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Abstract

A new game theoretic analysis of finite horizon, complete information
bargaining is advanced. The extensive form reflects an attempt to model
unstructured negotiations, in which the negotiants can gain no artificial
advantage from the details of the bargaining protocol. Conditions are
identified under which the game is dominance solvable in the sense that
iterative deletion of weakly dominated strategies selects a unique outcome.
These conditions serve to preclude embedded static bargaining problems
of the sort that have historically been deemed indeterminate, thereby
ensuring that the dynamic problems analyzed will be resolvable without
imposing any particular static theory.
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0. PRÉCIS

The following outline is intended to help the reader navigate this paper and
process it in an efficient manner.

§§1.1–1.2 supply the motivation for this work, sketching the history of the
bargaining problem within economic theory and noting some objections
to the dominant class of “temporal monopoly” models.

§1.3 lists three basic principles that guide the construction and analysis of
our alternative model and offers an introduction to the mode of reasoning
employed.

§2.1 defines the general “collective choice problem” made up of those
aspects of the bargaining environment that are in principle observable.

§2.2 explains how we transform the collective choice problem into a well
defined extensive form game.

§2.3 constructs the normal form of this game (which is, formally, the
object of our analysis).

§2.4 discusses the application of iterative weak dominance in the present
context and provides some essential notation.

§§3.1–3.4 analyze our sequential bargaining game using a procedure of
backward induction and identify sufficient conditions for it to be domi-
nance solvable.

§3.5 states, by way of summary, our main result (Theorem 1).

§§4.1–4.2 show how the general theory plays out in the special cases of
binary choice and bilateral surplus division.

1. INTRODUCTION

1.1. An excursion in intellectual history

The outstanding early successes of modern theoretical economics came in areas
of the field where the influence on one individual’s decision problem of the
volition of others has the character of an impersonal and implacable force. It
was an abiding theme of the Austrian School that the price system “direct[s
the entrepreneur] to an invisible goal, the satisfaction of the distant unknown
consumer of the final product” (von Hayek, 1988, p. 100), and in a perfectly
competitive textbook economy this mediation by prices is complete: No single
participant in a market need know anything about the other buyers and sellers
except that in aggregate they are willing to transact at the prevailing rate; no
two participants need ever meet face to face and engage in any sort of human
interaction; and no indeterminacy regarding the allocation of resources remains
once relative prices have been established.

Recognizing, as they did, the analytical advantages of impersonalization,
theorists following in the tradition of Edgeworth (1881) took an understandably
pessimistic view of their own ability to elucidate the highly personal activity of
bilateral trade. Again, the comments of an Austrian (von Mises, 1966, p. 327)
provide a representative statement of this appraisal.

In an occasional act of barter in which men who ordinarily do not resort to
trading with other people exchange goods ordinarily not negotiated, the
ratio of exchange is determined only within broad margins. Catallactics,
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the theory of exchange ratios and prices, cannot determine at what point
within these margins the concrete ratio will be established. All that it can
assert with regard to such exchanges is that they can be effected only if
each party values what he receives more highly than what he gives away.

More generally, it was felt that all negotiated decisions raise problems of group
psychology beyond the competence of the economist, and it was with an ad-
mirable humility that these phenomena were largely surrendered to the other
emergent disciplines of social science.

With this point of view well established, it is perhaps to be expected that
the game theoretic approach to bargaining propounded in the landmark contri-
bution of Rubinstein (1982) — building on earlier work by Nash (1953), St̊ahl
(1972), and others — would have generated great enthusiasm. Starting from
the commonplace observation that any actual negotiation unfolds over time, Ru-
binstein considered how the outcome of a bilateral surplus division game would
depend upon the differential delay costs or relative impatience of the players.
And, surprising even himself (p. 99), he found that for a wide class of prefer-
ences quantifying these factors, the requirement of perfect equilibrium (Selten,
1965, 1975) is consistent with a unique allocation usually agreed upon at once.

The bargaining problem having been thus reclaimed as an object of study,
it received no small amount of attention in the first two decades following the
appearance of Rubinstein’s paper, as economic theorists enriched his basic model
to allow for such complications as a variable number of players (e.g., Chatterjee
et al., 1993, Chae and Yang, 1994, and Krishna and Serrano, 1996); increased
flexibility in the timing of events (e.g., Admati and Perry, 1987, Perry and
Reny, 1993, and Sákovics, 1993); and, most importantly, incomplete information
(see Kennan and Wilson, 1993, and Ausubel et al., 2002).1 This literature has
contributed substantially to a growing understanding of the causes of bargaining
impasses and the extent to which the resulting inefficiencies can be ameliorated.
Its models have been deployed in applications too numerous to mention and
have triggered an avalanche of experimental studies (see Roth, 1995). And the
prospects for further theoretical advances under the Rubinstein rubric continue
to look bright (e.g., Yıldız, 2003).

1.2. Objections to temporal monopoly

Contemporaneously with these developments, however, there has persisted a
subterranean dissatisfaction with the dominant framework for game theoretic
modelling of negotiations; one in which a “recognition process” endows agents
in turn with “temporal [i.e., temporary] monopoly” power over the candidate
agreement. The consequences of this structure, memorably expounded by Kreps
(1990, pp. 563–565), have been stated more succinctly by Yıldız (2003, pp. 793–
794).

[I]n the Rubinstein-St̊ahl framework, the recognition process is the only
source of bargaining power. In equilibrium, the recognized player at a
given date extracts a (noninformational) rent, as he makes an offer that
can be rejected only by destroying some of the [surplus]. These rents con-
stitute the bargaining power: a player’s continuation value is the present
value of the rents he expects to extract when he is recognized in the future.

