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Abstract

This paper provides methods for carrying out likelihood based inference for diffusion
driven models, for example discretely observed multivariate diffusions, continuous time stochas-
tic volatility models and counting process models. The diffusions can potentially be non-
stationary. Although our methods are sampling based, making use of Markov chain Monte
Carlo methods to sample the posterior distribution of the relevant unknowns, our general
strategies and details are different from previous work along these lines. The methods we
develop are simple to implement and simulation efficient. Importantly, unlike previous meth-
ods, the performance of our technique is not worsened, in fact it improves, as the degree of
latent augmentation is increased to reduce the bias of the Euler approximation. In addition,
our method is not subject to a degeneracy that afflicts previous techniques when the degree
of latent augmentation is increased. We also discuss issues of model choice, model checking
and filtering. The techniques and ideas are applied to both simulated and real data.

Keywords: Bayes estimation, Brownian bridge, Non-linear diffusion, Euler approximation,
Markov chain Monte Carlo, Metropolis-Hastings algorithm, Missing data, Simulation, Stochastic
differential equation.

1 Introduction

1.1 The diffusion driven class

Diffusions play a substantial role in modern economics and finance. Recently there has been

a significant increase in interest in methods for estimating and testing parametric diffusion

models using discrete data, such as daily or monthly observations. In this paper we show how to

carry out likelihood inference on a problem where the observations are driven by an underlying

diffusion. This diffusion driven class covers a large number of models which are frequently

employed in financial economics.

We suppose we observe Yi at a non-stochastic time τ i for i = 1, 2, ..., n, where we have

ordered the data in time so that 0 ≤ τ1 ≤ τ2 ≤ ... ≤ τn ≤ T . We assume that Y is related to
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an underlying d−dimensional continuous time process α(t) for t ≥ 0. Our central assumption is

that conditionally on the sample path of α, then Y is Markovian. This is written abstractly as

(Yi−j ⊥⊥ Yi+1) |Yi, {α(t); t ∈ [0, T ]} ,

where j > 0 and ⊥⊥ is the symbol for independence. The model is completed by assuming α is

a diffusion which satisfies the stochastic differential equation (SDE)

dα(t) = µ{α(t); θ}dt+ Θ{α(t); θ}dW (t), t ≥ 0, (1)

where µ and Θ are drift and volatility functions, respectively, depending on α and an unknown

parameter vector θ, and W = (W1, ...,Wd)′ is a d−dimensional vector of independent standard

Brownian motions. Sometimes we write Σ = ΘΘ′ to ease the exposition. We also assume that

µ satisfies the Novikov condition (e.g. Karatzas and Shreve (1991, pp. 198–201)).

The diffusion driven class covers many of the common diffusion based models in financial

economics. Here we list some examples and discuss the variety of methods researchers have

developed to handle these models.

Example 1 Discretely observed multivariate diffusions. Yi = α(τ i), which means that

the multivariate Yi are Markovian. Such models are often used to model interest rates in various

ways. The econometric difficulty with this class of models is that we do not in general know

the distribution of Yi+1|Yi. In the 1990s the task of estimating parametric non-linear SDEs

prompted the development of some original moments based strategies for these models (see, for

example, the reviews by Gallant and Tauchen (2004), Bibby, Jacobsen, and Sørensen (2004)

and Aı̈t-Sahalia, Hansen, and Scheinkman (2004)). Although such methods are attractive, in

principle it is natural to base parametric inference for diffusions on the likelihood function.

This is not straightforward as the likelihood is typically not immediately available, although

the density of Yi+1|Yi can be computed using numerically intensive methods (e.g. Pedersen

(1995), Elerian, Chib, and Shephard (2001), Durham and Gallant (2002), Aı̈t-Sahalia (2002),

Aı̈t-Sahalia (2003)). This paper develops novel simulation based Bayesian inference methods

to optimally learn about diffusions through the likelihood function. These methods rely on

the idea of data augmentation, which was introduced in this context by Elerian, Chib, and

Shephard (2001), Roberts and Stramer (2001) and Eraker (2001), and is explained in detail in

the next Section. Related likelihood based approaches are outlined by Durham (2003), Brandt

and Santa-Clara (2002), Nicolau (2002) and Hurn, Lindsay, and Martin (2003).

Example 2 Stochastic volatility (e.g. Ghysels, Harvey, and Renault (1996) and Shephard

(2004)). Suppose a univariate log-price process P follows the following diffusive stochastic
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volatility (SV) process

dP (t) =
{
µP + βσ2(t)

}
dt+ σ(t)dB(t), (2)

where σ2(t) is some function of the univariate α(t). We assume that B and W are standard

Brownian motions with correlation coefficient ρ and that we record Yi = P (τ i). Then

Yi+1|Yi, {α(t); t ∈ [0, T ]} ∼ N(Yi + µP (τ i+1 − τ i) + βσ2
i+1 + ρZi+1,

(
1 − ρ2

)
σ2

i+1),

where

σ2
i+1 =

∫ τ i+1

τ i

σ2(u)du, Zi+1 =
∫ τ i+1

τ i

σ(u)dW (u).

Multivariate and multifactor SV models can also be written in this setup. The problem of

carrying out for this kind of hidden factor model was an early motivation for the classic papers

on indirect inference and efficient method of moments by Smith (1993), Gourieroux, Monfort,

and Renault (1993) and Gallant and Tauchen (1996). The use of Markov chain Monte Carlo

methods to carry out inference on Euler approximations to this type of model was developed

by, for example, Jacquier, Polson, and Rossi (1994) and Kim, Shephard, and Chib (1998), while

the idea of using these methods to overcome the effect of the discretisation bias was discussed

by Kim, Shephard, and Chib (1998) and Eraker (2001).

Example 3 Counting process. Suppose N is a one dimensional counting process obtained

by time changing a standard, homogeneous Poisson process N∗. We assume the time change

is of the form
∫ t
0 λ(u)du where we assume λ ⊥⊥ N∗ and λ is some function of the univariate α.

Then

E(N(t+ dt) −N(t)|α(t)) = λ(t)dt,

so we can think of λ as the spot intensity of N . N is a Cox (1955) process (they are also called

doubly stochastic processes) and provides a viable alternative to the Engle and Russell (1998)

and Bowsher (2003) approaches to modelling the dynamics of the times of a sequence of events.

They are used as the basis for much of the empirically realistic modelling developed in the credit

risk literature. See for example Lando (1998) and Duffie and Singleton (1999). We show that

likelihood based inference can be based on either Yi = N(τ i) or on the entire sample path of N ,

as in Section 5.1.

