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Abstract

We revisit the concept of unpredictability to explore its implications for forecasting strategies
in a non-stationary world subject to structural breaks, where model and mechanism differ. Six
aspects of the role of unpredictability are distinguished,compounding the four additional mistakes
most likely in estimated forecasting models. Structural breaks, rather than limited information,
are the key problem, exacerbated by conflicting requirements on ‘forecast-error corrections’. We
consider model transformations and corrections to reduce forecast-error biases, as usual at some
cost in increased forecast-error variances. The analysis is illustrated by an empirical application to
M1 in the UK.
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1 Introduction

The historical track record of econometric systems is both littered with forecast failures, and their empir-
ical out-performance by ‘naive devices’: see, for example,many of the papers reprinted in Mills (1999).
At first sight, such an adverse outcome for econometric systems is surprising: since they incorporate
inter-temporal causal information representing inertialdynamics in the economy, such models should
have smaller prediction errors than purely extrapolative devices—but do not. In fact, discussions of
the problems confronting economic forecasting date from the early history of econometrics: see,inter
alia, Persons (1924), Morgenstern (1928) and Marget (1929). To explain such outcomes, Clements
and Hendry (1998, 1999) developed a theory of forecasting for non-stationary processes subject to
structural breaks, where the forecasting model differed from the data generating mechanism (extended
from a theory implicitly based on the assumptions that the model coincided with a constant-parameter
mechanism). They thereby accounted for the successes and failures of various alternative forecasting
approaches, and helped explain the outcomes of forecastingcompetitions (see e.g., Makridakis and
Hibon, 2000, Clements and Hendry, 2001a, and Fildes and Ord,2002).

Following Clements and Hendry (1996), considerT observationsX1
T = (x1, . . . ,xT) on a vector

random variable, from which to predict theH future valuesXT+1
T+H = (xT+1, . . . ,xT+H). The joint

probability of the observed and futurexs isDX1

T+H

(X1
T+H|X0,θ) whereθ ∈ Θ ⊆R

p is the parameter
vector, andX0 denotes the initial conditions. Factorizing into conditional and marginal probabilities:

DX1

T+H

(
X1

T+H | X0,θ
)

= D
X

T+1

T+H

(
XT+1

T+H | X1
T,X0,θ

)
× DX1

T

(
X1

T | X0,θ
)
. (1)

D
X

T+1

T+H

(·) is unknown, so must be derived fromDX1

T

(·), which requires the ‘basic assumption’ that:

‘The probability lawDX1

T+H

(·) of theT + H variables(x1, . . . ,xT+H) is of such a type
that the specification ofDX1

T

(·) implies the complete specification ofDX1

T+H

(·) and, there-
fore, ofD

XT+1

T+H

(·).’ (Haavelmo, 1944, p.107: my notation).

This formulation highlights the major problems that need tobe confronted for successful forecasting.
The form ofDX1

T

(·) and the value ofθ in sample must be learned from the observed data, involving
problems of:specificationof the set of relevant variables{xt}, measurementof thexs, formulationof
the joint densityDX1

T

(·), modellingof the relationships, andestimationof θ, all of which introduce un-
certainties, the baseline level of which is set by thepropertiesof DX1

T

(·). When forecasting,D
XT+1

T+H

(·)

determines the ‘intrinsic’ uncertainty, rapidlygrowingasH increases–especially fornon-stationarydata
(from stochastic trends etc.)–further increased by anychangesin the distribution functionD

X
T+1

T+H

(·) or

parameters thereof betweenT and later (lack of time invariance). These ten italicised issues structured
their analysis of economic forecasting, but they emphasised the importance of the last of these.

The complementary, ‘bottom up’ explanation proposed here lies in the many steps between the
ability to predict a random variable at a point in time, and a forecast of the realizations of that variable
over a future horizon from a model based on an historical sample. This paper spells out those steps,
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and demonstrates that many of the results on forecasting in Clements and Hendry (1998, 1999) have a
foundation in the properties of unpredictability.

Having established foundations for their findings in the concept of unpredictability, this paper draws
some implications for forecasting non-stationary processes using incomplete (i.e., mis-specified) mod-
els. The objective of this analysis is to ascertain ways of implementing the strengths of so-called ‘naive’
methods in macro-econometric models, via a ‘forecasting strategy’ which uses a combination of their
‘causal’ information with a more ‘robust’ forecasting device. Such a combination could be either by ren-
dering the econometric system robust, or by modifying a robust device using an estimate of any likely
causal changes. This paper concerns the former: for the latter, in the policy context, see Hendry and
Mizon (2000, 2003). Although combining forecasts has a longpedigree (see, e.g., Bates and Granger,
1969, Diebold and Pauly, 1987, Clemen, 1989, Diebold and Lopez, 1996, Stock and Watson, 1999, and
Newbold and Harvey, 2002) and a theory for its success (see Granger, 1989, and Hendry and Clements,
2004), we consider instead transformations of econometricsystems that may improve their performance
in the face of structural breaks.

We first review the well-established concept of unpredictability in section 2 and the transformations
under which it is invariant (based on Hendry, 1997), with extensions of earlier results to non-stationary
processes. Then section 3 draws its implications for the formulation of forecasting devices. Section 4
specifies a cointegrated DGP subject to breaks, and section 5examines some adaptive devices which
might improve its robustness in forecasting. Section 6 illustrates the ideas for the much-used empirical
example of the behaviour of UK M1. Finally, section 7 concludes.

2 Unpredictability: A review and extension

A non-degenerate vector random variableνt is an unpredictable process with respect to an informa-
tion setIt−∞ over a periodT if its conditional distributionDνt

(νt|It−∞) equals its unconditional
Dνt

(νt):
Dνt

(νt | It−∞) = Dνt
(νt) ∀t ∈ T . (2)

Importantly, unpredictability is a property ofνt in relation toIt−∞ intrinsic toνt, and not dependent
on any aspect of our knowledge thereof: this is one of the key gaps between predictability, when (2) is
false, to ‘forecastability’. Note thatT may be a singleton (i.e.,{t}), and thatIt−∞ always includes the
sigma-field generated by the past ofνt.

A necessary condition for (2) is thatνt is unpredictable in mean (denotedEt) and variance (denoted
Vt) at each point inT , so assuming the relevant moments exist:

Et [νt | It−∞] = Et [νt] and Vt [νt | It−∞] = Vt [νt] . (3)

The former does not imply the latter (a predictable conditional mean with a randomly heteroscedas-
tic variance), or vice versa (e.g., an autoregressive conditional heteroscedastic–ARCH–process, as in
(7) below, affecting a martingale difference sequence). Throughout, we will take the mean of the un-
predictable process to be zero:Et [νt] = 0 ∀t. Since we will be concerned with the predictability of
functions ofνt andIt−∞, such as (6) below, any mean otherwise present could be absorbed in the latter.
Due to possible shifts in the underlying distributions, both the information set available and all expecta-
tions operators must be time dated, which anyway clarifies multi-step prediction as inET+h[νT+h|IT ]

for h > 1. The paper will focus on the first two moments in (3), rather than the complete density in
(2), although extensions to the latter are feasible (see e.g., Tay and Wallis, 2000): however, for normal
distributions, (3) suffices.
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Unpredictability is only invariant under non-singular contemporaneous transforms: inter-temporal
transforms must affect predictability (so no unique measure of forecast accuracy exists: see e.g., Leitch
and Tanner, 1991, Clements and Hendry, 1993, and Granger andPesaran, 2000a, 2000b). Predictability
therefore requires combinations withIt−∞, as for example:

yt = φt (It−∞,νt) (4)

soyt depends on both the information set and the innovation component. Then:

Dyt
(yt | It−∞) 6= Dyt

(yt) ∀t ∈ T . (5)

Two special cases of (4) are probably the most relevant empirically in economics, namely (after appro-
priate data transformations, such as logs):

yt = ft (It−∞) + νt (6)

and:
yt = νt �ϕt (It−∞) (7)

where� denotes element by element multiplication, so thatyi,t = νi,tϕi,t (It−∞). Combinations and
generalizations of these are clearly feasible and are also potentially relevant.

In (6), yt is predictable in mean even ifνt is not as:

Et [yt | It−∞] = ft (It−∞) 6= Et [yt] ,

in general. Thus, the ‘events’ which will help predictyt in (6) must already have happened, and a fore-
caster ‘merely’ needs to ascertain whatft (It−∞) comprises. The dependence ofyt onIt−∞ could be
indirect (e.g., own lags may ‘capture’ actual past causes) since systematic correlations over the relevant
horizon could suffice for forecasting – if not for policy. However, such stable correlations are unlikely
in economic time series (a point made by Koopmans, 1937). Theconverse to (6) in linear models is
well known in terms of the prediction decomposition (sequential factorization) of the likelihood (see
e.g., Schweppe, 1965): if a random variableyt is predictable fromIt−∞, as in (6), then it can be de-
composed into two orthogonal components, one of which is unpredictable onIt−∞ (i.e.,νt here), so
is a mean innovation. Since:

Vt [yt | It−∞] < Vt [yt] when ft (It−∞) 6= 0 (8)

predictability ensures a variance reduction, consistent with its nomenclature, since unpredictability en-
tails equality from (8)—the ‘smaller’ the conditional variance matrix, the less uncertain is the prediction
of yt from It−∞.