1Sutton (1986) summarizes the developments of the early 1980s, while Muthoo (1999)
provides a comprehensive exposition of variations on the Rubinstein model.
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While certainly enlightening, these observations are troubling to the extent that
a correlate to the recognition process is difficult to identify in the economic,
legal, and political settings where bargaining actually takes place. Generally
speaking, any procedural guidelines given to a group of bargainers by a neutral
party will be designed to facilitate rather than to artificially impede the making
of offers.2 If some physical constraint limits the speed of communication, then
it is unclear why this reality should impinge only on the last person to make an
offer and not on everyone else (noted by Sákovics, 1993). And even if we were
to observe bargainers dutifully taking their turns to make offers and respond to
those made by others, the unwarranted conclusion that they are not free to do
otherwise would be in no way preferable to the less extravagant conclusion that
they have adopted a conversational convention that keeps them all from talking
at the same time.

It could be argued in defense of the temporal monopoly framework that if
game theoretic methods are to be used to study bargaining, then it is necessary
to write down a well defined negotiation game; and that the burden is on the
critic to propose an alternative class of models that offers a more attractive
interpretation while at the same time generating predictions as strong as those
that emerge from Rubinsteinian game forms. But the capacity of an economic
model to generate strong predictions is not in itself a virtue. And the heavy
reliance on bargaining games governed by a recognition process seems to sug-
gest that this feature has some unique appeal, when in fact the assumption
of temporal monopoly has never been adequately defended. Thus history —
painted, admittedly, in broad strokes — seems to present us with an uncom-
fortable choice between on the one hand the outright capitulation of the early
price theorists in the face of the bargaining problem, and on the other the highly
predictive models used by a majority of modern game theorists that distribute
bargaining power through an effective but conceptually dubious mechanism.

1.3. Preliminary remarks

The purpose of this paper is to investigate the extent to which, in particularly
simple (finite horizon, complete information) environments, Rubinstein’s differ-
ential delay costs continue to constrain bargaining outcomes even in the absence
of any temporal monopoly structure or other artificial protocol for negotiations.3

We shall address this question using a game theoretic model, the construction
and analysis of which will be guided by the following three basic principles.

1. Sequential (or “dynamic”) bargaining is nothing more than repeated static
bargaining with a variable, endogenously determined continuation out-
come.

2Even the federal mediator who in March of 2000 “laid out an aggressive weeklong sched-
ule of proposals and counterproposals between Microsoft and the Department of Justice”
(Brinkley, 2000) cannot be considered to have acted as a recognition process and deliverer
of bargaining power in the sense described above by Yıldız. (Never mind the brevity of the
scheduled negotiation.) For this to have been the case, he (namely Richard A. Posner) would
have had to have been prepared to quash an improvement in one party’s standing offer on the
grounds that the concession was out of turn. But surely it is not the task of a mediator to
engage in such despotism.

3Previous work involving models that are in one way or another “procedure-free” includes
that of Perry and Reny (1993), Abreu and Gül (2000), and Smith and Stacchetti (2003).
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2. Unstructured static bargaining is best implemented using simultaneous
moves that represent outcome-relevant actions.

3. Dynamic considerations (e.g., delay costs) cannot resolve static problems,
and thus a purely dynamic theory can be determinate only in bargaining
problems with no nontrivial static aspects.4

While the first two principles will be reflected in the extensive form specified
in Section 2.2, the third will appear in the form of conditions on the general
collective choice problem (see Section 2.1) that lead to dominance solvability
(see Section 2.4) of the associated sequential bargaining game (constructed in
Section 2.3).

As an introduction to our mode of reasoning, consider the special case of two
agents with conflicting preferences between two alternatives. Looking ahead to
the horizon, we must rule out the possibility that at this point each agent
prefers each alternative to the disagreement outcome, since such preferences
would create a nontrivial static bargaining problem embedded within the overall
dynamic problem at the deadline for agreement. As the potential agreement
date moves backward away from the horizon, the possibility of avoiding delay
costs will make the prospect of eventual disagreement relatively less attractive
to both agents, and there are then two possibilities. Either the conflicting
preferences are so strong that neither agent would ever be willing to accept his
or her dispreferred alternative in order to avoid waiting for the disagreement
outcome. Or there is some latest date (the “consensus point”) at which exactly
one of the two alternatives (the “consensus choice”) is acceptable in this sense
to both agents. Our conclusion will be that in the first case the negotiation
should end in an impasse, while in the second the identified alternative should
be agreed upon without delay.

The analysis in Section 3 will show that similar reasoning can be applied
to any bargaining environment within the class under consideration. The main
result obtained (i.e., Theorem 1 in Section 3.5) can be construed as simply
establishing a set of sufficient conditions for a particular type of game to be
dominance solvable. But under the suggested interpretation of our method,
we can make a bolder claim as to the significance of this result: that for an
environment within the designated class, its predictions exhaust the implications
of the dynamic structure of the problem, and thus any stronger predictions must
be predicated in part on a theory of static bargaining.

2. FINITE HORIZON SEQUENTIAL BARGAINING

2.1. The collective choice problem

A collection I of agents is charged at time 0 with the task of choosing one of
the mutually exclusive alternatives in a set A. (Assume that both I and A are
nonempty and finite.5) If no choice is made at or before a fixed deadline T

4Similarly, in settings with incomplete information, Kennan and Wilson (1993, pp. 50–55)
stress the indeterminacy of incentive compatibility analysis (e.g., Myerson, 1979) as compared
to the “fairly specific predictions” obtainable by imposing a rigid structure on negotiations
and thereby “implicitly assign[ing] various monopoly powers to the parties”.