1.2 Augmentation and inference

Our approach to inference is Bayesian, so we start with a prior on θ, which we combine with

the likelihood of the observations Y1, ..., Yn|θ to produce a posterior

θ|Y1, ..., Yn. (3)
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Unfortunately the likelihood function for diffusion driven model is not known, except for in the

simplest linear models. We side step this issue by employing augmentation. This approach

emerges from the work of Elerian, Chib, and Shephard (2001), Eraker (2001) and Roberts and

Stramer (2001), but our strategy and details are different.

In principle we augment θ with the entire path of α from time 0 to T . Then our approach

is to simulate from

θ, {α(t); t ∈ [0, T ]} |Y1, ..., Yn. (4)

If we do this many times and just record the values of θ, we get a sample from (3) and thereby

estimates of any posterior quantity of interest, e.g. posterior means, quantiles and covariances.

We show how it is possible to design Markov chain Monte Carlo (MCMC) samplers which

draw from (4). For an extensive discussion of MCMC methods see the review of Chib (2001). Our

methods are based on a block strategy of iterating through the following basic algorithm. Later

we develop a straightforward reparameterisation of the blocking method in order to overcome a

degeneracy in Algorithm 1.2. However, for the moment we ignore this issue.

Algorithm 1.2.

1. Sample from {α(t); t ∈ [0, T ]} |θ, Y1, ..., Yn by updating the subsets of the sample path.

(a) Randomly split time from 0 to T into K + 1 sections. We write these subsampling

times as

0 ≤ t1 ≤ t2 ≤ ...tK ≤ T.

(b) For i = 1, ...,K − 1 sample the subpath

{α(t); t ∈ [ti, ti+1]} |θ, Y1, ..., Yn, α(ti), α(ti+1). (5)

(c) Sample

{α(t); t ∈ [0, t1]} |θ, Y1, ..., Yn, α(t1)

and

{α(t); t ∈ [tK , T ]} |θ, Y1, ..., Yn, α(tK).

2. Draw from

θ| {α(t); t ∈ [0, T ]} .

3. Goto 1.
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The resulting draws obey a Markov chain whose equilibrium marginal distribution is (4).

All inferences are based on these sequences, beyond a suitable burn-in. Of course, the draws are

serially correlated and therefore not as informative as i.i.d. draws from (4). We measure this

dependence by the so-called inefficiency factor (autocorrelation time) of each posterior estimate.

This measure, written INF (L), is defined as 1 + 2
∑L

i=1 ρ(i), where ρ(i) is the autocorrelation

at lag i and L is a truncation point. See also Geweke (1989) who prefers to report the inverse

of this number. By way of interpretation, to make the variance of the posterior estimate the

same as that from independent draws, the MCMC sampler must be run INF (L) times as many

iterations, beyond the transient phase of the Markov chain.

In implementing this strategy the main issue is how to sample from variables of the type (5).

1.3 Outline of the paper

In Section 2 we proceed to a discussion of the implementation of the augmentation approach

through an Euler discretisation and illustrate the effectiveness of the method via an example.

Following this we move onto methodology in Section 2.4 for partially observed diffusions, the

principle example being the stochastic volatility model. The method for parameter sampling is

introduced in Section 3. Simulation experiments are conducted to see how discretisation effects

the performance of the algorithms. The application to volatility model with leverage for the

Standard and Poor’s index is examined in Section 4. Discussion of some related literature as

well as extensions of our work are given in Section 5. Concluding remarks are in Section 6.

2 Augmentation and inference

2.1 The basic framework

In this Section we show how to sample from (5). To do this we first think about solving the

slightly simpler problem of sampling the subpath from

{α(t); t ∈ [ti, ti+1]} |θ, α(ti), α(ti+1), (6)

which is a multivariate non-linear bridge diffusion. This removes the data from (5). To ease the

notation we suppress the dependence on θ in this Section.

Remark 1 The case of discretely observed multivariate diffusions Yi = α(τ i) can be immediately

handled directly through (6) by a tactical choice of the subsampling time {ti; i = 1, 2, ...,K}. All

we have to do is to ensure that

{τ i; i = 1, 2, ..., n} ⊆ {ti; i = 1, 2, ...,K} . (7)
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The reason for this is that (5) simplifies to (6) when (7) holds. This strategy of choosing

{ti; i = 1, 2, ...,K} to ensure (7) holds is, implicitly, an important simplifying feature of the

approach used by Elerian, Chib, and Shephard (2001) and Roberts and Stramer (2001).

Carrying out the simulation from (6) directly is difficult due to the fact that we are condition-

ing on α(ti+1). Instead, we simulate from a rather similar process relatively easily — rejecting

some of these proposals in order to correct for the resulting error. Consider the alternative

diffusion α∗, which is constructed to have the following four properties

• It only exists on the time interval [ti, ti+1].

• It starts at α∗(ti) = α(ti).

• It finishes α∗(ti+1) = α(ti+1).

• It has the same volatility function as the α process.

We are rather free to select the drift function of α∗, so we use the simple form

dα∗(t) = {ti+1 − t}−1 {α(ti+1) − α∗(t)}dt+ Θ {α∗(t)} dW (t) (8)

= µ∗{α∗(t)}dt+ Θ {α∗(t)} dW (t), (9)

where we have suppressed the dependence of the drift on t. It is easy to accurately sample from

this process using a high frequency Euler approximation (e.g. Kloeden and Platen (1992) and

Jacod and Protter (1998)). This is crucial in our work and is discussed in general terms below.

Due to the common drift function the models (1) and (8) deliver locally equivalent measures P

and Q, respectively. The resulting likelihood ratio is given by the Girsanov’s formula (Øksendal

(1998, p. 147)) for the path {α(t); t ∈ [ti, ti+1]}. Ignoring constants it is given by

logLP,Q(α) =
∫ ti+1

ti

(µ (α) − µ∗ (α))′ Σ−1 (α) dα

−1
2

∫ ti+1

ti

(µ (α) − µ∗ (α))′ Σ−1 (α) (µ (α) − µ∗ (α)) du.

Beskos and Roberts (2004) show that it is sometimes possible to use this likelihood ratio inside

a rejection algorithm to sample from the tied down version of (1) by making proposals from (8).

However, in general this is not possible and we have to resort to MCMC methods.

We iterate to a path from P by using proposals from Q with the help of the following

Metropolis-Hastings algorithm (for details of the algorithm see Chib and Greenberg (1995)).

