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Abstract

We revisit the concept of unpredictability to explore itspiinations for forecasting strategies
in a non-stationary world subject to structural breaks, ieh@odel and mechanism differ. Six
aspects of the role of unpredictability are distinguishaanpounding the four additional mistakes
most likely in estimated forecasting models. Structurads, rather than limited information,
are the key problem, exacerbated by conflicting requiresnentforecast-error corrections’. We
consider model transformations and corrections to redaecést-error biases, as usual at some
cost in increased forecast-error variances. The analydisstrated by an empirical application to

M1 in the UK.
Contents
1 Introduction . . . . . . ... e 2
2 Unpredictability: Areview and extension . . . . .. ... ... ... ..... 3
2.1 Prediction from a reduced informationset . . . . . . ... .. ... .. 5
2.11 Changes ininformationsets . . . . .. .. ... ... ..... 6
2.1.2 Increasing horizon . . . . .. ... ... ... L. 6
2.2 Non-stationarity . . . . . . . . . . . . .. . .. e 7
3 Implications for forecasting . . . . .. ... ... ... .. .. .. .o, 8
3.1 Taxonomy of error SQUrCes . . . . . . . . v v i i e e e 01
3.2 Congruent modelling for forecasting . . . . .. .. .. ... . .... 12
3.3 Diagnosingbreaks . . . .. ... .. .. . ... ... .. . 12
3.3.1 Co-breaking . . . .. ... ... 13
3.4 Potential improvements . . . . . . . . .. ... o 13
4 Acointegrated DGP . . . . . . .. 41
4.1 Locationshifts . . . .. ... ... .. ... .. 15
5 Adaptive devices . . . . . . . 15
5.1 Differencingthe VEQCM . . . . . . . . . . . . . . ... .. oo 15
5.1.1 Forecast-error variances . . . . . . . ... ... ... 16
5.2 Rapidupdating . . . .. .. .. .. . .. .. . e 19
5.3 Forecast-error based adaptation . . . . . ... ... ......... 20
53.1 The relation of EWMAandIC. . . . . . ... ... ... ... 21
5.3.2 Adapting EWMA for growth changes . . . . ... ... .. .. 21

“Preliminary and incomplete, prepared for the first ESF-EMiference: please do not cite without the author’s per-
mission. Financial support from the ESRC under grant RE3D8035, and helpful comments from Mike Clements, Neil
Ericsson, and Grayham Mizon, are all gratefully acknowéztg



6 Empirical illustration of UKM1 . . . . . . . . ... ... .. ... .. e 22
6.1 Single-equationresults . . . . .. . ... .. L 22
6.2 System behaviour . . . . ... 25
7 Conclusions . . . . . . . e 7 2
References . . . . . . . . e 28

1 Introduction

The historical track record of econometric systems is bitifréd with forecast failures, and their empir-
ical out-performance by ‘naive devices’: see, for examplany of the papers reprinted in Mills (1999).
At first sight, such an adverse outcome for econometric Bysils surprising: since they incorporate
inter-temporal causal information representing inedighamics in the economy, such models should
have smaller prediction errors than purely extrapolatigeices—but do not. In fact, discussions of
the problems confronting economic forecasting date froenetiarly history of econometrics: samster
alia, Persons (1924), Morgenstern (1928) and Marget (1929). xptaim such outcomes, Clements
and Hendry (1998, 1999) developed a theory of forecastinghém-stationary processes subject to
structural breaks, where the forecasting model differethfthe data generating mechanism (extended
from a theory implicitly based on the assumptions that thelehooincided with a constant-parameter
mechanism). They thereby accounted for the successes iamédaof various alternative forecasting
approaches, and helped explain the outcomes of forecastimpetitions (see e.g., Makridakis and
Hibon, 2000, Clements and Hendry, 2001a, and Fildes and20a2).

Following Clements and Hendry (1996), consifeobservationsX}. = (xj,...,xt) on a vector
random variable, from which to predict thé future valuesX%iIl{ = (XT+1,...,XT4+H). The joint
probability of the observed and futuke is thH (XY, 1lXo,0) wheref € © CRP is the parameter
vector, andXy denotes the initial conditions. Factorizing into conditdand marginal probabilities:

Dy, (Xkar | Xo,0) = Dyren (X%i}{ | X%,XO,H) x Dy1 (Xk|X0,0). (1)

Dyr+1 (-) is unknown, so must be derived frois (+), which requires the ‘basic assumption’ that:
T+H

‘The probability lawDx1 () of theT + H variables(xi,...,xT+5) is of such a type
that the specification dbx. (-) implies the complete specification B‘hn (-) and, there-
fore, OfDxF; (1) (Haavelmo, 1944, p.107: my notation).

+

This formulation highlights the major problems that needbéoconfronted for successful forecasting.
The form ofDX;r (-) and the value o8 in sample must be learned from the observed data, involving
problems of:specificationof the set of relevant variablgs }, measurememnf the xs, formulation of
the joint densit),DX;r (), modellingof the relationships, aneistimationof 6, all of which introduce un-
certainties, the baseline level of which is set bypgihepertiesof Dxz (-). When forecasting;)xﬁh ()
determines the ‘intrinsic’ uncertainty, rapidiyowingasH increases—especially fapn-stationarydata
(from stochastic trends etc.)—further increased bydmangesn the distribution functiorDXﬁIl{ (-)or
parameters thereof betwe&hand later (lack of time invariance). These ten italiciseaiés structured
their analysis of economic forecasting, but they emphedise importance of the last of these.

The complementary, ‘bottom up’ explanation proposed hig® ih the many steps between the
ability to predict a random variable at a point in time, ande€ast of the realizations of that variable
over a future horizon from a model based on an historical $amphis paper spells out those steps,



and demonstrates that many of the results on forecastingeiméhts and Hendry (1998, 1999) have a
foundation in the properties of unpredictability.

Having established foundations for their findings in thecapt of unpredictability, this paper draws
some implications for forecasting non-stationary proesassing incomplete (i.e., mis-specified) mod-
els. The objective of this analysis is to ascertain ways giémenting the strengths of so-called ‘naive’
methods in macro-econometric models, via a ‘forecastirgfesyy’ which uses a combination of their
‘causal’ information with a more ‘robust’ forecasting desi Such a combination could be either by ren-
dering the econometric system robust, or by modifying a sbdevice using an estimate of any likely
causal changes. This paper concerns the former: for ther,lattthe policy context, see Hendry and
Mizon (2000, 2003). Although combining forecasts has a Ipedigree (see, e.g., Bates and Granger,
1969, Diebold and Pauly, 1987, Clemen, 1989, Diebold anckpp996, Stock and Watson, 1999, and
Newbold and Harvey, 2002) and a theory for its success (saegér, 1989, and Hendry and Clements,
2004), we consider instead transformations of economg&stems that may improve their performance
in the face of structural breaks.

We first review the well-established concept of unpredititghin section 2 and the transformations
under which it is invariant (based on Hendry, 1997), witheasions of earlier results to non-stationary
processes. Then section 3 draws its implications for thedtation of forecasting devices. Section 4
specifies a cointegrated DGP subject to breaks, and secexarGines some adaptive devices which
might improve its robustness in forecasting. Section &itlates the ideas for the much-used empirical
example of the behaviour of UK M1. Finally, section 7 congsd

2 Unpredictability: A review and extension

A non-degenerate vector random variableis an unpredictable process with respect to an informa-
tion setZ,,_, over a period? if its conditional distributionD,, (v¢|Z,—~) equals its unconditional
DVt (Vt):

Dy, (Wt | Zu—00) =Dy, (vy) VteT. 2

Importantly, unpredictability is a property o in relation toZ,_, intrinsic tov¢, and not dependent
on any aspect of our knowledge thereof: this is one of the legs dpetween predictability, when (2) is
false, to ‘forecastability’. Note thaf may be a singleton (i.e{#}), and thatZ,_, always includes the
sigma-field generated by the past.qf

A necessary condition for (2) is that is unpredictable in mean (denotEg) and variance (denoted
V;) at each point ir{, so assuming the relevant moments exist:

Et [Vt | IU—OO] = Et [Vt] and Vt [Vt | Iu—oo] = Vt [Vt] . (3)

The former does not imply the latter (a predictable condd@lomean with a randomly heteroscedas-
tic variance), or vice versa (e.g., an autoregressive tiondi heteroscedastic-ARCH—process, as in
(7) below, affecting a martingale difference sequence)otighout, we will take the mean of the un-
predictable process to be zer®; [v¢] = 0 Vt. Since we will be concerned with the predictability of
functions ofvy andZ,_ ., such as (6) below, any mean otherwise present could betsdakiorthe latter.
Due to possible shifts in the underlying distributions,ttite information set available and all expecta-
tions operators must be time dated, which anyway clarifielsi+step prediction as iftt [V T1n|Z7]

for h > 1. The paper will focus on the first two moments in (3), rathemtlthe complete density in
(2), although extensions to the latter are feasible (see By and Wallis, 2000): however, for normal
distributions, (3) suffices.



