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Abstract

This paper provides a means of accurately simulating explosive autoregres-
sive processes, and uses this method to analyse the distribution of the likelihood
ratio test statistic for an explosive second order autoregressive process. Nielsen
(2001) has shown that for the asymptotic distribution of the likelihood ratio
unit root test statistic in a higher order autoregressive model, the assumption
that the remaining roots are stationary is unnecessary, and as such the ap-
proximating asymptotic distribution for the test in the difference stationary
region is valid in the explosive region also. However, simulations of statistics
in the explosive region are beset by the magnitude of the numbers involved,
which cause numerical inaccuracies, and this has previously constituted a bar
on supporting asymptotic results by means of simulation, and analysing the
finite sample properties of tests in the explosive region.

1 Introduction

This paper provides a means of accurately simulating explosive autoregressive pro-
cesses, and uses this method to analyse the distribution of the likelihood ratio test
statistic for an explosive second order autoregressive process. Nielsen (2001) has
shown that for the asymptotic distribution of the likelihood ratio unit root test
statistic in a pth order autoregressive model, p > 1, the assumption that the remain-
ing roots are stationary is unnecessary, and as such the approximating asymptotic
distribution for the test in the difference stationary region is valid in the explosive
region also. However, simulations of statistics in the explosive region are beset by
the magnitude of the numbers involved, which cause numerical inaccuracies. Of-
ten the use of logarithms can alleviate such problems; however with the likelihood
ratio statistic there is no simple way to incorporate logarithms to such an effect.
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This has previously constituted a bar on supporting asymptotic results by means
of simulation, and analysing the finite sample properties of tests in the explosive
region.

Anderson (1959) has provided a number of convergence results for the Ordinary
Least Squares estimator in an explosive first order autoregressive process, allowing
numerically stable simulations to be carried out throughout the parameter space. It
will be shown how these results can be applied to the second order autoregressive
model to allow the likelihood ratio test statistic to be accurately simulated in the
explosive case. This is then used to address two issues: first that the asymptotic
analysis of the test statistic can be supported by simulation and second that the
finite sample distribution of the test statistic can be approximated accurately by a
local asymptotic approach also in the explosive case.

2 The Simulation Problem

In the following the underlying statistical model of the likelihood ratio test statistic
for the unit root hypothesis is presented, and then follows the asymptotic theory
and a description of the simulation issue.

2.1 The Statistical Model and the Null Hypothesis

Suppose a time series X−1,X0,X1, . . . ,XT is observed and consider the univariate
second order autoregressive model given by:

Xt = α1Xt−1 + α2Xt−2 + εt, (1)

where the initial values, X0 and ∆X0 are fixed and the innovations εt are indepen-
dently identically N(0, σ2) distributed and the parameters α1, α2 and σ vary freely.
The model can be transformed into

∆Xt = ΠXt−1 + ζ∆Xt−1 + εt, (2)

where Π = α1 − 1 + α2 and ζ = −α2. The unit root test hypothesis is:

H0 : Π = 0.

For the finite sample analysis of Section 4.3 it is convenient to reparameterise this
as:

∆2Xt = ΠXt−1 − Γ∆Xt−1 + εt, (3)

where Γ = 1 + α2 = 1− ζ. When Π = 0 the parameter Γ determines the stochastic
properties of the process: when 0 ≤ Γ ≤ 2 the process is difference stationary, when
Γ = 0 it is I(2), and when |1 − Γ| > 1 it is explosive.
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2.2 The Test Statistic

The model is analysed by regressing ∆Xt and Xt−1 on ∆Xt−1 giving the residuals:

R0,t = (∆Xt|∆Xt−1) = ∆Xt −

∑T

t=1 ∆Xt∆Xt−1∑T

t=1 ∆X2
t−1

∆Xt−1, (4)

R1,t = (Xt−1|∆Xt−1) = Xt−1 −

∑T

t=1 Xt−1∆Xt−1∑T

t=1 ∆X2
t−1

∆Xt−1. (5)

Defining the partial correlation of ∆Xt and Xt given by Sij = T−1
∑T

t=1 Ri,tR
′

j,t

and the sample product moments λ2 = S2
01/S00S11, the likelihood ratio test statistic

can be written as:

LR = −T log
(
1 − λ2

)
, (6)

2.3 The Asymptotic Theory

The asymptotic result which is hoped to be checked by simulation stems from Nielsen
(2001). This shows that the standard Dickey-Fuller distribution can be used for unit
root testing for all values of Γ in the parameterisation, except when Γ = 0 as the
process is I(2).