Algorithm 2.1.
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1. Set j = 1. Calculate some initial stretch
{
α(0)(t); t ∈ [ti, ti+1]

}
which obeys the end point

constraints α(ti), α(ti+1).

2. Propose the subpath
{
α(j)(t); t ∈ [ti, ti+1]

}
by sampling from (8).

3. Accept proposal with probability

min
[
1, LP,Q(α(j))/LP,Q(α(j−1))

]
,

otherwise write {
α(j)(t); t ∈ [ti, ti+1]

}
=

{
α(j−1)(t); t ∈ [ti, ti+1]

}
.

4. Set j = j + 1. Goto 2.

2.2 Numerical implementation

It is easy to accurately sample from the crucial (8) using a high frequency Euler approximation

(e.g. Kloeden and Platen (1992) and Jacod and Protter (1998)). The Euler approximation of

(8) is

αi,j+1|αi,j ∼ N (αi,j + δµ∗ (αi,j) , δΣi,j) , (10)

where Mi ≥ 1 is a large positive integer, δ = (ti+1 − ti) /Mi, Σi,j = Σ (αi,j) and

αi,j = α(ti + δj), j = 0, 1, 2, ...,Mi.

This Euler approximation contrasts with an Euler approximation of the true process (1), which

has

αi,j+1|αi,j ∼ N (αi,j + δµ (αi,j) , δΣi,j) . (11)

We write the conditional density of (11) as pN (αi,j+1|αi,j), while using qN (αi,j+1|αi,j) for the

corresponding one for (10).

Remark 2 In the univariate case this is the same as the proposal process for the importance

sampler of Durham and Gallant (2002). An extensive explanation of this importance sampler is

given in Chib and Shephard (2002). In neither of these references is this link to the continuous

time model in (8) made explicit, although the connection is more easily seen through Chib and

Shephard (2002).

Writing µi,j = µ (αi,j) and µ∗i,j = µ∗ (αi,j) then logLP,Q(α) is approximated by

log L̂P,Q(α) =
Mi∑
j=0

(
µi,j − µ∗i,j

)′ Σ−1
i,j (αi,j+1 − αi,j) − 1

2
δ

Mi∑
j=0

(
µi,j − µ∗i,j

)′ Σ−1
i,j

(
µi,j − µ∗i,j

)
,
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which we express as

log L̂P,Q(α) =
Mi∑
j=0

(log pN (αi,j+1|αi,j) − log qN (αi,j+1|αi,j)) . (12)

Clearly log L̂P,Q(α) converges in probability to logLP,Q(α) asMi → ∞ using standard properties

of the Euler approximation.

Remark 3 For a fixed Mi, equation (12) shows the connection between this method and those

of Elerian, Chib, and Shephard (2001) and Eraker (2001). Both these papers tried to sample

from the log-density
Mi∑
j=0

log pN (αi,j+1|αi,j),

tied down by αi,0 = α(ti) and αi,Mi = α(ti+1). Elerian, Chib, and Shephard (2001) made

multivariate proposals using a Laplace type approximation, which was computationally intensive

but effective. Instead we now adopt the simpler approach of proposing blocks using (10), which

is easier to code and numerically faster and better behaved as Mi → ∞. Further, our analysis

shows that a well designed proposal process should produce an excellent MCMC algorithm as

the Metropolis-Hastings acceptance probability does not go to zero as Mi → ∞. Eraker (2001)

advocated a rather different approach. He favoured running MCMC chains inside these blocks,

updating a single αi,j at a time, conditional on its neighbours. Although this algorithm is as

simple to code as our new approach and runs as quickly, it produces output that is more serially

correlated. Indeed, Elerian (1999) proved that the rate of convergence of the Eraker (2001)

algorithm worsens linearly with Mi.

When M is small it is quite possible that our proposal is not an outstandingly good one,

due to the non-linearity in the diffusion. Thus, it may be beneficial to replace the Gaussian

assumption in the proposal (10) with a heavier tailed alternative such as the multivariate-t.

This requires a corresponding, but simple, adjustment in (12).

2.3 Numerical example

Before moving on, it is helpful to illustrate some of these points on a toy numerical example.

We use the log of a square root process. Ito’s lemma implies that it obeys the SDE

dα =
{
κ(µ− eα)e−α − 1

2
σ2e−α

}
dt+ σe−α/2dW. (13)

In this example a unit of time represents a month. We follow Durham and Gallant (2002) and

Aı̈t-Sahalia (2002, Table 3) in fixing κ = 0.5, µ = 0.06 and σ = 0.15 to reflect parameters
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calibrated to the US monthly treasury bill rate. We take T = 2, n = 2, τ1 = 0 and τ2 = 2,

conditioning on α(0) = log(0.05) and α(2) = log(0.25). The task now is to draw paths from

a non-linear diffusion which starts at log(0.05) and finishes at log(0.25). It is unlikely that we

would have a move in interest rates from 5% to 25% in 2 months. Nonetheless, this setting offers

an interesting test of the viability of our method.

0.0 0.5 1.0 1.5 2.0

0.80

0.85

0.90

0.95

1.00 (a) Estimated acceptance prob against time

time

acceptance prob M  =10 
acceptance prob M=80 
acceptance prob M=1000 

0.0 0.5 1.0 1.5 2.0

2

4

6

8
(b) Estimated inefficiency against time

time

inefficiency M=10 
inefficiency M=80 
inefficiency M=1000 

0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00 (c) Correlograms for draws of midpoint α(1)

lag

correlogram for α(1) M=10 
correlogram for α(1) M=80 
correlogram for α(1) M=1000 

Figure 1: Analysis of CIR model with K = 2, and M , the number of points in the Euler dis-
cretisation per unit of time, set to 10, 80 and 1000. (a) estimated average acceptance probability,
(b) estimated inefficiency both against t, time. (c): correlogram of the sampled midpoint α(1).

Throughout we use an Euler approximation based on M observations per unit of time.

We report results from experiments run with M taking the values 10, 80 and 1, 000. We se-

lected two subsampling times t1 and t2 randomly without replacement from the set of times

{j/M ; j ∈ 1, 2, ..., 2M − 1} and then sampled subpaths using the algorithm we have just dis-

cussed. Our results are based on 10, 000 MCMC draws collected after a burn-in of a 100 cycles.

The computation time is basically proportional to M .

