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Abstract

In a non-stationary world subject to structural breaks, ieh@odel and mechanism differ,
equilibrium-correction models are a risky device from whio forecast. Equilibrium shifts en-
tail systematic forecast failure, and indeed forecasts teild to move in the opposite direction
to the data. A new explanation for the empirical success cbrse differencing is proposed. We
consider model transformations based on additional diffeing to reduce forecast-error biases, as
usual at some cost in increased forecast-error variandesaialysis is illustrated by an empirical
application to narrow money holdings in the UK.
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1 Introduction

Developments in cointegration analysis from Granger (J.98tough Granger and Weiss (1983) and
Engle and Granger (1987), to Johansen (1988) have led tbemum-correction econometric systems
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being ubiquitous for modelling, forecasting and econonubicy analysis. In fact, most econometric
models are members of the equilibrium-correction class ititludes not only explicit equilibrium-
correction models (denoted EqQCMs) based on cointegradiweh almost all regression equations and si-
multaneous models, but also most other econometric systeohsding vector autoregressions (VARS),
dynamic stochastic general-equilibrium models (DSGEd)raany variance models (such as GARCH).
The forecasting properties of this huge class are esdgrgiheric, and are well represented by those
of standard vector EQCMs (VEqCMs: see e.g., Hendry, 2003).

Initially, theory and Monte Carlo simulations suggestedq@®1s should outperform when forecast-
ing, especially for cointegrated combinations of variablsee e.g., Engle and Yoo (1987), Litkepohl
(1991) and Clements and Hendry (1995). However, the findfidgsrecasting competitions (see e.g.,
Makridakis and Hibon, 2000, Clements and Hendry, 2001, aldeé$and Ord, 2002), extensive appli-
cations to forecasting macro time series as in Stock anddvgi999), and empirical mis-forecasting
of events, such as money demand in the UK (see Hendry and Mi2&3) and UK consumers’ expen-
diture (see e.g., Clements and Hendry, 1998a) suggesteallthes not well. The theory of forecasting
from mis-specified models of non-stationary processesestlp structural breaks in Clements and
Hendry (1998b, 1999) highlighted that VEqCMs were not roliasshifts in the underlying equilib-
rium. The results in Hendry and Doornik (1997) and Hendry0®0showed that location shifts (such
as changes in equilibria) were the most pernicious probtarfofecasting in this class. Indeed, follow-
ing an equilibrium shift, forecasts from VEqQCMs tended tovex@n the opposite direction to the data,
thereby inducing forecast failure, defined as a significatembration in forecast performance relative
to in-sample behaviour. Finally, the prevalence of stmadtahanges in macro time series confirmed
in Stock and Watson (1996) helped account for such outcomeésiding those reported in Stock and
Watson (1999).

Moreover, Clements and Hendry (1998b, 1999) show that amogciw theory causal basis for fore-
casting models is of no avail in a world of location shifts.uShwhile VEqQCMs are excellent when the
process is stationary after differencing and cointegnatédiuctions, they are unreliable if breaks occur.
Consequently, we consider model transformations whichreduce forecast-error biases from system-
atic mis-forecasting by VEqCMs, as usual at some cost ineas®d forecast-error variances (other
adaptive approaches, and the basis for these, are disdnddeddry, 2003). We also thereby discover
a new explanation for why some so-called ‘naive’ forecastisvices may be hard to outperform even
when they are apparently poor approximations to the in-ganfgta generation process (DGP).

Section 2 specifies a cointegrated DGP and its propertiesfaseasting device, then section 3
considers the effects thereon when breaks occur. Sectiascdsses why ‘second-differenced’ fore-
casting devices may perform well in processes subject twtstral breaks; and section 5 examines a
transformation which might improve the robustness of VE@ONhen forecasting in such a context.
Section 6 illustrates the ideas for the much-used empiexample of the behaviour of UK M1. Section
7 concludes.

2 A cointegrated DGP

We consider a first-order VAR for simplicity, where the veobd . variables of interest is denoted by
x; (often taken to be the logs of the original variables), aadhtsample DGP is:

xt =T +I'x; 1 + € where € ~ IN,, [0,Q]. @

I’ is ann x n matrix of coefficients and is ann dimensional vector of intercepts. The specification in
(1) is assumed constant in-sample, and the system is takexi o), satisfying the < n cointegration



relations:
r=1,+ag. (2

In (2), « and 3 aren x r full-rank matrices, no roots o — I'L| = 0 lie inside unit circle (where
LFx; = x;_1), ande!, T3, is full rank (n — ), wherea; and3, are full column ranka x (n — )
matrices, witha’a; = 3’3, = 0 (see e.g., Johansen, 1992). Additional lags do not mdtesfiect
the analysis below. Then (1) is reparametrized as the vequafibrium-correction model (VEqCM):