Unpredictability is only invariant under non-singular ¢emporaneous transforms: inter-temporal
transforms must affect predictability (so no unique measiiforecast accuracy exists: see e.g., Leitch
and Tanner, 1991, Clements and Hendry, 1993, and Grangétesztan, 2000a, 2000b). Predictability
therefore requires combinations with_ ., as for example:

Yt = ¢ (Tu-oo, Vt) (4)

soy depends on both the information set and the innovation coego Then:

Dy, (¥t | Zu-o0) # Dy, (yt) Vt€T. (5)

Two special cases of (4) are probably the most relevant émafbyrin economics, namely (after appro-
priate data transformations, such as logs):

ye =i (Zu-oo) + 4 (6)

and:
Yt =Vt O @¢ (Zu-oo) (7)

where® denotes element by element multiplication, so that= v; +¢; + (Z,—~). Combinations and
generalizations of these are clearly feasible and are alsmpally relevant.
In (6), y¢ is predictable in mean evenu is not as:

E: [Yt | quoo] =f; (quoo) # Et [Yt] )

in general. Thus, the ‘events’ which will help predigt in (6) must already have happened, and a fore-
caster ‘merely’ needs to ascertain wifigtZ ,_,) comprises. The dependenceyqfonZ ., could be
indirect (e.g., own lags may ‘capture’ actual past causesgsystematic correlations over the relevant
horizon could suffice for forecasting — if not for policy. Hewer, such stable correlations are unlikely
in economic time series (a point made by Koopmans, 1937). cbheerse to (6) in linear models is
well known in terms of the prediction decomposition (sedia¢ractorization) of the likelihood (see
e.g., Schweppe, 1965): if a random variapleis predictable front,_.., as in (6), then it can be de-
composed into two orthogonal components, one of which isedigtable oz, (i.e., v¢ here), so

is a mean innovation. Since:

Vilys | Zu—oo] < Vilyt] Whenfy (Zy_ o) #0 (8)

predictability ensures a variance reduction, consistetiit ¢ nomenclature, since unpredictability en-
tails equality from (8)—the ‘smaller’ the conditional varice matrix, the less uncertain is the prediction
of y¢ fromZ,_.

Althoughy; remains unpredictable in mean in (7):

Et [yt | Zu—oo) = Et [V © 0t (Zu—oo) | Tu—oo] = O,
it is predictable in variance because:
Et [Yt}’; | Iu—oo] =E [VtV/t OX’-H (Iu—oo) Pt (IU—OO)/ | Iu—oo] = Qut OX’-H (Iu—oo) Pt (IU—oo)/ .

A well known special case of (7) of considerable relevancinancial markets is whefi,_ . is the
sigma-field generated by the pastyqf For a scalay; with constant? andy (-) = o, this yields:

Yt = V0,



so that (G)ARCH processes are generated by (see e.g., H9@2, and Bollerslev, 1986: Shephard,
1996, provides an excellent overview):

p p
oF =00+ Y P+ > PoriTij- 9)
i=1 j=1

Alternatively, ¢ (1) = exp (0:/2) leads to stochastic volatility (here as a first-order precege e.g.,
Taylor, 1986, Kim, Shephard and Chib, 1998 and again, Shdph896):

Ti41 = Yo + P10 + 1. (10)
In both classes of model (9) and (10), predictability of tlagiance can be important in its own right
(e.g., pricing options as in Melino and Turnbull, 1990), or deriving appropriate forecast intervals.
2.1 Prediction from a reduced information set

Predictability is obviously relative to the information ssed—when7 ., C Z,,_ itis possible that:

Dllt (ut | ju—oo) = Dllt (ut) yet Dllt (ut | IU—OO) 7& Dllt (ut) : (11)

This result helps underpin both general-to-specific modkction and the related use of congruence

as a basis for econometric modelling (see e.g., Hendry, ,188& Bontemps and Mizon, 2003). In

terms of the former, less is learned based’n ., thanZ,, ., and the variance (where it exists) of the

unpredictable component is unnecessarily large. In tefrttsedatter, a later investigator may discover

additional information irZ,_ ., beyondJ,,_~, which explains part of a previously unpredictable error.
Given the information set7,_ ., C Z,,—~ When the process to be predictedis= f; (Z,,_ ) + 1t

as in (6), less accurate predictions will result, but thel}y remain unbiased. Sindg; [v¢|Z,— ] = O:

E: [Vt | ju—oo] =0,

so that:
E: [Yt | jl_l—oo] =E [ft (Iu—oo) | jl_l—oo] = 8t (ju—oo)v

say. Lete; = yt — gt (JL—), then, providing7,,_ ., is a proper information set containing the history
of the process:
E: [et | jl_l—oo] =0,

SOe¢ is @ mean innovation with respect 0, ... However, a®y = vy + £y (Zu—o0) — 8t (J—0):
Et[ee | Zu—oo] = £t (Zu—o0) — Bt [8¢ (T—o0) | Tu—oo] = ft (Ti-0) — 8t (JU-oc) # 0.
As a consequence of this failure @f to be an innovation with respect 1o, .
Vi [eg] > Vi v,

so less accurate predictions will result. Neverthelest, fhedictions remain unbiased on the reduced
information set suggests that, by itself, incomplete imfation is not fatal to the forecasting enterprise.



2.1.1 Changes in information sets

Similarly, predictability cannot increase as the horizeovgs for a fixed evenyr based orZ_ for
h=1,2,...,H, since the information sets form a decreasing nested sequging back in time:

I1-1 CIrHtoo C - CI7 . (12)

Conversely, disaggregating componentsZgf , into their elements cannot lower predictability of a
given aggregate’r, where such disaggregation may be across space (e.g.nsegican economy),
variables (such as sub-indices of a price measure), or Botfther, since a lower frequency is a subset
of a higher, and unpredictability is not in general invatismthe data frequency, then (11) ensures that
temporal disaggregation cannot lower the predictabilitghe same entityr (data frequency issues
will reappear in section 3).

These attributes sustain general models, and so may pravigienal basis for including as much
information as possible, being potentially consistenhwitany-variable ‘factor forecasting’ (see e.g.
Stock and Watson, 1999, and Forni, Hallin, Lippi and Reigh#000), and with the benefits claimed in
the ‘pooling of forecasts’ literature (e.g., Clemen, 1988d Hendry and Clements, 2004, for a recent
theory). Although such results run strongly counter to thmon finding in forecasting competitions
that ‘simple models do best’ (see e.g., Makridakis and Hjl2®®0, Allen and Fildes, 2001, and Fildes
and Ord, 2002), Clements and Hendry (2001a) suggest thatisity is confounded with robustness,
and there remains a large gap between predictability amtdsting, an issue addressed below.

In all these caseDy...,, (yT+n/-) remains the target of interest, affigh_, is ‘decomposed’, in that
additional content is added to the information set. A ddfér but related, form of disaggregation is of
the target variablgr into its componentg; t. Consider a scalagy = w1 ry1,7+ (1 — wi,r) y2, 7 Say.

It may be thought that, when thg r depend in different ways on the general informationZet .,
predictability could be improved by disaggregation. HoaeletE+ [y; 1|77 o] = 5§,TIT_<>O then:

2 2
Er Iy | Zr—oo) = > WiTET it | Zr—oo] = > Wit85 nT7—00 = MpZLr—oo
i=1 i=1
say, so nothing is gained unless the previous situation aeasedl;_, is attained. Indeed, if the
w; 7 change and thégyT do not, forecasting the aggregate could well be easier. ,‘Tthaskey issue in
(say) inflation prediction is not predicting the componemtg changes, but including those elements in
7, rather than restricting s+ _ ., to lags of aggregate inflation.

2.1.2 Increasing horizon

The obverse of the horizon growing for a fixed evertis that the information set is fixed &t (say),
and we consider predictability as the horizon increasesfor, ash = 1,2,..., H. If a variable is
unpredictable according to (2) (a ‘1-step’ definition),ttiemust remain unpredictable as the horizon
increase¥(T'+h) € T (i.e., excluding changes in predictability as consideretthé next section): this
again follows from (11). Equally, ‘looking back’ from timg + h, the available information sets form
a decreasing, nested sequence as in (12). Beyond thesewatieimplications, little more can be said
in general once densities can change over time. For exaariieipating the next section, consider the
non-stationary process:

yr = pt +t e, where ¢, ~ IN [0, US] , (13)



where we wish to compare the predictabilityaf, , with that ofyp,,_1 givenZy for knownp. Then:
Vrinlyten [ Z7] = Evyn [(YT—i-h —p(T+ h))ﬂ

= Eryn [((T +h)7 €T+h)2]
= (T+h)?02 <Vriho1lyten-1 | Z7]. (14)

The inequality in (14) is strict, angr., becomes systematically more predictable frémash in-
creases. Although DGPs like (13) may be unrealistic, speagsumptions (such as stationarity and
ergodicity or mixing) are needed for stronger implicatio®r example, in a dynamic system which
induces error accumulation, where error variances do notdse systematically as time passes (e.g.,
being drawn from a mixing process), then predictabilitysfals the horizon increases since additional
unpredictable components will accrue.

