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1. Introduction

In the last five years substantial improvements in our understanding @ftalitgt to forecast finan-
cial volatility has been possible through the harnessing of high frequearanycial return data. The
key developments have been the use of estimators of quadratic variatipriifelersen, Bollerslev,
Diebold & Labys (2003) and Barndorff-Nielsen & Shephard (20@2)) making sense of their prop-
erties when applied to 5 to 30 minute return data. A weakness with existing méshibds inability
to deal with market microstructure effects whose effects are key wharseveeturns recorded over
very short time intervals. Interesting recent innovations that improve empeehension of this
topic include At-Sahalia, Mykland & Zhang (2003), Bandi & Russell (2004), Han&elbunde
(2004g, 2004£), and Zhang, Mykland & A-Sahalia (2004).

The problem of estimating the quadratic variation is, in some ways, similar to the gstiroa
the long-run variance in stationary time-series. So it is not surprising thditéhature has studied
estimation methods that are well-known from the literature on covariance estimattuding pre-
whitening methods, likelihood-based estimators, and kernel estimators x&wopke, the popular
realized variancéRV) is analogous to the sum-of-squares variance estimator. BecauB¥ tise
sensitive to market microstructure noise it is recommended to use sparsingampractice, and
the optimal sampling frequency is derived in Bandi & Russell (2004) drahg et al. (2004). The
moving average filter used by Andersen, Bollerslev, Diebold & Ebern31(Pénd the autoregressive
filter used by Bollen & Inder (2002), are estimators that use pre-whiteeicigniques, and Bandi
& Russell (2004) analyze optimal sampling of pre-whiten series. LikeliHi@oestimators include
the maximum likelihood estimators ofitASahalia et al. (2003) who use a homogeneous diffusion
model framework and the GMM estimator of Oomen (200&ho use a pure jump model. The
subsample estimator of Zhang, Mykland &t/Sahalia (2002) stands out as the only existing non-
parametric estimator that is consistent, and its analog for estimation of the longiance was
introduced by Carlstein (1986).

Our focus will be on kernel-based estimators. This literature was start@thday (1996) who
proposed a particular kernel estimator, which only incorporates theofidst- autocovariance. This
suffices for unbiasness under “independence noise” where thdgtiom value of higher-order au-
tocovariances are zero. Hansen & Lunde (20@D04) primarily use kernel-based estimators to
characterize properties of market microstructure noise. Hansen & (20)4) use the estimator
of Zhou (1996) to construct a test for “independent noise” andideogmpirical evidence of time-

dependence in the noise when return data are sampled at ultra highnitezgjesuch as every few
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ticks. Hansen & Lunde (20@} analyze the properties of realized variance under general assump-
tions about the noise and derive a particular unbiased kernel estimaitocatinbe used to uncover
the time-dependence in the noise. Thus, the existing literature on kerneltessirhas either fo-
cused on that based on the first-order autocovariance, see ZHif),(d® used particular unbiased
kernels to analyze and characterize features of market microstrudiises see Hansen & Lunde
(2004, 200%).

In this paper we provide the first systematic study of kernel-based estsadttre integrated
variance in the presence of market microstructure noise. We deriveptimeab kernel-based esti-
mator under an assumption that the noise is without memory and independeatedficient price,
an assumption which is empirically reasonable at moderate time scales suchirmstd returns in
highly liquid markets. Even though second and higher-order autocoeariare known to be zero
under this assumption, we show that it pays off to estimate these. This makssiiblp to derive
kernel-based estimators that are far more precise than is that of Zh®6)(18owever, we also
show that there does not exist a consistent regular kernel-basedtestisaethere is a limit to the
precision of regular kernel-based estimators. Interestingly, we shawhthaonsistent subsampling
estimator of integrated variance by Zhang et al. (2004) is closely relatepladgiaular kernel-based
estimator. Importantly, it turns out that the difference between regulaekestimators and the
subsampling estimator, generateddnd effectsis crucial for the consistency of the subsampling
estimator. This observation allows us to propose a modified kernel-bagedtes which is consis-
tent. We study the efficiency of the new class of estimators and find its ratee¢igence to be the
optimal rate m*/#, wherem is the number of intraday returns, see Gloter & Jacod (202001b).
So this rate is as good as the rate that can be obtained by a maximum likelihoodastinder
more restrictive distributional assumptions for the noise.

In Section 2 we detail our assumptions about the noise, efficient pricegsand sampling
scheme. In Section 3 we detail one of our main contributions, a systematicaralyhe properties
of regular kernels. In Section 4 we related subsampling estimators to Batylettegular kernels,
and we see the difference is due to end conditions. In Section 5 we ing tideioew modified kernel
estimator and study its properties. In Section 6 we draw some conclusionsigiyeAppendix

provides the proofs of the results given in the paper.
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2. Assumptions
2.1. Price Process and Noise

Without loss of generality we assume that the observed price processgimstyi
p(t) = p*(t) + u(t), te[0,T], 1)

where we labelp* as the efficient price process andas the noise process. We assume that the
efficient price is given from the simple diffusion modelp*(t) = o (t)dw(t), wherew(t) is a
standard Wiener process that is independerit-6ft) }/_,, and we make the following assumptions

about the noise process.

(N) The noise processhas mean zero, variana@ = E[u?(t)] < oo, and kurtosis = E[u(t)]/w*

< o0o. Moreover,u(s) 1L p*(t) forall s,t € [0, T] andu(s) 1L u(t) forall s # t.

There is plenty of empirical evidence agairikk) when prices are sampled at ultra-high fre-
guencies, such as every few ticks, see Hansen & Lunde €Q@004) who show thau is neither
time-independent nor independentit On the other hand, Hansen & Lunde (2@D4lso note that
there is little evidence against (the implications @f)) when prices are sampled at more moderate
frequencies such as every 15 ticks. Because the analysis become muechamplicated ifu is
time-dependent, all our results are derive usiNg. So our results may not apply to tick-by-tick
data. The advantage of our strategy is that it will produce a clear ciysisaf the core issues of
kernel-based estimators.

Equation (1) may be viewed as a (Beveridge-Nelson type) decompositivereyw* and u
represent the persistent component and transitory comporesgectively. So the volatility of
p(t + s) — p(t) is well approximated by that op*(t + s) — p*(t) whens is large Thus, the
volatility of p* is the appropriate object of interest, even for the reader who is exelysnterested
in the volatility of p (whetherp is autocorrelated or not).

Without loss of generality we consider the unit interval of time, 1) that is divided intom
sub-intervaldi m — ti—1m, 1 = 1,..., m, (tom = 0 andty, m = 1). The innovations irp*, p, andu

over each of the sub-intervals are defined byjfer1, 2,..., m,

yigfm =P (tim) — P ti—Lm)s  Yim= Ptim) — Plti—im), & m=u(tim) —Uuti—ym).

We will refer toy?*,, andy; m as intraday returns, and we note tyagh = Y, + & m.
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We define the integrated variance
1
IV = / o?(s)ds,
0

which is the object we would like to estimate. Our assumptions about the efficieatimplies that
IV =", 02, wheres? = vary:).*i = 1,....m. Infact we have thay; .....yn , are
independent and Gaussian distributgtd~ N(0, o2 ), (conditionally on{o%(s)}:_,). Throughout

we make the following assumptions about the volatility path.
(V) The volatility is (pathwise) continuous on,[0], strictly positive, and satisfies

m2% o' (.m) — o' (&.m)| = O(1),
i=1

for somer > 0 (equivalently for alr > 0)? wheres , and§ , are arbitrary points in the

interval ti_y.m, tim], i =1,...,m.

2.2. Sampling Scheme

We make the following assumption about the sampling tirggs,tr.m, - - -, tm.m, Where we usé¢al

to denote the smallest integer greater than or equal to

(T) It holds that SUR (0 17 Itrsm.m — T(S)| = o(m~1), wheret is continuous and differentiable

function,t(0) = 0 andz (1) =1, and O< 7/(s) < oo for all s € [0, 1].

The special case where the price observations are equidistant in timesspmmmnds t4 ,, = i/m,
in which caser(s) = sandz/(s) = 1. Mykland & Zhang (2005) use a similar framework for
sampling times, see also Barndorff-Nielsen & Shephard (2005). Givemwe have the following
result that corresponds to AssumptiorvAn Mykland & Zhang (2005).

Lemma 1 Given(T) it holds that

lim sup im—ti-1m — /(L) =0.

LAll population moments are made conditional on the stochastic volatility pso(ze%(s)}é o- Which defines our

object of interest. To simplify notation we use the conventign = E('l{UZ(S)}é:o) , and similar for va¢-), and co\-).
2See Barndorff-Nielsen & Shephard (2003).
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Also key for our analysis is the (time-deformed) integrated quarticity,

1
IQ = / 7' (s)o*(s)ds,
0

and it holds tham }"\", o} | = 1Q + o(1), whereo{ | = (67 )% see Lemma A.2 in the appendix.
An interesting sampling scheme is that whe(s) is the solution tofof(s) o?(r)dr =s-1V, such

thataﬁm = IV/ mforalli = 1,..., m. We refer to this as Business Time Sampling (BTS), see

Oomen (2004, 2004b). As noted by Hansen & Lunde (2@)ABTS minimizelQ = /01 7' (S)o*(s)ds =

IVZ, as the implicit function theorem shows thats) = IV / o%(s) under BTS.

