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1. Introduction

It is well known that while there are different ways of establishing the existence of competi-

tive equilibria, all the classic proofs employ Kakutani’s fixed point theorem (see Debreu [2]).

This includes the ‘excess demand approach’ which solves this problem by constructing the

economy’s excess demand correspondence and then showing that there is a price at which

excess demand can be zero. At the heart of this approach is a technical result known as the

Gale-Nikaido-Debreu lemma, the proof of which uses Kakutani’s fixed point theorem. If

one is not willing to assume that excess demand has any other structural property besides

Walras’ Law, then the use of Kakutani’s fixed point theorem is necessary, because in this

case one could prove the fixed point theorem by assuming the Gale-Nikaido-Debreu lemma.

(This observation is due to Uzawa, a proof can be found in Debreu [2].)

The view that an economy’s excess demand function has no structure except Walras’

Law is largely borne out by the indeterminacy theorems of Sonnenschein, Mantel and De-

breu (see Mas-Colell et al [8]), but these theorems do rely on the absence of restrictions

(or rather suitable restrictions) on preferences, endowments, and their distribution. When

suitable restrictions are in place, the excess demand function will exhibit properties like

gross substitutability and the weak axiom. For example, a model guaranteeing the former

property can be found in Grandmont [3], while Quah [10] has a model with the latter prop-

erty; the common theoretical features of these and other related models is ably examined

in Jerison [5]. (See also Hildenbrand [4] for related empirical work.)

The significance of these aggregation results rests in part on the fact that the positive

theory of general equilibrium is most satisfactory when the economy’s excess demand func-

tion obey properties like the weak axiom. An economy with such a property will typically
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have a unique equilibrium price which is also stable with respect to the Walras’ tatonnement

[8]. They also exhibit nice comparative statics when subjected to endowment or other types

of perturbations [9,11,13]. It turns out that the proofs of equilibrium existence under these

types of structural assumptions are also more straightforward. It is known that there is

a simple proof of equilibrium existence when the excess demand function obeys gross sub-

stitutability (see Barbolla and Corchon [2]). In this note, we give a proof of equilibrium

existence using the separating hyperplane theorem, under the added assumption that excess

demand satisfies the weak axiom.1

The equilibrium existence proof we give has the virtue that it separates very sharply the

function of the geometric and continuity properties of excess demand. Provided an excess

demand function satisfies the weak axiom, there will be some price vector with the following

property: holding all other prices fixed, raising the price of good i leads to excess supply, and

lowering it leads to excess demand. To guarantee the existence of such a price vector, which

we call a switching price, the continuity of excess demand is not needed. So a switching

price exists even when, say, the presence of indivisible goods leads to discontinuities in

the excess demand function. Continuity is only needed if we wish to guarantee that the

switching price is also an equilibrium price, and even then the continuity assumption can

be significantly weakened.

In addition to being interesting in its own right, our equilibrium existence result has at

least one other use. In the theory of nontransitive preferences, the problem of guaranteeing

the existence of a demand bundle at any price-income situation is nontrivial and is usually

solved by appealing to fixed point arguments or something equivalent (see for example,

Shafer [14]). One can show that provided the preference is complete, the correspondence
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which associates each bundle on the budget plane to its supporting prices has a weak axiom-

type structure, and the problem of finding the demand on this budget plane is formally

equivalent to that of finding the equilibrium price of an excess demand function. So in

this way, one also obtains an elementary proof of the existence of demand when an agent’s

preference is complete but not necessarily transitive (see Quah [12] for the details).

The next section presents our findings, which are organized around three major results:

the first establishes the existence of a switching price, the second is a special case of the

Gale-Nikaido-Debreu lemma, and the third is an equilibrium existence theorem. It also

discusses the work of Abraham Wald, whose equilibrium existence theorem predated the

work of Arrow, Debreu and McKenzie, and who uses a weak axiom-type condition in his

proof. We rely here on John’s [6] modern explication of Wald’s model.