Althoughyt remains unpredictable in mean in (7):

Et [yt | It−∞] = Et [νt �ϕt (It−∞) | It−∞] = 0,

it is predictable in variance because:

Et

[
yty

′
t | It−∞

]
= Et

[
νtν

′
t �ϕt (It−∞)ϕt (It−∞)′ | It−∞

]
= Ωνt

�ϕt (It−∞)ϕt (It−∞)′ .

A well known special case of (7) of considerable relevance infinancial markets is whenIt−∞ is the
sigma-field generated by the past ofyt. For a scalaryt with constantσ2

v andϕ (·) = σt, this yields:

yt = νtσt,
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so that (G)ARCH processes are generated by (see e.g., Engle,1982, and Bollerslev, 1986: Shephard,
1996, provides an excellent overview):

σ2
t = ϕ0 +

p∑

i=1

ϕiy
2
t−i +

p∑

j=1

ϕp+jσt−j . (9)

Alternatively, ϕ (·) = exp (σt/2) leads to stochastic volatility (here as a first-order process: see e.g.,
Taylor, 1986, Kim, Shephard and Chib, 1998 and again, Shephard, 1996):

σt+1 = ϕ0 + ϕ1σt + ηt. (10)

In both classes of model (9) and (10), predictability of the variance can be important in its own right
(e.g., pricing options as in Melino and Turnbull, 1990), or for deriving appropriate forecast intervals.

2.1 Prediction from a reduced information set

Predictability is obviously relative to the information set used—whenJt−∞ ⊂ It−∞ it is possible that:

Dut
(ut | Jt−∞) = Dut

(ut) yet Dut
(ut | It−∞) 6= Dut

(ut) . (11)

This result helps underpin both general-to-specific model selection and the related use of congruence
as a basis for econometric modelling (see e.g., Hendry, 1995, and Bontemps and Mizon, 2003). In
terms of the former, less is learned based onJt−∞ thanIt−∞, and the variance (where it exists) of the
unpredictable component is unnecessarily large. In terms of the latter, a later investigator may discover
additional information inIt−∞ beyondJt−∞ which explains part of a previously unpredictable error.

Given the information set,Jt−∞ ⊂ It−∞ when the process to be predicted isyt = ft (It−∞)+νt

as in (6), less accurate predictions will result, but they will remain unbiased. SinceEt [νt|It−∞] = 0:

Et [νt | Jt−∞] = 0,

so that:
Et [yt | Jt−∞] = Et [ft (It−∞) | Jt−∞] = gt (Jt−∞) ,

say. Letet = yt−gt (Jt−∞), then, providingJt−∞ is a proper information set containing the history
of the process:

Et [et | Jt−∞] = 0,

soet is a mean innovation with respect toJt−∞. However, aset = νt + ft (It−∞) − gt (Jt−∞):

Et [et | It−∞] = ft (It−∞) − Et [gt (Jt−∞) | It−∞] = ft (It−∞) − gt (Jt−∞) 6= 0.

As a consequence of this failure ofet to be an innovation with respect toIt−∞:

Vt [et] > Vt [νt] ,

so less accurate predictions will result. Nevertheless, that predictions remain unbiased on the reduced
information set suggests that, by itself, incomplete information is not fatal to the forecasting enterprise.
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2.1.1 Changes in information sets

Similarly, predictability cannot increase as the horizon grows for a fixed eventyT based onIT −〈 for
h = 1, 2, . . . ,H, since the information sets form a decreasing nested sequence going back in time:

IT −H ⊆ IT −H+∞ ⊆ · · · ⊆ IT −∞. (12)

Conversely, disaggregating components ofIT −〈 into their elements cannot lower predictability of a
given aggregateyT, where such disaggregation may be across space (e.g., regions of an economy),
variables (such as sub-indices of a price measure), or both.Further, since a lower frequency is a subset
of a higher, and unpredictability is not in general invariant to the data frequency, then (11) ensures that
temporal disaggregation cannot lower the predictability of the same entityyT (data frequency issues
will reappear in section 3).

These attributes sustain general models, and so may providea formal basis for including as much
information as possible, being potentially consistent with many-variable ‘factor forecasting’ (see e.g.
Stock and Watson, 1999, and Forni, Hallin, Lippi and Reichlin, 2000), and with the benefits claimed in
the ‘pooling of forecasts’ literature (e.g., Clemen, 1989,and Hendry and Clements, 2004, for a recent
theory). Although such results run strongly counter to the common finding in forecasting competitions
that ‘simple models do best’ (see e.g., Makridakis and Hibon, 2000, Allen and Fildes, 2001, and Fildes
and Ord, 2002), Clements and Hendry (2001a) suggest that simplicity is confounded with robustness,
and there remains a large gap between predictability and forecasting, an issue addressed below.

In all these case,DyT+h
(yT+h|·) remains the target of interest, andIT −〈 is ‘decomposed’, in that

additional content is added to the information set. A different, but related, form of disaggregation is of
the target variableyT into its componentsyi,T. Consider a scalar,yT = w1,T y1,T +(1 − w1,T ) y2,T say.
It may be thought that, when theyi,T depend in different ways on the general information setIT −∞,
predictability could be improved by disaggregation. However, letET [yi,T|IT −∞] = δ′i,TIT −∞ then:

ET [yT | IT −∞] =

2∑

i=1

wi,TET [yi,T | IT −∞] =

2∑

i=1

wi,Tδ
′
i,TIT −∞ = λ′

TIT −∞

say, so nothing is gained unless the previous situation of increasedIT −∞ is attained. Indeed, if the
wi,T change and theδ′i,T do not, forecasting the aggregate could well be easier. Thus, the key issue in
(say) inflation prediction is not predicting the component price changes, but including those elements in
IT −∞, rather than restrictingIT −∞ to lags of aggregate inflation.

2.1.2 Increasing horizon

The obverse of the horizon growing for a fixed eventyT is that the information set is fixed atIT (say),
and we consider predictability as the horizon increases foryT+h ash = 1, 2, . . . ,H. If a variable is
unpredictable according to (2) (a ‘1-step’ definition), then it must remain unpredictable as the horizon
increases∀(T +h) ∈ T (i.e., excluding changes in predictability as considered in the next section): this
again follows from (11). Equally, ‘looking back’ from timeT + h, the available information sets form
a decreasing, nested sequence as in (12). Beyond these rather weak implications, little more can be said
in general once densities can change over time. For example,anticipating the next section, consider the
non-stationary process:

yt = ρt + t−1εt where εt ∼ IN
[
0, σ2

ε

]
, (13)
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where we wish to compare the predictability ofyT+h with that ofyT+h−1 givenIT for knownρ. Then:

VT+h [yT+h | IT ] = ET+h

[
(yT+h − ρ (T + h))2

]

= ET+h

[(
(T + h)−1 εT+h

)2
]

= (T + h)−2 σ2
ε < VT+h−1 [yT+h−1 | IT ] . (14)

The inequality in (14) is strict, andyT+h becomes systematically more predictable fromIT ash in-
creases. Although DGPs like (13) may be unrealistic, specific assumptions (such as stationarity and
ergodicity or mixing) are needed for stronger implications. For example, in a dynamic system which
induces error accumulation, where error variances do not decrease systematically as time passes (e.g.,
being drawn from a mixing process), then predictability falls as the horizon increases since additional
unpredictable components will accrue.

2.2 Non-stationarity

In non-stationary processes, unpredictability is also relative to the historical time period considered
(which is why the notation above allowed for possibly changing densities), since it is then possible that:

Dut
(ut | It−∞) 6= Dut

(ut) for t = 1, . . . ,T,

yet:
Dut

(ut | It−∞) = Dut
(ut) for t = T + 1, . . . ,T + H,

or vice versa. More generally, the extent of any degree of predictabilitycan change over time, especially
in a social science like economics (e.g., a move from fixed to floating exchange rates).

A major source of non-stationarity in economics derives from the presence of unit roots. However,
these can be ‘removed’ for the purposes of the theoretical analysis by considering suitably differenced
or cointegrated combinations of variables, and that is assumed below: section 4 considers the relevant
transformations in detail for a vector autoregression. Of course, predictability is thereby changed—
a random walk is highly predictable in levels but has unpredictable changes—but it is convenient to
consider suchI(0) transformations.

In terms offt (It−∞) in (6), two important cases of change can now be distinguished. In the first,
ft (·) alters toft+1 (·), soft+1 (·) 6= ft (·), but the resulting mean of the{yt} process does not change:

Et+1 [yt+1] = Et [yt] . (15)

In the face of such a change, interval predictions may be different, but their mean will be unaltered. In
the second case, (15) is violated, so there is a ‘location shift’ which alters the mean:

Et+1 [yt+1] 6= Et [yt] .

Such changes over time are unproblematic for the concept of unpredictability, sinceyt+j −

ft+j

(
It+|−∞

)
is unpredictable for both periodsj = 0, 1. The practical difficulties, however, for

the forecaster may be immense, an issue to which we now turn.
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3 Implications for forecasting

It is clear that one cannot forecast the unpredictable beyond its unconditional mean, but there may be
hope of forecasting predictable events. To summarize, predictability of a random variable likeyt in (6)
from It−∞ has six distinct aspects:

1. the composition ofIt−∞;
2. howIt−∞ influencesDyt

(· | It−∞) (or specifically,ft (It−∞));
3. howDyt

(· | It−∞) (or specificallyft (It−∞)) changes over time;
4. the use of the limited information setJt−∞ ⊂ It−∞ ∀t;
5. the mapping ofDyt

(· | It−∞) into Dyt
(· | Jt−∞) (or specifically,ft (It−∞) into gt (Jt−∞));

6. howJT will enterDyT+h
(· | JT ) (or fT+h (JT )).