Ax; =T+ afB'x_1 + €. (3)
Both Ax; and3'x; arel(0) but may have non-zero means. Let:
T=7-ap (4)

then:
(Ax; —v) =« (,B/Xt_l — [1,) + €. )

Wheng'a is non-singular, the variables grow at the unconditiontd:ra
E[Ax] =~ = <In -« (B'a)_l ,6’) 7 =K,

whereK is non-symmetric idempotent witH K = 0’ andKa = 0 soT’K = K which implies that
B’y = 0 soI'y = ~; and the long-run equilibrium mean is:

E [,@’xt] = . (6)

Thus, in (5), bothAx; and3'x; are expressed as deviations about their means. Note that x 1, but
subject tor restrictions, ande is r x 1, leavingn unrestricted intercepts in total in (5). Als, a and
p are assumed to be variation free, although in principleould depend ory: see Hendry and von
Ungern-Sternberg (1981). The¢m, I') are not variation free, as seems reasonable when 3 andp
are the ‘deep’ parameters: for a more extensive analyssCkements and Hendry (1996).

2.1 Forecasting properties

When the parameters are constant in-sample, samplingigagan estimates thereof have only a small
effect on the analysis, so we consider the case of known Edessnto focus on the issue of fore-
cast failure. In that case, 1l-step ahead forecasts fromdibgide with the conditional expectation

Er [Axr41|x7], and are given by:

AXT+1|T =7+t (ﬁ,XT — [,L) . (7)
The h-step forecast errors for the growth rate &fe ,, = Axr, — AXpyp - Whereer, | = ery1.
Itis easiest to first derive forecast err@ts, ;, = x7 1, — X747 for the levels:

Xppr = X7 +v+ (B/XT - H) =7+ I'xp, (8)

so€r 1 = ery1. However, thei-step forecast errors from (8) are then generated recilydiye

h—1

§T+h|T =T+ F§T+h—1\T = Z FiT + FhXT. (9)
1=0



As:
h-1 h-1
Xr4h =T +TXpip 1+ €rpp = Z Tt +Tlxy + Z Terini,
=0 =0
for known parameters:
h—1
eryn=> Tleryni,
i=0
with:
h-1 4
El[ersn] =0 and V[ery,] = Y I'Q I (10)
i=0

whereV [-] denotes the variance, anddh) in (10) becaus&" increases in.
Returning to growth rates, sinédexy; = X7p1n — X74h—1:

h—2
AXT+h = Fh_lT + Fh_l (F — In) X7 + €ET1h + (F — In) Z Fi€T+h_Z'_1
1=0
h—2 '
= y+aP" ' (B'xr —p) +erin —a Z V' B eryn1-i,
1=0

where we use the well-known results that (see e.g., Clenagtsiendry, 1995):

B,F = B/ (In + 0416/) = (In + ﬂ/a) /6, = lIIB,>

and:
Fa= (I, +af)a=a¥.
Thus:
E[ersn] =0 and V[eryy] = Qc+ ) a¥'fQ 89", (11)
=0

whereV [] denotes the variance, and@1) in h in (11) becausal’ — 0 asi increases. Parameter
estimation adds terms @(7"~!) to V [-] for a sample of siz&". Note that:

h—1
I"=I,+a) ¥g =1, -a(fa)’ (In _ \Ilh> B =K+a(@a) g,
=0

and thereford” — K with:
) h—1 .
xrin = xr+hy —a (B'a) " (L — ") (8'%r — ) + > Tlerpns,
=0

so any disequilibrium at the forecast origin has an incrgasnpact over time on the level of the series,
albeit possibly ‘hidden’ in practice by the increased ndisen the cumulative error term. Given this
background, we now introduce location shifts into the DGP.



3 Location shifts

The shift of interest here i¥u* = p* — u, wherepu™ denotes the post-break equilibrium mean.
Although~, a and €2, could alter also, equivalent magnitude changes to thesetentail the same
degree of forecast failure—see Hendry (2000). Importatiiyng the unconditional growth rate, the
sizes of changes tg are generally limited for real variables (e.g., 2.5% pa dhoyields~ ~ 0.006 in
quarterly data, so even a change as large@ would double real growth). Howeves, need not have
any ‘natural units’ (e.g., as in money demand), and even $exavhere it does (consumption-income
equations where 0.05-0.2 would be a feasible range), chkatmydd be very large relative to the error
standard deviation. In any case, shiftsyimre easily incorporated in the following analysis if theg ar
of interest (e.g., as they would be for changes in China's/tireate over the last half century).
Following a change t@* at the forecast origin at time:

Axpyr =+ o (B'xp — p*) + epgn (12)
so adding and subtractingu in (12):
Axpi1 =5+ o (8% — p) + eryr — aVp® (13)

or:
Axrir = &;(T—i-llT —aVp' (14)

The first right-hand side term in (14) (name@cﬂw) is the constant-parameter forecastatr ¢
given by (7); the second is the shift with:

E |:AXT+1 — &T+1‘T:| = —onu* (15)
Since E[@'xr] = w, then —aVu* is indeed the unanticipated increaseAxr; relative to the
constant-parameter setting.
For h-steps ahead:
E [AXT-HL - AXT—}-th} = —a¥" vy (16)

which tends to zero dsincreases. Thus, following an equilibrium shift in Bh) system, further ahead
growth rates are forecast more accurately then 1-step. odusrs because adjustment following the
change in the level ok; induced by the shift ins acts like a change in growth which dies out as the
new equilibrium mean is attained. Of course, such an outdasmery different from that obtaining in

a time-invariant process. As before, the increased vagiahmulti-period forecasts will entail reduced
precision.

Importantly, recommencing the steps ahead forecast sequencg at;j using an unchanged model
does not alter these results: (15) and (16) continue to hitd(e.9.) E[Ax7 44, — AAXTMH‘TH-] =
—a¥ "yt

However, for levels forecasts after the break:

h—1 h—1
Xrn =hy —« Z Uy + Z Terin—i +I'xr,
i=0 i=0
yielding a forecast error of:
h-1 .
E [xran — Rrpnr] = —a Y VL = a (o) (In - \I:h) vt (17)

1=0



which increases over the forecast horizon. As with (16)) (Efsists for a forecast origin @f + j. In
both cases, forecast error variance formulae are unchdrmedhe constant-parameter setting.

A scalar numerical illustration based on the empirical eplenof UK money demand in section 6
helps highlight some possible magnitudes. Using inverkeitg adjusted for the foregone interest cost
of holding money, we have approximately,= —0.1, and = 1 with Vy* = 0.5 ando. = 0.015
(1.5%) so (15) is initially0.05 > 30, and tends to zero, whereas (17) also star@s(dt but increases to
0.5, which is interpretable as 50% of the money stock...

Section 4 now examines possible solutions which avoid sua$sive forecast failures. Two closely
related approaches are considered to improving foregasitnustness in the face of location shifts:

e forecasting from a double-differenced device (denoted p®Kich adjusts quickly to breaks;
¢ differencing the VEqQCM term in (5) to eliminate the equilion mean.

We take these two transformations in turn. It should be ntitattlVEqQCMs and DDVs perform equally
badly in terms of forecast biases when a break occurs aftecdsts are announced (see Clements and
Hendry, 1999), so they do not differ in that regard for sucletirgy, although the latter will have a
larger error variance, offset in part by smaller paramesénmtion uncertainty. The key difference lies
in their performance when forecasting after a break, in titase the VEqQCM continues to perform
just as badly, as seen above , but the DDV becomes relatimatyune to the earlier break. As we
will show below, differencing the VEQCM achieves a simildijective for shifts inu. Updating the
parameter estimates is considered in Hendry (2003) as atioaddl adaptation to change, but in the
present context would simply drive the estimatetb zero, and hence end as a model in differences.

4 Forecasting by Axp

Most economic time series do not continuously acceleratajlsng a zero unconditional expectation of
the second difference:
E [A%] =0, (18)
and suggesting the forecasting rule:
AXT-ﬁ-l‘T = AXT. (19)

This will deliver unconditionally unbiased, but noisy, é@asts when the DGP has the form (5), even if
that DGP is augmented by additional lagged differences. Kepeo the success of double differencing
is that no deterministic terms remain. Indeed, secondreifleing not only removes two unit roots, any
intercepts and linear trends, it also changes locationsstuf‘blips’, and converts breaks in trends to
impulses. Figure 1 illustrates. Thus, while (19) will sufferecast failure for large changes jnin the
period of change, it adjusts quickly to breaks, and needaibg¥en one period later.

For example, from (12) fOE;(T-i-Q\T—i-l = AX741:

AxXry9 — &T+2\T+1 =y +oa(Bxr — p) + erpo — Axrp = o Axryg + Aeryo,
SO forAXT+2 — A\;(T-i-Q‘T—i—l = ﬁT+2:
E[lurss] = E [a,B’AxTH + A6T+2] =E [a,@’a (ﬁ'xT — ,u*)] = -« (,B’a) Vu*.  (20)

Compared to (14), which will remain the 1-step error of theg@® from a forecast origin of” + 1,
(20) must be smaller. This pattern persists for 1-step &frgperiods after the shift:

E [AXT-‘,-h - &T-i-h\T—i-h—l] =—a(f'a) T2V,
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Figurel Location shifts and broken trends.
wherea£[Axpyp, — AA><T+h|T+h_1] = —aVu*. For the numerical example above, (20) delivers a bias
of —0.005, so has already become negligible.