2. The Existence of Equilibrium

Consider an economy with l commodities. A common approach to the equilibrium exis-

tence problem involves the construction of a correspondence, Z : V → Rl, where V , a subset

of Rl, is the set of price vectors at which the excess demand Z is well-defined. Standard

primitive conditions on technology and preferences will guarantee that V is nonempty, 0 is

not in V , and that V is a convex and pointed cone; it is a convex cone in the sense that

whenever p and p′ are in V , so is λp + λ′p′ where λ and λ′ are positive scalars, and it is

pointed in the sense that whenever p is in V , −p is not in V . We maintain these assump-

tions. In addition, Z will have a number of properties:

Property 1. Z satisfies Walras’ Law, i.e., p · Z(p) = 0 for all p in P .

Property 2. Z is convex valued and upper hemicontinuous correspondence.2

For an exchange economy, under standard assumptions on agents’ preferences, V = Rl
++
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and Z will have two other properties:

Property 3. Z is bounded below.

Property 4. Z satisfies the following boundary condition: if pn in Rl
++ tends to p̄ on the

boundary of Rl
++, p̄ 6= 0, then for any zn in Z(pn), the sequence |zn| tends to infinity.

It is known that if Z has Properties 1 to 4, then an equilibrium price exists, i.e., there p∗ at

which 0 ∈ Z(p∗). This result is usually established with Kakutani’s fixed point theorem.3

We will show that another intuitive and instructive method of proof is available if Z

satisfies the weak axiom in addition to Properties 1 to 4. The usual definition of the weak

axiom is applied to functions only and says that Z obeys the weak axiom if whenever

p · Z(p′) ≤ 0 and Z(p) 6= Z(p′), then p′ · Z(p) > 0 [8]. The definition we adopt throughout

this paper is applicable to correspondences and is also weaker than the usual definition. We

say that the correspondence Z obeys the weak axiom if, for some p and p′ in V there is z′

in Z(p′) such that p · z′ ≤ 0, then p′ · Z(p) ≥ 0. We begin with a lemma which guarantees

that a finite set of excess demand vectors must have a supporting price.

Lemma 1. Suppose that the correspondence Z : V → Rl satisfies Property 1 and the weak

axiom. Then for any finite set S = {z1, z2, ..., zn} where zi is an element of Z(pi), there is

x∗, in the convex hull of {p1, p2, ...pn} such that x∗ · S ≥ 0.

Proof. We proof by induction on n. If n = 1, choose x∗ = p1. If n = 2, then either p2 ·z1 or

p1 · z2 is non-negative. If it is the latter, choose, x∗ = p1. Assume now that the proposition

is true for n and assume that it is not true for n + 1. Consider the following constrained

maximization problem: maxx · zk subject to x satisfying conditions (a) x · zi ≥ 0 for i in

Ik = {1, 2, ..., k−1, k +1, ..., n+1} and (b) x is in C, the convex hull of {p1, p2, ...pn, pn+1}.

By varying k, we have n + 1 problems of this sort.
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Consider the case when k = n + 1. By the induction hypothesis, there is certainly x

such that x · zi ≥ 0 for all i in In+1, since this set has only n elements. Furthermore, C is

compact, so the problem has at least one solution, which we denote by x̄n+1. Since we are

proving by contradiction, we assume that x̄n+1 · zn+1 < 0.

We will now show that x̄n+1 · zi = 0 for all i in In+1. If not, the set J = {i : x̄n+1 · zi =

0} ∪ {n + 1} has n elements or less, and so there is ȳ in C with ȳ · zi ≥ 0 for all i in J .

Consider now the vector θȳ + (1− θ)x̄n+1, which is also in C, provided θ is in [0, 1]. Then

(i) [θȳ + (1− θ)x̄n+1] · zi ≥ 0, for i in J \ {n + 1}

(ii) [θȳ + (1− θ)x̄n+1] · zi > 0, for i /∈ J provided θ is sufficiently small

(iii) [θȳ + (1− θ)x̄n+1] · zn+1 ≥ (1− θ)x̄n+1 · zn+1 > x̄n+1 · zn+1.

This means that x̄n+1 does not solve the constrained maximization problem.