5Where it is convenient to formulate A as an infinite set (e.g., in Section 4.2), it will often
be possible to justify applying our results by appealing to a sequence of finite-alternative
approximations.
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then a situation of default arises, the consequences of which we shall represent
by the symbol ω (where ω /∈ A). Hence the full set of possible outcomes is
X = (A × [0, T ]) ∪ {〈ω, T 〉}, each element of which pairs substantive variables
with a time value.

Externally imposed rules governing the conclusion of an agreement are en-
coded in a potential function φ : P(I) × A → {0, 1}, where P represents the
power set operator. An expression of the form φ(J, a) = 1 indicates that the
members of J ⊂ I together have the authority (and thus the “potential”) to im-
plement a ∈ A, while φ(J, a) = 0 indicates the absence of such authority. Logic
dictates that there cannot exist disjoint J, Ĵ ⊂ I and distinct a, â ∈ A such that
φ(J, a) = φ(Ĵ , â) = 1 (the requirement of coherence). Given a ∈ A, we can also
safely assume that the function φ(·, a) is weakly increasing with respect to set
inclusion (monotonicity) and that φ(I, a) = 1 (group sovereignty).6

The behavior of agent i is consistent with a utility function ui : X → < that
is assumed to exhibit the following regularity properties.

[R1] There exists a binary relation �i on A such that for each a, â ∈ A and
t ∈ [0, T ] we have ui(a, t) = ui(â, t) if and only if a �i â. ‖

[R2] For each a ∈ A, the function ui(a, ·) is strictly decreasing and continuous. ‖

Thus each agent’s preferences among the alternatives are stable ([R1]), while
time is valuable and the costs associated with delay accrue in small increments
([R2]). Note that under [R2] each function ui(a, ·) is a homeomorphism be-
tween the intervals [0, T ] and [ui(a, T ), ui(a, 0)], with strictly decreasing inverse
function ui(a, ·)−1.

2.2. Extensive form specification

Although our negotiants could in principle reach an agreement at any instant
t ∈ [0, T ], game theoretic analysis of their predicament will be much simplified
if we restrict attention to a sequence 〈k ·T/n〉nk=0 of n+1 evenly-spaced decision
points. As the parameter n becomes large, this discretization will approximate
the underlying continuous time variable to any desired degree of precision.

What gets decided at a decision point? The one question that can and must
be conclusively settled at point k ·T/n < T (resp., at point T ) is that of whether
an alternative will be chosen at this moment or whether instead the negotiation
will continue on to point (k+1) ·T/n (resp., whether instead default will occur).
In view of the immutable rules for agreement enforced by the potential function,
the sole influence that any single agent i can exert on this immediate decision
lies in his option to join — or to refuse to join — a coalition with (including i)
the authority to implement one of the alternatives. Naturally the agent cannot
simultaneously join two coalitions in support of mutually exclusive alternatives;
but he can refuse to lend his support to any alternative and recommend instead
that the negotiation continue (resp., that default be allowed to occur).

The outcome-relevant actions available to an agent at any decision point are
therefore to sign an agreement implementing some a ∈ A or to abstain from

6Observe that in addition to anonymous requirements for agreement ranging from a sim-
ple majority to unanimous consent, potential functions can incorporate (non-anonymous)
weighted or multiple majority requirements such as those used by the European Union, as
well as individual or joint vetoes such as those available in the U. N. Security Council.
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signing, the latter option indicated by the symbol α and the full set of actions
by A† = A ∪ {α}. In view of our desire to avoid imposing artificial structure
on the negotiation, considerations of symmetry strongly suggest modelling the
agents’ choices from this set as being game-theoretically simultaneous; indeed,
any violation of simultaneity (as in Rubinstein’s model, in which the agents
alternate choosing first) would tend to arbitrarily allocate bargaining power in
the form of permission to commit or to delay committing to an action. Thus our
model can be described as a sequential, simultaneous signature game in which
an alternative is chosen once a valid agreement authorizing the choice has been
signed.

Similar “simultaneous offer” bargaining games have of course been studied
in the past (e.g., by Nash, 1953, and Chatterjee and Samuelson, 1990), and the
usual conclusion is that such games are plagued by “extremely large set[s] of
subgame perfect . . . equilibria” (Dekel, 1990, p. 301). But multiple equilibria
per se will not be a concern here, as we shall be employing dominance rather
than equilibrium principles. And moreover, this multiplicity of equilibria in
sequential, simultaneous offer models can be interpreted as a manifestation of
precisely the sort of embedded static bargaining problems which (it is claimed)
are not resolvable by a purely dynamic theory.

2.3. Normal form constructions

Since nothing occurs before decision point 0, the associated set θ(0) = {h0}
of prior histories contains a single (vacuous) element. At any other decision
point k · T/n, the corresponding set θ(k · T/n) = (A†){0,...,k−1}×I contains the
possible records of past actions by the agents, and the full set of histories is then
Θ =

⋃n
k=0 θ(k · T/n).