(T") Condition(T) holds withz'(s) = IV / o(s).

3. Properties of Regular Kernel-Based Estimators

We consider the family oRV-estimatordRV, : w € R™} given by

m-1 m—h
RV, = wopo+ > wh(P_n+7n).  wherep,=> yynforh=0....m-1,
h=1 i=1

and we call this the class oggular kernels These types of statistics are familiar from the litera-
ture on covariance stationary processes, where they are used to egtielateg-run variances and
covariances. Leading examples of this include Newey & West (1987 Paddews (1991). This
theory is not directly applicable here as our in-fill asymptotics is entirely réiffiefrom the con-
ventional setup. Further, the market microstructure noise in our problidrmauce a particular
autocovariance structure that we will use to characterize the kernelgrthade good estimates of
thelV.

Examples of kernel-based estimators for estimation of integrated variaméfgh-frequency
data include those by Zhou (199&)(= O for h > 2), Hansen & Lunde (2003 (wp, = (m+h)/m
forh < [pm] 0 < p < 1), and Hansen & Lunde (2003, 2004(Bartlett kernel). Interestingly, we
will show in Section 4 that the subsample-based estimator of Zhang et ad)(@most identical
to a Bartlett-type kernel estimator. However, the feature that makes tharsplesestimator dis-
tinct from any kernel estimator turns out to be very informative about stienation problem, and
suggests a modified class of kernel estimators. We will spell this out in Séction

Since any kernel-basd&®V is a linear combination oy = (v, 274, ..., 2V,_1)’, We can study

the properties oR\{, from the properties of.
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For anym x m matrix A = {a; ﬂ‘jzl and any functionf, that is integrable on [QL] we define

the operatorf — I (A, f), which yields them x m matrix with elements

1 -
(A, DN = A /O v, (9 f(ds  wherey; = M

and

1 forse[p,1— p]

otherwise.

NI

When f (s) = cfor all s, we writel (A, ¢) = I (A, f) and note that(A, ¢) = cl (A, 1) and that
{I(A O} 1 = Aij (L —uj)e.

Theorem 2 Given(N), (V) and(T), then E¥) = (IV 4 2mw?, —(Mm — 1)202, 0, ..., 0) and
cov(y) = I(A, oYM — 20°C + I (B, 0% + 1(C, 0't") 2 + Ho(3),

where the mx m matrices (assuming = 3) are given by

12 -16 4 0o --- ( 8 -8 0 0 --
-16 28 -16 4 - -8 16 -8 O
A = 4 -16 24 -16 -. |, B= 0 -8 16 -8 . |,
0 4 -16 24 . 0O 0 -8 16
C = diag?2,4,4,4,...), H =diagl,1,2,3,4,...).

Remark 1 The matrixH has a lower-right element of 1, such thaHo(2) is not o 2). However,
for the first g autocovariances, where q is a fixed number the reminderfta this submatrix of
cov(¥) is simply Q%), because all terms of this submatrix are at mo@%p: o(%). Later where

we let g= gmn — o0 as m— oo, the last terms is ¢I0).

Remark 2 The variance simplifies considerably und&f) where I\ = 1Q, in which case we have

that

cov(y) = (Am — 2C)w” + Bw?IV + CLIV?,
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where
—1 —2
(12 —1em  gm2 0
-1 -1 2 -3
—1605 28T 16T 4T
A = — —2 -2 —2 -3 -,
A=I1AD = ATz _16T=2 2402 _16M=2 .. |,
—3 —3 —3
0 N CleTE 24%%E
and similar forB andC. ThusAj = (1 — 4j)Aj; = T"2CDHA; foralli, j = 1,..., m.

Remark 3 Theorem 2 is formulated for the case where: 3. The result for the general case where

K« is arbitrary, requires the upper left x 2 submatrix ofA to be written as

de —4k+1)
—-4k+1) 4Ak+4H

whereas all other elements Afare unchanged, see the proof of Theorem 2. Restricting our attention
to the case where = 3 has no important implication for our analysis, because the bias properties
require thatwg, w1 — 1 as m— oo, which eliminates the-terms in A(sincedx + 4(x + 4) —

8(x + 1) = 8 does not involve, see Hansen & Lunde (208).

Several results in the existing literature now follow as special cases afr@ime2. Ifw? = 0
we have the result by Jacod (1994) and Barndorff-Nielsen & Shdp2902) that vaiRV(™) =
2IQ2+0(2), see also Jacod & Protter (1998). Wheh> 0 we have the expressions biBY™) =
2mw? and varRV(™) = 12mw* 4+ O(1) by Bandi & Russell (2004) and Zhang et al. (2004). More
generally we have the following result by Hansen & Lunde (2)Ghat vaxfRV'™) = (12m —
Mo’ + 802V + 21QE + o(2). and the result by Zhou (1996) that VBM() = (8m — 12)w* +
80?1V +61Q2 +0(2), for RYL = 7+ 27,, which now follows from Theorem 2 as special cases.

The interesting aspect of Theorem 2 is that adding estimates of autocmeaté&ams (that have
a population value that is known to be zero) can increase the precisiomevéres®> > 0. The
following Corollary contains results for the cases where the second addatitocovariances are
included, using weights that minimize the asymptotic variance. For notationgéwc@mce we
definev, = [, o?(s)ds+ fll_p o?(s)dsand we note thatn = 0§ +---+0of + 05 .+ +0F

for integers oth.
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Corollary 1 Define R\Z) = 74+271+ 7. RUC, = 7+271+ £ 72+ 27 5. Under the assumptions

of Theorem 2 both estimators have bia2ef while

varR\ie)) = 2mo’ + 40’V + 7IQ% + 20°(v2 + ?) + 0(3),

Var(R\A(g;) = —ma) + 68a)2IV + 208IQ + 81000) v2 + 8100“) vs + 25a)4—|—0( ).

Corollary 1 shows that by adding (a linear combination of) higher-ordéscavariances can
reduce the variance without affecting the bias (fosufficiently large), as the higher-order terms
(or linear combination of these) have a zero mean and are negativelyated withy , + 2y ;, such
that adding a proper linear combination will lead to a reduction of the totalnagia

The linear combinations of the higher-order autocovariances that weteléd in Corollary 1,
1y, and%fzz—i- gfxs, where chosen in order to minimize the asymptotic variance that is of ofaer
This also led to a reduction of the variance term that is of onfe¢from 8 to 4 andg—g timesw?lV
respectively), whereas tme~!-variance term was increased, and the last observation highlights the
need to study all terms in our analysis of kernel-based estimators.

For notational convenience we defiivg, = fol wp(s)oz(s)dsandep = fol wp(s)o“(s)ds, and

we note thatV — IV, = 2v,,, and thatQ — 1Q, = O(p), such thatk (IQ — IQn) = O(%) =o(3).
Corollary 2 Letw = (wy, ..., wn_1)’. The bias of Ry is given by
biagRW,) = (wo — DIV + (wo — %=Lw1)20’m = w'(IVd + 2mew?f) — IV,
whered = (1,0, ...,0) andf = (1, —2=1 0,..., 0); whereas the variance is given by
var(RV,) = Vio'm+ Voo® + V_1 % + o(),
where

m-1 .
Vi(w) = 12w + 22w 4(7w; — 8wo) + ,-22 Pt w;8(3wj — 4wj_1 + wj_p)

Bloo

2
m-1 m—1
Vow) =8IVw§ + > 16V wj(wj —wj_1), and V.3(W) = 2IQuf + > 4IQ; wf.
j=1 " j= ™
Thus, V; = o(%) is a necessary condition for the varianceRd¥, to vanish, andwy — 1

asm — oo is clearly required folR\{, to be generally consistent fo¥. While there are other

requirements, such a% = o(1) andV_; = o(m), we shall initially focus on the requirement that

9
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Vi = o(%), which appears to be the most stringent requirement. For this reasonektheeernel

that minimizesv;(w) subject to the constraint thaty = 1.
Theorem 3 (Variance Bound for Regular Kernel-Based Estimators)It holds that
w* = arg minVi(w), subject towg = 1,
weRM
is given byw* = (1, w5) wherew; = —Mgle »1 andM > and M, are submatrices of

_ M M
Am_ 2C — 11 My ,
M2 M2

with dimensiongm — 1) x (m — 1) and(m — 1) x 1, respectively. Further, it holds that
mVi(W*) = w”(Am — 2C)w* — 4, as m— oo.

Theorem 3 shows that it is not possible to drive the variance of a rekgeriael-based estimator
to zero, asn — oco. The result shows that# is a lower bound for the asymptotic variance. So the
existence of a consistent regular kernel-based estimator is rulédwiile consistency is clearly
important, it is worth noticing that the non-vanishing variance temt, 4 likely to be very small in
practice. For example, Hansen & Lunde (28pdstimatew” to be of an order in the neighborhood
of 1078 for the stocks of the Dow Jones Industrial Average. Consistency isecient because it
justifies thes-method, such that a central limit theorem (CLT) for(aty), say, follows from a CLT
for w'4. Naturally, if 4»* is negligible relative to vaw'4), the distortions from using th&method
to approximate the distribution of log’'4), say, will be extremely modest. Nevertheless, the mere
existence of consistent estimator — the subsample estimator of Zhang e04)) {2@oes challenge
the usefulness of regular kernel-based estimators. So in the followingetioss we shall study
the subsample-based estimator and a modified class of kernel-based estimh&oe the latter is
motivated by the relation between the subsample estimator and a particuldridasad estimator.
But first we evaluate how far we can push the precision of regulaekéased estimators.