Theorem 2.1 In the second order autoregressive model in (3), the null distribution
of the likelihood ratio test statistic for H0 can be approximated as follows for T → ∞
and fixed value of Γ and σ2. Let W be a univariate standard Brownian motion,
then:

LR
d

−→

(∫ 1

0

WudWu

)2

/

∫ 1

0

W 2
udu for Γ 6= 0,

The finite sample properties of the test are distorted by a non-continuity at Γ = 0.
To bridge over the difficult asymptotic distribution Nielsen (2004) formulated the
following local asymptotic result

Theorem 2.2 In the second order autoregressive model in (3), the null distribution
of the likelihood ratio test statistic for H0 can be approximated as follows for T → ∞
and fixed value of γ = ΓT and σ2. Let V be the univariate Ornstein-Uhlenbeck
process Vu given by Vv = −γ

∫ v

0
Vudu + Wv for a standard Brownian motion, W ,

and let Ṽv =
∫ v

0
Vudu and V̂v = Ṽv − Vv

∫ 1

0
ṼuVudu/

∫ 1

0
V 2

u du. Then:

LR
d

−→

(∫ 1

0

V̂udVu

)2

/

∫ 1

0

V̂ 2
u du. (7)

In a simulation analysis of the difference stationary situation, 0 < Γ < 2, Nielsen
(2004) found that the local asymptotic approximation works rather well in finite
samples. A second aim of this paper is to explore this in the explosive case.
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Table 1: Simulated expected value of likelihood ratio test statistic for range of explo-
sive and non-explosive parameterisations. Based on 106 replications. The asymp-
totic figures are taken from Nielsen (1997; 2004).

T

Γ 6 12 24 48 96 192 ∞

−8/3 1.638 1.358 1.244 55.190 109.920 NaN 1.142

−4/3 1.829 1.459 1.297 6.598 63.173 126.330
...

−2/3 1.686 1.671 1.402 1.271 39.454 79.247
...

−1/3 1.656 1.592 1.615 1.378 1.259 59.158
...

−1/6 1.689 1.445 1.618 1.594 1.368 1.254
...

−1/12 1.707 1.463 1.400 1.645 1.584 1.363
...

−1/24 1.715 1.479 1.411 1.382 1.662 1.582 1.142

0 1.722 1.491 1.437 1.412 1.405 1.404 1.402

1/24 1.727 1.495 1.435 1.385 1.321 1.255 1.142

1/12 1.730 1.490 1.409 1.327 1.255 1.207
...

1/6 1.730 1.464 1.344 1.257 1.205 1.177
...

1/3 1.706 1.390 1.267 1.207 1.175 1.160
...

2/3 1.607 1.293 1.212 1.175 1.158 1.150
...

4/3 1.439 1.226 1.179 1.158 1.148 1.145
...

8/3 1.269 1.150 1.136 1.135 60.708 122.380 1.142

2.4 Initial Simulation Results

In Table 1 the expected value of the LR test statistic is reported from a Monte
Carlo simulation of one million repetitions. The simulations are done in the usual
way: for each repetition a time series X1, . . . ,XT with initial values X0 = ∆X0 = 0
is simulated and the likelihood ratio test statistic from (6) is then computed using
double precision. One million repetitions provides a standard error of about 1×10−3,
allowing confidence in results to about the third decimal place. In Table 1 the results
for the range of values 0 ≤ Γ ≤ 4/3 replicate the work of Nielsen (2004), and appear
to be based on numerically stable computations. In contrast, the highlighted values
outside this region indicate some numerical problems, with one entry uncomputable
despite the double precision and thus indicated by NaN for ‘Not a Number’. We
will propose a solution for numerically stable simulations that will give a version of
Table 1 that can be used for assessing the suitability of the asymptotic results in
Theorems 2.1 and 2.2.
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In a related paper Basawa, Mallik, McCormick and Taylor (1989) prove the
asymptotic validity of the bootstrap for the least squares estimate in an explosive
first order autoregression. They support their analysis with a simulation for a single
parameter value of β = 1.05 with T = 200. This choice corresponds to the entry
Γ = 1/24 and T = 192 in Table 1 where standard simulations appear numerically
stable.