A strategy s(·, i) ∈ (A†)Θ for agent i comprises a plan of action for each
history, while a strategy profile s = 〈s(·, i)〉>i∈I ∈ (A†)Θ×I comprises a strategy
for each agent or, equivalently, a plan of action for each history-agent pair. (Here
the superscript > indicates transposition.) Given such a profile, the sequence
〈h∗k(s)〉nk=0 (with h∗0(s) = h0) of realized histories can be constructed using the
recursive definition

h∗k(s) =
[
〈s(h∗0(s), i)〉>i∈I , . . . , 〈s(h∗k−1(s), i)〉>i∈I

]
∈ θ(k · T/n), (1)

and we can then define the point

πa(s) = inf{k · T/n : φ ({i ∈ I : s(h∗k(s), i) = a}, a) = 1} ∈ [0, T ] ∪ {+∞} (2)

of earliest agreement on a particular a ∈ A; the point

πmin(s) = min
a
πa(s) ∈ [0, T ] ∪ {+∞} (3)

of earliest agreement on any alternative; the substantive result

ρ(s) =

{
argmin

a
πa(s) if πmin(s) ∈ [0, T ]

ω if πmin(s) = +∞
(4)

of the negotiation (recall the coherence property of φ); the time value

τ(s) = min{πmin(s), T} ∈ [0, T ] (5)
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at which this result is decided; and the outcome

ψ(s) = 〈ρ(s), τ(s)〉 ∈ X (6)

that eventually emerges. Finally, we can assemble both the normal form

anf =
〈
I,

〈
(A†)Θ, ui ◦ ψ

〉
i∈I

〉
(7)

and the “delegated” (or “agent normal”; Selten, 1975) form

adf =
〈
Θ× I,

〈
A†, ui ◦ ψ

〉
〈h,i〉∈Θ×I

〉
(8)

of our sequential bargaining game.

2.4. Iterative weak dominance

The idea that a weakly dominated strategy can be disregarded and effectively
eliminated from a game has its roots in the normative analysis of statistical
decision problems (e.g., Blackwell and Girshick, 1954). Repeated application of
this idea — the principle of iterative weak dominance — has been described as a
“powerful” yet “conceptually puzzling” procedure (Brandenburger and Keisler,
2003), and has in consequence generated both “widespread and fruitful ap-
plications” (Ewerhart, 2002) and penetrating theoretical investigations of its
epistemic basis.

While the acknowledged strengths of iterative weak dominance as a solution
concept include its capacity to generate both forward and backward induction
equilibria (see Kohlberg and Mertens, 1986), it does suffer from the practical
drawback that the output of the procedure can depend upon the order in which
strategies are deleted. Fortunately a result due to Gretlein (1983, p. 113) (see
also Marx and Swinkels, 1997) serves to mitigate this difficulty.

[A]s long as players have strict preferences over the [outcomes] (of which
there are a finite number), if they successively eliminate some subset of
dominated strategies, . . . then the set of outcomes not eliminated will be
the same no matter . . . which dominated strategies [are] eliminated at each
stage.

The linear ordering hypothesis needed to guarantee this form of procedural
independence will be satisfied in the game anf if for each i ∈ I we supplement
[R2] with the following technical assumption.

[T1] For each distinct a, â ∈ A and each k,m ∈ {0, . . . , n}, we have

ui (ω, T ) 6= ui (a, k · T/n) 6= ui (â,m · T/n) .7 ‖ (9)

7Observe that [T1] incorporates a requirement that the agent’s preferences among the al-
ternatives be discriminating (the second inequality for k = m), as well as a prohibition against
coincidental indifference between otherwise unrelated outcomes (the remaining inequalities).
The first of these assumptions is clearly the more demanding, so it is worth noting that dis-
criminating preferences are not necessary for our conclusions except as a precondition for
invoking Gretlein’s result.
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We can then demonstrate conclusively that our game is dominance solvable
simply by exhibiting a particular strategy elimination procedure that selects a
unique outcome (the solution).

The procedure that we shall use to demonstrate dominance solvability will be
one of backward induction with an allowance for multiple rounds of deletion at
each decision point. Thus we shall be deleting actions from the delegated form
of the game, with the understanding that deleting an action for delegate 〈h, i〉
amounts to simultaneously eliminating all remaining strategies of agent i that
plan to take this action at history h. To facilitate record keeping as we carry
out the induction, let Σiwd[k ·T/n] denote the (common) dominance solution of
the subgames proceeding from decision point k · T/n — so that the solution of
the overall game anf appears as Σiwd[0]. In keeping with this notation, write
Σiwd[(n+ 1) · T/n] = 〈ω, T 〉 to indicate that T is the deadline for agreement.

3. CONDITIONS FOR DOMINANCE SOLVABILITY

3.1. Backward induction lemma

Our analysis begins with the definition of a notion of collective acceptability of
an alternative at a decision point.

Definition 1 Given a decision point k · T/n, let Σiwd[(k + 1) · T/n] exist. An
alternative av is then said to be viable at k · T/n if there exists a Jv ⊂ I such
that both φ(Jv, av) = 1 and ui(av, k · T/n) = ui(Σiwd[(k + 1) · T/n]) for each
i ∈ Jv. ‖

Since, under complete information, outcome Σiwd[(k+1) ·T/n] is the foreseeable
consequence of failing to agree at k · T/n, an alternative is viable at this point
if the members of some coalition with the authority to implement it would be
willing to do so were they all to conclude that no other agreement could be
reached. We then say that the static bargaining problem arising at k · T/n is
trivial if at most one alternative is viable at this decision point, and that it is
nontrivial otherwise.

All of our conclusions about dynamic bargaining will follow from the simple
observation that trivial static problems are dominance solvable. For purposes of
backward induction it will be most convenient to formalize this fact recursively,
using it to relate the solutions of subgames proceeding from consecutive decision
points.

Lemma 1 Given a decision point k · T/n, let Σiwd[(k + 1) · T/n] exist. If no
alternative is viable at k · T/n, then Σiwd[k · T/n] = Σiwd[(k + 1) · T/n]. If a
unique av ∈ A is viable at k · T/n, then Σiwd[k · T/n] = 〈av, k · T/n〉.