Theorem 3 provides a lower bound for the asymptotic variance of regefael-based estima-
tors, derived fromV;. Since the variance also involves the terigandV_ it is unclear whether
this bound can be obtained by any kernel. This question is addressed fofittving Lemma that

gives a simple example of a schemewowhich achieves the lower bound. This estimator is almost

SWhile consistency does not require the variance to vanish, consisteimyesd ruled out in the present setting,

becausey/k (to be defined later) does not vanish in probability.

10
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identical to that introduced to this context by Hansen & Lunde (2003)]ated applied by Hansen
& Lunde (2004).

Lemma 4 Consider the Bartlett-type kernel, where the elementggoére given by
wo= 1292wy =9 forj=1,...,9, w;=0 forj=>aq,

wherewg = mT*lwl in order to eliminate the bias. GiveiN), (V), and(T") it holds that
Vi=41+0(3), V=0, Vi=0),

such thatvar(RVy,) = 4w? + O(q—”;) + O(3}), which tends todw* provided that gm — 0 and

g?/m — coas g m— oo.

Since the Bartlett-type kernel in Lemma 4 achieves the lower bound, it is aslycafiyoefficient

in the class of regular kernel estimators.

3.1. Bias Eliminating Regular Kernels

Lemma 5 We defing. = «?/IV,
%= (Am—2C)A*+Br+CL and g, = (d+ 2mrf)(d + 2mafy,

whered andf where defined in Corollary 2. Under the assumptions of Theorem 2Endwe have

that MSE(RV,)/IV2 = W' (T, + Z)w — 2w/ (d 4+ 2maf) + 1.

While Lemma 5 is useful in order to evaluate the MSE for a given kernel estiniatioes not
constitute a useful way to define an optimal kernel, suctwvass arg min, MSE(RV,)) = (%; +
2,)~(d + 2maf), because such a kernel would be extremely sensitive to small variation$ in
Instead we restrict attention to kernels for whioh = mT‘lwl andwg — 1 asm — oo. These
restrictions guarantees that the resulting estimator is asymptotically unbiasean ave verified
from E(4) that was stated in Theorem 2. Note that the Bartlett-type kernel in Lemma 4esatisfi
this criterion. The reason that we do not impose the constigjnt 1, is that the MSE may be
reduced by allowingug to be slightly smaller than one, (i.e. trading a small increase in the bias for

a reduction of the variance).

4This issue can be understood by considering the kernel givemy: IV /(IV + 202m) = 1(1+ 2Am) andwy, = 0
forh > 1. Foram = 4.5 we havewg = 1/10, which is unbiased if indeeddm = 4.5, but can be severely biased for other

values ofi.

11
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We define then — 1 x 1 vector,v = (vy, ..., vm—1)’ = Dw, whereD is them — 1 x m matrix
given by
% 1 0 O
0O 01 O
D = bl
0 0 1

and solve the constrained optimization problem, wiDX; D’v s.t. w; = 1, using the same tech-
nique as in Theorem 3. Thus we determifje= —M2‘21M »1, whereM,, andM »; are submatrices

of DX, D', and define the kerne¥ = (1, 1, vy

m

FIGURE 1 ABOUT HERE
Elements ofv* plotted againsi/./m (x-axis: [0 2])
m = 78, 390, 1560 and A = 0.01, 0.001

Although our kernel is derived under the independent noise assumptomote that the kernel
has some degree of robustness to mild time dependence in the noise piidcessgependence in
the noise process causes higher-order covariances to have aneekpalue that is different from
zero, since the kernel above has > 0, fori = 2, 3, ... it is somewhat capable of capturing this
deviation from the indpendence assumption.

The rate at which the variance BN,: converges to 4* can be determined numerically from an
ancillary regression and we find this rate torbe'/?. We describe the ancillary regressions towards

the end of Section 5.

4. Subsample-Based Estimator

Zhang et al. (2004) have proposed a very stimulating subsample-bstsadter of integrated vari-
ance. In an unpublished paperiNer (1993) also studied the use of subsampling to estimate the
variability of financial prices. His motivation was the same as Zhang et @4{20ut his analysis
was much less formalized, so we will focus entirely on the contribution froangtet al. (2004).
The subsample estimator can be constructed from the @rigk, {to, t2, ..., tn}, > and the (non-

overlapping) subgrids,

G = {tj—1, -1tk - - -5 tj—14¢jk)s forj=1,...,k wherec; = Lm_flJ,

5In the following we will often suppress the subscriptto simplify our expressions.

12
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and |a] denotes the largest integer that is smaller than or equal & the subgrids are such that
G NGy, =0 fori # j andg = U‘j‘:l x; for anyk < m. For each subsample we can calculate the
realized variance
RVQk,— = Z yt?,tp,k’ whereys ., = Py — Py
ti €0k
with the convention thay;, ;, = 0 if ] > m. Thek-subsampling estimator by Zhang et al. (2004) is
given by

k
RVup, = § ) RVG, — TRERV;,
j=1

Theorem 6 It holds that

M~

RV = (1 — MKty 5 0y

mk

%(f/—h + 71 — &k

>
Il

1

where g =0and fc =1+ (Vi + - + Yee1)? + Ymeksz + - - - + Ym)2 fork > 2.

It is very interesting that the subsample-based estimator is almost identicalkertied-based

estimator that employs the Bartlett-type kernel:

m—k+1 k=1 k-2

— 1
WSUQ_(l_ mk ° Kk ° LR V)

The difference is the presencergf

Remark 4 Theorem 6 provide a way to implement the subsampling estimator,gg B any k)

can be calculated from the empirical autocovariances and the recursimeufa for ry.

Remark 5 The close relationship between &Y and kernel-based estimators, stems from the fact
that \, 1., = Yit1+ - - + Yi+k, such that Ry, is simply a linear combination of cross products of
intraday returns, ymy;m. i, ] = 1,..., m, as s the case for all kernel-based estimators. That the
subsample estimator is closely related to the Bartlett kernel is perhaps msutprising, because
Bartlett (1950) motivated the Bartlett kernel with the subsampling idea, Iseefaderson (1971,

p. 512) and Priestley (1981, pp. 439-440). Interestingly Politis, Ram&aWolf (1999) noted
that the subsample estimator (of the long-run variance) of Carlsteing)l@ddentical to both the
moving block bootstrap estimator and the Jackknife estimator in this cas&iseseh (1989) and
Liu & Singh (1992). Further, the tern%,rk, that makes Ry, distinct from kernel-based estimators
is related to theend effectssee e.g. Priestley (1981, p. 440).

13
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Remark 6 The really surprising result of Theorem 6 is tlfgrt(, which is innocuous in the contest
of conventional stationary time series, is indeed crucial for the consigtehB\,,. Zhang et al.
(2004) show thalimp,_, o, var(RVsup ) = O for a suitable choice of k= k. So%rk is responsible for
the increased precision beyond the lower bouft, that we established for kernel-based estima-
tors in Theorem 3. It is interesting here to note the results inldf (2004) that shows that the most

‘robust’ quadratic estimator is not a kernel estimator.

Lemma 7 Given(N) and (V) it holds that

k—1
Erg = > heh+od,, ) +4Kk-1o?
h=1
var(ir) = 4520t 4+ 0k,
covin, ) £ o*122 gkl o .. 0).

Here we have used to denote equality in terms of thef-terms, while other terms that involve
o?,ando{  are omitted as these a@m™) andO(m~?), respectively.
Lemma 7 shows that
var(RVeup) = Var(RV,, — o
= do* + 420" — 2coutn, 7)w
— 4o’ + do* — 2(120* — 80*) =0 ask, m — oo,

confirming thatR\y, is consistent whereas the Bartlett type estimator is inconsistent.

Another result that follows from Lemma 7 is that the bia&dk,y, is given by

biagRVeup) = (1— T 1)V (1 — Mkl mdkehyon?m — LE(ry)
k—1
= _mkely Z h(oZ + 02 1 1), 2
h=1

which can be verified to be of ordé)(%,':z). Thus biagRVsy, ) = 0o(1) if k/m = o(1) ask, m —

Q.

5. Modified Kernel-Based Estimators

Having understood the connection between a regular kernel estimatsubasampling and gained
an appreciation of why subsampling is consistent, we are now in a position tifyntioel regular
kernel-based estimator to inherit that property. Our hope is to delivensistent estimator which

is reasonably efficient even in small samples.