2.2 Non-stationarity

In non-stationary processes, unpredictability is alsatngd to the historical time period considered
(which is why the notation above allowed for possibly chaggiensities), since it is then possible that:

Dut (ut ‘ quoo) 7é Dut (ut) for t = 1, . ,T,

yet:
Dut (ut |Iu700) = Dut (ut) for t=T+4+1,...,T+H,

orvice versaMore generally, the extent of any degree of predictabdap change over time, especially
in a social science like economics (e.g., a move from fixedotithg exchange rates).

A major source of non-stationarity in economics derivesnftbe presence of unit roots. However,
these can be ‘removed’ for the purposes of the theoreticlysis by considering suitably differenced
or cointegrated combinations of variables, and that israsslubelow: section 4 considers the relevant
transformations in detail for a vector autoregression. @frse, predictability is thereby changed—
a random walk is highly predictable in levels but has unptadhle changes—but it is convenient to
consider suct(0) transformations.

In terms off; (Z,,_~) in (6), two important cases of change can now be distingdishethe first,

f; (-) alters tofy 11 (+), sofe4+1 (+) # fi (+), but the resulting mean of tHgy¢ } process does not change:

Eer1 [yt+1] = Et [ye) - (15)

In the face of such a change, interval predictions may berdifft, but their mean will be unaltered. In
the second case, (15) is violated, so there is a ‘locatidii sHiich alters the mean:

Eer1 [yer1] # Eelye] -

Such changes over time are unproblematic for the conceptnpfedictability, sincey:,; —
fitj (Iuﬂ,oo) is unpredictable for both periods = 0,1. The practical difficulties, however, for
the forecaster may be immense, an issue to which we now turn.



3 Implications for forecasting

It is clear that one cannot forecast the unpredictable bytsrunconditional mean, but there may be
hope of forecasting predictable events. To summarize jgedaility of a random variable likg¢ in (6)
from Z,,_, has six distinct aspects:

1. the composition of | ;

howZ,,_ influencesDy, (- | Z,,—«) (or specifically,f; (Z,,—));

howDy, (- | Zi,—) (or specificallyf; (Z,,—~)) changes over time;

the use of the limited information sgt,_ o C Z\—oo V¢;

the mapping oDy, (- | Z\,—) iNto Dy, (- | JL—oo) (0r specifically,f; (Zi,— ) iNto g¢ (J1—-0));
how 77 will enterDy.. ., (- | 1) (or fryn (J7))-

o0k whN

Forecasts of .1, from a forecast origin ai’ are made using the modgt = v (J,_,0) based
on the limited information set,_~, with conditional expectatioft [y| /-] = &t (Ju-0). The
postulated parameters (or indexes of the assumed digbrifp@ must be estimated & using a sample

t =1,...,T of observed information, denoted @_1. Doing so therefore introduces four more steps:

the approximation o (J,—~) by a functiony (7,—, 0) Vt;
measurement errors betweén_., and the observed?t,l Vt;
estimation ob in ¢(ft,1, 0) from in-sample data?T;

10. forecasting/r.y from lbh(jT, ET).

© x© N

We consider these ten aspects in turn.

Concerning 1., although knowledge of the compositiod,ef ., will never be available for such a
complicated entity as an economy, any hope of success indstiag with macro-econometric models
requires that they actually do embody inertial responsesns€quentlyZ, ., needs to have value
for predicting the future evolution of the variables to beefmast, either from a causal or systematic
correlational basis. Evidence on this requirement haopmrfbeen based on usigh,_ .., but seems
clear-cut in two areas. First, there is a well-known rangessentially unpredictable financial variables,
including changes in exchange raté&s, long-term interest rate$;,, commodity prices’. and equity
prices, P.: if any of these could be accurately forecast for a futureogera ‘money machine’ could
be created, which in turn would alter the outcom@hile these are all key prices in decision taking,
forward and future markets have evolved to help offset thlesrof changes: unfortunately, there is yet
little evidence supporting the efficacy of those marketeie¢asting the associated outcomes. Secondly,
production processes indubitably take time, so laggedioeecseem the norm on the physical side of
the economy. Thus, predictability does not seem to be pitedlif Z, ., was known.

Learning precisely how,_ .. is relevant (aspect 2., albeit vjﬁ,l) has been the main focus of
macro-econometric modelling, thereby inducing major tguments in that discipline, particularly in
recent years as various forms of non-stationarity have beedelled. Even so, a lack of well-based
empirical equation specifications, past changes in dataittesithat remain poorly understood, mis-
measured—and sometimes missing—data series (espediflggaencies higher than quarterly), and
the present limitations of model selection tools to (neimgdr models entail that much remains to be
achieved at the technical frontier.

Changes irf; (Z,—~,) over time (3.) have been discussed above, and our earlEardshas clari-
fied the impacts on forecasting of shifts in its mean values.

A “fixed-point’ analysis (like that proposed by Marget, 1928 possible, but seems unlikely for phenomena prone to
bubbles. However, transactions costs allow some predlityab



Turning to aspect 4., economic theory is the main vehicleHerspecification of the information
setJl,—, partly supported by empirical studies. Any modeDgf; (-|-) embodiesg; () notf; (-), but
section 2.1 showed that models with mean innovation erraudcstill be developed. Thus, incomplete
information about the ‘causal’ factors is not by itself phatic, providingg (7o) is known.

Unfortunately, mappindi; (Z_,—.) into its conditional expectatiogy (7, ) (aspect 5.) is not un-
der the investigator’s control beyond the choicg/of ... Any changes i (Z,—~,) over time will have
indirect effects org (J,—«) and make interpreting and modelling these shifts difficNkvertheless,
the additional mistakes that arise from this mapping aetilikhovation errors.

However, even if 1.-5. could be overcome in considerablesnrea aspect 6. highlights that re-
lationships can change in the future, perhaps dramatitagction 2.2 distinguished between ‘mean-
zero’ and ‘location’ shifts iny¢, the most pernicious breaks being location shifts (e.gficoed in the
forecasting context by the taxonomy of forecast errors en@&nts and Hendry, 1998, and by a Monte
Carlo in Hendry, 2000). Considér = 1, where the focus is on the medfy 1 [yT+1|J7], which
is the integral over the DGP distribution at tirfie+ 1 conditional on a reduced information s&t,
and hence is unknown &. Then averaging across alternative choices of the cont#ntg- could
provide improved forecasts relative to any single methad, (better approximate the integral) when the
distribution changes from timé, and those choices reflect different sources of informai@icourse,
unanticipated breaks that occur after forecasts have ba@yuaced cannot be offset: the precise form
of Dy....,, (+|-) is not knowable till imel" + h has been reached. However, after tifhe- i, Dy...., (-|-)
becomes an in-sample density, so thereafter breaks cowltidat.

Aspect 7., appears to be the central difficulg: () is not known. Firstg: (J—~) €Xperiences
derived rather than direct breaks from changed;if¥ ,_..), making model formulation and espe-
cially selection hard. Secondly, empirical modellers peré approximates; (7,—) by a function
Y (JL—c0, 8), Where the formulation o is intended to incorporate the effects of past breaks: most
‘time-varying coefficient’, regime-switching, and nomdiar models are members of this class. Thirdly,
while ‘modelling breaks’ may be possible for historical Big a location shift at, or very near, the fore-
cast origin may not be known to the forecaster; and even fknonay have effects that are difficult to
discern, and impossible to model with the limited inforroatavailable.

Measurement errors, aspect 8., almost always arise, daldeapbservations are inevitably inac-
curate. Although these may bias estimated coefficients antpound the modelling difficulties, by
themselves, measurement errors do not imply inaccuragedsts relative to the measured outcomes.
However, in dynamic models, measurement errors inducetimegaoving-average residuals. Thus,
a potential incompatibility arises: differencing to atigate systematic mis-specification or a location
shift will exacerbate a negative moving average. Converadbrecast-error correction can remove unit
roots and hence lose robustness to breaks. This new resmisde lie at the heart of practical forecast-
ing problems, and may explain the many cases where (e.¢eyathfing and intercept corrections have
performed badly.

Concerning aspect 9., the ‘averaging’ of historical datestimated by §T imparts additional inertia
in the model relative to the data, as well as increased wingrt More importantly, there are probably
estimation biases from not fully capturing all past breaklsich would affect deterministic terms.

Finally, concerning aspect 10., multistep forecasts hheeadded difficulty of cumulative errors
although these are no more than would arise in the contexedigability.

2sir Alec Cairncross (1969) suggested the example of fotiecas/K GNP in 1940 for 1941—a completely different
outcome would have materialized had an invasion occurrdte récent theoretical analyses discussed above have in fact
helped to formalize many of the issues he raised.
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Not adapting to location breaks induces systematic misefasting, usually resulting in forecast
failure. To thrive competitively, forecasting models needavoid that fate, as there are many devices
that track (with a lag) and hence are robust to such breaks tray have occurred. Section 5 con-
siders several such devices. Before that, however, sulmset1 formalizes these possible errors in a
taxonomy to seek pointers for attenuation of their advetssequences.

