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Abstract

The recent controversy over model selection in the context of ‘growth regressions’ has led to
some remarkably numerous ‘estimation’ strategies, including 4 million regressions by Sala-i-Martin
(1997b). Only one regression is really needed, namely the general unrestricted model, appropriately
reduced to a parsimonious encompassing congruent representation. Such an outcome was achieved
in one run onPcGets, within 15 minutes of receiving from Professor Ley the data set in Fernández
et al (2001). We reproduce that equation, and corroborate the findings in Hoover and Perez (2004),
who also adopt an automatic general-to-simple approach.

1 Introduction

The literature on ‘growth regressions’ has growth almost asfast as the number of estimates reported by
various authors: seeinter alia, Barro and Sala-i-Martin (1995), Levine and Renelt (1992),Sala-i-Martin
(1997a, 1997b), Temple (1999), Fernández, Ley and Steel (2001) and Hoover and Perez (2004). Literally
millions of regressions have been estimated, and some readers may deem the entire exercise pure ‘data
mining’, where zero reliability can be attached to anythinganyone reports. We strongly disagree with
such a view, and demonstrate that it has essentially no substance as an issue of model selection. En
route, we explain why so many models may have been estimated,how pointless that was, and why it
does not impugn inference, although it most certainly wastes time and resources of both investigators
and readers. Our reported results, as the title suggests, are based on only one regression, namely the
general unrestricted model (GUM) appropriately reduced toa parsimonious encompassing congruent
representation. That can be achieved by one run onPcGets, and in fact, was so achieved when Hendry
initially received the Fernándezet al. (2001) data set in ASCII format by email from Professor Ley, and
returned the results to him in under 15 minutes, when both were visiting the IMF in August 2000. We
reproduce that equation below,1 and relate it to other recent contenders in this arena. Specifically, we
precisely replicate the selection in Hoover and Perez (2004), despite using a different algorithm, albeit
in the same class of general-to-simple (Gets) approaches based on their multi-path search proposal in
Hoover and Perez (1999), a different method of handling the five imputed data sets, and a different
baseline significance level.

By arguing that there is basically no issue of ‘data mining’ from multiple-model estimation, and
that model selection is almost innocuous here, we do not thereby affirm any substance to the results

∗Financial support from the ESRC under grant L138251009 is gratefully acknowledged. We are indebted to Eduardo Ley
and Kevin Hoover and Stephen Perez for their respective datasets, and to Kevin Hoover for helpful comments on an earlier
draft.

1In fact, we have substantially improvedPcGetsin the meantime, so it is not precisely the originally selected model, but is
close: see Hendry and Krolzig (2003b, 2003c).
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obtained. The validity of a selected model depends primarily on that of the GUM as an approxima-
tion to the data generation process (DGP), which in turn involves key considerations of the accuracy
of the measurements of the data series; their conceptual adequacy for the underlying causal effects; the
completeness of the information (both variables and observations); the homogeneity of the sample; the
independence assumptions justifying regression; the weakexogeneity of the regressors (or instruments);
and the constancy of the parameters across the observations. All of these are open to legitimate doubt in
this context. Nevertheless, one aspect that seems to have been a focus of debate, namely data mining, is
not of great concern, and we consider it essential to clarifythat issue, using this data set as an illustration.
Importantly, since selection can be resolved in seconds given the GUM, we also argue that adopting auto-
matic model selection devices such asPcGets(or the many related alternatives now available, including,
but not restricted to, Phillips, 1994, 1995, 1996; White, 2000; Perez-Amaral, Gallo and White, 2003;
Kurcewicz and Mycielski, 2003; and Hoover and Perez, 2004),frees investigators to allocate much more
of their time and effort to improving the theory, data measurement and econometric specification un-
derpinning the GUM, which in turn should improve substantive inferences in all areas of econometrics.
An additional bonus is reducing the subjectivity of the selection, as is manifest from our replicating the
Hoover and Perez (2004) selection: another of Keynes (1940)’s sarcastic criticisms of Tinbergen (1940)
is repudiated.

2 Some model selection principles

Consider a databank containingn + 1 variables, which defines the universe of available measures. An
agnostic investigator interested in modelling one variable, sayyt decides to include all the remainingn
variableszt as regressors. Let us abstract from the myriad of problems noted in the introduction, to focus
on the impact of selectionper se.