So the solution to this problem, x̄n+1, must satisfy x̄n+1 · zi = 0 for i in In+1 and

x̄n+1 · zn+1 < 0. We can apply the same argument to a solution of the other problems. In

this way, we obtain x̄k, for k = 1, 2, ..., n+1 with x̄k ·zi = 0 for i in Ik and x̄k ·zk < 0. Define

x̄ = [
∑n+1

i=1 x̄i]/(n + 1); x̄ is certainly in C. Furthermore, x̄ · zi < 0, for i = 1, 2, ..., n + 1.

By the weak axiom, pi · Z(x̄) > 0 for all i. Since x̄ is in the convex hull of the pis, we have

x̄ · Z(x̄) > 0, which contradicts Walras’ Law (Property 1). QED

This lemma leads intuitively to the next result.

Lemma 2. Suppose that Z : V → Rl satisfies Property 1 and the weak axiom. Then there

is p∗ 6= 0 in the closure of V such that (p∗ − p) · Z(p) ≥ 0 for all p in V .

Proof: We claim that coZ ∩ V ∗ = ∅, where coZ is the convex hull of the set {Z(p) ∈

Rl : p ∈ V } and V ∗ = {v ∈ Rl : v · p < 0 for all p ∈ V }. If not, we can find
∑K

i=1 βizi in V ∗,

where zi is in Z(pi) for some pi, and the βis are non-negative numbers that add up to 1.
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By Lemma 1, there is x in V , with x · zi ≥ 0 for all i, and consequently, x · [∑K
i=1 βizi] ≥ 0,

contradicting the definition of V ∗. So our claim is true. The separating hyperplane theorem

guarantees that there is p∗ 6= 0 such that p∗ ·Z(p) ≥ p∗ · V ∗. Since V ∗ is a cone, 0 is in the

closure of V ∗, so we obtain p∗ ·Z(p) ≥ 0 (equivalently by Walras’ Law, (p∗ − p) ·Z(p) ≥ 0)

for all p in V . Note also that p∗ · V ∗ must be bounded above, which means, since V ∗ is a

cone, that p∗ · V ∗ ≤ 0 and consequently p∗ · (cl(V ∗)) ≤ 0 where cl(V ∗) denotes the closure

of V ∗. By Lemma A(iii) in the Appendix, p∗ is in clV QED

We refer to any p∗ 6= 0 satisfying the property in Lemma 2 as a switching price of Z.

The motivation for this term is quite clear. For a price p in V , with pi = p∗i for all i, except

i = k, the switching property tells us that (p∗ − p) · Z(p) = (p∗k − pk)Zk(p) ≥ 0. In other

words, if pk is greater than p∗k there will be excess supply of k; if it is lower, there will be

excess demand of k. Of course, this motivation presupposes that p∗ is in the interior of V ,

something which we have yet to prove. The next result shows that when V = Rl
++, this is

guaranteed by Properties 3 and 4.

Lemma 3. Suppose that V = Rl
++ and let p∗ in Rl

+ \ {0} be a switching price of Z. If Z

satisfies Properties 3 and 4 then p∗ is in Rl
++.

Proof. Since p∗ is in Rl
+, pn where pi

n = p∗i + 1/n is in Rl
++ and so Z(pn) is non-empty.

For some zn in Z(pn), (p∗ − pn) · zn = −[
∑l

i=1 zi
n]/n ≥ 0 since p∗ is a switching price. So

∑l
i=1 zi

n ≤ 0 for all n. This implies that p∗ is in Rl
++. If not, since pn tends to p∗, Property

4 says that |zn| tends to infinity while Property 3 says that zi
n is uniformly bounded below,

so
∑l

i=1 zi
n tends to infinity and will not be non-positive. QED

Combining Lemmas 2 and 3 gives us the next result. It is worth pointing out that

this theorem on the existence of switching prices does not require the convex or compact
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valuedness of the excess demand correspondence, nor its upper hemicontinuity.

Theorem 1. Suppose that the correspondence Z : Rl
++ → Rl satisfies Property 1,3, and 4

and the weak axiom. Then there is p∗ in Rl
++ such that (p∗−p) ·Z(p) ≥ 0 for all p in Rl

++.

If we wish to go one step further and establish that a switching price is also an equilib-

rium price, then it should be quite clear that the upper hemicontinuity of Z will have to be

brought into play.