3.1 Taxonomy of error sources

To forecastyr.n, the in-sample model:(jT, GT) is developed for some specification of the parame-
ters@ cRR estimated a9T from the full-sample |nformat|on7T whereJ —oo C 7, ,—o IS the available
information set at each point in time, measured]@yl such that:

Fronr = ¥ (Jr.01). (16)

There are many ways to formulate the functipp (-) in (16) for a dynamic modap (-), including ‘pow-
ering up’ and multi-step estimation. Below, only the fornmeconsidered (on the latter, see Bhansali,
1996, 1997, 1999, Clements and Hendry, 1996, and ChevilhdnHendry, 2002inter alia), but this
section allows for any possibility. Conversely, we focustloa first two moments here rather than the
complete forecast distribution.

The key steps that determine the forecast error:

Urip7 = YT+h — YT+hT = fr1h (Z71 (o) + VT1h — ¥u(JT, O1),

are: the composition of the DGP information seéfs_.,; how eachZ, ., enters the DGP
Dy, (¥t|Zu—-o0); how Dy, (yt|Zu-) changes over time in-sample; the limited information set
Ju—oo € Ti—o0o; the mapping ofDy, (yt|Zu—o0) iNt0 Dy, (yt|J—o0) inducing gt (Ji—oe) =
Et [ft (Zu—oo) |TL—oc]; how J7 will enter Dy,...., (-|J7) for a forecast origin af’; the approximiltion
of g¢ (Ju—~) by the modeh) (7,-,8); the specification oB; measurement errors in each_;
for J._- (which may themselves change over time); and the estimatiéhby §T, which together
determine the properties af,, (-). The first six are aspects of predictability in the DGP; theose
four of the formulation of forecasting models which seekaptare that predictability.

From such a formulationyiz, /7 can be decomposed into errors which derive from each of the
main reduction or transformation steps, namely:

Uripr = Vosn+ [foen (Zri(-oo) — fron (Z7)] + [frion (Z7) — gran (I7)] + (8140 (I7) — g4 (T7)]
+ [grsnr (1) = u (T7,0)] + (¥ (F7,60) = ¥u(Tr.0)] + [u(Tr.0) — wu(Tr.0n)]  (@7)

wheregy_ 1 (J7) is the ‘extrapolated’ value ofr 1, (J7) for constant forecast-origin parameters
in g (). While decompositions such as (17) are not unique, they piajpoint the potential sources of
forecast failure, and which components are less likely teteapernicious effect on forecast accuracy.
Taking the seven right-hand side terms in (17) in turn, th& four are unknowable (in the ab-
sence of a crystal ball), being dependent on the future mmvy 1, future information accrual,
the change to the limited information set, and post-foriecdgin changes in the induced process: all
4 are, therefore, unpredictable, will affect the foreastr variance, and may influence its mean. The
first, second and third terms have expected values of zerpréger information setg and 7, so
will not affect Et_.y, [ﬁT+h|T|jT]. Consequently, a lack of knowledge of the complete infoiomat
setZ is not an explanation for forecast failure, a general resulmportance below, although using
more (relevant) information will reduce the variance comgt fromfr.y, (Z7) — gran (J7). The
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second term is only present whén> 1, but then represents the cumulation of the innovation grror
{vry;}forj =1,...,h — 1. However, the fourth term is a potential source of forecastife when
g1 +h (J7) # g4 (J7)- That requires an induced location shift to be non-zero @mae, rather
than just structural change in general. Conversely, thid term would be zero under constant parame-
ters.

The next three terms depend on the goodness of the modekftwdal DGPD,, . (yr|J7) and on
data accuracy, both in-sample and at the forecast origiweglisis the choice of estimator. Specifically,
the fifth is a function of the adequacy of the model, the siXtthe data accuracy &t, and the last on
the properties of the estimat@@ for 8 when the observed data are used. Thus, the fifth term would
be zero for a correctly specified model, the sixth for aceudata, but the seventh only in an infinite
sample, hence the focus in many derivations of forecaet-encertainties on the impacts of parameter
estimation and innovation error variances.

The 1-step ahead error from the forecasting mggel; = v, (Jr, O1) iSuri1 = yT41 — Y141
Thenur.; can be decomposed into six basic sources of mistakes (asitharfahead errors):

ury1 = Vry1 DGP innovation error
+ frp1(Zr) — gre1 (J7) incomplete information
+ grs1 (JI7) — 87 (Jr) induced change
+ gr(Jr) — ¢, (J7,0) approximation reduction
+ Y, (J71,0) - wl(fT, 0) measurement error
+ Y, (fT, 0) — (jT,gT) estimation uncertainty

We consider these in turn.

Sincevt1 is aninnovation against the DGP information &gt nothing will reduce its uncertainty.
Nevertheless, the intrinsic propertiesiof 1 matter greatly, specifically its variance, and any unpre-
dictable changes in its distribution. The baseline acqumda forecast cannot exceed that inherited
from the DGP innovation error.

There are many reasons why information available to thec&mter is incomplete relative to that
underlying the behaviour of the DGP. For example, impontaniables may not be known, and even if
known, may not be measured. Either of these mdkea subset off, although the first (excluding
relevant information) tends to be the most emphasised. é&wsrsin section 2.1, incomplete information
increases forecast uncertainty over any inherent ungeddiity, but by construction:

gr+1 (J7) = Erqa [fra (Z7) | I7],

S0, no additional biases result from this source, even wheakis often occur.

Rather, the problems posed by breaks manifest themsel#es vext termgr1 (J7) — g1 (J7):
sub-section 3.3 below addresses their detection. In-garitpé often possible to ascertain that a break
has occurred, and at worst develop suitable indicator Maseto offset it, but the real difficulties derive
from breaks at, or very near, the forecast origin. Sub-se@i4 considers possible remedies: here we
note that ifAgr1 (J7) has a non-zero mean, either an additional intercept (n&rdept correction,
denoted IC), or further differencing will remove that mearoe

There will also usually be mis-specifications due to the fdation of bothe (-) and@ as approx-
imations togr (J7). For example, linear approximations to non-linear respsngill show up here,
as will dynamic mis-specification- assumes all earlier values are available, but models afipnse
short lag lengths). If the effect is systematic, then an I@itierencing will again reduce its impact;
however the required sign may be incompatible with the previcase.
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Even if all variables known to be relevant are measured, bsermvations available may be inaccurate
relative to the DGP ‘forces’. A distinction from the case gtkiding relevant information is useful, as
it matters what the source is: measurement errors in dynamaels tend to induce negative moving
average residuals, whereas omitted variables usuallyteadsitive autoregressive residuals. Thus,
again a potential incompatibility arises: differencindl\wkacerbate a negative moving average, and an
IC may need the opposite sign to that for a break.

Finally, estimation uncertainty arising from usiﬁ@ in place of@ can compound the systematic
effects of breaks wheaT adjusts slowly to changes induceddn

When models are mis-specified by usifig_.. C Z,,—~, for a world whereZ ;. enters the den-
sity in changing ways over time, forecasting theory defvienplications that are remarkably different
from the theorems that hold for constant processes as thmagndiscussion in Hendry and Clements
(2003) emphasises. We can now see a basis for such resulie gutf between predictability and
empirical forecasting highlighted by the above taxonomy.

3.2 Congruent modelling for forecasting

Given the taxonomy, what is role for orthogonalised, paosiilous encompassing, congruent models?
Eight benefits are potentially available, even in the foséing context, and the need for such a model
in the policy context is clear.
1. Rigorous in-sample modelling helps detect and therebidaaquilibrium-mean shifts which would
otherwise distort forecasts.
2. Such models deliver the smallest variance for the innavatror defined on the available information
set, and hence offer one measure of the ‘best approximatart* ).
3. Itis important to remove irrelevant variables which ntighffer breaks over the forecast horizon (see
e.g., Clements and Hendry, 2002).
4. The best estimates of the model's parameters will beuadé over periods when no breaks occur,
and thereby reduce forecast-error variances.
5. An orthogonalised and parsimonious model will avoid gdaratio of the largest to smallest eigen-
value of the second-moment matrix, which can have a dettahe&ffect on forecast-error variances
when second moments alter, even for constant parametdrs forecasting model.
6. A dominant parsimonious congruent model offers betteletstanding of the economic process by
being more interpretable.
7. Such a model also sustains a progressive research gteatdgpffers a framework for interpreting
forecast failure.

Nevertheless, how such a model is used in the forecast paisodnatters and is discussed below.

