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Abstract

Cobb Douglas production function parameters are not identi�ed from cross-
section variation when inputs are perfectly �exible and chosen optimally,
and input prices are common to all �rms. We consider the role of adjustment
costs for inputs in identifying these parameters in this context. The presence
of adjustment costs for all inputs allows production function parameters
to be identi�ed, even in the absence of variation in input prices. This
source of identi�cation appears to be quite fragile when adjustment costs
are deterministic, but more useful in the case of stochastic adjustment costs.
We illustrate these issues using simulated production data.
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1 Introduction

This paper considers the role of adjustment costs for inputs in the identi�cation

and estimation of parameters for a correctly speci�ed Cobb Douglas production

function. We focus on the case where input prices are common to all �rms at the

same point in time, and where any observed time series variation in these common

input prices cannot be used to identify production function parameters due to the

inclusion of time-speci�c intercepts. In this case Ackerberg and Caves (2003) have

recently shown that the control function estimation procedures proposed by Olley

and Pakes (1996) and Levinsohn and Petrin (2003) do not identify parameters

on inputs that are perfectly �exible. We note that this identi�cation problem is

more general. If all inputs are chosen optimally and are perfectly �exible in the

sense that they can be varied immediately without incurring any costs, then all

inputs are perfectly collinear with the productivity shocks observed by �rms. If

some inputs are predetermined so that they cannot be adjusted in response to the

current productivity shock, the remaining variable inputs are linearly dependent

on the productivity shock and the value of these predetermined inputs. In both

cases the parameters on the perfectly �exible inputs are not identi�ed, regardless

of the estimation technique considered.

We note that this identi�cation problem becomes less acute if all inputs are

costly to adjust. The presence of adjustment costs and productivity shocks that

vary across �rms implies that the shadow prices of inputs vary across �rms, even

if all �rms face common purchase or rental prices. This breaks the collinearity

between productivity shocks and optimally chosen input levels. More importantly,

this breaks the collinearity between the levels of di¤erent inputs, at least in cases

where these inputs are subject to di¤erent levels of adjustment costs, or where

adjustment costs are themselves stochastic. As a result, parameters on inputs that

are subject to adjustment costs can be estimated consistently using instrumental

variables methods, such as those considered by Blundell and Bond (2000). This
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is also convenient as it does not require the precise form of the adjustment cost

functions to be speci�ed. In contrast, the presence of adjustment costs for all

inputs implies that the control functions proposed by Olley and Pakes (1996) and

Levinsohn and Petrin (2003) are mis-speci�ed, and these methods do not yield

consistent estimates of production function parameters.

We illustrate these issues using simulated data on optimal inputs and outputs

for �rms with a two-factor Cobb Douglas technology and (possibly stochastic)

quadratic adjustment costs for both capital and labour. The results of a small

Monte Carlo experiment suggest that consistent estimates of both production func-

tion parameters can be obtained using predetermined lagged inputs as instruments

for the endogenously determined current inputs. With deterministic adjustment

costs, identi�cation is shown to become weak in three cases: i) where adjustment

costs for both inputs are too low, so that both inputs become highly collinear; ii)

where adjustment costs for both inputs are too high, so that there is insu¢ cient

variation in the input levels; iii) where adjustment costs for the two inputs are too

similar, which again results in a high level of collinearity. With stochastic adjust-

ment costs, the performance of these instrumental variables estimators improves

considerably, and we are also able to estimate dynamic speci�cations with serially

correlated productivity shocks.

The paper is organised as follows. Section 2 reviews how identi�cation fails

when one or more of the inputs is perfectly �exible. Section 3 considers the

behaviour of inputs in the presence of adjustment costs. Section 4 considers the

behaviour of simple instrumental variables estimators using simulated production

data. Section 5 concludes.
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2 Identi�cation Issues in the Absence of Adjust-
ment Costs

We �rst review the identi�cation issues that arise when some or all of the inputs

are perfectly �exible. Consider a two-factor Cobb Douglas technology for �rm i

Yi = AiK
�
i L

�
i (1)

where Yi; Ki; Li are observed measures of output, capital and labour respectively,

and Ai is a productivity characteristic that is observed by the �rm but not by the

econometrician.1 The �rm chooses inputs and output to maximise net revenue

Ri = PYi � UKi �WLi (2)

where input and output prices are common to all �rms and, for simplicity, assumed

to be exogenously given. The �rm hires labour at the wage W per unit and, for

simplicity, is assumed to rent capital at the rental price U per unit. We assume

�+ � < 1 to ensure this problem has a solution.

