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Abstract

The recent controversy over model selection in the contesgrowth regressions’ has led to
some remarkably numerous ‘estimation’ strategies, irinyd million regressions by Sala-i-Martin
(1997b). Only one regression is really needed, namely thergéunrestricted model, appropriately
reduced to a parsimonious encompassing congruent repaiean Such an outcome was achieved
in one run onPcGets within 15 minutes of receiving from Professor Ley the dathis Fernandez
et al (2001). We reproduce that equation, and corroborate thanfisdn Hoover and Perez (2004),
who also adopt an automatic general-to-simple approach.

1 Introduction

The literature on ‘growth regressions’ has growth almodtasas the number of estimates reported by
various authors: seater alia, Barro and Sala-i-Martin (1995), Levine and Renelt (19%23)a-i-Martin
(19974, 1997b), Temple (1999), Fernandez, Ley and StéélLjzand Hoover and Perez (2004). Literally
millions of regressions have been estimated, and somerseads deem the entire exercise pure ‘data
mining’, where zero reliability can be attached to anythamyone reports. We strongly disagree with
such a view, and demonstrate that it has essentially noau®stas an issue of model selection. En
route, we explain why so many models may have been estimat®d pointless that was, and why it
does not impugn inference, although it most certainly veatitae and resources of both investigators
and readers. Our reported results, as the title suggestdaaed on only one regression, namely the
general unrestricted model (GUM) appropriately reduced fmarsimonious encompassing congruent
representation. That can be achieved by one ruR@®ets and in fact, was so achieved when Hendry
initially received the Fernande al. (2001) data set in ASCII format by email from Professor Ley a
returned the results to him in under 15 minutes, when botle wisiting the IMF in August 2000. We
reproduce that equation beldwand relate it to other recent contenders in this arena. fgabi, we
precisely replicate the selection in Hoover and Perez (Rafkpite using a different algorithm, albeit
in the same class of general-to-simplgetg approaches based on their multi-path search proposal in
Hoover and Perez (1999), a different method of handling the ifnputed data sets, and a different
baseline significance level.

By arguing that there is basically no issue of ‘data miningini multiple-model estimation, and
that model selection is almost innocuous here, we do noteliyeaffirm any substance to the results
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LIn fact, we have substantially improv@&tGetsin the meantime, so it is not precisely the originally sedelanodel, but is
close: see Hendry and Krolzig (2003b, 2003c).



obtained. The validity of a selected model depends primanil that of the GUM as an approxima-
tion to the data generation process (DGP), which in turnli@skey considerations of the accuracy
of the measurements of the data series; their conceptuguiadsg for the underlying causal effects; the
completeness of the information (both variables and olasiens); the homogeneity of the sample; the
independence assumptions justifying regression; the wradieneity of the regressors (or instruments);
and the constancy of the parameters across the observatibo$ these are open to legitimate doubt in
this context. Nevertheless, one aspect that seems to hawealfecus of debate, namely data mining, is
not of great concern, and we consider it essential to cl#ndyissue, using this data set as an illustration.
Importantly, since selection can be resolved in secondsgive GUM, we also argue that adopting auto-
matic model selection devices suchRagsetqor the many related alternatives now available, including
but not restricted to, Phillips, 1994, 1995, 1996; WhiteQ@0Perez-Amaral, Gallo and White, 2003;
Kurcewicz and Mycielski, 2003; and Hoover and Perez, 2000d¢s investigators to allocate much more
of their time and effort to improving the theory, data measwent and econometric specification un-
derpinning the GUM, which in turn should improve substamiinferences in all areas of econometrics.
An additional bonus is reducing the subjectivity of the stta, as is manifest from our replicating the
Hoover and Perez (2004) selection: another of Keynes (1948jcastic criticisms of Tinbergen (1940)
is repudiated.

2 Some model selection principles

Consider a databank containimg+ 1 variables, which defines the universe of available measuas
agnostic investigator interested in modelling one vadabhyy; decides to include all the remaining
variablesz; as regressors. Let us abstract from the myriad of problenesimo the introduction, to focus
on the impact of selectioper se

First, what are the likely properties of inference in the GUM

ye = B'ze + uy 1)
wheren < T, the available sample siZzeHere, the DGP is assumed to be nested in the GUM, with
E[zsus] = 0 andu, ~ IN[0, 02]. Then the least squares estimatesf 3 ands? of o2 are:
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which are unbiased estimators of their respective parasjeted have the independent distributions:
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Inference in (1) on the basis of (3) and (4) is valid, but maynedficient if many of the3 coefficients are

zero in the population. Below, we I&f denote an estimator of not corrected for degrees of freedom:
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2\We later discuss the case> T', butk < T wherek is defined in equation (6) below.