Figure 1(a) shows the average acceptance rate from the M-H step for algorithms with the

displayed subsampling times on the interval (0, 2). The acceptance rate is usually over 80% and

is not affected by M — the degree of augmentation. This is the expected result, although it is

highly unusual in the context of MCMC algorithms. In Figure 1(b) we record the inefficiency

factors for each augmented point, computed using 50 lags, while 1(c) shows the autocorrela-
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tion function of the interpolated α(1). These inefficiency factors (with the maximum less than

8) indicate that the output from this sampler mixes extremely well. Interestingly, the ineffi-

ciency factors fall as M is increased. Overall the evidence reveals that the sampler has reliable

performance and improves with larger values of M .

2.4 Reinstating the data

So far we have discussed the problem of sampling from

{α(t); t ∈ [ti, ti+1]} |α(ti), α(ti+1),

rather than

{α(t); t ∈ [ti, ti+1]} |Y1, ..., Yn, α(ti), α(ti+1). (14)

As we have shown, consideration of the former expression is sufficient to deal with discretely

observed diffusions. We assume that the probability density of (14) which we write as

dF (Y2, ..., Yn|Y1, {α(t); t ∈ [0, T ]}) =
n−1∏
i=1

dF (Yi+1|Yi, {α(t); t ∈ [τ i, τ i+1]})

can be computed. Associated with the strip of time from ti to ti+1 and the path of the process

{α(t); t ∈ [ti, ti+1]} are the observations Y which are influenced by this subpath. Let ci and ci+1

be, respectively, the largest and smallest integer such that

τ ci ≤ ti ≤ ti+1 ≤ τ ci+1 .

Then the MCMC algorithm given in 2.1 changes just by a modification of Step 3. It is

restated to become:

Algorithm 2.4.

1. Set j = 1. Calculate some initial stretch
{
α(0)(t); t ∈ [ti, ti+1]

}
which obeys the end point

constraints α(ti), α(ti+1).

2. Propose the subpath
{
α(j)(t); t ∈ [ti, ti+1]

}
by sampling from (8).

3. Accept proposal with probability

min

⎡⎢⎢⎢⎢⎢⎣1,
LP,Q(α(j))
LP,Q(α(j−1))

ci+1−1∏
k=ci

dF
(
Yk+1|Yk, α

(j)
)

ci+1−1∏
k=ci

dF
(
Yk+1|Yk, α(j−1)

)
⎤⎥⎥⎥⎥⎥⎦ , (15)

otherwise write {
α(j)(t); t ∈ [ti, ti+1]

}
=

{
α(j−1)(t); t ∈ [ti, ti+1]

}
.

10



4. Set j = j + 1. Goto 2.

Remark 4 It is often natural to choose ti = τ i for all i = 1, 2, ..., n then (15) simplifies to

min

[
1,

LP,Q(α(j))
LP,Q(α(j−1))

dF
(
Yi+1|Yi, α

(j)
)

dF
(
Yi+1|Yi, α(j−1)

)]
,

as ci = i for all i.

Example 4 (continued from Example 2). In the SV case

Yi+1|Yi, α ∼ N(Yi + µP (τ i+1 − τ i) + βσ2
i+1 + ρZi+1,

(
1 − ρ2

)
σ2

i+1),

where

σ2
i+1 =

∫ τ i+1

τ i

σ2(u)du, Zi+1 =
∫ τ i+1

τ i

σ(u)dW (u).

Example 5 (continued from Example 3). In the Cox process case

Yi+1 − Yi|Yi, α ∼ Po(λi+1), λi+1 =
∫ τ i+1

τ i

λ(u)du,

where Po(µ) denotes a Poisson random variable with mean µ.

3 Algorithm for parameter sampling

3.1 Basic approach

The sole remaining problem for handling diffusion driven models is the step for sampling from

θ| {α(t); t ∈ [0, T ]} .

At this point it is helpful to reparameterise the diffusion component as

dα(t) = µ{α(t);ψ}dt+ Θ{α(t);ω}dW (t), t ≥ 0, (16)

where θ =
(
ψ′, ω′)′.

We initially think of ω as known, when the log-likelihood for the path of {α(t); t ∈ [0, T ]} by

Girsanov’s formula is

logL(α;ψ) = const+
∫ t

0
(µ (α) − µ∗ (α))′ Σ−1 (α) dα

−1
2

∫ t

0
(µ (α) − µ∗ (α))′ Σ−1 (α) (µ (α) − µ∗ (α)) du.

We can use this inside a M-H algorithm to appropriately sample from

ψ|ω, α.
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The difficulty with this method is that the sample path of α exactly gives us the integral of the

volatility function through the quadratic variation of the diffusion

[α](t) =
∫ t

0
Θ{α(u);ω}Θ{α(u);ω}′du.

In many cases this is likely to mean that we can deduce ω from α and therefore ω|α, ψ may

well be degenerate, which implies that the MCMC method will not converge. This feature was

pointed out in the context of univariate diffusions by Roberts and Stramer (2001) and we call

it the Roberts-Stramer critique of this method.

Of course, in practice the sampling schemes above are implemented via an Euler scheme,

applied in conjunction with M augmented points. The critique is less binding when M is small,

which explains why writers like Eraker (2001) and Eraker, Johannes, and Polson (2003) have not

really remarked on it. However, whenM is substantially large, as in our algorithm, the possibility

of degeneracy of the conditional distribution of ω becomes increasingly likely, regardless of what

happens in step 1 of Algorithm 1.2. It is therefore important to have a generic solution to this

problem, which we now supply.

3.2 A reparameterisation

In the discussion thus far we have focused on ways to sample from α, θ|Y1, ..., Yn, however, we

can alternatively sample from

θ, {W (t); t ∈ [0, T ]} |Y1, ..., Yn,

the posterior of the parameters and the driving Brownian process. We write the prior for θ as

π(θ). At first sight this looks like the same problem because the addition of θ to the path of W

yields the path of α. In fact, the resulting MCMC algorithm (which we refer to as the innovation

scheme) is subtly different.

Algorithm 3.2.

1. Sample from {W (t); t ∈ [0, T ]} |θ, Y1, ..., Yn by updating the subsets of the sample path.

2. Draw from

θ| {W (t); t ∈ [0, T ]} , Y1, ..., Yn.

3. Goto 1.

Step 1 is carried out using Algorithm 2.4. Conditional upon θ we convert {α(t); t ∈ [0, T ]}
to obtain {W (t); t ∈ [0, T ]}. This is not a standard Gibbs-type method when applied to W .
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However, since, conditional on θ, there is a one-to-one relationship between W and α over

t ∈ [0, T ] it is valid to take a Gibbs sample of α and convert it into W . The remaining task is

to sample from θ|W,Y1, ..., Yn. Generically this could take the following form.

2a. Combine θ(j−1) and W to construct a path α(j−1).