In addition to the properties just noted, there is a dee@eare why a forecast of the form (19) may
generally perform well. Consider an extended in-sample DGP

Axy = vy + ao (Boxe—1 — pg) + Yozt + €, (21)

wheree; ~ IN,, [0, 3] independently of all the included variables and their mstaith population
parameter values denoted by the subsdiiptn (21), {z;} denotes potentially many omitted effects,
possibly all lagged, but which atéd) for consistency withx; beingl(1), perhaps because of ‘internal’
cointegration, differencing, or intrinsic stationaritjle assume; is the mean-zero VAR:

z; = ®z;_1 + 1, Where n, ~ IN; [0,€,] (22)

and, although it is unrealistic, takg to be orthogonal tcﬁgxt_l, SO needﬁ{)‘ro = 0. Then the
parameter estimates in the original VEQCM are consistent-arthogonality would exacerbate the
mis-specification problem, so this is probably the most dsable case for the VEqQCM, and allows us
to work with known parameters to focus on forecast failureparisons close to those of the previous
section. Now the VEQCM (7) is mis-specified by omittiiz; as well as confronting a location shift.
Both effects favourANxTWTJrh_l as we now show.

4.1 Constant-parameter case

We first consider the constant-parameter DGP (21), whereon&ast the forecasts from a VEqCM
with a DDV for x;, so both models are mis-specified, but in different ways.nTthe 1-step forecast
error from the VEQCM iSY'yz71 + €741 Where from (22):

E[Yozry1 +€r41] =0 (23)



and:
V [TQZT+1 + €T+1] = TOV [Zt] T6 + Qe (24)

where
V(z] = V. P + Q,. (25)

The DDV 1-step forecast error iSx71 — Axp = up1 S0 is the difference of the right-hand side
of (21) atT + 1:
Axpi1 — Axyp = opByAxy + YoAzr + Aery, (26)

which has mean zero and variance:
Vursi] = aoByV [Axy] By + YoV [Azpiq] X + 292 (27
as the covarianc€ [AxyAz/._, | vanishes wheg; Y, = 0, where:
VIAzZ] = (@ —Ip)V]z] (2 - L) + Q. (28)
Using (25) and (28), the difference between (24) and (27) is:
Yo (BV [ze] + V[ze] B~V [2]) Y — cxoBV [Axr] By — Qe (29)

When® = 0 (or, of course, X, = 0), then the VEqCM forecast-error variance dominates thahef
DDV, since (29) is negative semi-definite. Howeverpif~ I, and the omitted variables are important
in explainingx;, then the difference is:

YoV [z Yo — aoByV [Axr] Boogy — Qe

which could be positive semi-definite, albeit that serious-specification is required. Nevertheless, the
usual argument that differencing doubles the error vadapplies only to the innovation component of
the error, and is attenuated by omitted variables.

4.1.1 Scalar illustration 1

Whenn = k = 1, explicitly comparable formulae are readily obtained foe scalar DGP:

Az =y +ao (7 — p) + Vozry1 + erya-

Then (24) becomes:
2

14
ol - _°¢2 + o2 (30)
sinceo? = 0%/ (1 — ¢°); and (27) becomes:
(021/% + 02) 1
202 772 o + 20727y(2) T+ o + 202 (31)

so the difference between (24) and (27) is:

20 — 1 202 202

2.2 0 2 0

o — —o: 1+

771/0 <1—()2 2 (IO) € < 2 (IO) ’

which will be positive only if¢) > 0.5, but can certainly be positive (e.giy = —0.1, 1o = 1, 0} = 07,

¢ > 0.75 would suffice). Thus, even in a constant parameter world, rtare’ predictoerTﬂ‘T
could outperform a (mis-specified) VEqQCM.




4.2 Changed-parameter case

However, the more relevant case for our analysis is when tBE Bhanges over the forecast horizon,
and for generality we let all parameters shift to:

Axpii =5 + o ((80) Xr4i-1 — 1) + Yozryi + €. (32)

If Ax7y; — AXpiir4i-1 = W+ When the postulated econometric model is the estimated WEQC
X¢:
~ ~ o~ A/ ~
AXryjriic1 =7t <,3 XT4i1 — u) (33)

then:
A~ ~ A/ ~
wri = i+ i ((B3)Xr+im1 = 1) + Tozrsi + ervei—7 — & (Bxreii ). (34)

All the main sources of forecast error occur, given (32)ckéstic and deterministic breaks, omitted
variables, inconsistent parameter estimates, estimaticertainty, and innovation errors: data mea-
surement errors could be added. Replacing in-sample dssrbg the corresponding in-sample popula-
tion parameter (pseudo-true) values will reduce the fateeaor variances but not otherwise affect the
analysis, so is again imposed, leading to (udirjg] = -, etc., for in-sample average values):

wrii = Y5+ ap ((80) xryio1 — 1)) + Xozrsi + €rvi — ¥ — 0 (BpXryio1 — 1) - (35)