First, what are the likely properties of inference in the GUM:

yt = β′zt + ut (1)

wheren ≤ T , the available sample size?2 Here, the DGP is assumed to be nested in the GUM, with
E[ztut] = 0 andut ∼ IN[0, σ2]. Then the least squares estimatesβ̂ of β andσ̂2 of σ2 are:

β̂ =

(
T∑

t=1

ztz
′

t

)−1
T∑

t=1

ztyt and σ̂
2 =

1
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)
2

(2)

which are unbiased estimators of their respective parameters, and have the independent distributions:

√
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and:
σ̂2

σ2
∼

χ2
T−n

T − n
. (4)

Inference in (1) on the basis of (3) and (4) is valid, but may beinefficient if many of theβ coefficients are
zero in the population. Below, we letσ̃2 denote an estimator ofσ2 not corrected for degrees of freedom:

σ̃2 =
1

T

T∑

t=1

(
yt − β̂

′

zt

)2
. (5)

2We later discuss the casen > T , butk ≤ T wherek is defined in equation (6) below.
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Secondly, what are the likely properties of inference in a simplified model selected from (1), say:

yt = θ′xt + vt (6)

wherext is ak-dimensional sub-vector ofzt (k ≤ n), chosen by some set of criteria? Naturally, the
outcome depends on the selection rule, so we note the properties of three distinct approaches:
(a) information criteria such as those proposed by Akaike (1973) (denotedAIC), Hannan–Quinn (denoted
HQ: see Hannan and Quinn, 1979), and Schwarz (BIC: see Schwarz, 1978);
(b) sifting through possible models for one that satisfies prior beliefs; and
(c) applying a procedure likePcGets.
The theory behind additional approaches such as extreme bounds (see Leamer, 1983, and Leamer and
Leonard, 1983), and model averaging as advocated by Fernándezet al. (2001), are not considered here.
The former was criticized in McAleer, Pagan and Volker (1985), Breusch (1990) and Hendry and Mizon
(1990), and examined by Temple (1999) and Hoover and Perez (2004); and the latter is susceptible to
counter-examples even for forecasting, as in Hendry (2004)(for weights based onBIC), although we
compare our empirical findings to theirs in section 3.2.

2.1 Model selection based on information criteria

First, if a model selection criterion, such as the smallest value ofAIC, BIC, or HQ, is used, then either an
asymptotically efficient (AIC) or consistent (BIC, HQ) selection is made. Each of these criteria penalizes
the log-likelihood by2nf (T ) /T for n parameters and a sample size ofT , where:

AICn = ln σ̃2 +
2n

T
; BICn = ln σ̃2 +

n ln (T )

T
; HQn = ln σ̃2 +

2n ln [ln (T )]

T
. (7)

The penalty function is intended to reflect the ‘cost’ of over-parameterization. However, as shown in
Campos, Hendry and Krolzig (2003), one can improve the performance of such information criteria
markedly in the present context ofn relatively large compared to a smallT by adopting some of the
procedures inPcGets(also see Hurvich and Tsai, 1989, who address selection whenn is close toT ).

ConsiderBIC: there are2n = M possible models. Letn = 41 as in Sala-i-Martin (1997a) (or indeed,
Hoover and Perez, 1999) whenT = 72. ThenM = 241 ' 2.2 × 1012 which is roughly two trillion
possible models. Hoover and Perez (2004) taken = 62 for T = 138, so now we haveM = 4.6×1018 (a
billion billion or a million trillion) models. Is statistical inference impugned by the action of estimating
all theseM models? The penalty function in (7) is intended to address that issue, albeit that the three
shown differ in their severity: asn falls from 41 to 1 whenT = 72 (say), they drop from 1.15 to
0.03 forAIC; 2.4 to 0.06 forBIC; and 1.7 to 0.04 forHQ. To select the ‘optimum’ specification, allM

models need to be considered, yet the result is either asymptotically efficient or consistent. However, the
sample size seems too small here to justify a selected model on such grounds alone. In any case, the
computational cost would be prohibitive: the second case would cost $10m even at a billion models per
US cent.