14



Kernel-Based Estimators of Integrated Variance

Forh > 1 we define

Zh= Y2+ 2% (Yot + V). and Zh = Y2 i1+ 2YmeniaYmohez + - - 4 V)

then it can be shown that
k—1 k-1
=y (k—Dz+ ) (k-]z,
i=1 j=1

(see the proof of Lemma 7) such that

k—1
Ry = (1— Tk khop, —

=

Mk

~ O
e

= (1—"KE)po 4> KR2p, — 2 — Zn) = WA,
h=1
where we use the vector of modified autocovariances estimators,

Y=oV 2m1)s Wh=20n—Zn—Zn, forh=1

Thus inspired by the subsample estimator, we considapdified class of kernel estimators
given by{w'5 : w € R™}. This class of estimators contains at least one consistent estimdior of
Theorem 8 gives the properties of the underlying
Theorem 8 Given(N), (V) and(T), it holds that

~ 2 2 2 2 2 /
E@) =V + 2mo?, —2(m+ Do” — —IV, ——IV, ..., ——IV)
m m m
and
cov(d) = cov(d) + Aw’ + 2Bw?IV + LCIVZ,

where the upper left &« q sub-matrices ofA, B, andC are given by

0 -20 8 0 .. 0 -82 0 0
20 48 -28 8 . ~82) 16(2) —8(3) 0
Aq= 8 —28 40 —28 . |, Bg= 0 —-83 163 -84 . |
0 8 —-28 40 . 0 0 -84 164
0 -4 -4 -4
—4 85 -8 -8
Cq=| -4 -8 815 -8
4 -8 -8 825
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With Theorem 8 in place it is now simple to determine the number of subsamples tliaii reis

the mean squared error (MSE).
Corollary 9 Given the assumptions of 8, it holds that

biasRVaug,) = Wy E(F) = — &0y, 3)
such that mean squared error of RY is given by

MSE(RVaug,)/IV2 = Wy St + [TFE212,

whereE] = £ + Aga? + Bqa + Cq 2, 27 is the upper left gx q submatrix ofs;, andWsuy, =
(1 m—gq+1 g-1

mq ’ q7 qy"'Sq)'

We observe that (3) is equivalent to (2) giv@ri).
Next we seek the optimal unbiased estimator in this modified class of kerrel-basgmators.

We define they x g + 1 matrix

1 ™0 0
- 0 0 1 0
Dg =

O 0 0 1

Now we solve the constrained optimization problem,thﬁ)q iﬁ 5&\7 subject tov; = 1, using the
same technique as in Theorem 3. Thus we deterwijne —M gle >1, whereM,> and M, are
submatrices 0D, ={D;, and define the kernel; = (1

*/\/
’ m+19V2) .

FIGURE 2 ABOUT HERE
Elements ofv; plotted against/./m (x-axis: [0, 5])
m = 78,390 1560 and A = 0.01, 0.001
Truncation:q = 4,/m

5.1. Ancillary Regressions

Our analytical (matrix) expressions for yar<) and varw'4) do not reveal their dependence on

in closed form. However, this dependence can be determined numericahcilary regressions.
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For the regular kernel estimator we found that(wgfd) — 4w* asm — oo, and the rate at

which the variance converges to the lower bound can be determined fecamdiilary regression
log(W}' Zaw! — 4%) = a + Blogm + ep, for m = Mmin, . - ., Mmax.

Similarly for the modified kernel estimator and the subsampling estimator whew;aif'Vv¥) and
Iog(\iv’subq* ifwsuth*) are the relevant dependent variables. For the lgtter g*(A, m) denotes the

number of subsamples that minimized the variance.

1. LetYm = log(w; Zaw;—42%), log(Wy' £W;) (using truncation ¢/m) or log(Wy, . ;' Weup,. )
(using optimalq).

Form = 10% 10%, 10°, 1P, run the regressions:
Y = &m + B lOogm; + e, for m = zm, 2m, m, 2m, 4m,
which yields(ém, B,,)-
2. By imposings = —1/2 (or 8 = —1/3) reestimatex, by

&m:

5
> (Y, — Blogm),

1
5 i=1

TABLE 1 ABOUT HERE
Ancillary Regression Results:

One Panels for each &\,: RV R\/Suth*.

Table 1 shows than'/4(W¥'4 — IV) has an asymptotic variance that equals(@xpIV? under
(T"). The results in the table is consistent with Zhang et al. (2004) who show thatitisampling

estimator converges at the slower rat&®, which corresponds tg_, = —1/3

FIGURE 3 ABOUT HERE
For A = 0.0001 make a scatter plot of:
W EAW, WIS andWey, , 5 Wsut,.
againstm = 23 2% ... 2?1 in log-log scale
Later we might add the lines:

eXP(Aregoo)M ™2 + 412, @XP(@mod.so)M ™2, and eXfdsunoo) M3

17



Kernel-Based Estimators of Integrated Variance

We use Theorem 8 to determine the number of subsamples that minimized theeasad

define
q“(x, m) = arg n;invar(RVsum/IVZ).

Zhang et al. (2004) show that' (A, m) oc (Am)?3, and in an unrestricted ancillary regression of

logg*(x, m) on a range of values for logand logm, we find thatg* (A, m) ~ a x (Am)%3,

FIGURE ABOUT HERE
SCATTER PLOT ofg*(Ax, m) againstm using log-log scale.
Plot the 3x 5 = 15 data points resulting from combining pairs of|
A =102 103 and 104 andm = 1%, 10°, 10%, 1C%, and 16.
add the three lines log+ % logr + % logm, using the 3 values of.

5.2. Maximum Likelihood Estimator of Integrated Variance

We now compare the rate of convergence of the modified kernel estimaterratéthat is achieved
by a maximum likelihood estimator @/. So we consider a simple framework where the noise is

assumed to be iid and Gaussian distributedti.ex N (0, »?). Given(T’) it now follows that

(Yis-os Ym) ~ N (0, Sy 02) »

where them x m covariance matrix, is given by

% 0 O 202 —w?® 0

0 % 0 —w? 20?2 —&?
Y2 = +

0 0o ¥ 0 —w? 207

Let 65, anddy, denote the maximum likelihood estimatorsluf andw?, respectively. The

asymptotic properties cﬂ‘fAL andcbf,,L are given from classical results about the MA(1) prodess.

6SettingIV = 0 takes the root of the underlying MA(1) process-td. So for the interesting case withf > 0, the
local-to-zero oV /m leads to a local-te-1 root, as analyzed by Anderson & Takemura (1986), Tanaka & 8kh{@989),
and Shephard (1993). Howevéy, /m is sufficiently “non-local” to zero that it does not affect the limiting (Ganisy

distribution of the maximum likelihood estimators.
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By adopting the expression given intASahalia et al. (2003, proposition 1) to our notation, we have

that asymptotic covariance matrix fakg, . @z, ) is given by

Iv2 [ 2m+4my4ram+ 1 —(2mAx + 1+ V4mi + 1)
m? o S (2mi+ 1) (2ma + 14 /4ma + 1)
So fori > 0 we have
m/452 8/r 0
avar ME = v2
mY a0, 0 22

where avaf-) denotes the asymptotic covariance matrix. This shows that the maximum likelihood
estimator ofV converges at the same rate/*, as the modified kernel estimator, which indeed has
been show to be the optimal rate of convergence in this context, see Gloaeo& (200&, 2001b).
Furtherawy, converges at the faster rate’/2, and since there limit distribution is Gaussian, see e.g.
Ait-Sahalia et al. (2003), we note that the two estimators are asymptotically maksge

The special case where there is no market microstructure rigise() results in faster rates of

convergence. Specifically we find that,

m¥262, ,( 6 -2
avar 5 =1V ,
3/2 1
m®/2om, -2 1

and it is interesting to note that avar'/25%, ) = 61V2. So the asymptotic variance 6f,, is in this

case three times that of the realized variance, which is the constr@ired) maximum likelihood

estimator. Thus the loss in estimating the nuisance paramétavhen it is truly zero, is identical
to that ofRZ = 74 + 27, which also has vaRV() = 6IV22 + o(2) whene? = 0, see Zhou

(1996).

6. Practical Implementation

In practicea is not known, however it is straightforward to estimafe Combining results of The-
orem 2 concernin®V = y, and our results foR\§;, = W4 shows that
A2 RV — RVTV p 2
w=E— = 0,
2m
sinceE(RV) = IV + 20°m, var(RV) = O(m) andR\ £ V. Given the consistency &R\ it
follows that
RV-RW  70—W7% »
= —

N = — L 5
2mR\§ 2m - W'~y

This leads to a two-step estimator of integrated variance.
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1. Given some initial value fax (A° say), we construal;,, and estimate

N A Vo — Wy
A=300) = max(M ) .

2m-why

- Wlo

2. Givenj. we determine/"v;, and define our two-step estimatorlofto be:

Naturally this procedure could be iterated, increasing the precision afstinate of\.
What is the MSE loss of this procedure, compared to knowing the true v [Simulation

Study to be added].

7. Conclusion

We have provided a systematic analysis of regular kernel-based estirnaties the assumption
that market microstructure noise is independent of the efficient prictsdependent of itself (at
different points in time). While this assumption is reasonable when pricesatreampled too
frequently, such as every 15 ticks or so, there is overwhelming evidbatenarket microstructure
noise has a more sophisticated dependence structure when samplirggadcduia-high frequencies,
such as every tick. We are therefore, in separate papers, extendiragnalysis of kernel-based
estimators to the situation with more general assumptions about the noisesproces

We have showed that regular kernel-based estimators can be quitataasimators of quadratic
variation, however they are always inconsistent. Taking inspiration fh@nconsistent subsampling
estimator, a new modified kernel estimator is suggested which is consistehtaangbod finite

sample properties.