3.3 Diagnosing breaks

A problem for the forecaster hidden in the above formulatsomletermining that there has been a break.
First, data at or near the forecast origin are always lessmedsured than more mature vintages, and
some may be missing. Thus, a recent forecast error may réfilgica data mistake, and treating it
as a location shift in the economy could induce systematiectst errors in later periods. Secondly,
a model which is mis-specified for the underlying processhsas a linear autoregression fitted to
a regime-switching DGP, may suggest breaks have occurresh Wiey have not. Then, ‘solutions’
such as additional differencing or intercept correctiol@s) need not be appropriate. Thirdly, even
when a break has occurred in some part of a model, its effésgw/leere depend on how well both the
relevant equations and their links are specified: UK M1 bepravides an example where only the
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opportunity cost is mis-forecast in one version of the moptat real money is in another. Fourthly,
sudden changes to data (e.g., in observed money growth nated not entail a break in the associated
equation of the model: UK M1 again highlights this. Thus hwitt knowing how well specified a model
is under recently changed conditions, data movements @mnesufficient to guide the detection of
breaks. Unfortunately, therefore, only recent forecastrerare useful for diagnosing change relative to
a model, highlighting the importance of distinguishing iéidld from innovation errors.

3.3.1 Co-breaking

On the other hand, co-breaking of a subset of relations dweefdrecast horizon would be valuable
because such variables would move in tandem as a group.ujlthiorecasting the remaining variables
would still be problematic, one would not need ICs for thebceaking equations, which would improve
the efficiency of the forecasts. The UK M1 system also illatsts this aspect, as an IC is needed in only
one equation.

Moreover, lagged co-breaking is invaluable. A break in agima process, which affects the vari-
able to be forecast with a lag, does not induce forecastéailu

3.4 Potential improvements
A reduction in the seriousness of forecast failure coulddieexed by:

(a) breaks being sufficiently infrequent to ignore;
(b) aforecasting system being invariant to breaks;
(c) an investigator forecasting breaks; or

(d) forecasts adapting rapidly to breaks that occur.

All four possibilities merit consideratioh.

(a) relates to the second role of data frequency noted altidweaks occur erratically over time and
across variables, but with an average of oncerpgrars per variable (wherecould be less than unity,
but seems larger in practice) then on (e.g.) weekly datakisreccur once péi2r observations. While
the impact of any break in a dynamic system takes time to ritgadhll effect, and high-frequency data
are often noisy, nevertheless on such data there will be rparigds of ‘normal’ behaviour between
breaks during which ‘causal’ models should perform wels(asing past breaks have been successfully
modelled). Conversely, breaks will be relatively frequentannual data (roughly 15% of the time for
GDP since 1880 in the UK: see Clements and Hendry, 2001b)lyses of other series for breaks to
ascertain their size and latency distributions would béuliseerhaps using robust univariate devices as
the baseline against which to determine the existence angiof breaks.

When the ‘target’ variablgr 1 to be forecast is, say, annual inflation, then ‘solution’i¢ahfeasi-
ble: that selection entails the choice of data frequencyvéder, the frequency need not be the same for
Jr forecasting annual changes from quarterly data is comnsamce predictability cannot fall with
a larger information set, an implication is to use the higlfiexjuency, and the largest set, irrespective
of the ‘target’ (e.g., hourly data even if annual GNP grovgitd be forecast). Although this is usually
impractical given the limited sample periods available iacno-economics, and the lack of collection
of high-frequency data on many variables of interest, tmgiication also merits exploration.

(b) unfortunately seems unlikely, and has not happenedridatly. But it is important to clarify the
reason why (b) is unlikely to occur. It is not because automgsrequations are necessarily scarce, but

®Averaging a set of forecasts is shown in Hendry and Clem@@84) to improve forecasting when at least one (different)
method responds to each break.
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because the weakest link in the system determines the beatabme. For example, consider the oil
crisis in the mid 1970s: models which excluded oil prices Maertainly have mis-forecast inflation,
and experienced ‘breaks’—but even models with oil pricesld/dave suffered forecast failure unless
they could have forecast the oil crisis itself. After ther@yéowever, a distinction emerges: the former
would still suffer serious mis-fitting (probably adaptediochanges in estimated coefficients given the
propensity to use least squares estimation which seeksltiweehe largest errors), whereas the latter
would not for the inflation equation, but still would for itd price equation. ‘Explaining’ the latter by
building a model of oil supply would push the problem downyelabut at some stage, an unanticipated
jump is left: a non-linear process—or even an indicatorHd/oemove the misfiex postbut neither need
help to forecast the next jump.

(c) essentially requires a crystal ball that can foreseming changes. In some cases, however, this may
be possible. For example, related situations may have @tpreviously, allowing a model to be built
of the ‘change’ process itself (though that too could chngegime-switching models are one attempt
to do so for states that often change and are partly prediéctthe conditional probability of the
state differs from the unconditional. To date, their fostizey performance has not proved spectacular,
even against univariate predictors, partly because thagdiof the switch remains somewhat elusive—
albeit crucial to their accuracy. Another possibility iatllthough breaks are relatively rare, they have
discernible precursors, either leading indicators or @a@s is being discovered in volcanology. Here,
more detailed studies of evolving breaks are merited.

(d) is more easily implemented, as there many forecastimre that are robust to various forms
of break. Notice the key difference from (c): here adapigbit after the event, improvingx post
tracking and thereby avoiding systematic forecast fajlutgereas (c) sought to improve predictability.
As emphasized by Clements and Hendry (1998, 1999), knowirgainple causal relations need not
deliver ‘better’ forecasts (on some measures) than those dievices where no causal variables are used.
Thus, it seems crucial to embed macro-econometric model$arecasting strategy, where progressive
research is essential to unravel (b) and (c), and adapyaditer shifts is the key to mitigating (d).

4 A cointegrated DGP

Consider a first-order VAR for simplicity, where the vectdrrovariables of interest is denoted Ry,
and its DGP is:
xt =T+ Yx¢_1 + €¢ Where ¢ ~ IN, [0, Q] . (18)

Y is ann x n matrix of coefficients ana is ann dimensional vector of constant terms. The specifi-
cation in (18) is assumed constant in-sample, and the syistéaken to bd (1), satisfying ther < n
cointegration relations:

YT =1,+a8. (29)

o andg aren x r full-rank matrices, no roots di — YL| = 0 lie inside unit circle (¥z; = x;_),
anda/, Y3 is full rank, wherea; and/3, are full column rank: x (n — r) matrices, witha'o | =
B3, = 0. Then (18) is reparameterized as a vector equilibriumemtion model (VEqCM):

Axi =T+ af'xi_1 + €. (20)
Both Ax; and3'x; arel(0) but may have non-zero means. Let:

e ap (21)



15

then:

(Axy —v) =« (B'xt_l - ;1,) + €. (22)
The variables grow at the ralAx;] = v with 3+ = 0; and whend'« is non-singular, the long-run
equilibrium is:

E [B,Xt] = H. (23)

Thus, in (22), botAx; and3'x; are expressed as deviations about their means. Noteytisai x 1
subject tor restrictions, ande is r x 1, leavingn unrestricted intercepts in total. Als9, o andyu are
assumed to be variation free, although in principlegould depend ory: see Hendry and von Ungern-

Sternberg (1981). Thefr, Y) are not variation free, as seems reasonable when, 3 andy are the
‘deep’ parameters: for a more extensive analysis, see Qismaad Hendry (1996).

4.1 Location shifts

The shift of interest here ¥ p* = pu* — . Then:

Axri1 =7+ a (BxT — p*) + eria (24)
so from (24):
Axri1 =7+ a(B'xr — p) + ey —avVy' (25)
or:
Axri1 = Axpiyr — V' (26)

The first right-hand side term in (26) (nameﬁcTH‘T) is the constant-parameter forecastofr_ 1;
the second is the shift with:

E AXT_|_1 — AXT+1|T = —onp,*

Section 5 now considers possible solutions to avoidingcsefailure.

5 Adaptive devices

Three approaches to implementing suggestion (d) in se8tiare considered:

¢ differencing the VEqCM (22) to improve its forecasting retmess to location shifts;
e rapid updating of the estimatesgfandu after such shifts; and
e forecast-error corrections to adjust quickly to breaks.

We take these in turn: none actually alters predictabibity the information set is unchanged), but they
all seek to mitigate the impact of breaks.

5.1 Differencing the VEQCM

Since shifts inu are the most pernicious for forecasting, consider foraugstot from (22) itself but
from a variant thereof which has been differenced after @mnt representation has been estimated:

Axg = Axg_1 + af Axe_1 + Aey = (In+ af) Axe_1 + ug (27)

or:
A%xy = a8/ Axe_1 + ug. (28)
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(27) is just the first difference of the original VAR, sin(k, + a8’) = Y, but with the rank restriction
from cointegration imposed. The alternative represeamtaith (28) can be interpreted as augmenting a
double differenced VAR (DDV) forecast by3’' Ax;_1, which is zero on average.

To trace the behaviour of (27) after a brealginlet:

ANXT+1\T = (In + af') Axr,

where from (25):
Axpi1 = Axr + @ (,BIAXT — Aﬂ*) + A€rq1.

Attime T only, Ap* = Vu*, so:
Axti1 = AxT + af' Axt — aVu* + Aeryg.
Then:
E [AXT_H — E}J(T{HT] = Axt + o Axt — aVpu* — (In + a,@’) Axt = —aVu".