2.2 Sifting through all possible models

Consider next an investigator who searches across allM models for one which confirms some theoretical
views or political prejudices, rather than minimises an information criterion as in section 2.1. Assuming
there exists a ‘best’ member on such criteria, and that such amodel is found and reported, what status
should it enjoy? An excellent answer was provided in Gilbert(1986) who distinguished ‘weak data min-
ing’, whereby corroboration was sought for prior beliefs without seriously harming the resulting model,
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from ‘strong data mining’ in which conflicting evidence was camouflaged or not reported. Encompass-
ing tests against rival models can reveal the latter (also see Hendry, 1995, Ch. 15). If the reported model
is not parsimoniously encompassed by any contender, it holds a place in the set of non-rejected models.

Should one worry when almost every possible combination of hypotheses has been tested in every
possible model? After all, there are aboutn/2 coefficients in the average model, delivering approx-
imately N = n2n/2 tests in total. Subject to the fact that there is not a perfectmatch between the
confidence regions of scalar and vector tests (see e.g., Scheffé, 1953, and Savin, 1980), so some extra
outcomes may be squeezed into the ‘corners’ of such regions,then for a given significance levelα using
a t-test based strategy for retaining/deleting variables,αn regressors will be retained by chance (i.e., be
adventitiously significant) in the final model. Ifα = 0.025 (say), then forn = 41 that isonevariable; for
n = 62 it is a more awkward1.5 (at 5%, however, it would be 3). Finding 17 or 20 variables significant
out of 41 cannot be explained by simply searching across all the possible models for one that is ‘pre-
ferred’. However, computingN such tests wastes even more resources, especially if the final selection is
easily encompassed.

2.3 Gets-based selection

Finally, we note thePcGetsapproach, where its properties, and details of the algorithm, are described in
Hendry and Krolzig (2001, 2003b, 2003c). If there aren regressors in (1), for a baseline critical valuecα

for a t-test,αn regressors are retained by chance. Selectingα = 0.025, that would lead to one ‘spuriously
significant’ variable in the GUM and selected models shown below for n = 41, so again almost none of
the observed significance can be ascribed to chance. Thus, there is no problem of data mining by this
third route.

If all the regressors were mutually orthogonal, then the ordered squaredt-statistics from the GUM,
say t2(1) ≥ t2(2) ≥ · · · ≥ t2(n−1) ≥ t2(n), would suffice for the selection decision, wheret2(k) ≥ cα but

t2(k+1) < cα. Thus, precisely one regression would be needed: the multi-path search introduced by
Hoover and Perez (1999) is essentially required to highlight what the ‘underlying’t-values really are.

3 Empirical growth models

3.1 Hoover–Perez

A complication here is the multiple imputation of the missing data discussed in Hoover and Perez (2004),
which requires either a ‘mixed’ selection strategy, such asthey adopted, or a ‘stacking’ approach. We
experimented with both: see their web site http://www.econ.ucdavis.edu/faculty/kdhoover/index.html.

First, for each of the five versions of the data set, we appliedPcGetsto select a model from the
linear GUM of 62 candidate variables. This delivered 5 distinct, but highly overlapping, selections, from
which we then formed the union of their 24 candidate variables. To select a final contender therefrom,
we stacked the five data sets as one, estimated the union model, and appliedPcGets(andPcGive: see
Hendry and Doornik, 2001) to select the final choice. The logic of this is as follows.

Consider stacking the same data twice, for a basic regression equation of the formy = Zβ + u with
k regressors:

β̂ =
(
Z′Z

)
−1

Z′y and V
[
β̂
]

= σ̂2
(
Z′Z

)
−1

,

so that for a double stacked illustration:(
y

y

)
=

(
Z

Z

)
β +

(
u

u

)
.
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Then:

β̃ =
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]
[

Z

Z

])
−1 (
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(
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y
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)
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2Z′y ≡ β̂ (8)

with:
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1
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(
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′
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)2

leading to:

V
[
β̃
]

= σ2
(
2Z′Z

)
−1

=
σ2

2σ̂2
V
[
β̂
]

=
T − k

2T − k
V
[
β̂
]
. (9)

Consequently, (8) shows that an identical estimate ofβ would be obtained, with a slightly downward
biased estimateσ2 of σ2 based on conventional formulae. Also, (9) reveals the need to re-scale standard
errors by a factor