3 The Proposed Solution

Anderson (1959) gave the asymptotic theory for the ordinary least squares estimator
in an explosive first order autoregressive process, and the solution to the numerical
instability problem can be found in the proof of these results.

In order to utilise Anderson’s technique some algebraic manipulations of the Sij

expressions are needed. Imposing the null hypothesis in (2) gives:

∆Xt = ζ∆Xt−1 + εt. (8)

In the explosive case, |ζ| > 1, the differences process ∆Xt satisfies an explosive first
order autoregressive as in Anderson’s setup. Based on (8) the residuals R0,t reduce
to:

R0,t = (∆Xt|∆Xt−1) = (εt|∆Xt−1) . (9)

Next, subtracting ζ∆Xt from both sides of (8) and taking sums:

(1 − ζ)Xt−1 = −ζ∆Xt−1 +
t−1∑

s=0

εs. (10)

Using this expression the residuals R1,t then satisfy, for ζ 6= 1:

(1 − ζ)R1,t = (1 − ζ) (Xt−1 | ∆Xt−1) =

(
t−1∑

s=0

εs

∣∣∣∣∣ ∆Xt−1

)
. (11)

Then (9) and (11) can be used to rewrite, for instance, S01 as follows:

(1 − ζ)S01 =
1

T

T∑

t=1

εt

(
t∑

s=1

εs

)

−

[
1
T

∑T

t=1

(∑t

s=1 εs

)
∆Xt−1

] (
1
T

∑T

t=1 εt∆Xt−1

)

1
T

∑T

t=1 ∆X2
t−1

,

(12)

Equation (12) is the alternative expression for the S01 term which can be used to
approximate the likelihood ratio test statistic. Analogous transformations of S00

and S11 can be found using (9) and (11) respectively. They all have the property
that the first term in each expression converges to a non-explosive quantity while
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the second term vanishes, that is Sij = Op (1) − op (1). It remains however, that
in finite samples the second term in each equation cannot be simulated accurately
by the usual technique due to numerical instability; instead a method of simulating
them using the proof of Anderson will be outlined.

Anderson defined the processes zt and yt:

zt = βt−2∆Xt−1 = α∆X0 + ε1 + βε2 + . . . + βt−2εt−1, (13)

yt = εt + βεt−1 + . . . + βt−2ε2 + βt−1ε1 =

t∑

s=1

βt−sεs, (14)

where β = 1/ζ. Equation (13) is a non-explosive representation of the differenced
autoregressive process, while (14) is a moving average representation. Using the
proofs of Anderson’s Theorems 2.1 and 2.2, it can be written that:

β2(T−2)
T∑

t=1

∆X2
t−1 =

1

1 − β2
z2
T +

T−1∑

s=1

β2s
(
z2
T−s − z2

T

)
−

β2T

1 − β2
z2
T , (15)

βT−2
T∑

t=1

εt∆Xt−1 = yT zT +

T−1∑

t=1

βtεT−t(zT−t − zT ). (16)

In the asymptotic analysis the idea is to show that the second and third terms on the
right hand side of (15) and (16) converge to zero as T → ∞. Thus asymptotically

β2(T−2)
∑T

t=1 ∆X2
t−1 can be well approximated by z2

T /(1− β2), which is convergent
due to the Marcinkiewicz-Zygmund result (see Lai and Wei, 1983), and yT zT can be

used to approximate βT−2
∑T

t=1 εt∆Xt−1. This allows accurate approximation of
S00, and this is done by first generating the time series yt and zt for each replication
and then simulating the expressions on the right hand side of equations (15) and
(16).