Lemma 4. Let p∗ in V be a switching price of the correspondence Z : V → Rl. If Z

satisfies Property 2 then there exists z∗ in Z(p∗) such that z∗ · p ≤ 0 for all p in V . In

particular, if p∗ is in the interior of V and Property 1 holds, then z∗ = 0.

Proof. Define V 0 = {v ∈ Rl : v ·p ≤ 0 for all p ∈ V }. The set V 0 is called the polar cone of

V . By way of contradiction, suppose that Z(p∗) and V 0 are disjoint. It is trivial to check

that V 0 equals the polar cone of clV , which we shall denote by (clV )0, so Z(p∗) and (clV )0

must also be disjoint. By the separating hyperplane theorem, there is v 6= 0 such that

v ·Z(p∗) > v · (clV )0. Since 0 is in (clV )0, we have v ·Z(p∗) > 0. Furthermore, since (clV )0

is a cone and v · (clV )0 is bounded above, v · (clV )0 ≤ 0. By Lemma A(ii) in the Appendix,

v is in clV . So there is a sequence vn in V with v as its limit. Choose a sequence of positive

scalars an tending to zero; then pn = anvn + p∗ tends to p∗, and since V is a convex cone

pn is in V . Since p∗ is a switching price, we have (p∗ − pn) · Z(pn) = −anvn · Z(pn) ≥ 0 for

all n. By Property 2, there is a sequence zn, extracted from Z(pn), which converges to z∗

in Z(p∗). So v · z∗ ≤ 0, which contradicts v · Z(p∗) > 0. Thus we conclude that Z(p∗) and

V 0 are not disjoint.

Suppose p∗ is in the interior of V and that z∗ 6= 0. By Property 1, z∗ · (p− p∗) ≤ 0 for p

in V and in particular for p in a neighborhood of p∗. This is only possible if z∗ = 0. QED
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The next result follows from combining Lemmas 2 and 4.

Theorem 2. Suppose that V is relatively closed in Rl \ {0} and that Z : V → Rl satisfies

Properties 1, 2, and the weak axiom. Then there is p∗ in V and z∗ in Z(p∗) such that

z∗ · p ≤ 0 for all p in V .

The claim in Theorem 2 is true even when the weak axiom is not assumed (while

keeping the other assumptions). In that more general form, the result is known as the

Gale-Nikaido-Debreu lemma and it is at the heart of existence proofs of general equilibrium

using the excess demand approach. When the weak axiom is not assumed, its proof requires

Kakutani’s fixed point theorem and indeed it is known that the result implies Kakutani’s

fixed point theorem [2]; as we have seen, when the weak axiom is assumed an elementary

proof which dispenses with fixed point arguments is available.

Up to this point, we have made use of Property 2 to guarantee that a switching price

is indeed an equilibrium price. In the case when Z is a function, this continuity property

can be weakened by excluding only certain types of discontinuities in Z’s behavior. We say

that a function φ : R+ → R has a drop at s if φ(s) > sup{φ(s′) : s′ > s}.

Property 2′. V = Rl
++, Z(p) is a singleton for all p in Rl

++, and Zi(·|p̄) : R+ → R, given

by Zi(pi|p̄) = Zi(p̄1, p̄2, ..., pi, p̄i+1, ..., p̄l) admits no drops for all i and p̄ in Rl
++.

Lemma 5. Suppose that V = Rl
++, Z : Rl

++ → Rl satisfies Properties 1 and 2′ and there

exists a switching price p∗ in Rl
++. Then Z(p∗) = 0.

Proof. Since p∗ À 0, if Z(p∗) 6= 0, Walras’ Law says that there is k with Zk(p∗) >

0. By Property 2′, there is pk > p∗k such that Zk(pk|p∗) = Zk(p̂) > 0, where p̂ =

(p∗1, ..., pk, p∗(k+1), ..., p∗l). Then (p∗ − p̂) · Z(p̂) = (p∗k − pk)Zk(p̂) < 0, which is a con-

tradiction. QED
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Gathering together our results gives us the following equilibrium existence theorem.