Forecasts ofyT+h from a forecast origin atT are made using the modelyt = ψ (Jt−∞,θ) based
on the limited information setJt−∞ with conditional expectationE [yt|Jt−∞] = gt (Jt−∞). The
postulated parameters (or indexes of the assumed distribution) θmust be estimated aŝθT using a sample
t = 1, . . . , T of observed information, denoted bŷJt−1. Doing so therefore introduces four more steps:

7. the approximation ofgt (Jt−∞) by a functionψ (Jt−∞,θ) ∀t;
8. measurement errors betweenJt−∞ and the observed̂Jt−1 ∀t;
9. estimation ofθ in ψ(Ĵt−1,θ) from in-sample datâJT ;

10. forecastingyT+h fromψh(ĴT, θ̂T).

We consider these ten aspects in turn.
Concerning 1., although knowledge of the composition ofIt−∞ will never be available for such a

complicated entity as an economy, any hope of success in forecasting with macro-econometric models
requires that they actually do embody inertial responses. Consequently,It−∞ needs to have value
for predicting the future evolution of the variables to be forecast, either from a causal or systematic
correlational basis. Evidence on this requirement has perforce been based on usingJt−∞, but seems
clear-cut in two areas. First, there is a well-known range ofessentially unpredictable financial variables,
including changes in exchange rates,Er, long-term interest rates,RL, commodity pricesPc and equity
prices,Pe: if any of these could be accurately forecast for a future period, a ‘money machine’ could
be created, which in turn would alter the outcome.1 While these are all key prices in decision taking,
forward and future markets have evolved to help offset the risks of changes: unfortunately, there is yet
little evidence supporting the efficacy of those markets in forecasting the associated outcomes. Secondly,
production processes indubitably take time, so lagged reactions seem the norm on the physical side of
the economy. Thus, predictability does not seem to be precluded ifIt−∞ was known.

Learning precisely howIt−∞ is relevant (aspect 2., albeit viâJt−1) has been the main focus of
macro-econometric modelling, thereby inducing major developments in that discipline, particularly in
recent years as various forms of non-stationarity have beenmodelled. Even so, a lack of well-based
empirical equation specifications, past changes in data densities that remain poorly understood, mis-
measured—and sometimes missing—data series (especially at frequencies higher than quarterly), and
the present limitations of model selection tools to (near) linear models entail that much remains to be
achieved at the technical frontier.

Changes inft (It−∞) over time (3.) have been discussed above, and our earlier research has clari-
fied the impacts on forecasting of shifts in its mean values.

1A ‘fixed-point’ analysis (like that proposed by Marget, 1929) is possible, but seems unlikely for phenomena prone to
bubbles. However, transactions costs allow some predictability.
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Turning to aspect 4., economic theory is the main vehicle forthe specification of the information
setJt−∞, partly supported by empirical studies. Any model ofDyt

(·|·) embodiesgt (·) not ft (·), but
section 2.1 showed that models with mean innovation errors could still be developed. Thus, incomplete
information about the ‘causal’ factors is not by itself problematic, providinggt (Jt−∞) is known.

Unfortunately, mappingft (It−∞) into its conditional expectationgt (Jt−∞) (aspect 5.) is not un-
der the investigator’s control beyond the choice ofJt−∞. Any changes inft (It−∞) over time will have
indirect effects ongt (Jt−∞) and make interpreting and modelling these shifts difficult.Nevertheless,
the additional mistakes that arise from this mapping act like innovation errors.

However, even if 1.–5. could be overcome in considerable measure, aspect 6. highlights that re-
lationships can change in the future, perhaps dramatically.2 Section 2.2 distinguished between ‘mean-
zero’ and ‘location’ shifts inyt, the most pernicious breaks being location shifts (e.g., confirmed in the
forecasting context by the taxonomy of forecast errors in Clements and Hendry, 1998, and by a Monte
Carlo in Hendry, 2000). Considerh = 1, where the focus is on the mean,ET+1 [yT+1|JT ], which
is the integral over the DGP distribution at timeT + 1 conditional on a reduced information setJT ,
and hence is unknown atT . Then averaging across alternative choices of the contentsof JT could
provide improved forecasts relative to any single method (i.e., better approximate the integral) when the
distribution changes from timeT , and those choices reflect different sources of information. Of course,
unanticipated breaks that occur after forecasts have been announced cannot be offset: the precise form
of DyT+h

(·|·) is not knowable till timeT + h has been reached. However, after timeT + h, DyT+h
(·|·)

becomes an in-sample density, so thereafter breaks could beoffset.
Aspect 7., appears to be the central difficulty:gt (·) is not known. First,gt (Jt−∞) experiences

derived rather than direct breaks from changes inft (It−∞), making model formulation and espe-
cially selection hard. Secondly, empirical modellers perforce approximategt (Jt−∞) by a function
ψ (Jt−∞,θ), where the formulation ofθ is intended to incorporate the effects of past breaks: most
‘time-varying coefficient’, regime-switching, and non-linear models are members of this class. Thirdly,
while ‘modelling breaks’ may be possible for historical events, a location shift at, or very near, the fore-
cast origin may not be known to the forecaster; and even if known, may have effects that are difficult to
discern, and impossible to model with the limited information available.

Measurement errors, aspect 8., almost always arise, as available observations are inevitably inac-
curate. Although these may bias estimated coefficients and compound the modelling difficulties, by
themselves, measurement errors do not imply inaccurate forecasts relative to the measured outcomes.
However, in dynamic models, measurement errors induce negative moving-average residuals. Thus,
a potential incompatibility arises: differencing to attentuate systematic mis-specification or a location
shift will exacerbate a negative moving average. Conversely, a forecast-error correction can remove unit
roots and hence lose robustness to breaks. This new result seems to lie at the heart of practical forecast-
ing problems, and may explain the many cases where (e.g.) differencing and intercept corrections have
performed badly.

Concerning aspect 9., the ‘averaging’ of historical data toestimateθ by θ̂T imparts additional inertia
in the model relative to the data, as well as increased uncertainty. More importantly, there are probably
estimation biases from not fully capturing all past breaks,which would affect deterministic terms.

Finally, concerning aspect 10., multistep forecasts have the added difficulty of cumulative errors
although these are no more than would arise in the context of predictability.

2Sir Alec Cairncross (1969) suggested the example of forecasting UK GNP in 1940 for 1941—a completely different
outcome would have materialized had an invasion occurred. The recent theoretical analyses discussed above have in fact
helped to formalize many of the issues he raised.
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Not adapting to location breaks induces systematic mis-forecasting, usually resulting in forecast
failure. To thrive competitively, forecasting models needto avoid that fate, as there are many devices
that track (with a lag) and hence are robust to such breaks once they have occurred. Section 5 con-
siders several such devices. Before that, however, sub-section 3.1 formalizes these possible errors in a
taxonomy to seek pointers for attenuation of their adverse consequences.

3.1 Taxonomy of error sources

To forecastyT+h, the in-sample modelψ(ĴT, θ̂T) is developed for some specification of the parame-
tersθ ∈R estimated aŝθT from the full-sample information̂JT whereJt−∞ ⊆ It−∞ is the available
information set at each point in time, measured byĴt−1 such that:

ŷT+h|T = ψh

(
ĴT, θ̂T

)
. (16)

There are many ways to formulate the functionψh (·) in (16) for a dynamic modelψ (·), including ‘pow-
ering up’ and multi-step estimation. Below, only the formeris considered (on the latter, see Bhansali,
1996, 1997, 1999, Clements and Hendry, 1996, and Chevillon and Hendry, 2002,inter alia), but this
section allows for any possibility. Conversely, we focus onthe first two moments here rather than the
complete forecast distribution.

The key steps that determine the forecast error:

ûT+h|T = yT+h − ŷT+h|T = fT+h

(
IT +〈−∞

)
+ νT+h −ψh(ĴT, θ̂T),

are: the composition of the DGP information setsIt−∞; how eachIt−∞ enters the DGP
Dyt

(yt|It−∞); how Dyt
(yt|It−∞) changes over time in-sample; the limited information set

Jt−∞ ⊆ It−∞; the mapping ofDyt
(yt|It−∞) into Dyt

(yt|Jt−∞) inducing gt (Jt−∞) =

Et [ft (It−∞) |Jt−∞]; how JT will enter DyT+h
(·|JT ) for a forecast origin atT ; the approximation

of gt (Jt−∞) by the modelψ (Jt−∞,θ); the specification ofθ; measurement errors in eacĥJt−1

for Jt−∞ (which may themselves change over time); and the estimationof θ by θ̂T , which together
determine the properties ofψh (·). The first six are aspects of predictability in the DGP; the second
four of the formulation of forecasting models which seek to capture that predictability.