2b. Propose θ(j) from some density g(θ) which could depend upon Y , W and θ(j−1). Use θ(j)

and W to construct a path α(j). Accept the proposal with probability

min

⎡⎢⎢⎢⎢⎢⎣1,
g(θ(j−1))
g(θ(j))

n−1∏
k=1

dF
(
Yk+1|Yk, α

(j), θ(j)
)
π(θ(j))

n−1∏
k=1i

dF
(
Yk+1|Yk, α(j−1), θ(j−1)

)
π(θ(j−1))

⎤⎥⎥⎥⎥⎥⎦ .

2c. If the proposal is rejected write θ(j) = θ(j−1).

The innovation scheme algorithm is rather simple and overcomes the Roberts-Stramer cri-

tique. In practice we have tended to propose θ using a Laplace approximation to the conditional

posterior {
n−1∏
k=1

dF
(
Yk+1|Yk, α

(j), θ
)}

π(θ).

3.3 Simulation experiment

Our aim is to compare the effectiveness of finite augmentation implementations of samplers

based on θ,W |Y to those which use α, θ|Y . We know that in the limit of M the latter algorithm

will collapse. The former scheme should, however, not be affected by this problem. We develop

a simple simulation experiment, letting M take the values 1, 4, 10 and 50 and T the values 60

and 600. We return to Example 4 but now set µP = β = ρ = 0 to simplify the exposition and

use a log-OU volatility process with σ2(t) = exp(α(t)) where

dα = κ(µ− α)dt+ ωdW

and θ = (κ, µ, ω)′ which we set to (0.03,−0.6,
√

0.03)′ in generating the data. We let α(0) ∼
N(µ, ω2/2κ), the stationary density of α, and assume that the log-price process is observed every

unit of time, so Yi = P (i) for i = 1, 2, ..., n. The augmentation is carried out with fixed blocks,

setting tj = 10j for j = 1, 2, ..., n/10.

We assess the effectiveness of the two algorithms by reporting the INF measure, see Section

2. The results are shown in Table 1. We see that the conclusions are similar. The inefficiency

factors for µ and the middle volatility state, αT/2, appear largely unaffected by the size of T

13



and M under either scheme. This reflects the robustness of our algorithms in sampling the

latent diffusions. For the state based scheme the inefficiency factors for κ and ω rise with T

and particularly with M . For T = 600 and M = 50 the state scheme for ω is more than

2, 000 times less efficient than a hypothetical independent sampler. This inefficiency is almost

certainly severely underestimated as we can only run the sampler for 20,000 iterations due to the

computational burden when M = 50. Additional graphical evidence, not displayed here, shows

that the Markov chain output for ω hardly moves from its initial position when M is 50. For

the innovation scheme, our recommended approach, the inefficiency factors for all parameters

are low (at most around 35) and do not rise with M . The overall efficiency of the innovation

scheme is due to the low posterior correlation between α and ω.

T = 60 κ µ ω α30

α, θ|Y θ,W |Y α, θ|Y θ,W |Y α, θ|Y θ,W |Y α, θ|Y θ,W |Y
M = 1 5.27 2.31 16.6 9.19 33.6 2.35 17.1 5.42
M = 4 6.09 2.41 14.9 8.22 146 2.20 15.7 7.62
M = 10 4.38 2.12 13.0 8.19 581 2.67 15.4 6.05
M = 50 8.04 3.06 30.2 8.83 1526 3.09 16.1 6.56
T = 600 κ µ ω α300

α, θ|Y θ,W |Y α, θ|Y θ,W |Y α, θ|Y θ,W |Y α, θ|Y θ,W |Y
M = 1 61.1 12.2 2.13 1.95 230 33.8 9.23 8.21
M = 4 175 13.4 1.95 1.72 731 35.6 10.7 10.8
M = 10 105 12.7 2.09 1.62 605 31.7 13.0 10.7
M = 50 67.4 15.8 2.17 1.94 2169 36.8 22.3 11.9

Table 1: Results for sampler based upon states and upon innovations for parameters in stochastic
volatility model. True parameters (κ, µ, ω)′ = (0.03,−0.6,

√
0.03)′. Reported are inefficiency

factors based upon 20,000 MCMC samples with block size of 10 units of time and M Euler
augmented points per unit of time.

4 Application: S & P 500

In this section we estimate the volatility with leverage model of (2) to daily returns data on the

closing prices of the Standard and Poor’s 500 index from 5/5/1995 to 14/4/2003 (T = 2, 000).

We consider three different models for the volatility σ2 = exp(α), with

dα = κ(µ− α)dt+ ωdW, OU
dα =

{
κ(µ− eα)e−α − ω2e−α/2

}
dt+ ωe−α/2dW, SQRT

dα =
{
κ(µ− eα)e−α − ω2/2

}
dt+ ωdW. GARCH diffusion.

(17)

The parameters κ, ω and µ thus have different interpretations across the different models, while

µP and β from (2) are common. The sixth parameter is the leverage coefficient ρ.

We run 20,000 iterations of the non-centered MCMC algorithm using the θ,W |Y parame-

terisation for M = 1, 4 and 10 where θ = (κ, µ, ω, µP , β, ρ)′. We sample, on average, 10 days
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of the volatility diffusion at a time, regardless of M . The log-likelihood (estimated at the

mean of θ|y) is computed using particle filter methods, which are discussed in Section 5.2 of

this paper. The correlograms from the MCMC output are shown in Figure 2 (for M = 1 for

brevity). The posterior kernel density estimates are given in Figure 3 for the volatility param-

eters and Figure 4 for the volatility parameters. To calibrate these numbers, when we fit the

Gaussian-GARCH(1,1) by maximum likelihood with the inclusion of µy and β the corresponding

maximised log-likelihood was −3, 074. Numerical summaries of the marginal posterior densities

for each parameter, including the inefficiency factors, are provided in Table 2 for M = 1, 4, 10

and 20.
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Figure 2: Correlograms resulting from 20, 000 iterations of the MCMC algorithm. Data is S &P
500 continuously componded returns. T=2,000, M = 1.