The �rst order conditions for optimal input choices are the standard marginal

productivity conditions

P

�
@Yi
@Ki

�
= U (3)

P

�
@Yi
@Li

�
= W (4)

Solving these, we can express the optimal capital and labour inputs as log linear

functions of real input prices and the productivity characteristic

ki =

�
1� �

1� �� �

�
ln�+

�
�

1� �� �

�
ln � (5)

�
�

1� �

1� �� �

�
(u� p)�

�
�

1� �� �

�
(w � p) +

�
1

1� �� �

�
ai

li =

�
�

1� �� �

�
ln�+

�
1� �

1� �� �

�
ln � (6)

�
�

�

1� �� �

�
(u� p)�

�
1� �

1� �� �

�
(w � p) +

�
1

1� �� �

�
ai

1We omit time subscripts in this section to simplify the notation.
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where lower case letters denote natural logarithms of the terms denoted by the

corresponding upper case letters. Thus if input prices are common to all �rms and

capital and labour are both chosen optimally with no adjustment costs or frictions,

the levels of capital and labour will vary across �rms only with the factor neutral

productivity characteristic. For the log linear production function

yi = �ki + �li + ai (7)

this implies that the two inputs are perfectly collinear with each other, and with

the error term.2

Somewhat di¤erent issues arise when the level of one of the inputs, say capital,

is chosen before the productivity characteristic ai is observed by the �rm. In

this case the optimal level of the perfectly �exible labour input can be expressed

as a log linear function of the real wage, the productivity characteristic and the

predetermined level of capital

li =

�
1

1� �

�
ln � �

�
1

1� �

�
(w � p) +

�
�

1� �

�
ki +

�
1

1� �

�
ai (8)

If the real wage is common to all �rms, this implies that there are no valid instru-

ments for the endogenous labour input in (7) that are informative after condition-

ing on the predetermined level of ki. The only variation in li after conditioning

on ki is due to the productivity characteristic ai, but any valid instruments in (7)

must be orthogonal to ai. Consequently the production function parameters �

and � are not identi�ed in this case also.

The failure of the control function approaches proposed by Olley and Pakes

(1996) and Levinsohn and Petrin (2003) to identify parameters on perfectly �exible

inputs in a Cobb Douglas production function is thus an example of this more

2The problem of perfect collinearity with the error term in the production function could
be avoided by assuming an additive measurement error in log output. Identi�cation still fails
as a result of perfect collinearity between the two inputs. The early literature on cross-section
production functions recognised this problem, and �solved�it somewhat arbitrarily by invoking
optimisation errors. See, for example, Marschak and Andrews (1944) and Mundlak and Hoch
(1965).
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general identi�cation problem. The essence of these approaches is to augment the

basic production function speci�cation (7) with an additional function of observed

variables that controls for the unobserved variation in productivity. Ackerberg

and Caves (2003) have noted that any correctly speci�ed control function must

be perfectly collinear with the �exible inputs, conditional on the levels of any

predetermined inputs. To illustrate this, suppose we observe a variable zi that is

proportional to aiwith some unknown factor of proportionality (i.e. zi = ai=�),

and we include this term as an additional control. We also introduce an additive

measurement error in the natural logarithm of observed output, denoted ei, so

that the augmented speci�cation remains stochastic

yi = �ki + �li + �zi + ei (9)

Clearly if both inputs are perfectly �exible, they are perfectly collinear with each

other and with zi. If capital is predetermined and labour is perfectly �exible, li

is linearly dependent on ki and zi, and we again have perfect collinearity between

the included terms in (9). The production function parameters � and � are not

identi�ed in either case.

We emphasise here that this problem is not unique to the control function

approach. If the Cobb Douglas production function is correctly speci�ed, then

variation in prices is required to identify parameters on inputs that are perfectly

�exible and optimally chosen. However the presence of unobserved variation across

�rms in prices basically rules out the strategy of controlling for the productivity

shocks using any function of observed inputs that is common to all �rms.3 Opti-

misation errors would need to be of a very special form for the control function

to remain correctly speci�ed, with optimisation errors for any of the inputs used

in the control function being ruled out, and optimisation errors for the remaining

inputs being required. Otherwise the identi�cation of Cobb Douglas production

3Speci�cally there can be no unobserved variation in the price of inputs that are used in the
control function, and no persistent variation in the price of the remaining inputs.
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function parameters using the control function approach requires that none of the

inputs are perfectly �exible and chosen in response to the current productivity

shock. These issues are discussed further in Ackerberg and Caves (2003).