From such a formulation,̂uT+h|T can be decomposed into errors which derive from each of the
main reduction or transformation steps, namely:

ûT+h|T = νT+h +
[
fT+h

(
IT +〈−∞

)
− fT+h (IT )

]
+ [fT+h (IT ) − gT+h (JT )] +

[
gT+h (JT ) − gT+h|T (JT )

]

+
[
gT+h|T (JT ) −ψh (JT ,θ)

]
+

[
ψh (JT ,θ) −ψh(ĴT,θ)

]
+

[
ψh(ĴT,θ) −ψh(ĴT, θ̂T)

]
(17)

wheregT+h|T (JT ) is the ‘extrapolated’ value ofgT+h (JT ) for constant forecast-origin parameters
in g (·). While decompositions such as (17) are not unique, they helppinpoint the potential sources of
forecast failure, and which components are less likely to have a pernicious effect on forecast accuracy.

Taking the seven right-hand side terms in (17) in turn, the first four are unknowable (in the ab-
sence of a crystal ball), being dependent on the future innovation νT+h, future information accrual,
the change to the limited information set, and post-forecast-origin changes in the induced process: all
4 are, therefore, unpredictable, will affect the forecast-error variance, and may influence its mean. The
first, second and third terms have expected values of zero forproper information setsI andJ , so
will not affect ET+h

[
ûT+h|T|JT

]
. Consequently, a lack of knowledge of the complete information

setI is not an explanation for forecast failure, a general resultof importance below, although using
more (relevant) information will reduce the variance component fromfT+h (IT ) − gT+h (JT ). The
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second term is only present whenh > 1, but then represents the cumulation of the innovation errors
{νT+j} for j = 1, . . . , h − 1. However, the fourth term is a potential source of forecast failure when
gT+h (JT ) 6= gT+h|T (JT ). That requires an induced location shift to be non-zero on average, rather
than just structural change in general. Conversely, the third term would be zero under constant parame-
ters.

The next three terms depend on the goodness of the model for the local DGPDyT
(yT|JT ) and on

data accuracy, both in-sample and at the forecast origin, aswell as the choice of estimator. Specifically,
the fifth is a function of the adequacy of the model, the sixth of the data accuracy atT , and the last on
the properties of the estimator̂θT for θ when the observed data are used. Thus, the fifth term would
be zero for a correctly specified model, the sixth for accurate data, but the seventh only in an infinite
sample, hence the focus in many derivations of forecast-error uncertainties on the impacts of parameter
estimation and innovation error variances.

The 1-step ahead error from the forecasting modelŷT+1 = ψ1(ĴT, θ̂T) is uT+1 = yT+1− ŷT+1.
ThenuT+1 can be decomposed into six basic sources of mistakes (as can further-ahead errors):

uT+1 = νT+1 DGP innovation error
+ fT+1 (IT ) − gT+1 (JT ) incomplete information
+ gT+1 (JT ) − gT (JT ) induced change
+ gT (JT ) −ψ1 (JT ,θ) approximation reduction
+ ψ1 (JT ,θ) −ψ1(ĴT,θ) measurement error

+ ψ1

(
ĴT,θ

)
−ψ1

(
ĴT, θ̂T

)
estimation uncertainty

We consider these in turn.
SinceνT+1 is an innovation against the DGP information setIT , nothing will reduce its uncertainty.

Nevertheless, the intrinsic properties ofνT+1 matter greatly, specifically its variance, and any unpre-
dictable changes in its distribution. The baseline accuracy of a forecast cannot exceed that inherited
from the DGP innovation error.

There are many reasons why information available to the forecaster is incomplete relative to that
underlying the behaviour of the DGP. For example, importantvariables may not be known, and even if
known, may not be measured. Either of these makeJT a subset ofIT , although the first (excluding
relevant information) tends to be the most emphasised. As shown in section 2.1, incomplete information
increases forecast uncertainty over any inherent unpredictability, but by construction:

gT+1 (JT ) = ET+1 [fT+1 (IT ) | JT ] ,

so, no additional biases result from this source, even when breaks often occur.
Rather, the problems posed by breaks manifest themselves inthe next term,gT+1 (JT )−gT (JT ):

sub-section 3.3 below addresses their detection. In-sample, it is often possible to ascertain that a break
has occurred, and at worst develop suitable indicator variables to offset it, but the real difficulties derive
from breaks at, or very near, the forecast origin. Sub-section 3.4 considers possible remedies: here we
note that if∆gT+1 (JT ) has a non-zero mean, either an additional intercept (i.e., intercept correction,
denoted IC), or further differencing will remove that mean error.

There will also usually be mis-specifications due to the formulation of bothψ (·) andθ as approx-
imations togT (JT ). For example, linear approximations to non-linear responses will show up here,
as will dynamic mis-specification (JT assumes all earlier values are available, but models often impose
short lag lengths). If the effect is systematic, then an IC ordifferencing will again reduce its impact;
however the required sign may be incompatible with the previous case.
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Even if all variables known to be relevant are measured, the observations available may be inaccurate
relative to the DGP ‘forces’. A distinction from the case of excluding relevant information is useful, as
it matters what the source is: measurement errors in dynamicmodels tend to induce negative moving
average residuals, whereas omitted variables usually leadto positive autoregressive residuals. Thus,
again a potential incompatibility arises: differencing will exacerbate a negative moving average, and an
IC may need the opposite sign to that for a break.

Finally, estimation uncertainty arising from usinĝθT in place ofθ can compound the systematic
effects of breaks when̂θT adjusts slowly to changes induced inθ.

When models are mis-specified by usingJt−∞ ⊂ It−∞, for a world whereIt−∞ enters the den-
sity in changing ways over time, forecasting theory delivers implications that are remarkably different
from the theorems that hold for constant processes as the summary discussion in Hendry and Clements
(2003) emphasises. We can now see a basis for such results in the gulf between predictability and
empirical forecasting highlighted by the above taxonomy.

3.2 Congruent modelling for forecasting

Given the taxonomy, what is role for orthogonalised, parsimonious encompassing, congruent models?
Eight benefits are potentially available, even in the forecasting context, and the need for such a model
in the policy context is clear.
1. Rigorous in-sample modelling helps detect and thereby avoid equilibrium-mean shifts which would
otherwise distort forecasts.
2. Such models deliver the smallest variance for the innovation error defined on the available information
set, and hence offer one measure of the ‘best approximation’to g(·).
3. It is important to remove irrelevant variables which might suffer breaks over the forecast horizon (see
e.g., Clements and Hendry, 2002).
4. The best estimates of the model’s parameters will be invaluable over periods when no breaks occur,
and thereby reduce forecast-error variances.
5. An orthogonalised and parsimonious model will avoid a large ratio of the largest to smallest eigen-
value of the second-moment matrix, which can have a detrimental effect on forecast-error variances
when second moments alter, even for constant parameters in the forecasting model.
6. A dominant parsimonious congruent model offers better understanding of the economic process by
being more interpretable.
7. Such a model also sustains a progressive research strategy and offers a framework for interpreting
forecast failure.

Nevertheless, how such a model is used in the forecast periodalso matters and is discussed below.

3.3 Diagnosing breaks

A problem for the forecaster hidden in the above formulationis determining that there has been a break.
First, data at or near the forecast origin are always less well measured than more mature vintages, and
some may be missing. Thus, a recent forecast error may reflectjust a data mistake, and treating it
as a location shift in the economy could induce systematic forecast errors in later periods. Secondly,
a model which is mis-specified for the underlying process, such as a linear autoregression fitted to
a regime-switching DGP, may suggest breaks have occurred when they have not. Then, ‘solutions’
such as additional differencing or intercept corrections (ICs) need not be appropriate. Thirdly, even
when a break has occurred in some part of a model, its effects elsewhere depend on how well both the
relevant equations and their links are specified: UK M1 belowprovides an example where only the
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opportunity cost is mis-forecast in one version of the model, but real money is in another. Fourthly,
sudden changes to data (e.g., in observed money growth rates) need not entail a break in the associated
equation of the model: UK M1 again highlights this. Thus, without knowing how well specified a model
is under recently changed conditions, data movements aloneare insufficient to guide the detection of
breaks. Unfortunately, therefore, only recent forecast errors are useful for diagnosing change relative to
a model, highlighting the importance of distinguishing additive from innovation errors.

3.3.1 Co-breaking

On the other hand, co-breaking of a subset of relations over the forecast horizon would be valuable
because such variables would move in tandem as a group. Although forecasting the remaining variables
would still be problematic, one would not need ICs for the co-breaking equations, which would improve
the efficiency of the forecasts. The UK M1 system also illustrates this aspect, as an IC is needed in only
one equation.

Moreover, lagged co-breaking is invaluable. A break in a marginal process, which affects the vari-
able to be forecast with a lag, does not induce forecast failure.

3.4 Potential improvements

A reduction in the seriousness of forecast failure could be achieved by:

(a) breaks being sufficiently infrequent to ignore;
(b) a forecasting system being invariant to breaks;
(c) an investigator forecasting breaks; or
(d) forecasts adapting rapidly to breaks that occur.

All four possibilities merit consideration.3

(a) relates to the second role of data frequency noted above.If breaks occur erratically over time and
across variables, but with an average of once perr years per variable (wherer could be less than unity,
but seems larger in practice) then on (e.g.) weekly data, breaks occur once per52r observations. While
the impact of any break in a dynamic system takes time to reachits full effect, and high-frequency data
are often noisy, nevertheless on such data there will be manyperiods of ‘normal’ behaviour between
breaks during which ‘causal’ models should perform well (assuming past breaks have been successfully
modelled). Conversely, breaks will be relatively frequenton annual data (roughly 15% of the time for
GDP since 1880 in the UK: see Clements and Hendry, 2001b). Analyses of other series for breaks to
ascertain their size and latency distributions would be useful, perhaps using robust univariate devices as
the baseline against which to determine the existence and timing of breaks.