In other words, if no alternative is viable at k ·T/n then the dominance solution
at this decision point is the continuation outcome, while any alternative that
is uniquely viable at this point is agreed upon immediately. This elementary
result (proved in the Appendix) lies at the heart of our theory, and leaves us only
with the modest task of finding conditions under which the static bargaining
problems embedded in a dynamic problem are all trivial.
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3.2. Disagreement after the consensus point

As a first application of Lemma 1, we can state immediately a sufficient condition
for dominance solvability at the horizon, since here the continuation outcome
Σiwd[(n+ 1) · T/n] = 〈ω, T 〉 is exogenously given.

Condition 1 (Terminal Solvability) At most one alternative is viable at T .

Proposition 1 Let Terminal Solvability hold. If no alternative is viable at T ,
then Σiwd[T ] = 〈ω, T 〉. If av ∈ A is viable at T , then Σiwd[T ] = 〈av, T 〉.

Suppose now (for the space of this paragraph) that no alternative is viable
at T , in which case we know that there will be disagreement if this decision
point is reached. We can use the continuation outcome Σiwd[T ] = 〈ω, T 〉 to test
the alternatives for viability at the previous decision point, and if again none is
viable then Lemma 1 ensures that Σiwd[(n−1) ·T/n] = Σiwd[T ] = 〈ω, T 〉 as well.
This retrograde chain of equalities will extend until some alternative becomes
viable with respect to the continuation outcome 〈ω, T 〉, an event that will occur
(if at all) at the latest decision point k ·T/n at which there exist an av ∈ A and
a Jv ⊂ I jointly satisfying both φ(Jv, av) = 1 and ui(av, k · T/n) = ui(ω, T ) for
each i ∈ Jv. As n becomes large, the latter point will approach the so-called
“consensus point” defined as follows by way of two useful prior concepts.

Definition 2 The acceptance point of agent i for alternative a is defined by

ξa
i = sup{t ∈ [0, T ] : ui(a, t) = ui(ω, T )} (10)

=


−∞ if ui(ω, T ) > ui(a, 0)
ui(a, ·)−1 ◦ ui(ω, T ) if ui(a, 0) = ui(ω, T ) = ui(a, T )
T if ui(a, T ) > ui(ω, T )

(11)

(see Figure 1), the viability point of alternative a by

Ξa = max
φ(J,a)=1

min
i∈J

ξa
i , (12)

and the consensus point by Ξmax = maxa Ξa; all of which take on values in the
set {−∞} ∪ [0, T ]. ‖

The acceptance point ξa
i measures the appeal of alternative a to agent i

using the space {−∞} ∪ [0, T ] of time values as a numerical scale. (Note that
a �i â implies ξa

i 5 ξâ
i , and that 0 5 ξa

i 5 ξâ
i < T in turn implies a �i â.)

Similarly, the viability point Ξa measures the appeal of alternative a to the
collectivity, equalling the acceptance point of the most skeptical member of the
coalition with the authority to implement a that is least difficult to assemble.
The consensus point is then simply the latest viability point, with Ξmax = −∞
indicating that no alternative is ever viable and Ξmax = T that some alternative
is in fact viable at the horizon.

Example 1 Let I = {1, 2, 3} and A = {a, b, c} and suppose that φ(J, â) = 1 if
and only if |J | = 2. If the nine acceptance points are ordered as

−∞ = ξb
1 = ξc

1 = ξc
2 < 0 < ξa

3 < ξb
3 < ξa

2 < ξb
2 < ξa

1 = ξc
3 = T, (13)

10



0 ξa
i T

s

s
s

ui(ω, T )

ui(a, 0)

ui(a, T )

ui(a, ·)

Figure 1: Graphical depiction of an acceptance point. When ui(ω, T ) 5 ui(a, 0),
the acceptance point ξa

i of agent i for alternative a is the last moment at which i
weakly prefers agreement on a to eventual default. When ui(ω, T ) > ui(a, 0),
in which case no such last moment exists, the acceptance point ξa

i takes on the
value −∞.

then the three viability points and the consensus point satisfy

−∞ = ξc
1 = ξc

2 = Ξc < 0 < ξb
3 = Ξb < ξa

2 = Ξa = Ξmax < T. (14)

If we suppose, alternatively, that φ(J, â) = 1 if and only if both |J | = 2 and 3 ∈ J ,
then the ordering in Equation 13 instead yields

−∞ = ξc
1 = ξc

2 = Ξc < 0 < ξa
3 = Ξa < ξb

3 = Ξb = Ξmax < T. (15)

Finally, we can use the concept of the consensus point to summarize our
conclusions from inductive application of Lemma 1.

Proposition 2 For each decision point k ·T/n > Ξmax, we have Σiwd[k ·T/n] =
〈ω, T 〉. In particular, if Ξmax = −∞ then Σiwd[0] = 〈ω, T 〉.

3.3. Agreement at the (effective) consensus point

If there is certain to be disagreement should the negotiation continue past the
consensus point, what will occur at (or just before) the consensus point itself?
Suppose for the moment that Ξmax = 0, in which case at least one alternative
must be viable with respect to the continuation outcome 〈ω, T 〉 at the latest
decision point no later than Ξmax — which is to say, at the “effective consensus
point” bΞmax · n/T c·T/n (where b·c represents the floor operator). If this viable
alternative happens to be unique, then Lemma 1 ensures that it will be selected
at the decision point in question. But there could at this point be multiple
viable alternatives and thus a nontrivial static bargaining problem; and to rule
out this possibility we shall need a stronger solvability condition.

Condition 2 (CP Solvability) Ξa = Ξâ = Ξmax = 0 only if a = â.

11



Proposition 3 CP Solvability implies Terminal Solvability.