A. Proof of Theorem 2 and Related Results
Proof of Lemma 1. First we note thatsm—1.m = t;s_ 1)y m and by(T) we have that

Sup |(trsmm — trsm—1m) — (T(S) — (s — 2))| = o(m™),

s€[0,1]
such that
smm—tsm-1m s frsml.m—trsm-1m T(S)—T(S—%)
ses[g,pl)] L/m i (S)‘ = s?[g,rl)] L/m L/m
_r(s— 1
+ sup |7(s) — "R = o(1) + o(D), (A1)
se[0,1]
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where the last term ig(1) sincer’ is bounded. (A.1) clearly implies the result stated in the Lemma,

(the two are equivalent given the continuityd{s)). &

Lemma A.1 We define %, = Vi yi+nh. Given(N) and (V) we have that

Part | E(Xi n) var(xi n) COV(Xi h, Xi+1,h)
h=0 aiz + 20? (2 + 2)w* + 8w20i2 + 20’i4 (k — D
h=1 —w? (k + 2w* + 20%(02 + 02,,) + of0?,, w*
h>2 0 do* + 20%(0? + 02,) + 0202, w®

whilecov(Xi n, Xizkn) =0, k> 2forallh=0,1,....

Part Il COV(Xi h, Xi h+1) COV(Xi h, Xi—1,h+1) COV(Xi h, Xi—1,h+2)
h=0 —(k + Do* — 20°%02 —(k + Do* — 20°%02 20"
h>1 —20* — w?o? —20* — w20i2+h w?,

while all other covariance terms are zero.
Proof. (Part 1) The expected values are given from
E(Xi.n) = E(YiYien) = EY + Ui — Ui—) (Y, + Uith — Uith-1),

which shows thaE(x o) = E(y*?) + E(uj)?+ E(U? ;) = 02+ 2w?, sincey?, u;, andu;_; are pair-
wise uncorrelated. Similarly we find th&t(x; 1) = E[(u;)(—u;)] + 0 = —»? and thatE(x; ,) = 0
forh > 2.

Next, we turn to the variance and covariance terms, where we make use afetfitities,

var(e) = E(e?) = 20 and
Eeh = E[u} +u? ; +6u?u? | —duud | — 4uu;_1] = (2« + 6)w®.
Forh = 0 we have
E(x’o) = E(y) = E(yf+e)* = E(y) + E(g) + 6E(y/?€)) = 307 + (2 +6)w* + 607207,
and

E(XioXi+10) = EY4) =EW +e)(y 1 +8a:1)?
= E[*+ €& +2ye) (V7 + €y + 218 41)]

E[(y;? + eiz)(yi*fl + ei2+l)] = E[(yf? +u? + uizfl)(yi*fl + ui2+1 +ud)]
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= o202+ (02 + 02 )20% + (k + 3, (A.2)
E(X,0Xno) = EWYp) =0lol,+ (0F+0?)20° + 4w, forh =2, (A.3)
such that
varixio) = E(x%) — [E(X.0]° =[30] + (2 + 6)0* + 12070%] — [0 + 20°]°
= 200+ (2 + 20" + 80,
coV(Xi 0, Xit10) = (k —Dw? and covXi g, Xitho) =0 forh>2.

Forh = 1 we findE(x?,) = E(y?y? ;) = E(X.0Xi+1,0) Which is derived in (A.2),

EM1Xi111) = E + U — Ui—) (Y g + Uigs — UDZ(Y o + Uisz — Uiya)

= E[(Ui)(—2Ui+1Ui)(—Ui+1)] = 2E[UiUj11U; Ui 1] = 2%,

andE (X 1Xi121) = w* SinceE(x 1)E(Xj.1) = (—0?)(—w?) = o*foralli, j = 1,..., m, we find
that
var(xj 1) = Ui20i2+1 + (aiz + oi2+1)2a)2 + (k + 3a* — (0?)?
= ofol+ (0] +07,1)20% + (k + 20",

and coX; 1, Xi4+1,1) = »*and CO\(Xi 1, Xi+h1) = 0, forh > 2.
Forh > 2 we haveE(x?) = E(y?y4,) = E(X,0Xi+h0) Which is derived in (A.3), such that
var(xin) = o202, + 2(c? + o?,)o* + 40*. Next, we have that
E(XinXi+1n) = E(861h6 168 1140) = o,
while E(Xi,hxi+k,h) =0fork> 2. So CO\(Xi,h, Xi:l:l,h) = w*and CO\(Xi,h, Xi:l:k,h) =0fork > 2.
(Part 1) We consider
E(iox,) = EOYiYicy) = E[O +&)°(% g + )]
= E[(y*+2yfa + )y +e)(—up)]
= E[(y?+2y'a + €)Y + U — Ui—)(—up)]
= —aiza)z — 20i2a)2 + E[e,-z(ui —Ui_1)(—Uup)]
= —o0fw?® —202w® + E[(UZ 4+ U? | — 2u; _1u) (Ui — Uj_1)(—U;)]

—02w? — 20%w? — kw* — 0% — 20% = —302w® — (k + 3)o?,

such that cog; o, Xi 1) = —307w? —6w* — (02 + 20?) (—w?) = —202w? — (k + L) w?, and similarly
E(ioXi-11) = E(Y2Yi-1¥) = E[(V/? +2yfe + ) (Y + Ui — Ui—1)(Ui_1)]
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= —ofw’ — 207w’ + E[/(Ui — Ui_1)(Ui_1)]
= —0?w? — 202w® + E[(U? + U? | — 2u; _1U) (Ui — Uj_1)(Uj_1)]
= 2 2 2020)2 ot — kot — 20* = —3oi2a)2 — (k + 3)*,

which shows that ca o, Xi_1.1) = —202w? — (k + L)w®. Fork > 1 we have

ExioXiky) = E[(V?+2y'a + &)Wk + 81V ira + 8 ki)
= El*+2y'e + ) (U]
= EL0P+ U+ U (] = —ofe? - 201,
and similarly fork < —2. Thus cov¥x; o, Xi+k 1) = 0 fork > 1 andk < —2.
The only non-zero covariance betweeg andx; . 2, iS
COV(Xi,0. Xi—1.2) = COM(€, §_1841) = E(€Ui_1(—Uj)) = EQuU{_,uf) = 20°,
and forj > 3 we find that cox; o, X1« j) = O for all k.
Forh > 1 we have
COV(Xin, Xiht1) = EWYieh¥iYisnt1) = E[YUipn(—Uisn)] = —(07 + 207)0?,
COV(Xih, Xi—1ht1) = EViVishYicYich) = E[—Ui_tui_1y? ] = — (02, + 2090,
and similarly covx; n, Xi—1.n12) = E(€ & n&_16 tny1) = E(—Ui_1) (Ui1h) (Ui 1) (—Uin) = o’ B

LemmaA.2 (@) Y™ (02 + o?.p) = 2f0 ¥n (S)o?(s)ds, and (b) given(V) and g, = O(m'/?)
it holds that

M—0m

1
mZa o /0 Yan (S)o*(s)ds = o(1).

m-h
Proof. (a) Sinces? = [\, 0?(s)ds, the first result follows from the identity ™ 1“ o2= [y o%(s)ds.

(b) We notethad """ o?0?, , = Y " "[of+0f(0?,, —o D] and similarly thafy \" " o707

i+0m — i-+om
[U|+qm |+Qm (U|+Qm IZ)] such that
mM—Qm 1 m—0m m O
Z 0i2,m0i2+qm,m =5 Z (0}m+ 0i4+qm,m) Z (a,+qm m— 0t (A.4)
i=1 i=1
First we consider the first term on the right hand side. d.gt = t; m — ti_1.m» and note thaé; ,, =
O(m~1) given (T). So for arbitrary pairgs.m, §.m), i = 1,..., m of points, wheres m, §.m, €
[ti—1.m, ti m] We have that
M~ Gm M—0m
m_ lotsm = ot Emlsln = M2 ) jotsm - oG ml8fmY?
i=1 i—1
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< m Y23 ot(sm) — 0 GEm)| = 0(D),
i=1

where the equality holds fan sufficiently large givernV).

Next, we lets , and§ , be the points int]_; m, ti m] that are such that?(s n)8i.m = im 52(s)ds

ti—1m

ando*(§ m)dim = t.tl,Tm 7/(s)o*(s)ds, and we note that these points exist given the continuity of

o2 andzt’. In now follows that

M—0m M—0m m 2 M—0m
w3 otn = m3 ([ ots) =m3 ot
i=1 i=tm i=1
M—Qm

= ) ot (§ m)dim + 0(L)
i=1

M—Qm M—0m 1
= Y YEmotEmsimt Y [T — (& m)]ot (& mdim + 0(D)
i=1 i=1

—9m

_ / " (s)0(s)ds+ o(l),
0

where we used that

m—0m N m
Z [T(S) 1;,: —7'(§, m)]U (8§m)dim =< sup % - T/(g',m)) 204(§,m)5i,m
s i=1
1
= o(1) / o*(s)ds= o(1).
0
By similar arguments we find that """ o O = fqlm o4(s)ds+ o(1), such that the first term

on the right hand side of (A.4) can be expressed BT "ot + "|+qm) = fo Yam (s)o*(s)ds+
o).