Leverage is important as we find ρ to be negative in all cases. When ρ is constrained to 0

we find that µP and β are different from 0 (results not reported here) and the maximized log-

likelihoods are −3, 040.2, −3, 059.3, −3, 037.3 for the SQRT, OU and GARCH diffusion models,

respectively. Notice these are much higher than the Gaussian-GARCH model mentioned in the

previous paragraph. When ρ is left unconstrained we see from Table 2 that both parameters

are close to 0 and that the maximized log-likelihood value increases considerably for each of the

three models. Quantitatively there is a degree of robustness associated with the estimation of

ρ as we obtain similar results across models. We also see from Figure 3 that increasing M has
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Figure 3: Kernel density estimates for κ, µ and ω2 (from left to right) for the OU, SQRT and
Nelson SV models (top to bottom) resulting from 20, 000 iterations of the MCMC algorithm.
Data is S &P 500 continuously componded returns. T=2,000, M = 1, 4, 10, 20.

little effect on the marginal posterior densities of the volatility parameters. However, the effect

on the return parameters (Figure 4) is more substantial, and the choice M = 1 is inadequate.

Increasing M from 1 to 4 is sufficient for the parameters µP and β, whereas for ρ inferences

based on M = 4 and M = 10 are slightly different in the SQRT and GARCH diffusion models.

The reason that M needs to be moderately large for ρ is due to the dependence on the Ito

integral Zi+1 in (2); in contrast, for the case of σ2
i+1 the integrator is time.

It can also be observed that as we increase the value of M from 1, ρ decreases quite sub-

stantially (almost by one standard deviation) to less than −0.8 in each model. In addition, the

posterior standard deviation of ρ falls from more than 0.05 when M = 1 to around 0.04 when

M = 10. Further increases in M do not affect the results. The inefficiency factors displayed in

Table 2 are a little higher than those in Table 1. This is probably due to the posterior correlation

between ω2 and ρ. However, in all cases the inefficiency factors are less than 100 and vary little

with M . This indicates that our methods are invariant to M in terms of the efficiency factors

(although computationally linear in M). Thus the choice M = 10 is adequate in this example.

The resulting dimension of the discretised volatility path is 20, 000.

Whilst the differences between the three models, in terms of log-likelihood, are large when
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Figure 4: Kernel density estimates for ρ, µy and β (from left to right) for the OU, SQRT and
Nelson SV models (top to bottom) resulting from 20, 000 iterations of the MCMC algorithm.
Data is S &P 500 continuously componded returns. T=2,000, M = 1, 4, 10, 20.

leverage is not included, the differences disappear when leverage is included. When leverage

is excluded the log-likelihood indicates that the GARCH diffusion model is preferable. When

leverage is included, the SQRT model for volatility appears to provide the best fit. The log

likelihoods of these models are all high relative to a competing GARCH(1, 1) model.

5 Discussion and extensions

5.1 Intensity models

In Examples 3 and 5 we have analysed counting processes which are observed at irregularly

spaced time intervals. Perhaps more interestingly we can also carry out inference directly on the

entire sample path of the counting process N . These type of data are now common in financial

econometrics where we have records of quote changes and transactions (for example Engle (2000)

for an overview). Such situations also arise in the field of credit risk. The interarrival times are

exponentially distributed conditional upon the λ path. Let us define the arrival time of events

as 0 ≤ a1 < a2 < ... < aYT
≤ T where NT is the total number of events over [0, T ] then we
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CIR model: log lik (θ) = −2997.86
k µ ω2

mean. st. dev INF (300) mean st. dev. INF (50) mean st. dev. INF (500)
M=1 0.028 0.0079 33.0 1.43 0.2132 5.8 0.0363 0.0088 86.8
M=4 0.030 0.0080 37.9 1.43 0.2096 7.3 0.0388 0.0087 71.9
M=10 0.029 0.0075 22.3 1.45 0.1968 8.2 0.0368 0.0076 68.6
M=20 0.029 0.0075 32.6 1.46 0.1982 9.2 0.0377 0.0074 70.7

µy β ρ

mean st. dev. INF (50) mean st. dev. INF mean st. dev. INF (500)
M=1 0.0274 0.0348 18.7 0.0022 0.0301 14.3 -0.746 0.0515 55.1
M=4 -0.0115 0.0388 28.9 0.0305 0.0325 18.6 -0.802 0.0452 97.7
M=10 -0.0227 0.0384 17.1 0.0368 0.0320 14.1 -0.830 0.0371 66.0
M=20 -0.0277 0.0383 27.1 0.0392 0.0315 18.0 -0.835 0.0352 82.3
log OU model: log lik (θ) = −2999.44

k µ ω2

mean st. dev. INF (300) mean st. dev. INF (50) mean st. dev. INF (500)
M=1 0.024 0.0066 20.9 0.0736 0.1744 5.15 0.0302 0.0060 32.0
M=4 0.027 0.0071 27.7 0.0672 0.1642 6.21 0.0333 0.0068 60.2
M=10 0.026 0.0071 12.4 0.0714 0.1622 7.78 0.0319 0.0068 16.3
M=20 0.027 0.0072 31.5 0.0721 0.1671 5.69 0.0328 0.0070 54.8

µy β ρ

mean st. dev. INF (50) mean st. dev. INF (50) mean st. dev. INF (500)
M=1 0.0313 0.0342 12.1 -0.0722 0.0280 2.53 -0.774 0.0515 34.1
M=4 0.0085 0.0344 14.3 0.0159 0.0292 9.89 -0.821 0.0392 51.8
M=10 0.0046 0.0344 10.9 0.0189 0.0295 7.79 -0.824 0.0397 71.6
M=20 0.0051 0.0358 13.6 0.0206 0.0297 8.65 -0.825 0.0365 67.8
Nelson model: log lik (θ) = −2999.54

k µ ω2

mean st. dev. INF (300) mean st. dev. INF (50) mean st. dev. INF (500)
M=1 0.0088 0.0054 15.5 2.96 2.24 4.10 0.0289 0.0063 44.3
M=4 0.0095 0.0057 22.7 2.93 2.33 6.18 0.0313 0.0081 87.1
M=10 0.0087 0.0054 18.3 3.06 2.27 2.72 0.0300 0.0059 30.6
M=20 0.0085 0.0054 23.5 3.09 2.32 7.13 0.0287 0.0061 56.3

µy β ρ

mean st. dev. INF (50) mean st. dev. INF (50) mean st. dev. INF (500)
M=1 0.0538 0.0325 14.25 -0.0730 0.0287 2.42 -0.746 0.0541 47.1
M=4 0.0330 0.0331 17.47 -0.0041 0.0247 2.76 -0.807 0.0499 51.5
M=10 0.0271 0.0309 22.57 -0.0014 0.0236 3.67 -0.832 0.0430 68.0
M=20 0.0220 0.0317 19.32 0.0017 0.0235 4.52 -0.840 0.0391 59.6

Table 2: Parameter estimates resulting from different volatility models applied to S & P 500
returns. T = 2000 .

obtain the log-likelihood as,

−
∫ T

0
λ(u)du+

∫
log λ {a(u)} dNu = −

∫ T

0
λ(u)du+

YT∑
i=1

log λ(ai).
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We can update blocks of intensities and use a fraction of this log-likelihood inside a M-H algo-

rithm, in precisely the manner for SV models.