Here there is no gain, as the break is after forecasts areinoed—an IC, or DDV, would fare no better.
However, one period later:

Axrio = AxT11 + @ (,B’AXT+1 — Au*) + Aerya,
and nowAu* = 0, so:
E AXT_|_2 — fA\;(T+2|T+1] =E [AXT+1 + QB/AXT+1 — (In + a,@’) AXT+1] =0.

Thus, the differenced VEqQCM ‘misses’ for 1 period only, armksl not make systematic, and increas-
ing, errors. The next sub-section considers the impact oecessary differencing on forecast-error
variances, and in the context of 1-step ahead forecasts.

5.1.1 Forecast-error variances

Letery; = Axpyq — ZSETH‘T be the forecast error, then, ignoring parameter estimaitimertainty
asO, (T~1/2):

eri1 = —aVp' + Aeriq,
and:

eri2 = Aerq2.

Since the system error {&. }, then the additional differencing doubles the 1-step araviance, which
is the same as for the DDV. Relative to a DDV, however, theegain from the DVEQCM, since the
former has a component from the variance of the omitted blri@x3’ Ax;), as well as the same error

terms. Thus, a DDV is not only the difference of a DVAR, butlsoeobtained by dropping a mean-zero
term from the differenced VEqQCM.

Using Ax to forecast

Second differencing removes two unit roots, any intercaptslinear trends, changes location shifts to
‘blips’, and converts breaks in trends to impulses. Figuilidtrates.
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Figure 1 Location shifts and broken trends.
Also, most economic time series do not continuously acatder entailing a zero unconditional
expectation of the second difference:
E [A%] =0, (29)

and suggesting the forecasting rule:
A;CT+1‘T = AXT. (30)

One key to the success of double differencing is that no chééstic terms remain, so that for time
series like speculative prices, where no deterministimseare present, ‘random walk forecasts’ will
be equally hard to beat. However, as discussed below, @ifténg is incompatible with solutions to
measurement errors as it exacerbates negative movinggagera

Nevertheless, there is a deeper reason why a forecast afriing(80) may generally perform well.
Consider the in-sample DGP:

Ax¢ =y + ag (Boxe—1 — to) + Poz¢ + €, (31)

wheree; ~ IN, [0, Q2] independently of all the included variables and their mstavith population
parameter values denoted by the subsdiipflso, z; denotes potentially many omittd(D) effects,
possibly all laggedl(0), perhaps because of ‘internal’ cointegration, beirffipdinced, or intrinsically
stationary). The postulated econometric model is a VEqQCRkin

Axp =+ a (8x7-1 — pn) + vr,
and that model, estimated fromobservations, is used for forecasting:
o~ o~ ~ A/ o~
AXpyirpic1 =7+ a (5 XTpi1 — l!») : (32)
Finally, over the forecast horizon, the DGP becomes:

Axrii =70 + ap ((80) XT+i-1 — 1o) + ¥ozT4i + €T44- (33)
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All the main sources of forecast error occur, given (33)clssstic and deterministic breaks, omitted
variables, inconsistent parameter estimates, estimatioertainty, and innovation errors: data measure-
ment errors could be added. ThusNkr; — AXpijT4i-1 = Wi

A~ ~ ~/ ~
Wi = 76 + g ((B5)xri1 — 15) + Wozryi + eryi — 5~ & (Bxra — i) . (34)

It is difficult to analyze (34) as its terms are not necesgagVen I(0), but conditional on
(XT+i-1,2T+i-1), Wi has an approximate mean forecast error (ugifig] = v, etc.) of:

Elwrgi | Xrric12r4i-1] = (00 — 7p) — (@omy — oppy) + [05(85) — apBy] XT4i-1

+WoE [Z14i | XT4i-1, ZT4i-1] -

Also, neglecting parameter estimation uncertaintyDgél' 1), wr.; has an approximate conditional
error-variance matrix:

VI wrii | Xriio1,2r4i-1] = YOV 214 | XT4io1, 274i-1] ©§ + Qe (35)

and its conditional mean-square forecast error matribestim ofE[wr_;|x11i-1, Zr i 1]E[Wrii|XT1i-1, ZT4i-1]
and (35).
Contrast using the sequencefk ;1 to forecastAxr, 4, as in (30):

AX7 i yio1 = AXTrio1. (36)

Because of (33)Axr;_1 is in fact (fori > 1):

Axriior =70 + @b ((86) *r4i—2 — o) + ¥ozT4i-1 + €T4i-1- (37)

Thus, (37) shows that, without the economists needing twkhe causal variables or the structure of
the economyAxr. ;1 reflects all the effects in the DGR including all parameter changes, with no
omitted variables and no estimation required at all. Howewere are two drawbacks: the unwanted
presence o&r, ;1 in (37), which doubles the innovation error variance; andratiables are lagged
one extra period, which adds the ‘noise’ of mdfwy 1) effects. Thus, there is a clear trade-off between
using the carefully modelled (32) and the ‘naive’ predict®88). In forecasting competitions across
many states of nature with structural breaks and comptidatePs, it is easy to see whlyx;_1 may
win.

Let AXT+i — A§T+i|T = UT+i» then:

uryi = Yo+ ap ((86)xr4ic1 — o) + CozT4io1 + €T4i
- [’73 +ag ((ﬂa)/XTﬁ—z - HS) + Wozriio1 + €T+i—1]
= ay(B5) Axrii1 + PHAZT; + Aeryi. (38)

All terms in the last line must b&—1), so will be very ‘noisy’, but no systematic failure shouldué.
Indeed:

E[uri] = agE [(Bp) Axrii-1] + WoE [Azyys] + E[Aeryi] = a5(85) 7o = 0.
Neglecting covariances, we have:

Viury] = V[eg(Bs) Axriioa] +V([¥gAzris] + V[Aer]
= op(Bp)'V [AxTii1] Boag + oV [Azpys] Ty + 20 (39)
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which is the mean-square error matrix becabi$er ;] = 0. Conventional analysis notes the doubling
of Q. in (39) relative to (35). However, whefz, } is a stationary vector autoregression (say):

zt = I'z¢_1 + 1y where ng ~ INy [0,Q,],

then:
V [Zt] =TIV [Zt] F/ + 9777
and:
V[Az] = (T — L) V[ze] (T — L) + Qyy
so that:

V([Azpy) —Vizry] = (0 -V [zry] (T - L) — TV [zp ] T
= Vizry] —TV|zry] — Vizra] T
which could attain a maximum of [zt ;] when{z.} is white noise ' = 0), or approach-V [z ;]

when{z } is highly autoregressivd(~ I\). Thus, the overall error variance in (39) will not necesgar
double relative to (35), and could be smaller in sufficieiidylly specified VEqCMs.

5.2 Rapid updating

An alternative to over-differencing is more rapid updatoighe coefficients of the deterministic terms,
possibly using different estimators for forecasting. Thuosa ‘non-causal’ representation, consider a
short moving average of past actual growth rates, so:

AxXpyqr = 71 (40)
where: .
Fr= %ﬂ Z; AXp_j. (41)
Then: .
(m+1)Fr =Y Axr_j = Axy — AXt_(m41) + (M +1) Fp_y,
so: - )
Tr=7Tr-1+ WAA(erl)XTy

reflecting aspects of Kalman filtering. When= 0:
AVXTH\T = Axr,

which reproduces the DDV as corresponding to updating ttedapt by the latest ‘surprise’\?x.
Larger values ofn will ‘'smooth’ intercept estimates, but adapt more slowhgingm = T — 1 es-
sentially delivers the OLS estimates, which do not adapt: féiecasting from quarterly data using
m = 3. 1 1

7~'T = Z (AXT +---+ AXT73) = ZA4XT,

which is the previous average annual growth. So long as braaknot too frequent, and the variables to
be forecast do not accelerate, such devices seem likely io ieasonably well in avoiding systematic
forecast failure.
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Implicit in (40):
T =Y — Qpl,

and so it reflects changes in either source of intercept $bifte a more causally-based model is used,
that mapping ceases, so implementing an analogous notipiires care. The basic problem is that if
such corrections work well when a model is mis-specifiedy t@not be appropriate when it is valid
for the same observed change in growth: the latter case tinissées changed observed growth to a
shift in 7 whereas it will be captured by other regressors. A lack diagonality between the various
‘explanatory components’ is the source of this difficultjtanges in one variable are confounded with
resulting changes in the growth rates of others (see Be&@0, for an alternative parameterization
that seeks ro resolve this problem).

5.3 Forecast-error based adaptation

Consequently, only forecast-error based information ctvineflects the problems of the model, not the
changes in the data, can be used to correct breaks in ecaioeystems. Apart from ICs (which add
back recent errors, and are also susceptible to smootling)of the most famous ‘forecast-error cor-
rection’ mechanisms (FErCMs) is the exponentially weidhteving average (EWMA), so we consider
its possible transmogrification to econometric systems.