√
[(2T − k) / (T − k)], and hencet-values accordingly, but all of these are trivial to

correct.
When different measures of the same underlying variables are used, this device is a simple way to

pool, which exploits the automatic selection capabilitiesof PcGets. Thus, on the five-stacked data set,
PcGetswas applied to the 24-variable union model, but now requiring absolutet-values in excess of 5.16
for retention (namely, the 2.5% critical value of 2.267 times the scale factor

√
[(5T − k) / (T − k)] '

2.276 for k = 6). PcGivewas used in a ‘hand simplification’ for the last few steps, eliminating from
16 variablesseriatimwith |t| < 5.16, as the minimum significance levels inPcGetswere reached for
smaller critical values than5.16 (only the single path of increasing|t| was explored)

Correcting the estimated standard errors of the selected model by2.276 delivered an identical selec-
tion to Hoover and Perez (2004):

ĜRt = 0.011
(0.002)

+ 0.019
(0.004)

YrsOpent + 0.106
(0.039)

EQINVt + 0.077
(0.017)

CONFUCt

0.013
(0.005)

REVCOUPt − 0.012
(0.005)

PROTt (10)

R2 = 0.439 σ̂ = 0.0134 BIC = −8.57

Parameter constancy and normality were accepted, but therewas considerable residual hereoscedastic-
ity, possibly due to the stacking. The outcome in (10) is identical to that from theGetsprocedure in
Hoover and Perez (2004), despite using stacking, rather than averaging, and 2.5% significance, rather
than their 5% rule (which could retain some other effects in the stacked approach). However, the cal-
culated uncertainties in (10) differ slightly from those reported by Hoover–Perez, probably due to the
different methods for handling the five data sets.We then repeated the selection using the stacked data
throughout, applyingPcGetsfirst thenPcGivefor a ‘hand simplification’, and obtained precisely the
same specification as (10).

The probabilityp0 that no coefficients are significant by chance under the null given 62 orthogonal
candidate variables for the criterion|t| > 2.267 is:

p0 = (1 − 0.025)62 ' 0.21.

Thus, it cannot be precluded that all of the variables in (10)are ‘genuinely’ significant, in the sense of
falling in that 20% of draws: this, of course, is far from sufficient to establish that they are the correct
driving forces in a ‘causal’ sense. More generally, letting:

pj =
n!

j! (n − j)!
αj (1 − α)n−j

j = 0, . . . , n (11)
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the next few probabilities arep1 ' 0.33, p2 ' 0.26, p3 ' 0.13, p4 ' 0.05, p5 ' 0.01 after which the
probabilitiess are negligible. Although such calculations suggest a high probability of several spurious
variables, the small size of the final model is really the surprise. Moreover, ifα = 0.01 is used instead, so
cα = 2.615 then REVCOUP and PROT are eliminated, but the first row of (10)remains: nowp0 ' 0.54

andp1 ' 0.34 with all other values negligible, so the first row is quite likely to be substantive—and
would remain so even if4.6 × 1018 models had been estimated.

From first downloading the Hoover and Perez (2004) data, through seeking clarification from the
authors about the multiple imputation, to completing the study took a little over 2 hours of human input,
including stacking the data sets and computing the corrected statistics for (10).

However, the imputation process certainly induces measurement errors in the variables, possibly
correlated across measures and variables. This would generally act to bias downward the estimated
coefficients, upward biaŝσ, and so probably downward bias thet-ratios, leading to underselection. Con-
versely, endogeneity of the variables would act in the opposite direction. Similarly, many of the variables
have an anticipated sign in any sensible model, so could be tested on a 1-sided significance level.

The selection was unaffected by allowing for outlier removal in the GUM and all subsequent models.