When the ‘target’ variableyT+1 to be forecast is, say, annual inflation, then ‘solution’ (a)is infeasi-
ble: that selection entails the choice of data frequency. However, the frequency need not be the same for
JT : forecasting annual changes from quarterly data is common.Since predictability cannot fall with
a larger information set, an implication is to use the highest frequency, and the largest set, irrespective
of the ‘target’ (e.g., hourly data even if annual GNP growth is to be forecast). Although this is usually
impractical given the limited sample periods available in macro-economics, and the lack of collection
of high-frequency data on many variables of interest, that implication also merits exploration.

(b) unfortunately seems unlikely, and has not happened historically. But it is important to clarify the
reason why (b) is unlikely to occur. It is not because autonomous equations are necessarily scarce, but

3Averaging a set of forecasts is shown in Hendry and Clements (2004) to improve forecasting when at least one (different)
method responds to each break.



14

because the weakest link in the system determines the overall outcome. For example, consider the oil
crisis in the mid 1970s: models which excluded oil prices would certainly have mis-forecast inflation,
and experienced ‘breaks’—but even models with oil prices would have suffered forecast failure unless
they could have forecast the oil crisis itself. After the event, however, a distinction emerges: the former
would still suffer serious mis-fitting (probably adapted toby changes in estimated coefficients given the
propensity to use least squares estimation which seeks to reduce the largest errors), whereas the latter
would not for the inflation equation, but still would for its oil price equation. ‘Explaining’ the latter by
building a model of oil supply would push the problem down a layer, but at some stage, an unanticipated
jump is left: a non-linear process–or even an indicator–would remove the misfitex post, but neither need
help to forecast the next jump.
(c) essentially requires a crystal ball that can foresee looming changes. In some cases, however, this may
be possible. For example, related situations may have occurred previously, allowing a model to be built
of the ‘change’ process itself (though that too could change): regime-switching models are one attempt
to do so for states that often change and are partly predictable as the conditional probability of the
state differs from the unconditional. To date, their forecasting performance has not proved spectacular,
even against univariate predictors, partly because the timing of the switch remains somewhat elusive—
albeit crucial to their accuracy. Another possibility is that although breaks are relatively rare, they have
discernible precursors, either leading indicators or causal, as is being discovered in volcanology. Here,
more detailed studies of evolving breaks are merited.
(d) is more easily implemented, as there many forecasting devices that are robust to various forms
of break. Notice the key difference from (c): here adaptability is after the event, improvingex post
tracking and thereby avoiding systematic forecast failure, whereas (c) sought to improve predictability.
As emphasized by Clements and Hendry (1998, 1999), knowing in-sample causal relations need not
deliver ‘better’ forecasts (on some measures) than those from devices where no causal variables are used.
Thus, it seems crucial to embed macro-econometric models ina forecasting strategy, where progressive
research is essential to unravel (b) and (c), and adaptability after shifts is the key to mitigating (d).

4 A cointegrated DGP

Consider a first-order VAR for simplicity, where the vector of n variables of interest is denoted byxt,
and its DGP is:

xt = τ + Υxt−1 + εt where εt ∼ INn [0,Ω] . (18)

Υ is ann × n matrix of coefficients andτ is ann dimensional vector of constant terms. The specifi-
cation in (18) is assumed constant in-sample, and the systemis taken to beI (1), satisfying ther < n

cointegration relations:
Υ = In +αβ′. (19)

α andβ aren × r full-rank matrices, no roots of|I− ΥL| = 0 lie inside unit circle (Lkxt = xt−k),
andα′

⊥Υβ⊥ is full rank, whereα⊥ andβ⊥ are full column rankn × (n − r) matrices, withα′α⊥ =

β′β⊥ = 0. Then (18) is reparameterized as a vector equilibrium-correction model (VEqCM):

∆xt = τ +αβ′xt−1 + εt. (20)

Both∆xt andβ′xt areI(0) but may have non-zero means. Let:

τ = γ −αµ (21)
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then:
(∆xt − γ) = α

(
β′xt−1 − µ

)
+ εt. (22)

The variables grow at the rateE[∆xt] = γ with β′γ = 0; and whenβ′α is non-singular, the long-run
equilibrium is:

E
[
β′xt

]
= µ. (23)

Thus, in (22), both∆xt andβ′xt are expressed as deviations about their means. Note thatγ is n × 1

subject tor restrictions, andµ is r × 1, leavingn unrestricted intercepts in total. Also,γ, α andµ are
assumed to be variation free, although in principle,µ could depend onγ: see Hendry and von Ungern-
Sternberg (1981). Then(τ ,Υ) are not variation free, as seems reasonable whenγ, α, β andµ are the
‘deep’ parameters: for a more extensive analysis, see Clements and Hendry (1996).

4.1 Location shifts

The shift of interest here is∇µ∗ = µ∗ −µ. Then:

∆xT+1 = γ +α
(
β′xT − µ∗

)
+ εT+1 (24)

so from (24):
∆xT+1 = γ +α

(
β′xT − µ

)
+ εT+1 −α∇µ∗ (25)

or:
∆xT+1 = ∆̂xT+1|T −α∇µ∗. (26)

The first right-hand side term in (26) (namelŷ∆xT+1|T ) is the constant-parameter forecast of∆xT+1;
the second is the shift with:

E
[
∆xT+1 − ∆̂xT+1|T

]
= −α∇µ∗.

Section 5 now considers possible solutions to avoiding forecast failure.

5 Adaptive devices

Three approaches to implementing suggestion (d) in section3.4 are considered:

• differencing the VEqCM (22) to improve its forecasting robustness to location shifts;
• rapid updating of the estimates ofγ andµ after such shifts; and
• forecast-error corrections to adjust quickly to breaks.

We take these in turn: none actually alters predictability (as the information set is unchanged), but they
all seek to mitigate the impact of breaks.

5.1 Differencing the VEqCM

Since shifts inµ are the most pernicious for forecasting, consider forecasting not from (22) itself but
from a variant thereof which has been differenced after a congruent representation has been estimated:

∆xt = ∆xt−1 +αβ′∆xt−1 + ∆εt =
(
In +αβ′

)
∆xt−1 + ut (27)

or:
∆2xt = αβ′∆xt−1 + ut. (28)
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(27) is just the first difference of the original VAR, since
(
In +αβ′

)
= Υ, but with the rank restriction

from cointegration imposed. The alternative representation in (28) can be interpreted as augmenting a
double differenced VAR (DDV) forecast byαβ′∆xt−1, which is zero on average.

To trace the behaviour of (27) after a break inµ, let:

∆̃xT+1|T =
(
In +αβ′

)
∆xT,

where from (25):
∆xT+1 = ∆xT +α

(
β′∆xT − ∆µ∗

)
+ ∆εT+1.

At time T only, ∆µ∗ = ∇µ∗, so:

∆xT+1 = ∆xT +αβ′∆xT −α∇µ∗ + ∆εT+1.

Then:

E
[
∆xT+1 − ∆̃xT+1|T

]
= ∆xT +αβ′∆xT −α∇µ∗ −

(
In +αβ′

)
∆xT = −α∇µ∗.

Here there is no gain, as the break is after forecasts are announced—an IC, or DDV, would fare no better.
However, one period later:

∆xT+2 = ∆xT+1 +α
(
β′∆xT+1 − ∆µ∗

)
+ ∆εT+2,

and now∆µ∗ = 0, so:

E
[
∆xT+2 − ∆̃xT+2|T+1

]
= E

[
∆xT+1 +αβ′∆xT+1 −

(
In +αβ′

)
∆xT+1

]
= 0.

Thus, the differenced VEqCM ‘misses’ for 1 period only, and does not make systematic, and increas-
ing, errors. The next sub-section considers the impact of unnecessary differencing on forecast-error
variances, and in the context of 1-step ahead forecasts.

5.1.1 Forecast-error variances

Let eT+1 = ∆xT+1 − ∆̃xT+1|T be the forecast error, then, ignoring parameter estimationuncertainty
asOp

(
T−1/2

)
:

eT+1 = −α∇µ∗ + ∆εT+1,

and:
eT+2 = ∆εT+2.

Since the system error is{εt}, then the additional differencing doubles the 1-step errorvariance, which
is the same as for the DDV. Relative to a DDV, however, there isa gain from the DVEqCM, since the
former has a component from the variance of the omitted variable (αβ′∆xt), as well as the same error
terms. Thus, a DDV is not only the difference of a DVAR, but is also obtained by dropping a mean-zero
term from the differenced VEqCM.

Using∆xT to forecast

Second differencing removes two unit roots, any interceptsand linear trends, changes location shifts to
‘blips’, and converts breaks in trends to impulses. Figure 1illustrates.
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Figure 1 Location shifts and broken trends.

Also, most economic time series do not continuously accelerate – entailing a zero unconditional
expectation of the second difference:

E
[
∆2xt

]
= 0, (29)

and suggesting the forecasting rule:
∆x̃T+1|T = ∆xT. (30)

One key to the success of double differencing is that no deterministic terms remain, so that for time
series like speculative prices, where no deterministic terms are present, ‘random walk forecasts’ will
be equally hard to beat. However, as discussed below, differencing is incompatible with solutions to
measurement errors as it exacerbates negative moving averages.