Now consider the second term on the right hand side of (A.4).

M—Gm M—0m
m Z (GI m |+qm m)2 = m Z [8i.mo®(S.m) — 8i+qm,m0’2(3+qm’m)]2
i=1
M—0m
/2 Z [m3/46i,m02(sﬂ',m) - m3/48i+Qm»m02(S+Qm,m)]2’
i=1
M—0m
Am Y2 3 " (628 .m) — 04(S1qnm)]?. (A.5)
i=1

IA

where
Cm = supm¥“8; ; = m™* supi'/; < m Y4[supt’(s) + sup|i‘/+r”; —7'(H)]] = O(m™Y%).
| | S |
Now for m sufficiently large it holds that

[62(Sm) — 0%(S1gmm)]® < 10%(S.m) — 02(Stqnm)]
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2 2 2 2 2 2
= lofg) —owml Hlot) =0l + - F 106G g ~ Tlsuam ]’

where we writes2 | as short fow2(s m). So (A.5) can be written ag, sums that each are of order

)
c20(1) given(V), which shows that (A.5) is(m~*2gy,). So it now follows tham Y ~\" " (0?2, —

02, 4nm)’ = 0(1) provided thaty, = O(m"/2). This completes the prodli

Proof of Theorem 2. The results of Lemma A.1 are used extensively. First we note that

m m m m-1
var(o) = var)_Xo) = Y var(Xo) + »  COV(X 0, Xi-10) + »_ COV(X; 0, Xi+1,0)
i=1 i=1 i=2 i=1

= > [ + 20" + 8070’ + 20{] + 2(c — (M — D"
i=1
= (4&m-—2(k — 1))o’ + 8IVe® + 21Q% + o(1).

This result is identical to that derived in Hansen & Lunde (20&imilarly,

m—1 m—1 m—2
var(yy) = Z var(x 1) + Z COV(Xj,1, Xi—1,1) + Z COV(Xi,1, Xi+1,1)
i=1 i=2 i=1
m—-1
= Yl +20* + 207 + 07, Do? + 0%0?, ] + 2(m - 2)0*
i=1
= ((k +4HM— (c +6))" + 40’V 1) + 11Q 1) + O(3).

Forh > 2 we find

m—h m—h m—h-1

var(p) = Y varin)+ »_ COVXin Xi—1h) + > COMXin Xit1n)]
i=1 i=2 i=1
m—h

= > [0 + 202 + 02 w? + 0?0l ] +2m - h - Do’
i=1
= (6m—6h —2)w* +40’IV(n) + 1IQn) + 0(f).

Next, we consider the covariance terms.

m m—1 m—1 m—1
COV(Pg. P1) = COV(D Xio. D Xi1) = Y COVXi0.X.1)+ Y _ COV(Xi110.X.1)
i=1 i=1 i=1 i=1

m-1 m—1

= Z[—Zaiza)z — (k + D] + Z[—2ai2+1a)2 — (k + Do
i=1 i=1

= —(2&+2(M- Do’ —4IV1,

and similarly
m m-2 m-2
COV(Pg. 72) = COV(D_Xi0. Y Xi2) = »_ COV(Xi41,0.%i2) = (2M — o,
i=1 i=1 i=1
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while couy, ) = 0 fork > 3.
Forh > 1 we find:

m—h—-1 m—h-1 m—h—-1

COV(Ph, Phyr) = COV(Z Xi.h. Z Xine1) = ) COVXin, Xint1) + Y COV(Xiiih, Xint1)
i=1 i=1
m—h-1

m—h—1
= — Y (@l 42090 = Y (0%, + 2000
i=1 i=1

= —4(m—h—1)w4—2w2|vh+l
m—-h-2
COV(Pp, Pnsa) = COV(ZX.h, Y Xing2) = (M—h =2,

i=1 i=1
which couyy,, V) = 0fork > 3. W

Proof of Corollary 1. From Theorem 2 we have that
COV(2) 5, Vo + 271) = (4—16)(M — 2)0* — 8w?IV2 = —12mw?* + 240" — 8w?IV 2,
such that

Var(po+ 271+ 72 = VarPo+27) + 3var2p,) 4+ 32C0M P + 271, 27,)
= 8(Mm—1Do* + 82V +6lQL + o(2)
+3m—2mo* - Jo + Lo’IV2 + 71Q2 T +0(3)
—12mow? + 240* — 8@2IV%
= [B+ 2 —12lmo* + (-8 - 12— 2+ 24)0*
+802IV — %ZIV% +6IQ% + IQ%% +0(2)

= 2mo® + 4071V + 207 (v2 + ©?) + TIQE + o(2).

The second result follows by defining= (1, 1 and

/
’ lO’ lO)

208

VW/\MﬂN:Z =, VVT3mﬂN:= gg, VW(%MVV:Z 55>

whereA 4, Bpaj, andCpy), are the upper left 4 4 submatrices oA\, B, andC, respectively, and the

calculations
[] —1(—32+28) — 2{5(8 — 32+ 2475) — 35%(8 — 32f; + 245%) — 2w Ciyw = Z,
[v,]  (-16+16)4% =16 and (~16%+16%)3 = —167%,

that quantifies the remaining ternii.
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Proof of Corollary 2. From Theorem 2 it follows thaE (W'4) = wo(IV + 2w?m) — w1 =220,
such that bia@v'%y) = (wg — DIV + (wg — mT‘lwl)szm. The result for the variance follows by the
structure of the matrices, B, andC.

Proof of Theorem 3.1t follows directly that
m\Vi(w) = W/(Am — 20w = M1 + W/2M oWy + 2M 1oWo, (A.6)
using the constrainbg = 1, and the decomposition of the x m matrix

M1 M1
M2 M2

Am—2C =
By the first order condition of the right hand side of (A.6) yields= —Mgle 21, and by substitu-
tion it follows that

mVl(W*) = W*/(Am — ZC)W* = M1 — MM Ele 21.

While a closed-form expression for\Vy (w*) is unavailable it is easy to establish that, (w*) — 4

asm — oo, numerically. The following table gives V; (w*) for some values ofn.

m 10 50 100 200 500 1000 2000 5000
mVi(w*) | 4.8837 41732 40850 40418 40165 4008 40041 40016

Proof of Lemma 4. The first result follows from the identity

Vl — 12m_*1q—1 + mT(q_1)24(7 gm-1 l)+ m—29— 28(3q -2 4q—1 +m_71q_—1)

m q
q q ,
Jq_ q_ _A9=i+1 | g=j+2y _ 4, m-19-1\2 §Z @=j
Z m q q 4 q + q )~ 5l q ) m o?
— ‘

4—:L+2q+5m—q —6m2—6q3m2+2m3+q2m+m2q2+m2q
m3q

4 1
= —+= Oz tmstre T Te tmT @ TmTs)

Similarly we have that

a
Vo = B(TRHEEH? 4 MI(AITH16(1— I + ) Rl 961 —

J
8 —34+-6m+6q-+3m2q—3m?—3g%+g3m—7qm __ O(ﬂ)
m2q2 - m’?

and
q
— m_Q_ _J Q_
Vo = m q Z m q
j=1
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6—12m—129—10m?q+6m?+6q>+24gm—11m?+4m?q®—mq* __ O(f)
- m

1
3 m2q?

B. Proofs of Section 4

Proof of Theorem 6. The first couple of subgrids are given by

921 = {tO’ t27 R tm—1}7 g22 = {tls t3a RN tm}a
g31 = {t07 t37 L] tm—2}7 g32 = {tls t4s L] tm—l}s g33 = {tz’ t57 ceey tm},
g4]_ = {t07 t47 LR ] tm—3}7 g42 = {tl’ t57 ] tm—2}y

Sinceyy i,; = Yi+1 + -+ + Yi+j, we find that

RVG, +RV,, = (Vi+Y2)*+ -+ Y2+ Ym0’ +

(Y2 +Y3)% + -+ (Ym1 + Ym)?

m-—1

m
= 22)42+22)/iyi+1+r2=2()>0+f/1)—r2

i=1 i=1

wherer, = y2 + y2. Similarly for g = 3 we have

3
>RV,
j=1

(Yi+ Y2+ Y2+ + (Ym-a + Ym-3 + Ym-2)* +

Y2+ Y3+ yD?+ -+ (Ym3z+ Ym2+ Ym-1)> +

(Ya+ Ya+¥5)2+ -+ (Ym2 + Ym_1 + Ym)?
m m—1 m—2
= 3) V4D ViYira+2) YiYira+rs
i—1 i—1 i—1
= 3Yo+4y +20,—13,

where the remainder is given by = y2 + y2 4+ (Y1 + ¥2)? + (Ym-1+ Ym)? =2+ (Y1 + Y2)? +

(Ym—1 + Ym)?.
Similarly fork = 4 we find

4 m m—1 m—3 m—4
D RV, =4) WP H6Y ViV +4) WiV +2) WViea—Ta,
j=1 i=1 i=1 i=1 i=1

wherers =rz+ (Y1 + Y2 + ¥3)? + (Ym—2 + Ym-1 + Ym)? and in the general case we

k m m—1 m—k
Y ORG, = kY VP H2Kk—D Y Wit +2) Wik~
j=1 i=1 i=1 i=1
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Kk
= kyo+ ZZ(k — My —ri,

h=1
wherer = 1+ (Y1 + - + Ye)? + (Ymoks2 + - - - + Ym)2. So it follows that
k k k
KLY RV, = fkio+ ) 2k =] — & =90 +2) 9, — &,
j=1 h=1 h=1

which completes the prodl

Lemma A.3 Define 7z = Xj o+ ZZij;ll Xj_ij for j =1,...,m— 1 Then it holds thavar(z,) =
8w* + 8w?02 + 20}, whereas

var(zj) = 120" + 8w*(0f + -+ o)) + o4l + -+ 4of_; + 209, for j > 2.