Notice that (35) constitutes a sequence of 1-step aheackftrerrors as the forecast origin increases
after the break. Even so, it is difficult to analyze (35) urdibanally as its terms are not necessarily
1(0). However, conditional o741, z7+i—1), Wr+; has an approximate mean forecast error relative
to the relevant post-break distributionTatt ¢ of:

Erpi [Wrgi | Xpgio1,2ri-1] = (06 —p) — (oo — opmey,) + [a5(85) — apBy] xrpio1
+Y0Er4i (201 | Xr4io1,Z74i-1] - (36)

In general, ignoring chance cancellations, this will besidarably worse than either (15) or (23). Also,
neglecting parameter estimation variance uncertain@,4% '), wr.; has an approximate conditional
forecast-error variance matrix:

Vi [(Wrsi | Xrgio1, 2r4im1]) = YoVt (204 | Xrvio1,2r4i-1] X5 + Qe (37)

and its conditional mean-square forecast erdd8FE) matrix is the sum of (37) and the outer product
of (36).
Contrast using the sequencefkr,;_; to forecastAxr,;, as in an extension of (19):

ANXT+¢\T+¢—1 = AX74i-1. (38)
Because of (32)Axp,; 1 isin fact (for: > 1):
Axpyior =5+ o ((B) %rri2 — 15) + Xozr1io1 + €rpii. (39)

Thus, (39) shows that, without the economist needing to ktimvcausal variables or the structure
of the economyAxp,; 1 actually reflects all the desired effects in the DGP, ingigdall the un-
known influences and all their changes, with no omitted e and no estimation required at all.
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Let Axpy; — A\;(T_,_“T_H_l = ur4;, then commencing the analysis at least two periods aftdvritsk
occurred, so using (39) fakxp;_1:

ury; = Y+ og ((BS)lXT—H‘—l - MS) + Y0z71i—1 + €74
— [v6 + o5 ((B8) xr4i—2 — o) + Xozr4io1 + €r4i1]
= aS(IBS)/AXT—H—l + YAz + Aery;. (40)

Thus, the outcome is the same as (26), but for the post-brerakneters. All terms in the last line must
bel(—1), so will be very ‘noisy’, but systematic failure should nesult.

There are two drawbacks to using (38) which partially offseadvantages: the unwanted presence
of er4;—1 in (39), which doubles the innovation error variance; ahdaiables in the DGP enter lagged
one extra period, which adds the ‘noise’ of mdfy1) effects. There is a clear trade-off between using
a carefully modelled VEQCM like (33) which might nevertredebe both mis-specified and subject to
breaks, and the ‘naive’ predictor (38). In forecasting cetiijpns across many states of nature with
structural breaks and complicated DGPs, it is easy to seeAwy, ;1 could win. Indeed, sufficiently
far after the break:

E [ury] = ofE [(B5) Axryi1] + YHE [Azpys] + E[Aerys] = a(85) 75 = 0.

Consequently, (38) will not suffer forecast failure welleafbreaks, and will fail to win all the time only
because of variance effects. Neglecting covariances, wefoavariances:
Viury) = V[eog(8y) Axriio1] + V[ X5Azry] + V[Aery]
= a(B)'V [Axryia] Bhog + XV [Azri] T§ + 29 (41)
which is theMSFE matrix whenE [uz;] = 0. Conventional analysis argues for the doublingXfin
(41) relative to (37). However, as before, only the innamterror variance component is doubled, so

the variance component could even be smaller as in sectlomléarly guaranteeing that the combined
MSFE would be smaller than from the VEqQCM.

4.2.1 Scalar illustration 2

Reverting to a change in only for illustrative purposes, with all other parameteomistant, and no
omitted variables,

wryi = —ao (py — fo) + €r4i (42)
for which we can calculate the unconditional outcome, ngmel
E[wry) = —ao (15 — 1) and V [wry] = o? (43)

so the 1-step sequenceMBFEs is approximately:

M [wryi] = o3 (g — 110)? + 02, (44)
In comparison (41) is:
a2
M [uryi] = 202 ( 1 o). 45
Using the same valuasy = —0.1 with V5 = 0.5 ando. = 0.015 related to the empirical exam-

ple below, then (44) is approximately 6-fold larger than)(4Bdditional parameter shifts, estimation
uncertainty, or specification mistakes would compound efffett.
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4.3 Longer-period differences

Instead of (38), one might consider the past annual chanfgegoast quarterly, say:

1
o 1 1
AXriir4i-1 = > Axpyij= 7 DaXT i1 (46)
j=1

While ad hog Asx7;—1/4 is an adaptive estimator gfwhich is slower to reflect breaks thawx; ;1
but much smoother, so its empirical behaviour is noted helow

5 Forecasting from a transformed VEqCM

We first consider replacing only the equilibrium-correnti@rm in the VEQCM by its first difference,
retaining all the other parameters unaltered, namely:

Ax; = v + aA (,B'xt_l - [1,) +& =v+aB Ax; 1 + &, 47

In this simple setting, the effect in (47) is to produce aroeegression im\x;, albeit not what would
be found on estimation: if there is already a laggex; in the VEQCM, with coefficienTI; say, then
IT; must be added tex3’. Since shifts inu are the most pernicious for forecasting, (47) might be
more robust to such breaks than the original VEQCM (5). Onather hand, there will be a loss of
information during periods where no breaks occur.