Nevertheless, there is a deeper reason why a forecast of the form (30) may generally perform well.
Consider the in-sample DGP:

∆xt = γ0 +α0

(
β′

0xt−1 − µ0

)
+ Ψ0zt + εt, (31)

whereεt ∼ INn [0,Ωε] independently of all the included variables and their history, with population
parameter values denoted by the subscript0. Also, zt denotes potentially many omittedI(0) effects,
possibly all lagged (I(0), perhaps because of ‘internal’ cointegration, being differenced, or intrinsically
stationary). The postulated econometric model is a VEqCM inxt:

∆xT = γ +α
(
β′xT−1 − µ

)
+ vT,

and that model, estimated fromT observations, is used for forecasting:

∆x̂T+i|T+i−1 = γ̂ + α̂
(
β̂
′
xT+i−1 − µ̂

)
. (32)

Finally, over the forecast horizon, the DGP becomes:

∆xT+i = γ∗
0 +α∗

0

(
(β∗

0)′xT+i−1 − µ∗
0

)
+ Ψ∗

0zT+i + εT+i. (33)
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All the main sources of forecast error occur, given (33): stochastic and deterministic breaks, omitted
variables, inconsistent parameter estimates, estimationuncertainty, and innovation errors: data measure-
ment errors could be added. Thus, if∆xT+i − ∆x̂T+i|T+i−1 = wT+i:

wT+i = γ∗
0 +α∗

0

(
(β∗

0)′xT+i−1 − µ∗
0

)
+ Ψ∗

0zT+i + εT+i − γ̂ − α̂
(
β̂
′
xT+i−1 − µ̂

)
. (34)

It is difficult to analyze (34) as its terms are not necessarily even I(0), but conditional on
(xT+i−1, zT+i−1), wT+i has an approximate mean forecast error (usingE [γ̂] = γp etc.) of:

E [wT+i | xT+i−1, zT+i−1] =
(
γ∗

0 − γp

)
−

(
α∗

0µ
∗
0 −αpµp

)
+

[
α∗

0(β∗
0)′ −αpβ

′
p

]
xT+i−1

+Ψ∗
0E [zT+i | xT+i−1, zT+i−1] .

Also, neglecting parameter estimation uncertainty asOp(T−1), wT+i has an approximate conditional
error-variance matrix:

V [wT+i | xT+i−1, zT+i−1] = Ψ∗
0V [zT+i | xT+i−1, zT+i−1]Ψ∗′

0 + Ωε, (35)

and its conditional mean-square forecast error matrix is the sum ofE[wT+i|xT+i−1, zT+i−1]E[wT+i|xT+i−1, zT+i−1]′

and (35).
Contrast using the sequence of∆xT+i−1 to forecast∆xT+i, as in (30):

∆x̃T+i|T+i−1 = ∆xT+i−1. (36)

Because of (33),∆xT+i−1 is in fact (fori > 1):

∆xT+i−1 = γ∗
0 +α∗

0

(
(β∗

0)′xT+i−2 − µ∗
0

)
+ Ψ∗

0zT+i−1 + εT+i−1. (37)

Thus, (37) shows that, without the economists needing to know the causal variables or the structure of
the economy,∆xT+i−1 reflects all the effects in the DGP, including all parameter changes, with no
omitted variables and no estimation required at all. However, there are two drawbacks: the unwanted
presence ofεT+i−1 in (37), which doubles the innovation error variance; and all variables are lagged
one extra period, which adds the ‘noise’ of manyI(−1) effects. Thus, there is a clear trade-off between
using the carefully modelled (32) and the ‘naive’ predictor(36). In forecasting competitions across
many states of nature with structural breaks and complicated DGPs, it is easy to see why∆xT+i−1 may
win.

Let ∆xT+i − ∆x̃T+i|T = uT+i, then:

uT+i = γ∗
0 +α∗

0

(
(β∗

0)′xT+i−1 − µ∗
0

)
+ Ψ∗

0zT+i−1 + εT+i

−
[
γ∗

0 +α∗
0

(
(β∗

0)′xT+i−2 − µ∗
0

)
+ Ψ∗

0zT+i−1 + εT+i−1

]

= α∗
0(β

∗
0)′∆xT+i−1 + Ψ∗

0∆zT+i + ∆εT+i. (38)

All terms in the last line must beI(−1), so will be very ‘noisy’, but no systematic failure should result.
Indeed:

E [uT+i] = α∗
0E

[
(β∗

0)
′∆xT+i−1

]
+ Ψ∗

0E [∆zT+i] + E [∆εT+i] = α∗
0(β∗

0)′γ∗′
0 = 0.

Neglecting covariances, we have:

V [uT+i] = V
[
α∗

0(β∗
0)′∆xT+i−1

]
+ V [Ψ∗

0∆zT+i] + V [∆εT+i]

= α∗
0(β∗

0)
′V [∆xT+i−1]β

∗
0α

∗′
0 + Ψ∗

0V [∆zT+i]Ψ
∗′
0 + 2Ωε (39)
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which is the mean-square error matrix becauseE [uT+i] = 0. Conventional analysis notes the doubling
of Ωε in (39) relative to (35). However, when{zt} is a stationary vector autoregression (say):

zt = Γzt−1 + ηt where ηt ∼ INk [0,Ωη] ,

then:
V [zt] = ΓV [zt]Γ

′ + Ωη,

and:
V [∆zt] = (Γ − Ik) V [zt] (Γ − Ik)′ + Ωη

so that:

V [∆zT+i] − V [zT+i] = (Γ − Ik) V [zT+i] (Γ − Ik)′ − ΓV [zT+i]Γ
′

= V [zT+i] − ΓV [zT+i] − V [zT+i]Γ
′

which could attain a maximum ofV [zT+i] when{zt} is white noise (Γ = 0), or approach−V [zT+i]

when{zt} is highly autoregressive (Γ ' Ik). Thus, the overall error variance in (39) will not necessarily
double relative to (35), and could be smaller in sufficientlybadly specified VEqCMs.

5.2 Rapid updating

An alternative to over-differencing is more rapid updatingof the coefficients of the deterministic terms,
possibly using different estimators for forecasting. Thus, in a ‘non-causal’ representation, consider a
short moving average of past actual growth rates, so:

∆̃xT+1|T = τ̃T (40)

where:

τ̃ T =
1

m + 1

m∑

i=0

∆xT−i. (41)

Then:

(m + 1) τ̃ T =
m∑

i=0

∆xT−i = ∆xT − ∆xT−(m+1) + (m + 1) τ̃T−1,

so:
τ̃ T = τ̃ T−1 +

1

(m + 1)
∆∆(m+1)xT,

reflecting aspects of Kalman filtering. Whenm = 0:

∆̃xT+1|T = ∆xT,

which reproduces the DDV as corresponding to updating the intercept by the latest ‘surprise’,∆2xT.
Larger values ofm will ‘smooth’ intercept estimates, but adapt more slowly: using m = T − 1 es-
sentially delivers the OLS estimates, which do not adapt. For forecasting from quarterly data using
m = 3:

τ̃T =
1

4
(∆xT + · · · + ∆xT−3) =

1

4
∆4xT,

which is the previous average annual growth. So long as breaks are not too frequent, and the variables to
be forecast do not accelerate, such devices seem likely to work reasonably well in avoiding systematic
forecast failure.
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Implicit in (40):
τ̃T = γ̃T −αµ̃T,

and so it reflects changes in either source of intercept shift. Once a more causally-based model is used,
that mapping ceases, so implementing an analogous notion requires care. The basic problem is that if
such corrections work well when a model is mis-specified, they cannot be appropriate when it is valid
for the same observed change in growth: the latter case mis-attributes changed observed growth to a
shift in τ whereas it will be captured by other regressors. A lack of orthogonality between the various
‘explanatory components’ is the source of this difficulty: changes in one variable are confounded with
resulting changes in the growth rates of others (see Bewley,2000, for an alternative parameterization
that seeks ro resolve this problem).

5.3 Forecast-error based adaptation

Consequently, only forecast-error based information, which reflects the problems of the model, not the
changes in the data, can be used to correct breaks in econometric systems. Apart from ICs (which add
back recent errors, and are also susceptible to smoothing),one of the most famous ‘forecast-error cor-
rection’ mechanisms (FErCMs) is the exponentially weighted moving average (EWMA), so we consider
its possible transmogrification to econometric systems.

The EWMA recursive updating formula is, forλ ∈ (0, 1) and a scalar time series{yt}:

ŷT+h|T = (1 − λ)

∞∑

j=0

λjyT−j,

so (e.g.):
ŷT+1|T = (1 − λ) yT + λŷT |T−1 = yT − λ

(
yT − ŷT |T−1

)
, (42)

with start-up valuêy1 = y1. Hence, for an originT , ŷT+h|T = ŷT+1|T for all h. One can view this
method as ‘correcting’ a random-walk forecast by the latestforecast error(yT − ŷT |T−1):

∆̂yT+1|T = −λ
(
yT − ŷT |T−1

)
, (43)

possibly seen as approximating the ARIMA(0,1,1):

∆yt = εt − θεt−1, (44)

so the second term in (42) seeks to offset that in (44):

∆yT+1 − ∆̂yT+1|T = εT+1 − θεT + λ
(
yT − ŷT |T−1

)
.