The EWMA recursive updating formula is, fare (0, 1) and a scalar time seridg; }:

o
Urenr = (1= Nyr,
i=0

so (e.g.):
Ursir = (L= X) yr + Xgryr—1 = yr — A (yr — Uryr—1) 5 (42)

with start-up valuey; = y;. Hence, for an origifl’, Y747 = yr4qr for all h. One can view this
method as ‘correcting’ a random-walk forecast by the ld@stcast erroyr — yrr—1):

&JTH\T ==X (yr — Urir—1) » (43)
possibly seen as approximating the ARIMA(0,1,1):
Ay = g4 — 041, (44)
so the second term in (42) seeks to offset that in (44):
Ayri1 — &/T+1|T =erg1 —Oer + X (yr — Urir—1) -

Consequently, (42) could be seen as being designed for detaured with error, where the underlying
model wasAy; = v, with y, = y; + w; So that:

Ayt = Ayf + Awt = (Ut + wt) — W¢—1.

Any shift in the mean of y} will eventually feed through to the forecasts from (42): iaddback
a damped function of recent forecast errors ought, thezetorbe productive when location shifts are
common. The speed with which adjustment occurs dependseatetiree of damping,, whereA = 0
corresponds to a random walk forecast. The choice of a largeevents the predictor extrapolating
the ‘noise’ in the latest observation, but when there is & 8himean, the closek is to zero the more
quickly a break will be assimilated in the forecasts.
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5.3.1 The relation of EWMA and IC
Four components seem to contribute to the forecasting ss@feEWMA:

e adapting the next forecast by the previous forecast error;
¢ differencing to adjust to location shifts;

e the absence of deterministic terms which could go awry;
e rapidly adaptive when is small.

The correction of a forecast by a previous forecast erroefsimiscient of intercept correction.
However, EWMA differs from IC by the sign and size of the damgpfactor,—\ in place of unity,
so may not face the latter’s problems when there are largesunement errors at the forecast origin.
To investigate the implications of this sign change, coersal vector generalization of (43) using the
forecast from (45), (abstracting from parameter estinmtio

Axpiyr =7+ (af'xt — ap), (45)

when augmented by the forecast-error correction:
Axpiqr = &T-i—l\T — A (x7 —Xp7-1) - (46)
Assuming the VEqQCM (24) was congruent in-sample, then using
Xrir—1 = Axpip_1 +xr_1 = x7_1 + v+ (aB'x1_1 —ap)

leads to:
XT — §T|T71 = AXT -7 -« (,BIXT—I - [,L) = AXT - AXT\Tflv

which is the last in-sample 1-step residuat, Thus, lettinger 1 = Axpi1 — Z;:TH‘T:
Axri1 — AxpiqT = €141 + A€,

so A = —1I,, corresponds to the IC for ‘setting the forecasts back orktracthe forecast origin. The
sign change is not due to IC being an autoregressive, rdihara moving-average, correction: rather,
the aim of the IC is to offset a location shift, whereas EWMAIlseto offset a previous measurement
error, using differencing to remove location shifts. Thue,see an importammaveatto the explanations

fo the empirical success of ICs discussed in Clements andrig€h999, Ch.6): some of the potential
roles conflict. In particular, to offset previous mis-sgieeitions or measurement errors requires the
opposite sign to that for offsetting breaks.

5.3.2 Adapting EWMA for growth changes

The absence of any deterministic terms in (43) entails fhidwei data are growing, systematic under-
prediction may occur. This last difficulty could be circumted by an extra degree of differencing as
in the type of model discussed by Harvey and Shephard (1992) (n (42) becomes the growth rate),
or alternatively by letting:

AyTJrl\T = 7T - A (?/T - ?7T|T—1) (47)
where:

Yr =7r-1+ mA(mH)AyT- (48)
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Notice thaty,_; could be based on all the in-sample data, switching to (48) when forecasting.
However,m = 0 (say) enforces complete adaptation to the latest ‘surpise/r, which could be
noisy. The ‘combined’ device in (47) both corrects recerdt garors and adjusts rapidly to changes in
observed growth irrespective of whether that correspoodfanges iry in the DGP, or is an induced
effect from shifts inu.

Vector generalizations of (47) and (48) are straight-fodrathe former becomes:

Axpiqp =7 — A (x1 — X101 (49)

where A could be diagonal, denoted ADV for adaptive DVAR. Then, (4@heralizes the simplest
DVAR-based forecast:

AVXT+1\T =7, (50)

and is also similar to (22) when that equation is written asKhown in-sample parameters):

&T+1|T =7+ (Ot,@/XT - au) ) (51)

but with the equilibrium correction in (22) replaced by foast-error correction in (49). Alternatively,
combination leads to (46) above, which augments (51) byasietérm in (49).

6 Empirical illustration of UK M1

The two ‘forecasting’ models of UK M1 in Hendry and Mizon (I®%nd Hendry and Doornik (1994)
respectively illustrate several of these phenomena (semetpapers for details of the models: other
closely related studies include Hendry, 1979, Hendry arndsEon, 1991, Boswijk, 1992, Johansen,
1992, Paruolo, 1996 and Rahbek, Kongsted and Jgrgense®), Td8& data are quarterly, seasonally-
adjusted, time series over 1963(1)-1989(2), defined as:

M nominal M1,

1 real total final expenditurelE) at 1985 prices,
P the TFE deflator,

Ry, the three-month local authority interest rate,
R, learning-adjusted own interest rate,

Rnet Rla - Ro-

The first model is based on using the competitive interestRgt, and the second on the opportunity-
cost measurdk,,.; appropriate after the Banking Act of 1984 legalized intepeg/ments on chequing
accounts. To simplify the results, we first consider onlyrii@ney-demand model, then turn briefly to
system behaviour. In both cases, ‘forecasts’ are over theyéars 1984(3)-1989(2), or subsets thereof.

6.1 Single-equation results

The first step is to illustrate that the Banking Act correggeh to an equilibrium-mean shift relative
to the model based oR;,. The own rate,R, has a mean of approximately 0.075 over the forecast
horizon, and a shift indicatar;-19s5(2); times that mean closely approximates the actual time path of
that variable: see figure 2, panel a. Thus, subtradiig@s x 1 19g5(2)y from Ry, is close toR,,.
(denotedR;, in figure 2b): it is clear why an intercept correction shoutfprm well after 1985(4).
Next, over the forecast horizon, the moving average growath of real money shifted dramatically
relative to the recursively estimated historical mean ghawte (see figure 2c¢): this reflects both effects
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in Vy* — aVu*, even ifV~4* = 0 so the ‘fundamental’ growth rate is unchanged. Since ths¢ied
growth mimics the ‘missing ingredient’ in a univariate foasting device, the second adaptation above
should be successful in that context. Finally, the estirotle original equilibrium mearn based on
Ry, is quite sensible (see figure 2d), and shows no signs of a atifireag: based orR,,.;, does shift.

At first sight, that may seem counterintuitive, but it occprecisely because the opportunity costs have
shifted dramatically, s@ does not reflect that shift, thereby causing forecast fil@onsequently, real
money andR,,.; must co-break, as illustrated in Clements and Hendry (18899).

[ Rt
| L C
0.075 015l — R
0.050:* // 0.10:
0.025 | i
- R, 0.05
4 B — 0.075185(2) —
// ? L L L L L
1984 1985 1986 1987 1988 1989 1990 1991 1984 1985 1986 1987 1988 1989 1990 1991
0.04[| —— recursive mean2SE 0.75
| ma A(m-p) L
i 0.50}
0.02 ,
0.25
0.00" ] 0.00
-0.02- I
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Figure 2 Effects of the 1984 Banking Act on UK M1.

Figure 3a shows the dismal performance on 20 1-step forechshe Hendry and Mizon (1993)
model: almost none of th& 25 error bars includes the outcome, and a large fall is foredashg the
largest rise experienced historically, so the level is ditirally underestimated.

For comparison, the 20 1-step forecasts from the first diffee of that original model are shown
in figure 3b: there is a very substantial improvement, witlsystematic under-forecasting, suggesting
that the first proposed adaptation can be effective in the dhequilibrium-mean shifts (all the panels
are on the same scale, so the corresponding increase ineheairforecasts is also clear).

Next, correcting the original model (i.e., wiflabased onk;,) by an estimate of the changed tran-
sient growth rate, namely (schematically):

- — ~ ~/ ~
AXTH\T—’YT:a(,@XT—M) +oeee
using:
N = lz?):Ax i (52)
’YT - 4 g T—1,

is also effective, as shown in figure 3c, although it can be sede drifting off course at the end once
economic agents have adjusted to their new environmenttrendbserved growth rate reverts4o
(which no longer reflectecV 1 *).
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Finally, figure 3d records the IC adjusted forecasts overstiw@ter horizon from 1986(1) (so the

Figure 4 Forecasts of UK M1 adapting the,,.;-based model.

adjustment can be estimated): even so, it is the least sfate§these three adaptations.

