 9.14| 7.58
60 | 13.03| 9.15| 7.54
50 | 13.06|9.19| 7.58

X?4) 13.28| 9.49| 7.78

Table 4 Baseline model.

White’s test without cross producta.is the significance level.

We conclude from table 4 that, even for the small sample swesire considering, the limiting
distribution X?q)- wheregq is the number of regressors in the auxiliary regression, ge@l approxi-
mation to the empirical distribution. This provides the ddase for assessing the impact on the test of
including dummy variables in the DGP and econometric modéle number of dummies represents
approximately 18%, 15%, 12% and 11% of the sample sizes. Uithers in the DGP were introduced
at observations 9, 13, 19, 21, 22, 33, 36, 38 and 41, heldaunstross replications

Table 5 reports the empirical critical values of White’sdreskedasticity test without cross products,
for each sample size, and when the DGP and the econometriel imek 9 observation-specific dummy
variables. The nominal critical values are also reporthe {¢st statistic asymptotically hasC%?))).

Comparing tables 4 and 5 reveals a striking difference | atlgvant quantiles, between the nominal
and the empirical critical values.
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Figure 1 Empirical and Nominal Sampling Distributions.

In figure 1, the first graph reports the empirical distribotaf White'’s test statistic, fof’ = 50 and
ko = 9. The second reports the actqeﬂzs) density. The empirical critical values are always lowentha
the nominal critical values, implying that the use of theoifedical distribution would lead to substantial
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T\a| 1% 5% | 10%
80 | 19.07| 14.78| 12.99
70 | 18.84| 14.95| 13.04
60 | 18.97| 14.87| 13.15
50 | 19.16| 15.09| 13.44

X?13) 27.69| 22.36| 19.81

Table 5 No cross products, 9 dummies.

T\a | 1% | 5% | 10%
800 | 17.88| 14.06| 12.27
2000 | 17.68| 13.78] 12.17
10000| 17.55] 14.05] 12.33
X}s) | 27.69] 22.36] 19.81

Table 6 Large samples, no cross products, 9 dummies.
under-rejection of the null hypothesis of homoskedasticit

5.1 Large sample sizes

We repeated the experiment for much larger sample sizese ®dtighlights that the problem remains
in large samples even fé = 9.

In table 7, we report the Monte Carlo results for a modifiecsiagr of White’s test, whereby dum-
mies are included in the DGP and in the baseline econometritembut are excluded from the auxiliary
regressions used to calculate the test:

€} = [1+ @1+ Moo + 32T, + x5, + & (46)

This version does not appear to be suggested in the literadithough Messer and White (1984) con-
sider estimation of a heteroskedasticity-consistent iiawee matrix when there is a singularity due to
zero residuals, and suggest dropping those residuals amtlithmies from estimation of the covariance
matrix. In the test computed here, only the dummy variabtesleopped from the auxiliary regression,
but the zero residuals are not. Defaults from the previolisesttion apply, and table 7 refers to the
modified White test without cross products.

As can be seen, finite-sample distortions induce only snifgkdnces between nominal and empir-
ical critical values in this modified test. Although such adified heteroskedasticity test need not be
the optimal solution to the problem of proliferating indioes, it shows that heteroskedasticity testing in
the UDM need not be problematic.

T\a| 1% | 5% | 10%
80 | 13.81|9.18| 7.40
70 | 12.25| 9.01| 7.38
60 | 11.52| 7.97 | 6.67
50 | 11.11| 8.24| 7.08

X?4) 13.28| 9.49| 7.78

Table 7 Modified test, no cross products, 9 dummies.
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(47) (48)
T\a | 1% | 5% |10% | T\a | 1% | 5% | 10%
50 | 14.82]11.69] 10.3| 50 | 11.9| 96| 85
60 | 14.59|11.43| 10.1| 60 | 12 | 9.2| 83
70 | 1445|1121 9.85| 70 | 11.6]/ 9.4 81
80 |14.37]11.22| 98| 80 [11.7| 96| 8
XAy | 2471197 [17.3] 2, | 183] 95| 7.78

Table 8 White's Test No Cross Products.

5.2 An index representation

Next, to assess whether conventional nominal critical eslprovide a useful guide for White’s test
when the index model is estimated as in section 3.1, we cereidhe following UDM as the DGP:

ko
ye = Bo+ Brzrg + Y vidig + vp. (47)
i=1

The econometric models under study are therefore the sa(d&)aand:
Yt = 50 + 511L’17t + 5It + Uy (48)

where I; is defined by (31) and (32), and the numerical weights delileéy allowed some mis-
specification. M = 10000 replications were used (details are provided in Santos320The unre-
stricted model includes 9 observation-specific dummy téesm and hence the index has 9 positive
weights. Table 8 reports the results for both models whené&¢hiest is conducted without cross prod-
ucts.

The asymptotic distribution of White’s heteroskedastitést is close to the empirical when the test
is conducted for this index model, in spite of the mis-spedifiveights. The intuition for such a result,
and for the noticeable difference relative to (47), is timat index no longer generates zero residuals,
unlike unrestricted dummies.

5.3 Power of normality test

We conducted a Monte Carlo study of the Bowman and Shentafbj18st for non-normality, to evalu-
ate its power in the UDM setting. Such tests are primarilygie=d to detect leptokurtosis rather than the
mesokurtosis which will result in the present setting. THhs alternative was a mixture of a standard
Gaussian distribution with zeroes, to mimic the outcome bS@stimation of the UDM when? = 1.