Consequently, (42) could be seen as being designed for data measured with error, where the underlying
model was∆y∗t = vt with yt = y∗t + wt so that:

∆yt = ∆y∗t + ∆wt = (vt + wt) − wt−1.

Any shift in the mean of{y} will eventually feed through to the forecasts from (42): adding back
a damped function of recent forecast errors ought, therefore, to be productive when location shifts are
common. The speed with which adjustment occurs depends on the degree of damping,λ, whereλ = 0

corresponds to a random walk forecast. The choice of a largeλ prevents the predictor extrapolating
the ‘noise’ in the latest observation, but when there is a shift in mean, the closerλ is to zero the more
quickly a break will be assimilated in the forecasts.
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5.3.1 The relation of EWMA and IC

Four components seem to contribute to the forecasting success of EWMA:

• adapting the next forecast by the previous forecast error;
• differencing to adjust to location shifts;
• the absence of deterministic terms which could go awry;
• rapidly adaptive whenλ is small.

The correction of a forecast by a previous forecast error is reminiscient of intercept correction.
However, EWMA differs from IC by the sign and size of the damping factor,−λ in place of unity,
so may not face the latter’s problems when there are large measurement errors at the forecast origin.
To investigate the implications of this sign change, consider a vector generalization of (43) using the
forecast from (45), (abstracting from parameter estimation):

∆̂xT+1|T = γ +
(
αβ′xT −αµ

)
, (45)

when augmented by the forecast-error correction:

∆xT+1|T = ∆̂xT+1|T − Λ
(
xT − xT|T−1

)
. (46)

Assuming the VEqCM (24) was congruent in-sample, then using:

xT |T−1 = ∆xT |T−1 + xT−1 = xT−1 + γ +
(
αβ′xT−1 −αµ

)
,

leads to:
xT − xT|T−1 = ∆xT − γ −α

(
β′xT−1 − µ

)
= ∆xT − ∆̂xT|T−1,

which is the last in-sample 1-step residual,ε̂T . Thus, lettinĝεT+1 = ∆xT+1 − ∆̂xT+1|T:

∆xT+1 − ∆xT+1|T = ε̂T+1 + Λε̂T,

soΛ = −In corresponds to the IC for ‘setting the forecasts back on track’ at the forecast origin. The
sign change is not due to IC being an autoregressive, rather than a moving-average, correction: rather,
the aim of the IC is to offset a location shift, whereas EWMA seeks to offset a previous measurement
error, using differencing to remove location shifts. Thus,we see an importantcaveatto the explanations
fo the empirical success of ICs discussed in Clements and Hendry (1999, Ch.6): some of the potential
roles conflict. In particular, to offset previous mis-specifications or measurement errors requires the
opposite sign to that for offsetting breaks.

5.3.2 Adapting EWMA for growth changes

The absence of any deterministic terms in (43) entails that if the data are growing, systematic under-
prediction may occur. This last difficulty could be circumvented by an extra degree of differencing as
in the type of model discussed by Harvey and Shephard (1992) (soyt in (42) becomes the growth rate),
or alternatively by letting:

∆̃yT+1|T = γ̃T − λ
(
yT − ỹT |T−1

)
(47)

where:
γ̃T = γ̃T−1 +

1

(m + 1)
∆(m+1)∆yT . (48)
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Notice thatγ̃T−1 could be based on all the in-sample data, switching to (48) only when forecasting.
However,m = 0 (say) enforces complete adaptation to the latest ‘surprise’ ∆2yT , which could be
noisy. The ‘combined’ device in (47) both corrects recent past errors and adjusts rapidly to changes in
observed growth irrespective of whether that corresponds to changes inγ in the DGP, or is an induced
effect from shifts inµ.

Vector generalizations of (47) and (48) are straight-forward—the former becomes:

∆̃xT+1|T = γ̃T − Λ
(
xT − x̃T|T−1

)
(49)

whereΛ could be diagonal, denoted ADV for adaptive DVAR. Then, (49)generalizes the simplest
DVAR-based forecast:

∆̃xT+1|T = γ, (50)

and is also similar to (22) when that equation is written as (for known in-sample parameters):

∆̂xT+1|T = γ +
(
αβ′xT −αµ

)
, (51)

but with the equilibrium correction in (22) replaced by forecast-error correction in (49). Alternatively,
combination leads to (46) above, which augments (51) by the last term in (49).

6 Empirical illustration of UK M1

The two ‘forecasting’ models of UK M1 in Hendry and Mizon (1993) and Hendry and Doornik (1994)
respectively illustrate several of these phenomena (see those papers for details of the models: other
closely related studies include Hendry, 1979, Hendry and Ericsson, 1991, Boswijk, 1992, Johansen,
1992, Paruolo, 1996 and Rahbek, Kongsted and Jørgensen, 1999). The data are quarterly, seasonally-
adjusted, time series over 1963(1)–1989(2), defined as:

M nominal M1,
I real total final expenditure (TFE) at 1985 prices,
P theTFE deflator,
Rla the three-month local authority interest rate,
Ro learning-adjusted own interest rate,
Rnet Rla − Ro.

The first model is based on using the competitive interest rateRla, and the second on the opportunity-
cost measureRnet appropriate after the Banking Act of 1984 legalized interest payments on chequing
accounts. To simplify the results, we first consider only themoney-demand model, then turn briefly to
system behaviour. In both cases, ‘forecasts’ are over the five years 1984(3)–1989(2), or subsets thereof.

6.1 Single-equation results

The first step is to illustrate that the Banking Act corresponded to an equilibrium-mean shift relative
to the model based onRla. The own rate,Ro has a mean of approximately 0.075 over the forecast
horizon, and a shift indicator1{t>1985(2)} times that mean closely approximates the actual time path of
that variable: see figure 2, panel a. Thus, subtracting0.075 × 1{t>1985(2)} from Rla is close toRnet

(denotedRc
la in figure 2b): it is clear why an intercept correction should perform well after 1985(4).

Next, over the forecast horizon, the moving average growth rate of real money shifted dramatically
relative to the recursively estimated historical mean growth rate (see figure 2c): this reflects both effects
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in ∇γ∗ −α∇µ∗, even if∇γ∗ = 0 so the ‘fundamental’ growth rate is unchanged. Since that observed
growth mimics the ‘missing ingredient’ in a univariate forecasting device, the second adaptation above
should be successful in that context. Finally, the estimateof the original equilibrium mean,̂µ based on
Rla is quite sensible (see figure 2d), and shows no signs of a shift, whereas̃µ based onRnet, does shift.
At first sight, that may seem counterintuitive, but it occursprecisely because the opportunity costs have
shifted dramatically, sôµ does not reflect that shift, thereby causing forecast failure. Consequently, real
money andRnet must co-break, as illustrated in Clements and Hendry (1999,Ch. 9).
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Figure 2 Effects of the 1984 Banking Act on UK M1 .

Figure 3a shows the dismal performance on 20 1-step forecasts of the Hendry and Mizon (1993)
model: almost none of the±2σ̂ error bars includes the outcome, and a large fall is forecastduring the
largest rise experienced historically, so the level is dramatically underestimated.

For comparison, the 20 1-step forecasts from the first difference of that original model are shown
in figure 3b: there is a very substantial improvement, with nosystematic under-forecasting, suggesting
that the first proposed adaptation can be effective in the face of equilibrium-mean shifts (all the panels
are on the same scale, so the corresponding increase in the interval forecasts is also clear).

Next, correcting the original model (i.e., witĥµ based onRla) by an estimate of the changed tran-
sient growth rate, namely (schematically):

∆xT+1|T − γ̃T = α̂
(
β̂
′
xT − µ̂

)
+ · · · ,

using:

γ̃T =
1

4

3∑

i=0

∆xT−i, (52)

is also effective, as shown in figure 3c, although it can be seen to be drifting off course at the end once
economic agents have adjusted to their new environment, andthe observed growth rate reverts toγ
(which no longer reflectsα∇µ∗).
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Figure 3 Forecasts of UK M1 adapting theRla-based model.
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Figure 4 Forecasts of UK M1 adapting theRnet-based model.

Finally, figure 3d records the IC adjusted forecasts over theshorter horizon from 1986(1) (so the
adjustment can be estimated): even so, it is the least successful of these three adaptations.

Figure 4a shows the good performance on 20 1-step forecasts of the ‘correct’ model (i.e., based
on Rnet). Since one cannot know whether a given model is robust to a break, the effects of the three
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adaptations applied to theRnet model are also worth investigating. Differencing the EqCM produces
similar forecasts to the EqCM itself as shown in figure 4b, butwith larger error bars; however, even
for a ‘correct specification’, the costs of that strategy do not seem to be too high. The same cannot be
said for the results obtained by correcting usingγ̃T in figure 4c, which confirms the anticipated poor
performance: the regressors already fully account for the increased growth, so that strategy is likely to
be useful only for univariate models. Finally, an IC is insignificant if added to the model usingRnet and
so has little impact on the forecasts beyond an increase in the error bars (see figure 4).