3.2 Fernándezet al

The original motivation of our paper, however, was as a comment on Fernándezet al. (2001), so we
briefly note the comparative outcomes on their data set. The GUM regression for all 41 variables had
σ̂ = 0.0056 with BIC = −8.743, and insignificant diagnostic tests for constancy and normality (het-
eroscedasticity could not be calculated forT = 72). Using an overlapping notation with Hoover and
Perez (2004), but the order in Fernándezet al. (2001), the specific model selected by precisely the same
settings for the algorithm was:

ĜRt = − 0.165
(0.022)

GDPSH60Lt + 0.056
(0.010)

CONFUCt + 0.098
(0.021)

LIFEE060t + 0.186
(0.039)

EQINVt

− 0.027
(0.003)

SAfricat + 0.015
(0.004)

RuleLawt + 0.034
(0.013)

Miningt − 0.016
(0.004)

LAAM t

+ 0.017
(0.006)

P60t − 0.111
(0.019)

Hindut + 0.013
(0.004)

EthnoLingt + 0.015
(0.004)

SpanishColt (12)

+ 0.011
(0.003)

FrenchColt + 0.004
(0.001)

LabForcet − 0.144
(0.030)

HYRt + 0.008
(0.002)

BritColt + 0.059
(0.015)

R2 = 0.907 σ̂ = 0.0063 BIC = −9.389

Neither constancy nor normality diagnostic tests rejected. There is considerable overlap with the findings
in Fernándezet al.(2001), but we do not confirm some of their claimed more probable averaged variables.
Several variables found with high significance by Sala-i-Martin (1997a) are not replicated here.

Perhaps the most salient difference with section 3.1 is the large number of variables selected for the
subset of countries where all observations are available onthe 41 candidate regressors. This could reflect
a different source of selection bias (e.g., choice of observations), greater endogeneity in the sub-sample,
or the limitations of multiple imputation.
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4 Conclusion

The efficiency gains from automatic procedures for investigators wishing to undertake model selection
are potentially huge. We ran one basic regression for each data set, precisely so for Fernándezet al.
(2001), though really requiring 6 regressions for Hoover and Perez (2004) due to the multiply-imputed
data. This contrasts with the millions actually estimated by Sala-i-Martin (1997a, 1997b), despite which
the likely number of spuriously-significant variables could be calculated as one out of 41.

The main point of our note is that the results obtained thereby are unlikely to be due to chance sig-
nificance in a setting where the data generation process is a special case of the general model postulated
at the outset and aGetsapproach is adopted. However, that assumption is hard to believe here, and all
the other usual issues remain applicable to the empirical modelling.

We noted above that similar considerations apply whenn > T , even though the GUM cannot be
directly estimated. All that is required is a repeated selection algorithm, not dissimilar to that used above
for handling the five imputations of data: see e.g., Hendry and Krolzig (2003a, 2003d), and Hendry,
Johansen and Santos (2004). Naturally, a largern suggests a smallerα, as with information criteria,
but selected to reflect an investigator’s tradeoff of adventitious significance against omitting relevant
variables. Thus, surprising new insights can follow from thinking based on the theory of reduction
which underpinsGets.

An application of considerable interest here is whether country-specific dummies are required (the
imputation stacking actually entails each ‘impulse’ having 5 values of unity). Doing so would check
one aspect of the homogeneity of the sample relative to the selected model (strictly one should add
the impulses to the GUM, but the computations are excessive without a special program—which still
awaits development). Under the null, at0.5%, adding 138 country dummies should produce less than
one significant by chance, but could reveal important heterogeneities if they existed (the many regional
dummies in Sala-i-Martin, 1997a, presumably attempt to capture such). This emphasizes the two main
points of our comment, namely that repeated testing is not very harmful; and that automatic methods can
eliminate what would otherwise be intolerable computational burdens.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov,
B. N., and Csaki, F. (eds.),Second International Symposion on Information Theory, pp. 267–281.
Budapest: Akademia Kiado.

Barro, R. J., and Sala-i-Martin, X. X. (1995).Economic Growth. New York: McGraw Hill.

Breusch, T. S. (1990). Simplified extreme bounds. In Granger(1990), pp. 72–81.

Campos, J., Hendry, D. F., and Krolzig, H.-M. (2003). Consistent model selection by an automatic Gets
approach.Oxford Bulletin of Economics and Statistics, 65, 803–819.

Fernández, C., Ley, E., and Steel, M. F. J. (2001). Model uncertainty in cross-country growth regressions.
Journal of Applied Econometrics, 16, 563–576.

Gilbert, C. L. (1986). Professor Hendry’s econometric methodology. Oxford Bulletin of Economics and
Statistics, 48, 283–307. Reprinted in Granger (1990).