To examine the behaviour of (47) forecastifgr » from T + 1 after a break inu at timeT, let:

Axriori =7 +af Axriy (48)
so the forecast error is:
Ax7i9 — Axpigryr =7 +a (B'xry1 — p*) + erpo — v — B Axryy. (49)
Since:
E[Axrio] =7 — a®Vy* and E [Axp o] =7 — a (B'a) Vi,
then:

E [Axpio — Axpyory1] = —a¥Vp' +a (B'a) V' = —aVy,

which is the same as the mean forecast error from the origiBgCM, delivering no benefit. Intuitively,
the source of the forecast error can be seen in (49), whicandkspory.* only through the EQCM term,
yetE [3'xr1] = p* — ¥V pu* does not fully reflecy*.

However, later-period forecasts will benefit. For forecasi\x 143 from an origin atl” + 2, say:

E [Axri3 — AXpigi740] = —a®Vp*,

so the mean forecast error will gradually decline. Althod8) will induce a smaller increase in the
error variance than (38), namely, + a3'Q.3a’ rather tharQ,., merely eliminating the equilibrium
mean by differencing does not seem advantageous. Mordd@memains vulnerable to shifts i

IForecasting one period after the break serves to confirmbtsenae of a gain from this approach.
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5.1 Differencing the VEqQCM

Since shifts iny are the next most pernicious for forecasting, we considegcasting not from (5)
itself, but from a variant thereof which has been differehatter a congruent representation has been
estimatednamely:

Axy = Axi1 + af Axi_1 + Ae = (In + 045,) Axi 1 + ¢ (50)

or:
A?x, = af/Ax;_1 + ¢, (51)

(50) is just the first difference of the original VAR, sin@]a,l + aﬁ’) =T, but with the rank restriction
from cointegration imposed. AlternativelAx; ; could be interpreted as a highly adaptive estimator
of v in (38). The second representation in (51) can be interpraseaugmenting the DDV forecast by
a3 Ax;_1, ‘adding back’ to the DDV the main observable component tadiby using just the lagged
first difference as in (38). Thus, a DDV is not only the diffece of a DVAR, but is also obtained by
dropping the mean-zero tery3’ Ax;_; from the simplest differenced VEqCM.

To trace the behaviour of (50) after a brealuinlet:

Axg iy = (In + aB') Axy (52)

where from (13):
Axpi1 =~ +a (8% —p) + ey —aVp'.
Attime T, Ap* = Vu*, so:
E[Ax741] =7 —aVpu,

and hence:
E [AXTH - AXT+1|T} =7y —-aVp' —y=—-aVu"

As before, there is no gain when the break is after forecastarmmounced.
However, Au* = V™ only at timeT’, so one period later:

E[Axrio] =E[v+ a (Bxr11 — 1) + erqa] =7 — a®Vp,

as:
E[Bxr11] =p—BaVp' =p —¥Vp*
So:
E |:AXT+2 - AxT+2|T+1] =y —aPVyu* — (y —aVu')+af'avVu* =0.

Thus, the differenced VEqQCM ‘misses’ only for 1 period, tliges not make systematic, and increasing,
errors. Notice that whil& [B'Axt] = 0 when the process is in equilibrium, 1-step after a break,
E[8'Axri1] = —B'aVpu* so contains important information about the recent foreeasr bias.
When breaks occur ip, (51) should outperform, especially4falso alters.

If all parameters are constant, (52) remains unbiased kffidient. The next sub-section consid-
ers the impact of unnecessary differencing on forecast-edriances, in the context of 1-step ahead
forecasts.
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5.1.1 Forecast-error variances

Letery, = Axpyp — AvxTJrh‘ﬂh_l be the sequence of 1-step forecast errors from updating (52)
then, ignoring parameter estimation uncertaintpgg7—1/2):

eri1 = —aVu' + Aery,

whereas:
ery2 = Aerqa.

Since the system error {g;}, then in the absence of other mis-specifications, the additidifferenc-
ing doubles the 1-step error variance. Relative to a DDV,éwer there is a gain from the DVEqQCM,
since the former has the component from the variance of thitemhnariablea3' Axr 1 (namely
afB'V|[Axr.1] Ba’ in (41)), as well as the same innovation errors. Thus, bothraketendency and
variability should be better for the DVEqCM than a DDV in tHesance of parameter estimation uncer-
tainty.