For comparison, forecasts based on the most naive device, the DDV, are shown in figure 5 panel
a. The DDV actually has a smaller mean error than the ‘correct’ model (−0.01% as against0.9%),
but a much larger standard deviation (2.25% against1.19%), so the benefits of causal information are
marked.4 The ADV forecasts (based on (49) withΛ = 0) usingγ̃T from (52), and shown in figure 5c,
are distinctly better than the DDV (RMSFE of 1.8% as against 2.25%). This is also true of the ADV
and DDV forecasts forRnet shown in figure 5 panels b and d (RMSFE of 1.5% as against 1.9%). Thus,
while double differencing is highly adaptive when a break occurs, the additional error variance at all
points seems to more than offset its advantage in comparisonto the smoother adaptation used here.
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Figure 5 DDV and ADV forecasts of UK M1.

6.2 System behaviour

The above are all essentially single-equation forecasts, although the DDV and ADV devices are un-
altered by being embedded in a system. In a system context, however, the break in the money-
demand equation in the first VEqCM based onRla becomes, in the second VEqCM, a shift in the
Rnet equation—which in turn could not be forecast accurately, ascan be seen in figure 6, panels a and
b (the outcomes forTFE and∆p are omitted).

4Subject to thecaveatsthat the former uses current-dated variables in its ‘forecasts’, and the error bars on the DDV graph
fail to correct for the negative residual serial correlation.
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Figure 6 System forecasts from two 4-variable VARs of UK M1.

Nevertheless, the adaptations generalize to the other equations of theses systems, and have corre-
sponding impacts, illustrated in figure 5 forRnet. As another example, when co-breaking is known, so
Rnet is the only equation for which an IC is required, the outcomesin figure 6, panels c and d, result:
Rnet is accurately forecast, with perceptible improvements in the interval forecasts for real money (and
TFE, though not shown). However, the ADV forRnet achieves a similarly outcome (RMSFE of 0.8%
for the IC as against 1.0% for the ADV over 1985(4)–1989(2)),but applicable over a longer forecast
horizon.

Forecasting volatility

Reconsider a GARCH(1,1) process whereϕ1 + ϕ2 < 1:

σ2
t = ϕ0 + ϕ1u

2
t−1 + ϕ2σ

2
t−1. (53)

The long-run variance isω = ϕ0/(1−ϕ1−ϕ2) > 0 which implies that (53) is an equilibrium-correction
model, and hence is not robust to shifts inω, but may be resilient to shifts inϕ1 or ϕ2 which leaveω
unaltered, as those only impact on ‘mean zero’ terms:

σ2
t = ω + ϕ1

(
u2

t−1 − σ2
t−1

)
+ (ϕ1 + ϕ2)

(
σ2

t−1 − ω
)
.

A forecast of next period’s volatility would use:

σ̂2
T+1|T = ω̂ + ϕ̂1

(
û2

T − σ̂2
T

)
+ (ϕ̂1 + ϕ̂2)

(
σ̂2

T − ω̂
)
. (54)

Then (54) confronts every problem noted above for forecastsof means: potential breaks inω, ϕ1, ϕ2,
mis-specification of the variance evolution (perhaps a different functional form), estimation uncertainty,
etc.
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The 1-step ahead forecast-error taxonomy takes the following form after a shift inϕ0, ϕ1, ϕ2 to ϕ∗
0,

ϕ∗
1, ϕ∗

2 atT to:
σ2

T+1 = ω∗ + ϕ∗
1

(
u2

T − σ2
T

)
+ (ϕ∗

1 + ϕ∗
2)

(
σ2

T − ω∗
)
,

so that letting the subscriptp denote the plim:

σ2
T+1 − σ̂2

T+1|T = (1 − (ϕ∗
1 + ϕ∗

2)) (ω∗ − ω) long-run mean shift, [1]

+ (1 − (ϕ̂1 + ϕ̂2)) (ω − ωp) long-run mean inconsistency, [2]

+ (1 − (ϕ̂1 + ϕ̂2)) (ωp − ω̂) long-run mean variability, [3]

+ (ϕ∗
1 − ϕ1)

(
u2

T − σ2
T

)
ϕ1 shift, [4]

+ (ϕ1 − ϕ1,p)
(
u2

T − σ2
T

)
ϕ1 inconsistency, [5]

+ (ϕ1,p − ϕ̂1)
(
u2

T − σ2
T

)
ϕ1 variability, [6]

+ϕ̂1

(
u2

T − ET

[
û2

T

])
impact inconsistency, [7]

+ϕ̂1

(
ET

[
û2

T

]
− û2

T

)
impact variability, [8]

+ [(ϕ∗
1 + ϕ∗

2) − (ϕ1 + ϕ2)]
(
σ2

T − ω
)

variance shift, [9]

+ [(ϕ1 + ϕ2) − (ϕ1,p + ϕ2,p)]
(
σ2

T − ω
)

variance inconsistency, [10]

+ [(ϕ1,p + ϕ2,p) − (ϕ̂1 + ϕ̂2)]
(
σ2

T − ω
)

variance variability, [11]

+ϕ̂2

(
σ2

T − ET

[
σ̂2

T

])
σ2

T inconsistency, [12]

+ϕ̂2

(
ET

[
σ̂2

T

]
− σ̂2

T

)
σ2

T variability, [13].

The first term is zero only if no shift occurs in the long-run variance and the second only if a consistent
in-sample estimate is obtained. However, the next four terms are zero on average, although the seventh
possibly is not. This pattern then repeats, since the next block of four terms again is zero on average,
with the penultimate term possibly non-zero, and the last zero on average. As with the earlier forecast
error taxonomy, shifts in the mean seem pernicious, whereasthose in the other parameters are much
less serious contributors to forecast failure in variances. Indeed, even assuming a correct in-sample
specification, so terms [2], [5], [7], [10], [12] all vanish,the main error components remain.

In practice,ϕ̂1 + ϕ̂2 is often close to unity, and̂ϕ0 is small. This makes the behaviour of (53)
also rather like a unit root in an AR(1) arising from unmodelled location shifts, even though the former
remains non-integrated for constant parameters when the latter does not. In any case, models like
(53) will miss jumps in volatility, but capture phases of quiescence and high volatility. Thus, consider
forecasting using the variance equivalent of∆2x̂T+1|T = 0, namely:

σ̃2
T+1|T = σ̂2

T . (55)

Then (55) extrapolates the latest volatility estimate, andso will track the main changes in volatility, as
well as constant variance periods, albeit noisely. All the earlier ‘tricks’ discussed above seem to apply
again when the main focus is on variance forecasting (e.g., smoothed estimates of̂σ2

T etc.), as against
interval forecasts, although related issues arise.

7 Conclusions

The properties of unpredictability of a random vector generated by a non-stationary process entail many
of the difficulties that confront forecasting. Since econometric systems incorporate inter-temporal causal
information representing inertial dynamics in the economy, they should have smaller prediction errors
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than purely extrapolative devices—but in practice often donot. Rather, there are 10 basic difficulties to
be circumvented to exploit any potential predictability, namely:
the composition of the DGP information setIt−∞;
howIt−∞ enters the DGPDyt

(yt|It−∞) (or for point forecasts, the form of the conditional expecta-
tion ft (It−∞));
howDyt

(yt|It−∞) (or ft (It−∞)) changes over time;
the use of a limited information setJt−∞ ⊂ It−∞;
the mappingDyt

(yt|It−∞) into Dyt
(yt|Jt−∞) inducinggt (Jt−∞) = Et [ft (It−∞) |Jt−∞];

howJT will enterDyT+h
(·|JT ) (or gT+h (JT )) for a forecast origin atT ;

approximatinggt (Jt−∞) by a functionψ (Jt−∞,θ) for some specification of the basic parametersθ;
measurement errors in̂Jt−1 for Jt−∞;
the estimation ofθ from in-sample datat = 1, . . . , T ;
and the multistep nature of most economic forecasting.
The first six are aspects of predictability in the DGP; the second four of the formulation of forecasting
models which seek to capture any predictability.

Two types of shift inft (It−∞) were distinguished, corresponding to mean-zero and location shifts
respectively. The fundamental problem does not seem to be incomplete informationper se: by construc-
tion, gt (Jt−∞) − ft (It−∞) has a zero mean, even for processes with breaks. However, notknowing
gt (Jt−∞) is problematic for the specification ofψ (Jt−∞,θ) ∀t; the use of in-sample estimates when
the process changes then compounds the difficulty.

Consequently, using a cointegrated linear dynamic system with breaks over the forecast horizon
as the illustrative DGP, three adaptations were considered. The first was differencing the in-sample
estimated DGP; the second was rapid updating of the estimated location in a growth representation;
and the third was forecast-error correction mechanisms (FErCMs) loosely based on EWMAs. All three
use representations that are knowingly mis-specified in-sample, and two use highly restricted choices
of Jt−∞: nevertheless, they all help avoid systematic forecast failure. The analysis also highlighted
the distinctly different role of the FErCM in EWMA (namely, to offset previous measurement errors)
and in ICs (to offset breaks), which required the opposite sign. A synthesis in which the former role is
combined with a different mechanism for adapting to location shifts has much to recommend it, and one
univariate approach was noted.

The empirical example of the behaviour of M1 in the UK following the Banking Act of 1984 illus-
trated the three adaptations in action, with the last approximated by intercept corrections. All behaved
as anticipated from the theory, and demonstrated the difficulty of out-performing ‘naive extrapolative
devices’ when these are adative to location shifts that are inherently inimical to econometric systems.
Overall, the outcomes suggest that, to retain causal information when the forecast-horizon ‘goodness’
of the model in use is unknown, model transformations may be the most reliable route of the three.
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