M = 10000 replications were used. For each experiment, the powereofetst was estimated by the
mean rejection rate of normality at a 5% significance levaedr & model with 5 zeroes, the average
power of the test was 8% for sample sizes ranging from 20 t@ A3 could be contrasted with a mean
rejection frequency of 64% when the alternative is,a The problem becomes less relevant as the sam-
ple size increases, although at each sample size, the pgwenraller than againsttg,. Nevertheless,
failure to reject normality in the UDM should be viewed causly.

6 Last sample-observation indicators

Intercept corrections of the form of setting a model ‘backrack’ prior to forecasting are widely used
in practice. Itis well known that an indicator entered fag final observation in a sample and continued
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at unity into the forecast period doubles the forecast erastance (see e.g., Clements and Hendry,
1998). We re-establish that result to consider situatiovtetuwhich it would nevertheless be beneficial
to correct for a discrepant final observation.

Again the simplest regression model suffices as an illustrat

Y = Bxy + vy where v; ~ IN [0,0'12)] s
for forecastingyr1 using:
yrs1 = Brry1,
wherez 1 is known and:

T T
B 2= T _ g D Tet (49)

T 2 T 2’
> i1 T > =1 T
Under an unchanged process, the forecast error is:

U1 = YT41 — Yre1 = (5 — 5) TT41 + VU741,

with mean-square forecast errtd$FE):
E[2,,] =V [B} o3 +E 02, ]

In a stationary environmeng [v%.,,] = o2 in which case as abov&|[3] ~ o2/ (To2) (where the
approximation is of’~! >~ 22 by ¢2), leading to the well-known result:

E [07.,] =~ o2 <1 + TT ;;) : (50)

If instead, an indicator is added for the final, and futuresestsation the model becomes:

Yt = By + 01>ty + v, (51)
with: ey
5= 2zt Vit
i @

which is equivalent in this static context to ignoring theafidata point, wheré = yr — :cTB = Ur.
Continuing the value of the indicator at unity fér+ 1 leads to:

Yry1 = 274108 + 9,

so that:
Yry1 = Y1 + Azri1f,
and hence:
VP41 = Yr+1 — Y41 = U741 + T141 (ﬁ - B) —or. (52)
Thus, treating the terms in (52) as statistically indepetide
~ x2
E [E2T+1] = a5,V [ﬁ} +E [’U%_H] +E [if%] ~ 202 (1 + ﬁ) . (53)

Compared to (50), the error variance is doubled.
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However, if the indicator is just added for the final obsdopratand not extrapolated, namely
51{t:T}- then:
yr1 = Brr41

SO.
~ ;1;2
E 1] = bV 7]+ E ] = 02 (1 . W) | 54

Consequently, relative to (50) and (53), it is not the ‘sgttback on track’per sethat doubles the
error variance, but the assumption that the location skifipts into the forecast period as an intercept
correction. There is aMISFE loss of (54) over (50) of:

~9 ~2 Ugw%ﬂ
E[0711] —E[or] = T(T—1)02
xr

which is of orderO(7—2), so only a small cost ensues.
In practice, an indicator is often added to correct an autli¢he final observation, which is probably
measured less accurately than earlier ones, deriving fner®GP being the same as (51):

Yy = By + 0ly—ry + vr. (55)

The alternative of not including the indicator entails t(#8) would become:

PN Sx

Bs =B+ —=F>
D=1 m%

with forecastMSFE from ys 71 = @a:TH of:

. ~\2 5
E[03 4] =271 E [(ﬁ - 55) ] +E V7] >0} (1 + 7?;;) : (56)
€T
Thus:
E[0270] — E[2,] = 03T _ 0T 03wt 6%aF
8T+1 T+l To2  (T—-1)02  To2 To2
‘712;1’2T+1 5253% _ 1
To? To2 (T-1)
0'12)33%_’_1 T (52 — 1) — 52
To2 T-1n)T )’

so that for a reasonable size of sami;; ;] > E[07.,,] when 6% > 1. Thus, a relatively small
outlier justifies setting the model back on track before dasting, separately from the decision to ex-
trapolate the indicator into the future.

7 Conclusion

We have considered the addition of impulse indicators iticstagressions, their combination in an
index, and their data-based selection, both when needemirect outliers, and when unnecessary. The
implications seem remarkably benign. The coefficients ohslummies are unbiased but inconsistent;
their standard errors are consistent; the ratio of the firthé second hastedistribution for normally-
distributed errors, but provides an inconsistent test megad. Even nearly saturating a model with
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impulse dummies need not induce ‘spurious’ results, heatsxiing the ‘most significant’ of these is
not problematic either. Although too many dummies can distome mis-specification tests, solutions
exist, either by forming an index, or modifying the test. Awéx can be consistently estimated when
not ‘too mis-specified’ for the correct weights. Includingndmies in a model, when the data suggests
doing so, seems beneficial, relative to not keeping the desmmhen they matter; including dummies
when they don’t matter seems relatively harmless, althahbgie is a small efficiency loss.

The baseline case of a static regression plays a useful pgidagle, but it is well known that
results on dummies in such models do not generalize eas#lighter dynamic models or integrated data
processes: see e.g., Doornik, Hendry and Nielsen (1998Naisen (2003). Nevertheless, we believe
the above results serve to mitigate some of the fears we moaistered from referees on the role of
dummies in econometric modelling.
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