Note, however, that the difference in logical strength between CP and Terminal
Solvability amounts to the relatively innocuous genericity-type assumption that
two alternatives which are not viable at T do not both become viable at precisely
the same instant ; and so in practice (e.g., in Sections 4.1–4.2) it will generally
suffice to verify only the weaker condition.

Our new condition enables us to identify a unique alternative that becomes
viable as the agreement date crosses (moving backwards) the consensus point.

Definition 3 Let CP Solvability hold and Ξmax = 0. The consensus choice is
then defined by amax = arg maxa Ξa. ‖

A technical assumption requires that the discretization of time be sufficiently
fine to disallow any additional alternative with viability point between the true
and effective consensus points.

[T2] The parameter n satisfies T/n < min {Ξmax − Ξa : Ξa < Ξmax}. ‖

And we can then apply Lemma 1 to legitimately conclude that the consensus
choice will be selected in the event that the effective consensus point is reached.

Proposition 4 Let CP Solvability hold. If Ξmax = 0, then

Σiwd (bΞmax · n/T c · T/n) = 〈amax, bΞmax · n/T c · T/n〉 . (16)

In particular, if 0 5 Ξmax < T/n then Σiwd[0] = 〈amax, 0〉.

3.4. Agreement before the consensus point

To complete the backward induction analysis of our sequential bargaining game,
we must now investigate the agents’ behavior at decision points that precede the
effective consensus point. The static bargaining problem that arises at the first
(i.e., the latest) such point differs from those we have previously considered in
that it has continuation outcome 〈amax, bΞmax · n/T c · T/n〉 rather than 〈ω, T 〉.
Since time is valuable (recall [R2]) it follows immediately that amax is viable
at this point, and thus no other alternative can be viable if a nontrivial static
problem is to be avoided. An evident necessary condition for this exclusion
demands that the consensus choice be a member of the core of the coalitional
game associated with the collective choice problem under consideration.

Condition 3 (Core Membership) If CP Solvability holds and Ξmax = 0,
then for each a ∈ A \ amax and each J ⊂ I such that φ(J, a) = 1 there exists an
i ∈ J such that amax �i a.

Example 2 The ordering of acceptance points in Equation 13 above implies the
preferences a �1 b; a �1 c; b �2 a �2 c; and c �3 b �3 a. (Since ξb

1 = ξc
1 = −∞,

agent 1’s preference between b and c is undetermined.) Supposing that φ(J, â) = 1
if and only if |J | = 2, we have that amax = a and φ ({2, 3}, b) = 1 and hence Core
Membership fails. Supposing, alternatively, that φ(J, â) = 1 if and only if both
|J | = 2 and 3 ∈ J , we have that amax = b and so Core Membership holds if and
only if b �1 c.

12
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ui(a, ·)
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Figure 2: Assumption [T3]. The time interval (T/n) must be sufficiently short
that an agent’s loss (	) from replacing a better alternative (â) with a worse
alternative (a) is never outweighed by his gain (⊕) from reaching an agreement
one decision point earlier.

While necessary, Core Membership alone is not quite sufficient to make the
consensus choice uniquely viable at the decision point immediately preceding
the effective consensus point. Although it does ensure that no coalition with
the authority to replace amax with a rival alternative would agree to do so
were the point of implementation to remain fixed, it is possible that the gains
from selecting the rival at the earlier decision point will be large enough to
permit such a coalition to form. What is needed to prevent this is the following
supplementary fineness assumption, which relates the time interval T/n to the
variability of the agents’ utility functions in their time arguments.

[T3] The parameter n satisfies

T/n < min
â�ia

MUCa
i

[
min

t∈[0,T ]
ui(â, t)− ui(a, t)

]
(17)

(see Figure 2), where MUCa
i [·] returns the modulus of uniform continuity

of the function ui(a, ·).8 ‖

Together with this last technical assumption, Core Membership guarantees
that the consensus choice will be selected if the negotiation reaches the first
decision point before the effective consensus point. An identical situation then
arises at the next earliest decision point, where once again we find that the con-
sensus choice will be selected, and by induction we can show that this selection
will in fact be made at any earlier decision point. Our final incremental result
(proved in the Appendix) puts these facts on the record.

8Uniform continuity of ui(a, ·) follows from [R2] and the compactness of the domain [0, T ].
In Equation 17, the existence and strict positivity of the minimum over t ∈ [0, T ] follow,
respectively, from [R2] and the restriction â �i a; and strict positivity of the entire right-
hand-side then follows from the finiteness of the sets I and A.
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Proposition 5 Let both CP Solvability and Core Membership hold. For each
decision point k · T/n < Ξmax, we have Σiwd[k · T/n] = 〈amax, k · T/n〉. In
particular, if Ξmax = T/n then Σiwd[0] = 〈amax, 0〉.

3.5. Summary of results

By combining Propositions 2, 4, and 5, we reach the following conclusions about
dominance solvability of the normal form game constructed in Section 2.3.

Theorem 1 If both CP Solvability and Core Membership hold, then

Σiwd[0] =

{
〈amax, 0〉 if Ξmax = 0
〈ω, T 〉 if Ξmax = −∞.

(18)

A verbal paraphrase may help to reinforce the content of the theorem.

CP Solvability and Core Membership together are sufficient for anf to
be dominance solvable. When these conditions hold, weak positivity of
the consensus point is the criterion for agreement, which (if it occurs) is
immediate and on the consensus choice.

Finally, it should be emphasized that the identified conditions are not necessary
for dominance solvability, since the nontrivial static bargaining problems they
serve to exclude can themselves be solvable — though in general, of course, they
are not.