The covariances are given byov(zj, zj ;1) = —60"* —4w?(0 5+ - -+ 0%) whilecow(z, zjn) = 0
forthj >2, j=212,....
(Under (T) whereo? = 02/m we havevar(z)) = 120* + 8jw?IV/m + 4(j — 2)IVZ/m? for

j > 2andcov(zj, zj;1) = —60* — 4j@?IV/m forall j > 1).
Proof of Lemma A.3. From Lemma A.1 we have that

var(z;)) = var(xyo) = 80?4 8w’s? 4 207,
var(zz) = var(Xpo) + 4var(xi 1) + 4ComMX2,0, X1.1)
= [8w* + 8w?05 + 205] + 4[5w* + 2(62 4 03)w? + 0503]
+4[—-4w* — 20°03
= 120" + 8002 + 02) + 03(40% + 202),
var(zz) = var(xzo) + 4vanxzi) + 4varnxy, )
+4COMX30, X2,1) + 4COMX3,0, X1,2) + 8COMX2,1, X1,2)
= [8w* + 8w?05 + 205] + 4[5w* + 2(65 + 03)w? + 0503]
+4[4w* + 2(0% + 05)0® + 0%07]
+4[—4w* — 20°03] + 4[0] + 8[—2w* — w’s ]
= 120"+ 80%(0% + 05+ 03) + 0540 + 4o} + 209),
var(zs) = Vvar(Xso) + 4varnxsi) + 4vanxzz) + 4var(xy 3)

+4C0OMX4,0, X3,1) + 4COMX4,0, X2,2) + 4COMX4,0, X1,3)
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+8COMX3 1, X2,2) + 8COMX3 1, X1,3) + 8COMX2,2, X1.3)
= [8w* + 8005 + 205 + 4[Bw* + 2(05 + 0w’ + 0507]
+4[4w* 4+ 2(05 + 05)w® + 0505] + 4[4w* + 2(6F + 09w’ + 020 ]]
+4[—4w” — 2005 + 4[0] + 4[0]
+8[—20* — w?c3] + 8[0] + 8[—2w* — w?03]

= 120"+ 8w?(0% + 05+ 05+ 05) + 05(40% + 405 + 405 + 207),
and the general result follows by the correlation structung of Next, we note that

COM(Z1,22) = COM(X10, X2.0 + 2X1.1) = [20*] 4 2[~2(0F + 20%)0?] = —60”* — 40’0},
COV(Z2,23) = COMU(Xp0+ 2X11, X30 + 2X2,1 + 2X1.2)
= [20%+2[-2(05 + 20*)0?] + 2[20%] + 2[0] + 4[w*] + 4[— (0% + 20°)0”]
= —6w*— 40 (0F+ o)),

and the general result follows by induction. The higher order covegiare verified to be zero from

the correlation structure of ;. ®

Lemma A.4 Given the assumptions of Theorem 2, it holds that

COV(Vg, z1) = 100*+ 80?03 + 207
COV(Pg, 22) = —4o* + 40’05 — 03) + 2075
coV(Po, Zj) = 40?0 — 05 ) +20] forj>3

and in general we have for+ 1 that

cov(y, zi-1) = 0,
cov(p;,z) = —2w*— 20’02, fori >2  couyy, z1) = —do? — 20%07
coV(yi,zi41) = dot+ 40)205 + 2w2(°i2+1 — o%) + 20%0&1,
COVPi,Zit2) = —20*+207[(05—0D) — (05— 03] +20307,,
coV(Pi, Zivj) = 20%[(05 —0f ) — (0F1 — oD+ 20007, forj =3

Proof. The structure follows from the correlation structurexpf.
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Yo | Xt0 | X20 X11| X30 X212 X2 | X40 X331 X22 X13 | X50 X41 X32 X3 X14

X2.0 2 8 —4 2 —4 2

X3,0 2 8 -4 2 -4 2

X4.0 2 8 -4 2 -4 2
X5,0 2 8 —4
X6,0 2

X7,0

The table above identify the non-zero correlations, where the multiple ofytiterm is given,
whereas the other two terms (involviago? ando?o?) are given from Lemma A.1. Sincg, =

> Xi o we find by the definition of;, that

COV(Jp.21) = [8w* +8w?o] +20]] + [20] = 100" + 8’0 + 2071,
COM(Po. 22) = [20] + [80” + 80’0} + 205] + [20*]
+2[—4w* — 2(1)20%] + 2[—4o® — 20)20%]
= —do* + 40?03 — %) + 2073,
COV(Jg, 23) = [20] + [8w* + 8w’} + 2073] + [20"]
+2[ 40t — 20°03] + 2[-4w* — 2003] + 2[20?]

= 4w?(05—03) + 2073,

V1| X10 | X20 Xu1|Xs0 X21 Xi2|Xs0 Xa1 X22 X13|Xs0 Xa1 X2 X23 Xi4
X1 4| -4 5 1 -2

X2.1 -4 1 |-4 5 =2 1 -2 1

X3.1 -4 1 -4 5 =2 1 -2 1
X4.1 -4 1 -4 5 =2

Xs5.1 -4 1

X6,1

Sincey, = ) X 1 it follows that

cov(P1,21) = —do — 2007,

COV(J1.22) = [—do® — 20%03] + [~40” — 20°0]]
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+2[50% + 20°(02 4 05) + 0203] + 2[w?]

CoV(P1,23) = [—4w* — 20?03 +

2+ 20202,

[—4w* — 20%03)]

+2[w*] + 2[5 + 2(0% + O’%) + o*%o%] + 2[0?]

+2[—20"

—2w* + 20%[ (05 —

— 0?0 9] + 2[-20* — &?

Ui)_(as

2
o3

02)] + 20’20’3,

COV(Py, Z14)) = 20°[(0% — 0% 1) — (0%, — oDl + 20507,
Y2 | X10| X20 X11|X30 X21 X12|X40 X31 X2 X13 | Xs0 X41 X32 X3 Xia4
X1.2 2 =2 -2 4 1 -2
X2.2 2 =2 1 -2 4 =2 1 -2 1
X3,2 2 -2 1 -2 4 =2
X4.2 2 -2 1
Xs,2
Sincey, = Y X 2 it now follows that
cov(y,, 1) = O,
COM(Pp, 2) = [20%+ 2[-20* — w?03] = 20" — 20%07,

COU(Vp, Z3) =

= 4o’ + 40%0 7

COV(Vp, 20) =

COV(Vp, Zoyj) =

[20%] + 2[—20"* — a)zag] + 2[-20* — a)zaé]

+2[4w* + 20? (al + 03) +o Ug] + 2[w?]

[2a)4] + 2[—20)4 — a)zai] + 2[—2a)4 — a)zag] + 2[0)4]

+2[40” + 2a)2(0'% + oi) + U%Ui] + 2[»?]

+2[—20"
—2w* + 20%[ (05 —

+2a)2[(<7j2 —0

— 0?0 7] + 2[-20* — &?

ai)—(a3

2 2
1) = (Of—
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Next we omit thex, o-columns as these correlations are all zero.

Vs | X11| X21 X12 | X31 Xo2 X13|X41 X32 X23 Xua | Xs1 X42 X33 Xo4 X5
X1.3 1 -2 -2 4 1 -2

X2.3 1 -2 1 -2 4 =2 1 -2 1
X33 1 -2 1 -2 4 =2
Xa3 1 -2 1

Xs5,3

Sincey; = Y X 3 it now follows that

COV(Y3,21) = COV(y3,Z2) =0,
COM(P3, 23) = 2w+ 2[-20* — 0?03] = 20" — 20%07,
COM(P3,22) = 2[w*+ 2[-20* — 0?03] + 2[-20* — 0?0 3]

+2[40* + 20°(02 4 03) + 0203] + 2[w?]
= do* 4 40?03 + 20°(05 — 03) + 205073,
COV(P3,25) = 2[w*] + 2[-20* — 0?0 E] + 2[-20* — w?03] + 2[w?]
2[4w* + 20% (o5 + aé) + o%og] + 2[0?]
+2[—20* — 0?03] + 2[-20* — w?0d]
= 20"+ 20%[(05 — 02) — (05 — 03)] + 20502,

COV(V3, Z31j) = —|—2a)2[(<7j2 - 012_1) - (‘712+1 — 612)] + 20]26i2+j

Results fory;, i > 4 follows similarly.®

Proof of Lemma 7. First note thaE (ys + - - - + yi_1) = 202 + Y K"+ o2, such that

k—1
E() =E(c) + Y (07 +05,, ) +4°  E@r)=0,
i=1

which proves the first result. In the constant-volatility case the expressigsiifies to

2 2
E(rk):2(1+2+---+k—l)%—i—(k—1)4a)2=k(k—l)%+(k—1)4a)2.