5.2 Filtering

5.2.1 Basics of particle filtering

Economists are often interested in

α(τ i)|Y1, ..., Yi, θ, i = 1, 2, ..., n. (18)

Gordon, Salmond, and Smith (1993), Pitt and Shephard (1999), Jacod and Moral (2001), Jacod,

Moral, and Protter (2001) and Johannes, Polson, and Stroud (2002) have developed a method

called particle filters which can sequentially approximate this density. The last three references

are particularly relevant as they develop particle filtering methods in the context of partially

observed SDEs, while the second, third and sixth deal with examples in financial economics.

A radical alternative to filtering, called backprojection, has been developed by Gallant and

Tauchen (1998).

We suppress dependence on θ. The basic approach of particle filtering is to start with a

sample from α(τ i)|Y1, ..., Yi, which we write as

α(j)(τ i), j = 1, 2, ..., J.

We use this sample to produce a sample of size J from α(τ i+1)|Y1, ..., Yi+1. Having propa-

gated the particles one step forward we can repeat the process sequentially through time. The

propagation can be carried out in a number of ways. A simple algorithm is given below.

1. For each j = 1, 2, ..., J produce a sample of size K subpaths

{α(t); t ∈ [τ i, τ i+1]} |α(j)(τ i).

Call this subpath α(j,k), k = 1, 2, ...,K.

2. Compute

wj,k = dF (Yi+1|Yi,
{
α(j,k)(t); t ∈ [τ i, τ i+1]

}
.

3. Resample subpaths with probability proportional towj,k to produce a sample of size J . Call

these subpaths
{
α(j)(t); t ∈ [τ i, τ i+1]

}
for j = 1, 2, ..., J . Placed into memory α(j)(τ i+1).

The above references show that as J,K → ∞ this algorithm sequentially produces valid

samples from the filtering density (18).
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5.2.2 Model fit and model checking

The output from the particle filter can allow us to compute the likelihood for the model using

the prediction decomposition

dF (Y2, ..., Yn|Y1, θ) =
n−1∏
i=1

dF (Yi+1|Y1, Y2, ..., Yi, θ),

where we can consistently estimate dF (Yi+1|Y1, Y2, ..., Yi, θ) as

1
JK

J∑
j=1

K∑
k

wj,k.

In discrete time SV models Kim, Shephard, and Chib (1998) used these types of calculations to

compare SV models to GARCH processes.

The estimate of the likelihood can be used as an input into the marginal likelihood of the

model ∫
dF (Y2, ..., Yn|Y1, θ)π(θ)dθ,

which from Chib (1995), can be more usefully expressed as

dF (Y2, ..., Yn|Y1, θ
∗)π(θ∗)

π(θ∗|y) ,

where θ∗ is any value in the support of the posterior. A method for estimating the marginal

likelihood based on the proceeding identity has been developed by Chib (1995) who recommends

numerically approximating the ordinates dF (Y2, ..., Yn|Y1, θ
∗) and π(θ∗|Y1, ..., Yn) taking θ∗ to

be a high-density point such as the posterior mean of θ. This approach to comparing models

was implemented for discrete time SV models by Elerian, Chib, and Shephard (2001). No real

new issues arise here.

Model checking can be carried out via the one-step ahead forecast distribution functions of

the observables Yi. In this exposition we assume this is a univariate series, although similar

ideas can be developed for the multivariate case. We work with

ui+1 = F (Yi+1|Y1, ..., Yi; θ).

Such a time series of distribution functions should be i.i.d. uniform on the interval 0 to 1 if

the model is correct. This is discussed in the context of non-Gaussian time series models by,

for example, Smith (1985), Shephard (1994) and Kim, Shephard, and Chib (1998), although

earlier work goes back to at least Rosenblatt (1952). The later paper on this topic by Diebold,

Gunther, and Tay (1998) has attracted some attention. Work on using this idea in the context

of exactly observed diffusions is given in Elerian, Chib, and Shephard (2001). In this context the
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main challenge is actually computing ui+1. However, the output from the particle filter solves

this problem for we just have to average

F (Yi+1|Yi,
{
α(j,k)(t); t ∈ [τ i, τ i+1]

}
over the superscript j, k recorded in Step 2 of the previous algorithm.

6 Conclusion

This paper has provided a unified likelihood based approach for inference in diffusion driven

models. This is based on a effective proposal scheme for sampling subpaths of the diffusive

process and a reparameterisation of the model to overcome degeneracies in the MCMC algorithm.

This MCMC method is rather robust and can, in principle, work even in the context of large

dimensional diffusions or diffusions with many state variables. We extend the basic analysis to

provide a consistent way of dealing with other issues such as model choice, model checking and

filtering.

7 Acknowledgments

Neil Shephard’s research is supported by the ESRC through the grant “High frequency financial

econometrics based upon power variation.” The code for the calculations in the paper was written

in the Ox language of Doornik (2001).

References

Aı̈t-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: a

closed-form approach. Econometrica 70, 223–262.

Aı̈t-Sahalia, Y. (2003). Closed-form likelihood expansions for multivariate diffusions. Unpub-

lished paper: Department of Economics, Princeton University.

Aı̈t-Sahalia, Y., L. P. Hansen, and J. Scheinkman (2004). Discretely sampled diffusions. In

Y. Aı̈t-Sahalia and L. P. Hansen (Eds.), Handbook of Financial Econometrics. Amsterdam:

North Holland. Forthcoming.

Beskos, A. and G. Roberts (2004). Exact simulation of diffusions. Unpublished paper: Math-

ematics Department, Lancaster University.

Bibby, B. M., M. Jacobsen, and M. Sørensen (2004). Estimating functions for discretely

samples diffusion-type models. In Y. Aı̈t-Sahalia and L. P. Hansen (Eds.), Handbook of

Financial Econometrics. Amsterdam: North Holland. Forthcoming.

21



Bowsher, C. G. (2003). Modelling security market events in continuous time: intensity based,

multivariate point process models. Unpublished paper: Nuffield College, Oxford.

Brandt, M. W. and P. Santa-Clara (2002). Simulated likelihood estimation of diffusions with

an application to exchange rates dynamics in incomplete markets. Journal of Financial

Economics 63, 161–210.