Example 3 Let I = {1, 2, 3} and A = {a, b}; suppose that φ(J, â) = 1 if and
only if |J | = 2; and consider the static bargaining problem, arising at some decision
point k · T/n, in which

u1(a, k · T/n) > u1(b, k · T/n) > u1(Σiwd[(k + 1) · T/n]) (19)
u2(a, k · T/n) > u2(b, k · T/n) > u2(Σiwd[(k + 1) · T/n]) (20)
u3(b, k · T/n) > u3(Σiwd[(k + 1) · T/n]) > u3(a, k · T/n). (21)

Since both alternatives are viable, this problem is nontrivial. Nevertheless, we can
eliminate weakly dominated action-agent pairs from the set A†× I in the sequence

〈α, 1〉 , 〈α, 2〉 , 〈a, 3〉 , 〈α, 3〉 , 〈b, 1〉 , 〈b, 2〉 (22)

(recall from Section 2.2 that α represents “abstention”), and it follows that the
problem is dominance solvable with solution 〈a, k · T/n〉.

4. SPECIALIZED ENVIRONMENTS

4.1. Binary choice problems

One class of environments that all lead to dominance solvable bargaining games
is that of binary choice problems in which at the horizon each agent ranks
default strictly between the two potential agreements. Letting A = {a0, a1},
we have in this case that for each i ∈ I there exists a y ∈ {0, 1} such that
ui(a1−y, T ) < ui(ω, T ) < ui(ay, T ), and moreover that I can be partitioned into
the sets F0 = {i ∈ I : a0 �i a1} and F1 = {i ∈ I : a1 �i a0}.
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To check that Terminal Solvability holds, observe that for a given y ∈ {0, 1}
we have that alternative ay is viable at T if and only if φ(Fy, ay) = 1, with
the latter equality implying that φ(F1−y, a1−y) = 0 by coherence and hence
that a1−y is not viable at T . That Core Membership holds can be shown by
contradiction: If it were to fail, then for ay = amax we would have that for some
J ⊂ I both φ(J, a1−y) = 1 and a1−y �i ay for each i ∈ J . It would follow
that J ⊂ F1−y; that φ(F1−y, a1−y) = 1 by monotonicity; and hence that a1−y

is viable at T . But by definition amax = ay would then have to be viable at T
as well, which would contradict Terminal Solvability.

Since ξay

i = T if and only if i ∈ Fy, we can order the agents I = {1, 2, . . . , |I|}
so as to make ξa0

i weakly decreasing and ξa1
i weakly increasing in i. There will

then exist both a smallest m0 such that φ({i ∈ I : i 5 m0}, a0) = 1 and a
largest m1 such that φ({i ∈ I : i = m1}, a1) = 1, and we can write the viability
points of the alternatives as Ξa0 = ξa0

m0
and Ξa1 = ξa1

m1
. When

Ξmax = max{ξa0
m0
, ξa1

m1
} = 0, (23)

our conclusion is that amax = ay if and only if ξay
my > ξ

a1−y
m1−y .

Example 4 Let I = {1, 2, 3, 4, 5} and A = {a0, a1} and suppose that for each
y ∈ {0, 1} we have φ(J, ay) = 1 if and only if |J | = 4. If the ten acceptance points
are ordered as

−∞ = ξa1
1 = ξa0

5 < 0 < ξa1
2 < ξa0

4 < ξa0
3 < · · ·

· · · < ξa0
2 = ξa0

1 = ξa1
3 = ξa1

4 = ξa1
5 = T, (24)

then we have F0 = {1, 2} and F1 = {3, 4, 5}; m0 = 4 and m1 = 2; Ξa0 = ξa0
4 and

Ξa1 = ξa1
2 ; Ξmax = max{ξa0

4 , ξa1
2 } = ξa0

4 = 0; and amax = a0.

A prototypical binary choice problem might be that faced by a jury charged
with a decision to acquit or to convict, given certain (majority or supermajority)
rules for reaching a verdict, and operating under the shadow of an explicit or
implicit deadline at which it will be declared to be deadlocked. Other binary
problems presumably arise in legislative settings, their defining feature being
the impossibility of compromise between two competing points of view.

4.2. Bilateral surplus division

As a second application, we now specialize our theory to the bilateral surplus
division problem considered by Rubinstein. In this setting we have I = {1, 2},

A = {〈a1, a2〉 = 〈0, 0〉 : a1 + a2 = 1} , (25)

and φ(J, a) = 1 if and only if J = I. It is also useful to impose normalizations
of the form ui(a, T ) = ai and constraints of the form zi = 0 for zi = ui(ω, T ).

With these specializations, the acceptance point of agent i for alternative a
becomes

ξa
i =


−∞ if zi > ui(a, 0)
ui(a, ·)−1(zi) if ui(a, 0) = zi = ai

T if ai > zi

(26)

and the viability point of alternative a simplifies to Ξa = min{ξa
1 , ξ

a
2}. Terminal

Solvability is satisfied if and only if z1 +z2 = 1, while it can be shown that Core
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Membership is always satisfied when (as in this case) the potential function calls
for unanimous agreement.