Granger, C. W. J. (ed.)(1990).Modelling Economic Series. Oxford: Clarendon Press.

Hannan, E. J., and Quinn, B. G. (1979). The determination of the order of an autoregression.Journal of
the Royal Statistical Society, B, 41, 190–195.



8

Hendry, D. F. (1995).Dynamic Econometrics. Oxford: Oxford University Press.

Hendry, D. F. (2004). Model averaging with indicator variables. Working paper, Economics Department,
Oxford University.

Hendry, D. F., and Doornik, J. A. (2001).Empirical Econometric Modelling using PcGive 10: Volume I.
London: Timberlake Consultants Press.

Hendry, D. F., Johansen, S., and Santos, C. (2004). Selecting a regression for more indicators than
observations. Unpublished paper, Economics Department, University of Oxford.

Hendry, D. F., and Krolzig, H.-M. (2001).Automatic Econometric Model Selection. London: Timberlake
Consultants Press.

Hendry, D. F., and Krolzig, H.-M. (2003a). Model selection with more variables than observations.
Unpublished paper, Economics Department, Oxford University.

Hendry, D. F., and Krolzig, H.-M. (2003b). New developmentsin automatic general-to-specific mod-
elling. In Stigum, B. P. (ed.),Econometrics and the Philosophy of Economics, pp. 379–419.
Princeton: Princeton University Press.

Hendry, D. F., and Krolzig, H.-M. (2003c). The properties ofautomatic Gets modelling. Unpublished
paper, Economics Department, Oxford University.

Hendry, D. F., and Krolzig, H.-M. (2003d). Resolving three ‘intractable’ problems using a Gets approach.
Unpublished paper, Economics Department, University of Oxford.

Hendry, D. F., and Mizon, G. E. (1990). Procrustean econometrics: or stretching and squeezing data. In
Granger (1990), pp. 121–136.

Hoover, K. D., and Perez, S. J. (1999). Data mining reconsidered: Encompassing and the general-to-
specific approach to specification search.Econometrics Journal, 2, 167–191.

Hoover, K. D., and Perez, S. J. (2004). Truth and robustness in cross-country growth regressions.Oxford
Bulletin of Economics and Statistics, 66, forthcoming.

Hurvich, C. M., and Tsai, C.-L. (1989). Regression and time series model selection in small samples.
Biometrika, 76, 297–307.

Keynes, J. M. (1940). Statistical business-cycle research: Comment.Economic Journal, 50, 154–156.

Kurcewicz, M., and Mycielski, J. (2003). A specification search algorithm for cointegrated systems.
Discussion paper, Statistics Department, Warsaw University.

Leamer, E. E. (1983). Let’s take the con out of econometrics.American Economic Review, 73, 31–43.
Reprinted in Granger (1990).

Leamer, E. E., and Leonard, H. (1983). Reporting the fragility of regression estimates.Review of
Economics and Statistics, 65, 306–317.

Levine, R., and Renelt, D. (1992). A sensitivity analysis ofcross-country growth regressions.American
Economic Review, 82, 942–963.

McAleer, M., Pagan, A. R., and Volker, P. A. (1985). What willtake the con out of econometrics?.
American Economic Review, 95, 293–301. Reprinted in Granger (1990).

Perez-Amaral, T., Gallo, G. M., and White, H. (2003). A flexible tool for model building: the relevant
transformation of the inputs network approach (RETINA).Oxford Bulletin of Economics and
Statistics, 65, 821–838.

Phillips, P. C. B. (1994). Bayes models and forecasts of Australian macroeconomic time series. In
Hargreaves, C. (ed.),Non-stationary Time-Series Analyses and Cointegration. Oxford: Oxford



9

University Press.

Phillips, P. C. B. (1995). Automated forecasts of Asia-Pacific economic activity.Asia-Pacific Economic
Review, 1, 92–102.

Phillips, P. C. B. (1996). Econometric model determination. Econometrica, 64, 763–812.

Sala-i-Martin, X. X. (1997a). I have just run two million regressions.American Economic Review, 87,
178–183.

Sala-i-Martin, X. X. (1997b). I have just run four million regressions. Unpublished typescript, Economic
Department, Columbia University, New York.
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