For S01 and S11 to be simulated, the integrated error term in (11) must be
accounted for. In the proof of Nielsen (2003, Theorem 9.2) the expression (16) is
used with εt replaced by a random walk process:

1

T
βT−2

T∑

t=1

∆Xt−1

(
t−1∑

s=0

εs

)
=

1

T
zT

T−1∑

t=0

βt




T−(t+1)∑

s=0

εs




+
1

T

T−1∑

t=0


βt (zT−t − zT )




T−(t+1)∑

s=0

εs





 ,

(17)

and it follows from that proof that this expession is asymptotically vanishing, with
the second term on the right hand side of (17) vanishing at an exponential rate.

The numerically unstable terms in each of the Sij expressions can now be approx-
imated by well-behaved quantities derived from Anderson (1959), and so simulation
of the Sij terms is possible by using the right hand side expressions of (15), (16) and
(17) as opposed to the left hand side quantity. This allows simulation of the likeli-
hood ratio test statistic, and the accuracy of this approximation in small samples is
analysed in the next Section using Monte Carlo methods.
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Table 2: Expected value of likelihood ratio test statistic for range of explosive and
non-explosive parameterisations, simulated using the idea of Section 3 for Γ /∈ [0, 2].
Based on 106 replications

T

Γ 6 12 24 48 96 192 ∞

−8/3 1.638 1.358 1.244 1.189 1.164 1.152 1.142

−4/3 1.829 1.459 1.297 1.216 1.177 1.159
...

−2/3 1.686 1.671 1.402 1.271 1.205 1.172
...

−1/3 1.656 1.592 1.615 1.378 1.259 1.199
...

−1/6 1.689 1.445 1.618 1.594 1.368 1.254
...

−1/12 1.707 1.463 1.400 1.645 1.584 1.363
...

−1/24 1.715 1.479 1.411 1.382 1.662 1.582 1.142

0 1.722 1.491 1.437 1.412 1.405 1.404 1.402

1/24 1.727 1.495 1.435 1.385 1.321 1.255 1.142

1/12 1.730 1.490 1.409 1.327 1.255 1.207
...

1/6 1.730 1.464 1.344 1.257 1.205 1.177
...

1/3 1.706 1.390 1.267 1.207 1.175 1.160
...

2/3 1.607 1.293 1.212 1.175 1.158 1.150
...

4/3 1.439 1.226 1.179 1.158 1.148 1.145
...

8/3 1.269 1.150 1.136 1.135 1.136 1.138 1.142

4 Simulation Results

Table 2 gives a revised version of Table 1 where the simulations of the explosive
cases, |1 − Γ| > 1, have been done using the method outlined in Section 3. The
numerical instability found in Table 1 does not show up, and it is found that the
figures with normal font are exactly the same since the same random numbers have
been used in the two Tables.

4.1 Simulations of Asymptotically Vanishing Terms

Some attention to the four vanishing terms of equations (15), (16) and (17) is re-
quired. They vanish for large T , and indeed it was found that for γ = ΓT < −16
each of these terms has simulated expectation and standard deviation of less than
10−3. Hence convergence of the expressions in the equations (15), (16) and (17) is
achieved very quickly.
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Table 3: Summary statistics of the local asymptotic distribution. Expectation and
variance are computed from finite sample distribution expectation and variance by
fitting polynomials in T−1, and the quantiles are generated by fitting a Gamma
distribution. The γ = 0 and γ = ∞ values are drawn from the fixed asymptotic
approach, the rest from the local asymptotic method.