Figure 4a shows the good performance on 20 1-step forech#ite ccorrect’ model (i.e., based
on R,.:). Since one cannot know whether a given model is robust teakbithe effects of the three
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adaptations applied to the,,.; model are also worth investigating. Differencing the EqCiMduces
similar forecasts to the EQCM itself as shown in figure 4b, With larger error bars; however, even
for a ‘correct specification’, the costs of that strategy dbseem to be too high. The same cannot be
said for the results obtained by correcting ustpg in figure 4c, which confirms the anticipated poor
performance: the regressors already fully account fornbeeased growth, so that strategy is likely to
be useful only for univariate models. Finally, an IC is imsfgcant if added to the model using,.; and
so has little impact on the forecasts beyond an increaseiartior bars (see figure 4).

For comparison, forecasts based on the most naive devied)iv, are shown in figure 5 panel
a. The DDV actually has a smaller mean error than the ‘cdrraotlel (—0.01% as agains0.9%),
but a much larger standard deviatidh26% againstl.19%), so the benefits of causal information are
marked? The ADV forecasts (based on (49) with= 0) using7,- from (52), and shown in figure 5c,
are distinctly better than the DD\RMSFE of 1.8% as against 2.25%). This is also true of the ADV
and DDV forecasts foR,,.; shown in figure 5 panels b and RMSFE of 1.5% as against 1.9%). Thus,
while double differencing is highly adaptive when a breakuws, the additional error variance at all
points seems to more than offset its advantage in compatasthie smoother adaptation used here.

0.10f | o o.15f—
0.05; 0-10;“\, -
o.oof 0.05
g e T
1983 1084 1985 1986 1987 1988 1989 1990 1983 1984 1085 1086 1987 1988 1989 1990
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Figure 5 DDV and ADV forecasts of UK M1.

6.2 System behaviour

The above are all essentially single-equation forecatitspuagh the DDV and ADV devices are un-
altered by being embedded in a system. In a system contewteveo, the break in the money-
demand equation in the first VEQCM based By, becomes, in the second VEqQCM, a shift in the
R,.: equation—which in turn could not be forecast accuratelyasbe seen in figure 6, panels a and
b (the outcomes fof FE and Ap are omitted).

4Subject to theaveatghat the former uses current-dated variables in its ‘fosetaand the error bars on the DDV graph
fail to correct for the negative residual serial correlatio
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Figure 6 System forecasts from two 4-variable VARs of UK M1.

Nevertheless, the adaptations generalize to the othetiensiaf theses systems, and have corre-
sponding impacts, illustrated in figure 5 f&y,.;. As another example, when co-breaking is known, so
R, is the only equation for which an IC is required, the outcomnegure 6, panels c and d, result:
R, is accurately forecast, with perceptible improvementsi@interval forecasts for real money (and
TFE, though not shown). However, the ADV fat,.; achieves a similarly outcom&WSFE of 0.8%
for the IC as against 1.0% for the ADV over 1985(4)-1989(B)t applicable over a longer forecast
horizon.

Forecasting volatility
Reconsider a GARCH(1,1) process whefe+ o < 1:
0} = o+ Prui_y + 9207 1. (53)

The long-run variance is = ¢y /(1—y1 —¢2) > 0 which implies that (53) is an equilibrium-correction
model, and hence is not robust to shiftsdnbut may be resilient to shifts in; or p5 which leavew
unaltered, as those only impact on ‘mean zero’ terms:

O't2 =w+ @1 (U?_1 — 03_1) + (o1 + p2) (Ut2—1 - w) .

A forecast of next period’s volatility would use:
~2 N N ) ~ ~ N\ (A2~ 54
oryr =W+ ¢ (Ut —o7) + @1+ o) (07 — D) . (54)

Then (54) confronts every problem noted above for foreaafsitseans: potential breaks in ¢, 2,
mis-specification of the variance evolution (perhaps adkffit functional form), estimation uncertainty,
etc.
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The 1-step ahead forecast-error taxonomy takes the faltp¥arm after a shift inpg, 1, w2 t0 ¢,

v, @5 atT to:

oy =w + ¢} (up — 0F) + (9] + ¢3) (07 —w*),

so that letting the subscriptdenote the plim:

2 A2 .
Ory1 — 0T =

(1= (1 +¢2) (W —w)

o
+@, (Er [0F] —0%)
+ (@] + ¢3) — (o1 + 92)] (0F — w)
+ (1 + 92) = (p1p + 92)] (07 —w)
+[(o1p + 02p) — (@1 + &2)] (07 —w)
2 (07 — Ev [67])

@
+3, (Er 3] - 63)

long-run mean shift, [1]
long-run mean inconsistency, [2]
long-run mean variability, [3]
o1 shift, [4]
1 inconsistency, [5]
1 variability, [6]
impact inconsistency, [7]
impact variability, [8]
variance shift, [9]
variance inconsistency, [10]
variance variability, [11]
o2 inconsistency, [12]
o2 variability, [13].

The first term is zero only if no shift occurs in the long-runigace and the second only if a consistent
in-sample estimate is obtained. However, the next fourdeara zero on average, although the seventh
possibly is not. This pattern then repeats, since the nexklbf four terms again is zero on average,
with the penultimate term possibly non-zero, and the lasi pa average. As with the earlier forecast
error taxonomy, shifts in the mean seem pernicious, whedbtese in the other parameters are much
less serious contributors to forecast failure in variancesleed, even assuming a correct in-sample
specification, so terms [2], [5], [7], [10], [12] all vanistihe main error components remain.

In practice,p, + &, is often close to unity, ang, is small. This makes the behaviour of (53)
also rather like a unit root in an AR(1) arising from unmodedllocation shifts, even though the former
remains non-integrated for constant parameters when ther @does not. In any case, models like
(53) will miss jumps in volatility, but capture phases of eggence and high volatility. Thus, consider
forecasting using the variance equivalenMETMT = 0, namely:

Gty = 07 (55)

Then (55) extrapolates the latest volatility estimate, smavill track the main changes in volatility, as
well as constant variance periods, albeit noisely. All tadier ‘tricks’ discussed above seem to apply
again when the main focus is on variance forecasting (enppthed estimates @f> etc.), as against
interval forecasts, although related issues arise.

7 Conclusions

The properties of unpredictability of a random vector gatest by a non-stationary process entail many
of the difficulties that confront forecasting. Since ecomtric systems incorporate inter-temporal causal
information representing inertial dynamics in the econpthgy should have smaller prediction errors
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than purely extrapolative devices—but in practice oftemdb Rather, there are 10 basic difficulties to
be circumvented to exploit any potential predictabilitgmely:

the composition of the DGP information s&t_;

howZ,_ enters the DGPy, (y¢|Z—) (0r for point forecasts, the form of the conditional expecta
tion fy (Zu—0));

how Dy, (y¢|Zi—0) (OF f; (Z1,—)) Changes over time;

the use of a limited information sef oo C Z,— oo}

the mappin®y, (yt|Zu-o0) INt0 Dy, (yt|JL-o0) inducinggs (JL-o0) = Et [ft (Zu—o0) [TL-col;

how J7 will enter Dy...., (-|J7) (or gT+n (J7)) for a forecast origin atf’;

approximatings; (J—~) by a functiomp (J7,-~, @) for some specification of the basic parametgrs
measurement errors ifi, 1 for J.,_oo;

the estimation o8 from in-sample data=1,...,T;

and the multistep nature of most economic forecasting.

The first six are aspects of predictability in the DGP; theogsécfour of the formulation of forecasting
models which seek to capture any predictability.

Two types of shift inf; (Z,,—~,) were distinguished, corresponding to mean-zero and twtatiifts
respectively. The fundamental problem does not seem todoeniplete informatiomer se by construc-
tion, g¢ (J—o0) — ft (ZLi—) has a zero mean, even for processes with breaks. Howevémowing
gt (JL—-) is problematic for the specification @f (7,— ., 8) V¢; the use of in-sample estimates when
the process changes then compounds the difficulty.

Consequently, using a cointegrated linear dynamic systém weaks over the forecast horizon
as the illustrative DGP, three adaptations were considefide first was differencing the in-sample
estimated DGP; the second was rapid updating of the estintabation in a growth representation;
and the third was forecast-error correction mechanismsGME) loosely based on EWMAs. All three
use representations that are knowingly mis-specified impt®, and two use highly restricted choices
of J_~: nevertheless, they all help avoid systematic forecakir&ai The analysis also highlighted
the distinctly different role of the FErCM in EWMA (namelyg bffset previous measurement errors)
and in ICs (to offset breaks), which required the opposija.sA synthesis in which the former role is
combined with a different mechanism for adapting to logashifts has much to recommend it, and one
univariate approach was noted.

The empirical example of the behaviour of M1 in the UK follogithe Banking Act of 1984 illus-
trated the three adaptations in action, with the last apprated by intercept corrections. All behaved
as anticipated from the theory, and demonstrated the dfificii out-performing ‘naive extrapolative
devices’ when these are adative to location shifts thatrdrerently inimical to econometric systems.
Overall, the outcomes suggest that, to retain causal irdtbom when the forecast-horizon ‘goodness’
of the model in use is unknown, model transformations maybartost reliable route of the three.
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