Secondly, what are the likely properties of inference imapdified model selected from (1), say:
yr = 0'x¢ + vy (6)

wherex; is a k-dimensional sub-vector of; (k < n), chosen by some set of criteria? Naturally, the
outcome depends on the selection rule, so we note the piegpeftthree distinct approaches:

(a) information criteria such as those proposed by Akaik& 8) (denoted\IC), Hannan—Quinn (denoted
HQ: see Hannan and Quinn, 1979), and SchwBIZ( see Schwarz, 1978);

(b) sifting through possible models for one that satisfiésrgreliefs; and

(c) applying a procedure likBcGets

The theory behind additional approaches such as extremalbdsee Leamer, 1983, and Leamer and
Leonard, 1983), and model averaging as advocated by Fagnénal. (2001), are not considered here.
The former was criticized in McAleer, Pagan and Volker (19&eusch (1990) and Hendry and Mizon
(1990), and examined by Temple (1999) and Hoover and PeB&zf2and the latter is susceptible to
counter-examples even for forecasting, as in Hendry (20@4)weights based oBIC), although we
compare our empirical findings to theirs in section 3.2.

2.1 Model selection based on information criteria

First, if a model selection criterion, such as the smallafiier ofAIC, BIC, or HQ, is used, then either an
asymptotically efficientAIC) or consistentBIC, HQ) selection is made. Each of these criteria penalizes
the log-likelihood by2n f (T") /T for n parameters and a sample sizelfwhere:

nln (T) 2n1In [In (7] @
T T
The penalty function is intended to reflect the ‘cost’ of eparameterization. However, as shown in
Campos, Hendry and Krolzig (2003), one can improve the pmdoce of such information criteria
markedly in the present context efrelatively large compared to a sm&ll by adopting some of the
procedures ifPcGetgalso see Hurvich and Tsai, 1989, who address selection wignlose toT’).
ConsideBIC: there are™ = M possible models. Let = 41 as in Sala-i-Martin (1997a) (or indeed,
Hoover and Perez, 1999) whéh= 72. ThenM = 2% ~ 2.2 x 10'? which is roughly two trillion
possible models. Hoover and Perez (2004) take 62 for T = 138, so now we havé/ = 4.6 x 10'® (a
billion billion or a million trillion) models. Is statistial inference impugned by the action of estimating
all theseM models? The penalty function in (7) is intended to addreasifisue, albeit that the three
shown differ in their severity: as falls from 41 to 1 wherll’ = 72 (say), they drop from 1.15 to
0.03 forAIC; 2.4 to 0.06 forBIC; and 1.7 to 0.04 foHQ. To select the ‘optimum’ specification, alf
models need to be considered, yet the result is either asyicaily efficient or consistent. However, the
sample size seems too small here to justify a selected maodslich grounds alone. In any case, the
computational cost would be prohibitive: the second caseldvcost $10m even at a billion models per
US cent.
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2.2 Sifting through all possible models

Consider next an investigator who searches acrosd aflodels for one which confirms some theoretical
views or political prejudices, rather than minimises aminfation criterion as in section 2.1. Assuming
there exists a ‘best’ member on such criteria, and that sunbdel is found and reported, what status
should it enjoy? An excellent answer was provided in Gilj£#86) who distinguished ‘weak data min-
ing’, whereby corroboration was sought for prior beliefshaut seriously harming the resulting model,



from ‘strong data mining’ in which conflicting evidence wasmouflaged or not reported. Encompass-
ing tests against rival models can reveal the latter (alsdtgndry, 1995, Ch. 15). If the reported model
is not parsimoniously encompassed by any contender, istefdace in the set of non-rejected models.
Should one worry when almost every possible combinationypbtheses has been tested in every
possible model? After all, there are abouyt2 coefficients in the average model, delivering approx-
imately N = n2"/2 tests in total. Subject to the fact that there is not a penfiegtch between the
confidence regions of scalar and vector tests (see e.g.ff&ch@53, and Savin, 1980), so some extra
outcomes may be squeezed into the ‘corners’ of such regioms for a given significance levalusing
at-test based strategy for retaining/deleting variablesregressors will be retained by chance (i.e., be
adventitiously significant) in the final model.df= 0.025 (say), then fon = 41 that isonevariable; for
n = 62 it is a more awkward.5 (at 5%, however, it would be 3). Finding 17 or 20 variablesgigant
out of 41 cannot be explained by simply searching acros$alpbssible models for one that is ‘pre-
ferred’. However, computingV such tests wastes even more resources, especially if thedieation is
easily encompassed.