γ = ΓT 0 −1/2 −1 −2 −4 −8 −16 −32 −64 −128 ∞

Expectation 1.402 1.373 1.360 1.365 1.670 1.574 1.357 1.248 1.193 1.168 1.142

Variance 3.097 3.009 3.014 3.036 3.718 3.792 3.043 2.637 2.424 2.322 2.221

Shape 0.634 0.627 0.614 0.614 0.750 0.653 0.605 0.591 0.587 0.588 0.587

90% Quantile 3.60 3.536 3.519 3.532 4.124 4.015 3.523 3.257 3.118 3.052 2.98

95% Quantile 4.94 4.864 4.854 4.872 5.544 5.493 4.868 4.516 4.326 4.235 4.13

In the region −16 ≤ γ < 0 these vanishing asymptotic terms can be quite con-
siderable in size. Investigating these terms for a slightly larger array of parameter
values and sample sizes than reported, the extreme cases were as follows: for equation
(15) the extreme mean and standard deviation are -221.055 and 370.216 respectively;
in equation (16) mean -17.841 and standard deviation 10.078 and in equation (17)
mean 0.115 and standard deviation 186.949. The reason for the deteriorating qual-
ity of the approximation is that when γ is close to zero and β = 1/ (1 − Γ) close
to unity, the explosive elements are no longer dampened. Consideration of Table 1
though shows that this is not a numerical problem: in the region −16 ≤ γ ≤ 0 there
are no numerical instabilities in computing the expressions in (15), (16) and (17)
when using double precision.

4.2 Evaluating the Asymptotic Result

Table 2 indicates that the asymptotic result of Theorem 2.1 of Section 2.3 holds.
This is a fixed parameter result and indeed when reading the Table row-wise for any
Γ 6= 0 convergence towards the asymptotic value of 1.142 is seen. This limiting value
was calculated analytically by Nielsen (1997). It is also seen that the convergence
is slower the closer Γ is to zero and hence to the non-continuity in the asymptotic
distribution.

4.3 Approximating the Finite Sample Distribution

In the analysis of the difference stationary region, |1 − Γ| < 1, by Nielsen (2004)
the local asymptotic approximation of Theorem 2.2 was found to work rather well.
This is found also be the case in the explosive region, as seen by reading Table 2
diagonally and thus keeping γ = ΓT fixed. That is, when Γ < 0 the diagonals from
the lower left towards upper right, whereas for Γ > 0 the diagonals from upper left
to lower right are followed. For finite T , there is much less variation reading along
these diagonals than along the rows, implying the local asymptotic distribution is a
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Figure 1: Expected value of fixed and local asymptotic approximating distributions
with finite distribution for various parameterisations, with T = 24 and so Γ = γ/24.
Finite distribution based on 106 repetitions.
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more suitable approximation.
Table 3 reports summary statistics for the local asymptotic distribution when

Γ ≤ 0. For Γ < 0 the expectation and variance figures are found by a response
surface analysis of the numbers along the diagonals in extended versions of Table 2
for both simulated means and variances. Following Nielsen (1997; 2004) the 90%
and 95% quantiles are then found by fitting Gamma distributions by matching the
first two moments. The shape parameters of these Gamma distributions are also
reported. The entries for Γ = 0 and Γ = ∞ are taken from Nielsen (1997; 2004,
Table 2).

Figure 1 plots the expected values of the finite, fixed asymptotic and local asymp-
totic distributions for a range of Γ values when T = 24. In this situation the sta-
tistical model has three parameters, so there are eight observations per parameter,
corresponding to many empirical studies. The fixed parameter asymptotic distri-
bution has a discrete jump at Γ = 0, whereas the local asymptotic distribution and
the finite sample distribution appear to be continuous over the entire Γ space, albeit
with two local maxima. The departure of the local asymptotic and finite sample
distributions from the fixed asymptotic distribution can again be seen, and is most
marked just below zero, which corresponds to the (Γ, T ) pair of (−1/6, 24) hence
γ = −4. As the local asymptotic distribution differs from the fixed distribution in
a similar fashion to the finite sample distribution, this again suggests it provides a
much better approximation to the finite order distribution.

Table 4 reports rejection frequencies for tests based on the 95th quantile of the
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Table 4: Probabilities P (LR > c∞) for the two approximating asymptotic distribu-
tions, along with Bartlett Corrected probabilities, and Bartlett Factors. The finite
distribution is taken to be T = 24. Based on 106 repetitions.