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statis-

tical Association 90, 1313–21.

Chib, S. (2001). Markov chain Monte Carlo methods: computation and inference. In J. J.

Heckman and E. Leamer (Eds.), Handbook of Econometrics, Volume 5, pp. 3569–3649.

Amsterdam: North-Holland.

Chib, S. and E. Greenberg (1995). Understanding the Metropolis-Hastings algorithm. The

American Statistican 49, 327–35.

Chib, S. and N. Shephard (2002). Comment on ‘Numerical techniques for maximum likelihood

estimation of continuous-time diffusion processes,’ by Durham and Gallant. Journal of

Business and Economic Statistics 20, 325–327.

Cox, D. R. (1955). Some statistical models connected to a series of events (with discussion).

Journal of the Royal Statistical Society, Series B 17, 129–64.

Diebold, F. X., T. A. Gunther, and T. S. Tay (1998). Evaluating density forecasts with

applications to financial risk management. International Economic Review 39, 863–883.

Doornik, J. A. (2001). Ox: Object Oriented Matrix Programming, 3.0. London: Timberlake

Consultants Press.

Duffie, D. and K. Singleton (1999). Modeling term structures of defaultable bonds. Review of

Financial Studies 12, 687–720.

Durham, G. (2003). Likelihood-based specification analysis of continuous-time models of the

short-term interest rate. Journal of Financial Economics 70, 463–487.

Durham, G. and A. R. Gallant (2002). Numerical techniques for maximum likelihood esti-

mation of continuous-time diffusion processes (with discussion). Journal of Business and

Economic Statistics 20, 297–338.

Elerian, O. (1999). Simulation estimation of continuous-time models with applications to

finance. Unpublished D.Phil. thesis, Nuffield College, Oxford.

Elerian, O., S. Chib, and N. Shephard (2001). Likelihood inference for discretely observed

non-linear diffusions. Econometrica 69, 959–993.

22



Engle, R. F. (2000). The econometrics of ultra-high frequency data. Econometrica 68, 1–22.

Engle, R. F. and J. R. Russell (1998). Forecasting transaction rates: the autoregressive con-

ditional duration model. Econometrica 66, 1127–1162.

Eraker, B. (2001). Markov chain Monte Carlo analysis of diffusion models with application to

finance. Journal of Business and Economic Statistics 19, 177–191.

Eraker, B., M. Johannes, and N. G. Polson (2003). The impact of jumps in returns and

volatility. Journal of Finance 53, 1269–1300.

Gallant, A. R. and G. Tauchen (1996). Which moments to match. Econometric Theory 12,

657–81.

Gallant, A. R. and G. Tauchen (1998). Reprojection partially observed systems with applica-

tions to interest rate diffusions. Journal of the American Statistical Association 93, 10–24.

Gallant, A. R. and G. Tauchen (2004). Simulated score methods and indirect inference for

continuous-time models. In Y. Ait-Sahalia and L. P. Hansen (Eds.), Handbook of Financial

Econometrics. Amsterdam: North Holland. Forthcoming.

Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration.

Econometrica 57, 1317–39.

Ghysels, E., A. C. Harvey, and E. Renault (1996). Stochastic volatility. In C. R. Rao and G. S.

Maddala (Eds.), Statistical Methods in Finance, pp. 119–191. Amsterdam: North-Holland.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith (1993). A novel approach to nonlinear and

non-Gaussian Bayesian state estimation. IEE-Proceedings F 140, 107–113.

Gourieroux, C., A. Monfort, and E. Renault (1993). Indirect inference. Journal of Applied

Econometrics 8, S85–S118.

Hurn, A., K. A. Lindsay, and V. L. Martin (2003). On the efficacy of simulated maximum

likelihood for estimating the parameters of stochastic differential equations. Journal of

Time Series Analysis 24, 45–63.

Jacod, J. and P. D. Moral (2001). Interacting particle filtering with discrete observations. In

A. Doucet, N. de Freitas, and N. J. Gordon (Eds.), Sequential Monte Carlo Methods in

Practice, pp. 43–77. New York: Springer-Verlag.

Jacod, J., P. D. Moral, and P. Protter (2001). The Monte-Carlo method for filtering with

discrete-time observations. Probability Theory and Related Fields 120, 346–368.

Jacod, J. and P. Protter (1998). Asymptotic error distributions for the Euler method for

stochastic differential equations. Annals of Probability 26, 267–307.

23



Jacquier, E., N. G. Polson, and P. E. Rossi (1994). Bayesian analysis of stochastic volatility

models (with discussion). Journal of Business and Economic Statistics 12, 371–417.

Johannes, M., N. G. Polson, and J. Stroud (2002). Nonlinear filtering of stochastic differen-

tial equations with jumps. Unpublished paper: Graduate School of Business, Columbia

University.

Karatzas, I. and S. E. Shreve (1991). Brownian Motion and Stochastic Calculus (2 ed.),

Volume 113 of Graduate Texts in Mathematics. Berlin: Springer–Verlag.

Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: likelihood inference and

comparison with ARCH models. Review of Economic Studies 65, 361–393.

Kloeden, P. E. and E. Platen (1992). Numerical Solutions to Stochastic Differential Equations.

New York: Springer.

Lando, D. (1998). On Cox processes and credt risk securities. Review of Derivatives Research 2,

99–120.

Nicolau, J. (2002). A new technique for simulating the likelihood of stochastic differential

equations. The Econometrics Journal 5, 91–103.

Øksendal, B. (1998). Stochastic Differential Equations. An Introduction with Financial Ap-

plications (5 ed.). Berlin: Springer.

Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic

differential equations on discrete observations. Scandinavian Journal of Statistics 27, 55–

71.

Pitt, M. K. and N. Shephard (1999). Filtering via simulation: auxiliary particle filter. Journal

of the American Statistical Association 94, 590–599.

Roberts, G. O. and O. Stramer (2001). On inference for nonlinear diffusion models using the

Hastings-Metropolis algorithms. Biometrika 88, 603–621.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical

Statistics 23, 470–2.

Shephard, N. (1994). Partial non-Gaussian state space. Biometrika 81, 115–131.

Shephard, N. (2004). Stochastic Volatility: Selected Readings. Oxford: Oxford University

Press. Forthcoming.

Smith, A. A. (1993). Estimating nonlinear time series models using simulated vector autore-

gressions. Journal of Applied Econometrics 8, S63–S84.

24



Smith, J. Q. (1985). Diagnostic checks of non-standard time series models. Journal of Fore-

casting 4, 283–91.

25