6 Empirical illustration: UK M1

The two ‘forecasting’ models of UK M1 in Hendry and Mizon (I¥9and Hendry and Doornik
(1994) respectively illustrate several of the above phesran(related studies include Hendry, 1979;
Hendry and Ericsson, 1991; Boswijk, 1992; Johansen, 198fdf, 1996; and Rahbek, Kongsted
and Jgrgensen, 1999). The data are quarterly, seasodalbted, time series over 1963(1)-1989(2),
defined as:

M nominal M1,

1 real total final expenditurelE) at 1985 prices,
P the TFE deflator,

R;,  the three-month local authority interest rate,
R, learning-adjusted own interest rate,

Rnet Rla - Ro-

The first model was based on using the competitive interdst a,, and the second on the
opportunity-cost measurg,,.; appropriate after the Banking Act of 1984 legalized intepeg/ments
on chequing accounts. To simplify the results, we first abgrsonly the money-demand equation, then
turn briefly to system behaviour. In both cases, ‘forecaats’over the five years 1984(3)-1989(2), or
subsets thereof, from an origin shortly after the Act.

Figure 2 (panel a) shows the time seriesdct p 4+ i — m (log velocity, using lower case for logs)
and R;,, with a marked divergence apparent at the end of the samgleel B graphs the computed
EqCMs for ‘excess money’ from the two earlier studies, defirespectively by:

Bx = m—p—i+T3R,+O0R,+56Ap
B/Xt = B/Xt - 7.3RO
These coincided till 1984(2), after which the former belsags in earlier cycles, whereas the latter

appears to plumb new depths: by the end of the sample, theydiaerged by more than 50% of the
money stock. That the correct EQCM is discrepant, may, dtdight, seem counter-intuitive, but it

2M1 data ceased to be collected after 1989 when Building 8esién M4, but not M1) started converting to banks, which
led to large jumps in the value of M1 on conversion days.
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Figure2 Effects of the 1984 Banking Act on UK M1.

occurs precisely because the opportunity cost has shifieaatically, yetB'xt does not reflect that
shift: not doing so causes the forecast failure shown in édibelow. Figure 2c illustrates that the
Banking Act corresponded to an equilibrium-mean shiftthedato the model based aR;,.2 The own
rate, R, has a mean of approximately 0.072 over the forecast horammha shift indicatot {;-19z5(2)}
times that mean closely approximates the actual time path, 060 ], = R;, — 0.072 X 1g1985(2)}

in figure 2d is close td,,.;. Consequently:

~1 o~
B x¢ >~ Bx — 0.525 X 1{4>1985(2)) 5

yielding Vu* = 0.525 as noted above. On this basis, the legislative change keta hassive step shift
in u, so the earlier theory should be relevant to explainingepisode of forecast failure. Indeed, if real
money andR,,.; co-break, as illustrated in Clements and Hendry (1999, (),fth@nﬁ/xt should also
be an appropriate EQCM post the legislative change.

6.1 Single-equation results

Figure 3a shows the dismal performance on 20 1-step ‘fot€azthe Hendry and Mizon (1993) model
for the growth rate of real money (m — p), based orﬁ'xt: this model uses current-dated values of
R,c; and Ap, yet almost none of the-2o ¢ error bars includes the associated outcome. In fact, a large
fall in money demand is forecast during what was the largestaged rise ever experienced historically.
The mean forecast error is 4.4% with a root mean squareddsirecror RMSFE) of 4.9%.

For comparison, the 20 1-step forecasts from the first d@iffees of that original model are shown
in figure 3b: there is a very substantial improvement, witrsystematic under-forecasting, suggesting
that the adaptation proposed in section 5.1 can be effeictitree face of equilibrium-mean shifts. All

3The figure also shows why an intercept correction might perfeell after 1985(4).
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the panels are on the same scale, so the increase in the tonaéiy-calculated interval forecasts due

to the differencing is also clear (although these error harf®nger correctly represent the uncertainty).
The corresponding mean forecast error is 0.4% witRRMSFE of 1.8%: these are clearly a dramatic

improvement, especially noting that the in-samplés 1.3%. Figure 5a below shows the two sets of
forecast errors (all panels on the same scale).
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Figure3 1-step forecasts of UK M1 from conditional models.

Figure 3c shows the good performance on 20 1-step foreckitts @worrect’ model (i.e., that based
on R,.:), which is identical in-sample to the failed model. The méamecast error is negligible at
0.06% with alRMSFE of 1.14%. Thus, these forecasts are better than the fit.

Since one cannot know in advance whether or not a given medsdiirect’ and hence robust to an
apparent break, the effects of differencing applied toRhg based-model are also worth investigating.
These produce similar forecasts to the EQCM, as shown indfigdir but again with larger (conventional)
error bars. Now the mean forecast error is 0.05% (the smalfébe four) with anRMSFE of 1.79%,
which is essentially the same as from differencing the irem@rmodel: in fact, their forecast errors are
correlated 0.94. Thus, the costs of the differencing dsat® not seem to be too high for the ‘correct
specification’, but the benefits are substantial when diffeing is needed.