2.3 Gets-based selection

Finally, we note thé>cGetsapproach, where its properties, and details of the alguaritire described in
Hendry and Krolzig (2001, 2003b, 2003c). If there anegressors in (1), for a baseline critical valtye
for at-test,an regressors are retained by chance. Selectirg0.025, that would lead to one ‘spuriously
significant’ variable in the GUM and selected models shownvedor n = 41, so again almost none of
the observed significance can be ascribed to chance. Trars, iino problem of data mining by this
third route.

If all the regressors were mutually orthogonal, then theemrd squarettstatistics from the GUM,
saytd)) > th) > -+ >t ;) > t7, would suffice for the selection decision, whefg > c, but
t%k-‘,—l) < ¢o. Thus, precisely one regression would be needed: the pathi-search introduced by
Hoover and Perez (1999) is essentially required to highligiat the ‘underlyingt-values really are.

3 Empirical growth models

3.1 Hoover—Perez

A complication here is the multiple imputation of the migsthata discussed in Hoover and Perez (2004),
which requires either a ‘mixed’ selection strategy, suclthay adopted, or a ‘stacking’ approach. We
experimented with both: see their web site http://www.egodavis.edu/faculty/kdhoover/index.html.

First, for each of the five versions of the data set, we apffieGetsto select a model from the
linear GUM of 62 candidate variables. This delivered 5 digtibut highly overlapping, selections, from
which we then formed the union of their 24 candidate vargblEo select a final contender therefrom,
we stacked the five data sets as one, estimated the union ,nandehppliedPcGets(and PcGive see
Hendry and Doornik, 2001) to select the final choice. Thedadgithis is as follows.

Consider stacking the same data twice, for a basic regressgjgation of the forny = Z3 + u with
k regressors:

B=(z2z) ' zy and V8| =5 (z2) ",

so that for a double stacked illustration:



Then: .
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Consequently, (8) shows that an identical estimat@ efould be obtained, with a slightly downward
biased estimatg? of o2 based on conventional formulae. Also, (9) reveals the neee-scale standard
errors by a factor/[(2T — k) / (T — k)], and hence-values accordingly, but all of these are trivial to
correct.

When different measures of the same underlying variablesised, this device is a simple way to
pool, which exploits the automatic selection capabilité$cGets Thus, on the five-stacked data set,
PcGetswas applied to the 24-variable union model, but now reqgigbsolutd-values in excess of 5.16
for retention (namely, the 2.5% critical value of 2.267 tgrike scale factoy/[(5T — k) / (T — k)] ~
2.276 for k = 6). PcGivewas used in a ‘hand simplification’ for the last few stepsneiating from
16 variablesseriatimwith |t| < 5.16, as the minimum significance levels RtGetswere reached for
smaller critical values thah.16 (only the single path of increasing was explored)

Correcting the estimated standard errors of the selectet®inby 2.276 delivered an identical selec-
tion to Hoover and Perez (2004):

—

GR, = 0.011 + 0.019 YrsOpen+ 0.106 EQINV; + 0.077 CONFUG
(0.002) (0.004) (0.039) (0.017)
0.013 REVCOUR — 0.012 PROT; (10)
(0.005) (0.005)

R2 = 0439 5=0.0134 BIC= —8.57

Parameter constancy and normality were accepted, but Weseonsiderable residual hereoscedastic-
ity, possibly due to the stacking. The outcome in (10) is idah to that from theGetsprocedure in
Hoover and Perez (2004), despite using stacking, ratherdkaraging, and 2.5% significance, rather
than their 5% rule (which could retain some other effectshim $tacked approach). However, the cal-
culated uncertainties in (10) differ slightly from thoseoeted by Hoover—Perez, probably due to the
different methods for handling the five data sets.We theeatgul the selection using the stacked data
throughout, applying®cGetsfirst thenPcGivefor a ‘hand simplification’, and obtained precisely the
same specification as (10).

The probabilitypg that no coefficients are significant by chance under the véing62 orthogonal
candidate variables for the criteripr} > 2.267 is:

po = (1 —0.025)%% ~ 0.21.

Thus, it cannot be precluded that all of the variables in @) 'genuinely’ significant, in the sense of
falling in that 20% of draws: this, of course, is far from sciint to establish that they are the correct

driving forces in a ‘causal’ sense. More generally, letting
n! : :
pj=————a!(1—a)"? j=0,...,n (11)
T =) (1=e)



the next few probabilities ang; ~ 0.33, po ~ 0.26, p3 ~ 0.13, ps ~ 0.05, ps ~ 0.01 after which the
probabilitiess are negligible. Although such calculasiGguggest a high probability of several spurious
variables, the small size of the final model is really the ssep Moreover, it = 0.01 is used instead, so
cq = 2.615 then REVCOUP and PROT are eliminated, but the first row of (&0)ains: nowy ~ 0.54
andp; ~ 0.34 with all other values negligible, so the first row is quiteelik to be substantive—and
would remain so even if.6 x 10'® models had been estimated.