To establish the results for the variance and covariance, it is conveaieefinez; = x; o +
- _
ZZi’:l Xj—ij for j = 1,2,...S021 = X10, Z2 = Xo0 + 2X11, Z3 = X30 + 2X21 + 2X12, €tc.
Similarly, we definé; = Xm0, Z2 = Xm-1.0 + 2Xm—2.1, €tC.

From calculations, such as
Vit (V1+ Y27+ (Va4 Yo+ Y3 = 3y2+2(¥3 + 2y1Y2) + (V5 + 2Y2Y5 + 2y1Ys)
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= 3X10+ 2(X2,0 + 2X1,1) + (X30 + 2X2,1 + 2X1.2)

= 3z1+ 22, + z3,
it follows that
k—1 k—
=1 (k—jz+ %Z(k—j)zj-
j=1 i=
From Lemma A.3 it follows that
-1 k—1 2 k—1
k—j k—j k—j—1
ZT’ = 2 (&) var(z) + 2 e Eeov(z). 214)
j= j=1 j=1
k—1
k—j | k=] k—j—1
= Y [Svar(z) + S 2cov(z), 2) |
j=1
k—1
_ k=i [k=i _ k=it 4_ ki, 4
= ZT[T_ K ]12“)—T4‘0
j=1
k—1
+Zk%[k%—%]8wz(crf+w+a?)
j=1
k—1
S\ 2
k—
+ (T’) of(dol+ o +40] 4 +207).
j=1
Since
k
Skl o Led
k k — 2 k>
j=1
k
k—j 1 1k—1k+1 k
Y Fim = iRt =0).  and
j=1
k
k=ik=jij _ 1K-1_ K
DR = 55 =06,

and(o?+-- +02) = O(L Ly and thatr2 (4a +-- —|—4<72 1—|—2ch2) = O(#) under our assumptions,

we find that

k—1
>t [ - - st = (6t = 2
j=1

Zk—TJ[k—TJ_k—lk—l]sa)Z(aiJr.--m?) = O(¥). and

j=1

k-1 N2
("%) o240t + -+ 402 +200) = O,

j=1
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which shows that vap_'"1 1 z)) = 252 w* + O(X). Finally, by adding the contributions from
the termZ'j‘j %2,- that are derived in the same manner, and usingzhandz; are uncorrelated
fori, j < m/2, the result for va(r%rk) follows.
Next, we consider the covariance betwegrandy;, fori = 0,1,... From Lemma A.4 it
follows that
COM(P, 1) £ EdcowPo, z1 + 21) + E2cOV(P g, 20+ 2) + 0

= 20%(210 - K2 K) = 206K + ) = 204 (6K 1H0) = 12,413,
For the remaining elements §fthat involvey, + 7 _;, = ZZim:‘lh Xi.h, we find similarly that
COV(Py + 7y, dri) L 2. 2[—kta 4 k2q  ke8g) - gk
whereas
COV(Py + Popy iri) S 4[—ho  kehody_deh2o1 g forh> 2.

This completes the prodl

C. Proof of Results of Section 5

Proof of Theorem 8.

By the independence af andz we have foii, j > 1 that,

COV(Yq, 2Y;) = COUYgq, 27;) —COU(Yq, Z + Z)

COV(V o, 27;) — 2COM V¢, Z),

var2y,) = varn2y;)+varz + %) — 2coM2y;,z + Z)

var2y;) + 2vanz) — 8covy;, z),

COV(2y,2y;) = COV(2Y;,27 )+ COVZ + Z, Zj + Zj) — COM2y;, Zj + Zj) — COM(Z + Z, 2§)
CoV(2y;, 27 ) + 2covz, zj) — 4coMy;, Z)) — 4couz, 7)),

whereZ refers to equality under the assumption that= 012 for alli, j, in which case the contri-

butions fromz, andz are identical.

Thus, the elements &w* + Bw?s? + Co*1 are given as follows.

[0,1] = —2covUPg, 1) = —200* — 16w°02/m — 4o/ m?,

[0,2] = —2coMyg, 22) = +8w* +0— do*/m?,
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[0,i] = —2couPg.z) =—4o?/m?,  fori > 2,
[1,1] = 2vanz) — 8covuy, z1)
= 2[8w* + 8w’c?/m+ 20%/m?] — 8[—4w®* — 2wc%/m]

= 48w* + 320202/ m+ 4ot/ m?,
and more generally fdr> 1 we have

li,i +1] = 2covz,z 1) — 4COMY;, Zi11) — 4COMZ, ;1)
= 2[-60" — diw?0?/m] — 44w + 4w’c?/m + 20% /m?] — 4[0]
= —280w* - 8(i + 2)w?0?/m— 8%/ m?,
[i,i4+2] = 2covz,z,2) —4COMY;, Zi2) — 4COMZ, V)
= 2[0] — 4[—2w* + 20*/m?] — 4[0] = 8w®* — 80*/m?,
[i,i +j] = 2covuz,z.j)—4coUy;, Zi1j) — 4COMZ, Vi)
= 2[0] — 4[20%/m?] — 4[0] = —8c*/m?, for j > 3.

Further, fori > 2 we find that

[i,i] = 2vanz)—8covuy;,z)
= 212" + 8wfiw’c?/m+4( — 3)o*/m’] — 8[- 20" — 20°c?/m]
= 400"+ 16(i + Do’c?/m+8(i — 3)o*/m*.
[
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Table 1: Ancillary Regression Results.

Panel A: Regular Kernel

»=01
m &m Bm arest
106 1276 -0515 1.175
10* 1.237 -0509 1.166
10° 1.215 -0506 1.161
106 1200 -0.504 1.157
Panel B: Modified Kernel
A =01
m &m Bm arest
10° 0998 -0.495 1.031
10* 1.005 -0.496 1.037
10° 1.016 -0.497 1.039
106 1.022 -0.498 1.040

Panel C: Subsample Estimator

L=01
m Qm Bm apest
10° 0.366 -0.371 0.105
10* 0.297 -0.361 0.073
10° 0.242 -0.354 0.052
108

am
0.244
0.112
0.028
-0.026

0.141
0.033
-0.034
-0.077

-0.101
-0.398
-0.621

A =0.01
s
-0.551  -0.108
-0.532  -0.143
-0.521  -0.162
-0.514  -0.173
A =001
s
-0.541 -0.142
-0.525 -0.170
-0.516  -0.185
-0.511  -0.194
A =001
B &rest
m m
-0.481 -1.124
-0.438  -1.243
-0.409 -1.318

A =0.001
om  Bm am
0.217  -0.679 -1.019
-0.242  -0.612 -1.146
-0.541 -0.573 -1.212
-0.733  -0.550 4.25
A =0.001
om  Bm am
0.185 -0.675 -1.027
-0.265 -0.610 -1.151
-0.558 -0.571 4.21
-0.747  -0.549 425
A =0.001
am  Pm m
0.146  -0.6582.099
-0.455  -0.5712.371
-0.939  -0.5082.544

The Table presents results from the local ancillary regoasshat reveal the estimators rates of convergence.
The local regressions are each based on five data paoints, m/4, m/2, m, 2m, and 4n, where m is listed

in the first columnam andBm are the unrestricted estimates a?rf,ﬁ)stis the estimate ok, wheng,, is fixed
at—1/2 (Panels A and B) or1/3 (Panel C).
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D. Figures
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Figure 1: Plot ofw*, the optimal weight. The number of observatioms equals 78 in the top plot, 390 in the
middle ,and in the bottom plah equals 1560. = w?/0? is set to be M1 and 0001 in each subplot.
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— 1=0.01 A =0.001

1.0
0.9 ]
0.8 ]
0.7
0.6
0.5 ]

Weight

0.4
0.3 ]
0.2 7

0.0

T T T T T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Weight number (i/sgrt(m), m=78, q=36)

— A =0.01 A =0.001

0.9 ]
0.8
0.7 ]
0.6 ]
0.5 ]

Weight

0.4 T
0.3 ]
0.2 ]
0.1

0.0

T T T T T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Weight number (i/sgrt(m), m=390, q=80)

— 1=0.01 A =0.001

1.0
0.9
0.8 ]
0.7
0.6
0.5 ]

Weight

0.4
0.3 ]
0.2
0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Weight number (i/sgqrt(m), m=1560, q=160)

Figure 2: Plot ofw}, the optimal modified weight. The number of observationsgquals 78 in the top plot,

390 in the middle ,and in the bottom plot equals 1560 = w?/0? is set to be M1 and 0001 in each
subplot.
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— Regular Modified

— Subsample

Number of observations

Figure 3: This figure present.... Top:= 0.0001, Bottom:A = 0.1
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