For comparison, forecasts based on the other adaptiveejdhie DDV from section 4, are shown
in figure 4 panel a. The DDV actually has a smaller mean erran the ‘correct’ model (less than
0.001%), but a much largeRMSFE of 2.25%, so there are definite benefits from correct causal in-
formation? Moreover, the benefits from using either differenced EqCM rmarked, consistent with
the earlier theory that including3’ Ax;_; would improve performance. Finally, that tRMSFE has
doubled relative to the EQCM based 8r.; suggests that omitted effects, other parameter changgs, an
estimation uncertainty must be minimal. Figure 5b showsctiraparative forecast errors, and reveals
how much smaller they are than those in panel a.

4Subject to theaveatsthat the ‘correct’ model uses current-dated variablessitfarecasts’.
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The ADV forecasts shown in figure 4c are distinctly bettemttize DDV, having a mean forecast
error of -0.07% and aRMSFE of 1.8%. Hence some degree of smoothing seems to pay. This is
also true of the ADV and DDV forecasts fdt,.; shown in figure 4 panels b and d (ADRMSFE
of 1.5% as against 1.9%). Thus, while double differencingighly adaptive when a break occurs,
the additional error variance at all points seems to mone tifset its advantage in comparison to the
smoother adaptation used here. Figure 5¢ shows that thiémgdorecast errors are more volatile than
those in panel b, but less biased than the EqRjy)-based forecasts.

6.2 System behaviour

In a system context, there are three major changes to moseaiethods, although the DDV and
ADV devices are unaltered. First, the contemporaneougbias in the money-demand model must be
forecast, even for 1-step ahead. There is a smaller lossdioamg so here than might be anticipated, with
a mean forecast error of 0.7% andRNISFE of 1.59%. Figure 5d records the VEqCM forecast errors
for A (m — p) from theR,,.; system for comparison with the conditional single-equafarecast errors.

It also shows the DVEQCM forecast errors to highlight the Iioas from the additional differencing of
the correct specification. The forecasts from the VEqQCM daseR,;, are as poor as the single equation
ones forA (m — p), but differencing that VEqCM again corrects the main fostearor bias, delivering
errors similar to those of the DEqQCM.

Secondly, multi-step forecasts can be calculated. Thesge geconfirm the above results, and while
more realistic of the operational setting confronting tasters, add little to our understanding of the
properties of the alternative devices under considerdtene. Since the two VEqQCMs are identical
in-sample, so are their multi-step forecasts for any harfzoConversely, the DDV class has a rapidly
increasing variance as the horizon grows due to its additionit root.

Thirdly, the break which occurred in the money-demand equoah the VEQCM based ok,
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Figure5 1-step forecast errors for different models of UK M1.

becomes a shift in th&,,.; equation in the second VEqQCM—which in turn could not be fast@ccu-
rately. The problem for forecasters is that the most difigatiable to predict can unduly worsen the
overall outcome. This is an aspect that multi-step forecakthe levels highlight best, as can be seen
in figure 6, for(m — p) and R,,; (the outcomes forand Ap are omitted). Figure 6 is based fon= 4,

so the first four forecasts match for the corresponding g after which the correct VEQCM does
noticeably better fofm — p) but is unable to forecadt,,.; very well.

Other aspects of adaptive forecasting could be incorpdraith any of the above devices, including
intercept corrections, recursive updating of parametemases, and reselecting the relevant variables
(see e.g., Phillips, 1994). The first of these would cleadybneficial, given the systematic departures
visible in figure 6. When implemented following a large lacatshift, the second often leads to esti-
mates closer to a DDV than a VEqQCM, as the additional diffeireg eliminates some of the adverse
effects of the shift. The third accelerates the tendendynoted.

7 Conclusions

Using a cointegrated linear dynamic system with breaks twerforecast horizon as the illustrative
DGP, two adaptations were considered. The first was usimondedifferences to forecast; the second
was forecasting from a differenced VEqQCM. A new explanatimnthe relative success of the former
was proposed, and the second related to that as also retainenof the key observable components,
namely the change in the equilibrium correction.

The empirical example of the behaviour of M1 in the UK follogithe Banking Act of 1984 illus-
trated these two adaptations in action, for mis-specifiedl‘@orrect’ variants, respectively dependent
on the pre and post Act opportunity-cost measures. All fqpreaches behaved as anticipated from
the theory, and demonstrated the difficulty of out-perfargninaive extrapolative devices’ when these
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are adaptive to precisely those location shifts which aheriently inimical to econometric systems.
Overall, the outcomes suggest that, to retain causal irdfbom when the forecast-horizon ‘goodness’
of the model in use is unknown, model transformations basedifterencing may prove a worthwhile
route.
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