From first downloading the Hoover and Perez (2004) datautiireseeking clarification from the
authors about the multiple imputation, to completing thelgttook a little over 2 hours of human input,
including stacking the data sets and computing the comtesttistics for (10).

However, the imputation process certainly induces measeme errors in the variables, possibly
correlated across measures and variables. This would anact to bias downward the estimated
coefficients, upward biag, and so probably downward bias theatios, leading to underselection. Con-
versely, endogeneity of the variables would act in the op@aisrection. Similarly, many of the variables
have an anticipated sign in any sensible model, so coulddted®n a 1-sided significance level.

The selection was unaffected by allowing for outlier remavaéhe GUM and all subsequent models.

3.2 Fernandezet al

The original motivation of our paper, however, was as a commea Fernandeet al. (2001), so we
briefly note the comparative outcomes on their data set. Tbkl @Ggression for all 41 variables had

o = 0.0056 with BIC = —8.743, and insignificant diagnostic tests for constancy and nlityn¢et-
eroscedasticity could not be calculated for= 72). Using an overlapping notation with Hoover and
Perez (2004), but the order in Fernaneéeal. (2001), the specific model selected by precisely the same
settings for the algorithm was:

o~

GR = 0.165 GDPSH60L. + 0.056 CONFUG + 0.098 LIFEE0O6Q + 0.186 EQINV,
(0.022) (0.010) (0.021) (0.039)

0.027 SAfrica; + 0.015 RuleLaw + 0.034 Mining; — 0.016 LAAM

(0.003) (0.004) (0.013) (0.004)
+ 0.017 P6Q — 0.111 Hindw, + 0.013 EthnoLing + 0.015 SpanishCal (12)
(0.006) (0.019) (0.004) (0.004)

4+ 0.011 FrenchCol+ 0.004 LabForce — 0.144 HYR; + 0.008 BritCol; + 0.059
(0.003) (0.001) (0.030) (0.002) (0.015)

RZ = 0.907 & = 0.0063 BIC = —9.389

Neither constancy nor normality diagnostic tests rejectérre is considerable overlap with the findings
in Fernandeet al.(2001), but we do not confirm some of their claimed more prigbateraged variables.
Several variables found with high significance by Sala-Hing(1997a) are not replicated here.

Perhaps the most salient difference with section 3.1 isafgelnumber of variables selected for the
subset of countries where all observations are availabteedl candidate regressors. This could reflect
a different source of selection bias (e.g., choice of olzems), greater endogeneity in the sub-sample,
or the limitations of multiple imputation.



4 Conclusion

The efficiency gains from automatic procedures for investics wishing to undertake model selection
are potentially huge. We ran one basic regression for eatzhsad, precisely so for Fernandetzal.
(2001), though really requiring 6 regressions for Hoovet Berez (2004) due to the multiply-imputed
data. This contrasts with the millions actually estimatgdbhla-i-Martin (1997a, 1997b), despite which
the likely number of spuriously-significant variables abbk calculated as one out of 41.

The main point of our note is that the results obtained theegb unlikely to be due to chance sig-
nificance in a setting where the data generation processpscias case of the general model postulated
at the outset and @etsapproach is adopted. However, that assumption is hard tevbdhere, and all
the other usual issues remain applicable to the empiricaiefting.

We noted above that similar considerations apply when 7', even though the GUM cannot be
directly estimated. All that is required is a repeated s&laalgorithm, not dissimilar to that used above
for handling the five imputations of data: see e.g., Hendny ldrolzig (2003a, 2003d), and Hendry,
Johansen and Santos (2004). Naturally, a largeuggests a smaller, as with information criteria,
but selected to reflect an investigator's tradeoff of adtiens significance against omitting relevant
variables. Thus, surprising new insights can follow frormking based on the theory of reduction
which underpinsets

An application of considerable interest here is whethentigtspecific dummies are required (the
imputation stacking actually entails each ‘impulse’ havi values of unity). Doing so would check
one aspect of the homogeneity of the sample relative to tleeted model (strictly one should add
the impulses to the GUM, but the computations are excessitr®out a special program—which still
awaits development). Under the null,@5%, adding 138 country dummies should produce less than
one significant by chance, but could reveal important hgeeities if they existed (the many regional
dummies in Sala-i-Martin, 1997a, presumably attempt tdwapsuch). This emphasizes the two main
points of our comment, namely that repeated testing is ngtharmful; and that automatic methods can
eliminate what would otherwise be intolerable computatidmurdens.
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