Γ −1/48 −1/24 −1/12 −1/6 −1/3 −2/3 −4/3 −8/3 −16/3

γ = ΓT − 1
2 −1 −2 −4 −8 −16 −32 −64 −128

Fixed Asymptotics

Prob - asymp 0.079 0.078 0.077 0.094 0.098 0.077 0.066 0.061 0.058

Prob - Bartlett 0.048 0.048 0.048 0.040 0.044 0.048 0.049 0.050 0.050

Bartlett Factor 1.249 1.235 1.226 1.417 1.414 1.228 1.136 1.089 1.066

Local Asymptotics

Prob - asymp 0.055 0.055 0.053 0.047 0.052 0.053 0.054 0.055 0.548

Prob - Bartlett 0.050 0.050 0.050 0.051 0.049 0.049 0.049 0.050 0.050

Bartlett Factor 1.039 1.038 1.026 0.969 1.026 1.033 1.039 1.043 1.042

fixed and local approximating asymptotic distributions. The first row of Table 4
shows strong size distortions for the non-explosive region under fixed asymptotics,
as the rejection probabilities are all well over 5%, with the most extreme rejection
probability of nearly 10% when γ is about -4.

Table 4 also reports Bartlett corrections of the two asymptotic distributions. Fol-
lowing Bartlett (1937) the idea is to scale the approximating asymptotic distribution
in order that it better matches the small sample distributions. If the quantiles of
the finite and asymptotic distributions are approximately proportional then the ap-
proximation can be improved by scaling it by the ratio of finite and asymptotic
expectations of the test statistic. Bartlett showed that the scaling factor used
should be the ratio of finite distribution expected values to asymptotic distribution
expected value. Lawley (1956) has shown that in testing situations with n inde-
pendent observations, Bartlett corrections eliminate terms in n−1 from asymptotic
expansions of the moments of the likelihood ratio test statistic for large n. For the
unit root test, however, observations are not even stationary, and so the conditions
for Lawley’s (1956) result do not hold, but Nielsen (1997) has proved that in the
first order autoregressive model a Bartlett correction reduces the absolute value of
the second order terms for at least the first four moments.

From the second row of Table 4 for fixed parameter asymptotics, the rejection
frequencies are improved dramatically by Bartlett correction, with most probabilities
lying in the region 4.8–5%. There is a slight over-correction in that all the values are
equal to or below 5%, with a probability as low as 4% for Γ = −1/6. The row below
this reports the relevant Bartlett factors, which vary considerably over the range of
parameter values considered in line with the variation of the slope parameters in
Table 3.

Turning to consider local asymptotics, there is an improvement over the fixed
parameter asymptotic distribution even before correcting: all rejection probabilities
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are within half a percentage point of 5%, although all bar one are above 5%. The one
value below 5% is for Γ = −1/6, and this is where there is the previously noted spike
in the size and expected values of the finite sample and local asymptotic distributions.
Table 4 shows the Bartlett corrections, where all the corrected probabilities are
within a tenth of a percentage point of 5% and over half of them are even within
a twentieth of a percentage point. The associated Bartlett factor is reported in
the row below the corrected probability; all are close to unity but once again with
change from above 1 to below 1 around γ = −4. While this Bartlett factor appears
to be uniformly bounded it shows fluctuations with a peak of γ close to −4.

Hence from the results of Table 4, size distortions can be all but eradicated
for the likelihood ratio test when the process has an explosive root by using local
asymptotics and Bartlett corrections. These results closely mimic those of Nielsen
(2004) for the non-explosive region.

5 Conclusions

In this paper, the properties of unit root tests in the explosive second order autore-
gressive model have been analysed by simulation. Standard simulation techniques
lead to numerical instability in this situation. The poor numerical accuracy of
this procedure has been overcome using the approximations described in Anderson
(1959), which were shown to be good approximations even in small samples. This
lead to accurate simulations of the distribution of the likelihood ratio test for the
explosive region, supporting the mathematical proofs of Nielsen (2001) relating to
the asymptotic distributional approximations in the explosive region. It was also
shown that for the explosive case the finite sample properties of this fixed parameter
approximation can be improved by a local asymptotic approximation along the lines
of Nielsen (2004), who considered the difference stationary case.
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