Theorem 3. Suppose that Z : Rl
++ → Rl satisfies Properties 1, 2 (or 2′), 3, 4, and the

weak axiom. Then there is a price p∗ in Rl
++ such that 0 ∈ Z(p∗).

Proof. Lemma 2 guarantees that there is a switching price in Rl
+. Lemma 3 guarantees

that p∗ is in Rl
++. If Property 2 holds, Lemma 4 guarantees that 0 ∈ Z(p∗). If Property 2′

holds, Lemma 5 guarantees that Z(p∗) = 0. QED

We conclude with some comments on the related literature. The first rigorous solution

to the existence problem in a general equilibrium model is due Abraham Wald, who showed

that an equilibrium exists in a Walras-Cassel production economy. In Wald’s proof, the

household sector of the economy has an aggregate demand function which is assumed to

be invertible, with the inverse assumed to satisfy the weak axiom (see John [6]). Wald

needs this assumption because his approach to the equilibrium existence problem requires

that he solve what, in modern mathematical terms, is known as the Stampacchia variational

inequality problem; assuming the weak axiom (as he does) allows for an elementary solution

to this problem [6].

Our starting point is the excess demand approach to equilibrium existence as developed

by Debreu and others. To the standard assumptions on the excess demand correspondence

we add the weak axiom. At the heart of our approach is the search for a switching price;

in the mathematical literature, this is a special case of the Minty variational inequality

problem.4 A discussion of this problem can be found in John [7] who also gives a proof of

Lemma 1 using an elementary intersection property of convex sets. The solution we give

here can also be modified in an obvious way to deal with the general Minty variational

inequality problem.
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Appendix

For the sake of completeness, we include here a short proof of a simple result on cones

we used in the proofs of Proposition 1 and Lemma 3. Suppose that A is a convex and

pointed cone in Rl and write A∗ = {v ∈ Rl : v · a < 0 for all a ∈ A, a 6= 0}, and A0 = {v ∈

Rl : v · a ≤ 0 for all a ∈ A, }. The set A0 is usually referred to as the polar cone of A. A∗

is defined similarly, except that the inequality is strict rather than weak. We denote the

closure of any set S by clS.

Lemma A. (i) cl(A∗) = (clA)0, (ii) If A is closed, (A0)0 = A, (iii) (cl(A∗))0 = clA.

Proof. (i) If x is in cl(A∗), there is xn tending to x such that xn · a < 0 for all a in A \ {0}.

Taking limits, we have x · ā ≤ 0 for all ā in clA. So x is in (clA)0. For the other inclusion,

since (clA)0 ⊆ A0, it suffices to show that A0 ⊆ cl(A∗). If x is in A0, by definition, x · a ≤ 0

for all a in A. Since A is convex and pointed, by the separating hyperplane theorem, there

is w 6= 0 such that w ·A > 0, for all a in A\{0}. Since [x− (w/n)] ·a < 0 for all a, x− (w/n)

is in A∗. Letting n go to infinity, we see that x is in cl(A∗).

(ii) If a is in A, for all v in A0, v · a ≤ 0, so a is certainly in (A0)0. On the other

hand, if a is not in A, then by the separating hyperplane theorem, there is w such that

w · a > w · A. (Note that the inequality is strict because A is closed.) This means that

w ·A ≤ 0; otherwise the right hand side of the inequality is unbounded above. So w is A0.

We also have w · a > 0, so this means that a is not in (A0)0.

(iii) This clearly follows from (i) and (ii). QED
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*************************************

Footnotes:

1. Something roughly analogous is true of the existence proofs in game theory. The standard

proof of the existence of Nash equilibria uses Kakutani’s fixed point theorem, but for special

cases like zero-sum games or supermodular games one can appeal, respectively, to the

separating hyperplane theorem and Tarski’s fixed point theorem.

2. A correspondence F : X → Y where X and Y are metric spaces is upper hemicontinuous

if, for every sequence xn tending to x in X, and every sequence yn in F (xn), there is a

subsequence of yn with a limit in F (x). In particular, this implies that F (x) is compact for

every x in X.

3. All the claims made in this paragraph can be verified in Debreu [2].

4. I am very grateful to Reinhard John for pointing this out to me.
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