If ui(a, t) = ai + ci(T − t) for ci > 0, which is to say that agent i faces a
constant delay cost, then we have

ξa
i =


−∞ if zi − ciT > ai

T − (zi − ai)/ci if zi = ai = zi − ciT

T if ai > zi

(27)

(see Figure 3). When max{z1 − c1T, 0} + max{z2 − c2T, 0} > 1, we have that
Ξmax = −∞ and therefore anticipate the outcome 〈ω, T 〉. Otherwise Ξmax = 0
and (provided that z1+z2 = 1) we anticipate the outcome 〈amax, 0〉 characterized
by

T − (z1 − amax
1 )/c1 = T − (z2 − amax

2 )/c2, (28)

with consensus choice

〈amax
1 , amax

2 〉 = 〈[c1 − c1z2 + c2z1]/[c1 + c2], [c2 − c2z1 + c1z2]/[c1 + c2]〉 . (29)

If, alternatively, ui(a, t) = ai exp[ri(T − t)] for ri > 0, which is to say that
agent i discounts surplus exponentially, then (when ai 6= 0) we have

ξa
i =


−∞ if zi exp[−riT ] > ai

T − (1/ri) log[zi/ai] if zi = ai = zi exp[−riT ]
T if ai > zi.

(30)

When z1 exp[−r1T ] + z2 exp[−r2T ] > 1 we have that Ξmax = −∞, while oth-
erwise Ξmax = 0 and (again provided that z1 + z2 = 1) the consensus choice is
characterized by

T − (1/r1) log [z1/amax
1 ] = T − (1/r2) log [z2/amax

2 ] . (31)

A. APPENDIX

Proof of Lemma 1 Call delegate 〈h, i〉 decisive for any alternative a that will be
chosen at history h with agent i’s assent but not without it; that is, for any a such
that both

φ({i} ∪ {j ∈ I \ i : s(h, j) = a}, a) = 1 (32a)

and
φ({j ∈ I \ i : s(h, j) = a}, a) = 0. (32b)

If h ∈ θ(k · T/n), we can then construct the following normal form comparison of the
actions a and α available to this delegate.

history h realized and history h not realized or
s(h, i) 〈h, i〉 decisive for a 〈h, i〉 not decisive for a

a 〈a, k · T/n〉 ψ(s¬〈h,i〉, α)
α Σiwd[(k + 1) · T/n] ψ(s¬〈h,i〉, α)

Here, as usual, the expression
〈
s¬〈h,i〉, α

〉
denotes the strategy profile formed from s

by replacing s(h, i) with α.
Supposing now that a is not viable at k · T/n, let J ⊂ I be such that φ(J, a) = 1.

By the definition of viability at a decision point, there must exist an i ∈ J such that
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Figure 3: Bilateral surplus division with constant delay costs. Agent 1’s surplus
allocation is measured on the lower scale, agent 2’s (complementary) allocation
on the upper scale, and time on the vertical dimension. Considered as a function
of a, the viability point Ξa is the lower envelope of the acceptance points ξa

1 and
ξa
2 . The consensus choice amax = 〈amax

1 , amax
2 〉 achieves the maximum Ξmax of

this viability point function, a.k.a. the consensus point.

ui(a, k ·T/n) < ui(Σ
iwd[(k+1) ·T/n]), and the above comparison then confirms that α

weakly dominates a for delegate 〈h, i〉. Eliminating all such dominated actions (by
varying a ∈ A and i ∈ J ⊂ I), we find that only an alternative that is viable at k ·T/n
could be chosen at a history in θ(k · T/n); and thus, if no such alternative exists, that
Σiwd[k · T/n] = Σiwd[(k + 1) · T/n].

If a unique av ∈ A is viable at k · T/n, then no other alternative can possibly
be chosen at any h ∈ θ(k · T/n) and so the full normal form decision problem facing
delegate 〈h, i〉 can be written as follows.

history h realized and history h not realized or
s(h, i) 〈h, i〉 decisive for av 〈h, i〉 not decisive for av

av 〈av, k · T/n〉 ψ(s¬〈h,i〉, α)
a 6= av Σiwd[(k + 1) · T/n] ψ(s¬〈h,i〉, α)
α Σiwd[(k + 1) · T/n] ψ(s¬〈h,i〉, α)

The viability of av at k · T/n means that there exists a Jv ⊂ I such that both
φ(Jv, av) = 1 and ui(a

v, k · T/n) = ui(Σ
iwd[(k + 1) · T/n]) for each i ∈ Jv, and [R2]

and [T1] together imply that each of these inequalities is in fact strict. But then we
have that av is iteratively dominant for delegate 〈h, i〉 and thus that s(h, i) = av for
each i ∈ Jv; that

φ({i ∈ I : s(h, i) = av}, av) = φ(Jv, av) = 1 (33)

(recall the monotonicity property of φ); that av is chosen at each history in θ(k ·T/n);
and hence that Σiwd[k · T/n] = 〈av, k · T/n〉.

Proof of Proposition 5 In view of Proposition 4, we can adopt the hypothesis
Σiwd[(k + 1) · T/n] = 〈amax, (k + 1) · T/n〉 and prove the result by induction. Since
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under this hypothesis amax is clearly viable at decision point k ·T/n, it will suffice (by
Lemma 1) to demonstrate that a given a ∈ A \ amax is not viable at this point.

For each J ⊂ I such that φ(J, a) = 1 there exists by Core Membership an i ∈ J
such that amax �i a, and thus

ui(a
max, (k + 1) · T/n)− ui(a, (k + 1) · T/n) > 0 (34)

by [R1]. From [T3] we have

T/n < MUCa
i

[
min

t∈[0,T ]
ui(a

max, t)− ui(a, t)

]
(35)

5 MUCa
i [ui(a

max, (k + 1) · T/n)− ui(a, (k + 1) · T/n)] , (36)

and therefore

ui(a, k ·T/n)−ui(a, (k+1) ·T/n) < ui(a
max, (k+1) ·T/n)−ui(a, (k+1) ·T/n). (37)

But then

ui(a, k · T/n) < ui(a
max, (k + 1) · T/n) = ui(Σ

iwd[(k + 1) · T/n]) (38)

and hence a is not viable at k · T/n.
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