In the remainder of this paper we consider the identi�cation of Cobb Douglas

production function parameters in the presence of explicit adjustment costs for

all inputs. Since the control functions proposed by Olley and Pakes (1996) and

Levinsohn and Petrin (2003) do not control fully for the unobserved productivity

shocks when all inputs are costly to adjust, we focus on the scope for obtaining

consistent estimates using instrumental variables methods.

3 Identi�cation Issues in the Presence of Adjust-
ment Costs

Adjustment costs weaken the dependence of current input levels on current produc-

tivity shocks, and introduce dependence on the history of past shocks. Provided

these productivity shocks are not completely common to all �rms, this introduces

variation across �rms in the shadow prices of each input, even if all �rms face

the same purchase or rental prices. This suggests that the collinearity problems

discussed in the previous section will be less extreme if all inputs are subject to

adjustment costs. We illustrate this in this section by considering a simple dy-

namic problem with a two-factor Cobb Douglas production function and strictly

convex adjustment costs for each of the inputs.

The �rm now chooses inputs and output to maximise the present value of

current and expected future net revenues, which we write recursively as

Vt(Kt�1; Lt�1) = PtFt(Kt; Lt)� PKt It � PKt Gt(It; Kt) (10)

�WtLt �WtCt(Ht; Lt) +  tEt[Vt+1(Kt; Lt)]

where output in period t (Yt) is given by the two-factor stochastic production

function Ft(Kt; Lt), which will be assumed to have the Cobb Douglas functional

6



form as in (1).4 Et[:] denotes an expected value given information in period t, and

 t is the discount factor giving the value in period t of revenue in period t + 1.

Capital and labour inputs evolve according to the equations of motion

Kt = (1� �)Kt�1 + It (11)

Lt = (1� q)Lt�1 +Ht (12)

where It is gross investment in period t, Ht is gross hiring, and � and q are ex-

ogenously given depreciation and quit rates respectively. As the �rm�s problem

is now inherently dynamic, there is little simpli�cation from assuming capital to

be rented, and we assume instead that capital is purchased at the price PKt per

unit in period t. Labour is again hired at the wage Wt per unit in period t. In-

vestment and hiring incur additional costs of adjustment given by the (possibly

stochastic) functions Gt(It; Kt) and Ct(Ht; Lt) respectively. Notice that these take

the form of additional �nancial costs, rather than the form of foregone production.

Any costs of adjustment in the form of lost output would clearly a¤ect the rela-

tionship between inputs and output, leaving the simple static speci�cation in (7)

fundamentally mis-speci�ed. Note also that the current productivity shock (At) is

known by the �rm in period t, when making its investment and hiring decisions.

All prices are again assumed to be exogenously given and common to all �rms.

This problem has two control variables (It and Ht) and two state variables

(Kt�1 and Lt�1). Using the equations of motion (11) and (12) to eliminate the

current values of the state variables from (10) and then di¤erentiating with respect

to It, Kt�1, Ht and Lt�1 gives the �rst order conditions

0 = Pt
@Ft
@Kt

� PKt � PKt
@Gt
@It

� PKt
@Gt
@Kt

+  tEt

�
@Vt+1
@Kt

�
(13)

@Vt
@Kt�1

= (1� �)Pt
@Ft
@Kt

� (1� �)PKt
@Gt
@Kt

+ (1� �) tEt

�
@Vt+1
@Kt

�
(14)

0 = Pt
@Ft
@Lt

�Wt �Wt
@Ct
@Ht

�Wt
@Ct
@Lt

+  tEt

�
@Vt+1
@Lt

�
(15)

4We omit �rm subscripts in this section to simplify the notation.
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@Vt
@Lt�1

= (1� q)Pt
@Ft
@Lt

� (1� q)Wt � (1� q)Wt
@Ct
@Lt

+ (1� q) tEt

�
@Vt+1
@Lt

�
(16)

Letting �Kt =
1
1��

@Vt
@Kt�1

denote the shadow value in period t of inheriting one

additional unit of capital (after depreciation) from the previous period,5 we can

combine (13) and (14) to obtain

�Kt = Pt
@Ft
@Kt

� PKt
@Gt
@Kt

+ (1� �) tEt
�
�Kt+1

�
(17)

= PKt + PKt
@Gt
@It

Similarly letting �Lt =
1
1�q

@Vt
@Lt�1

, the analogous expressions for labour are

�Lt = Pt
@Ft
@Lt

�Wt �Wt
@Ct
@Lt

+ (1� q) tEt
�
�Lt+1

�
(18)

= Wt
@Ct
@Ht

We can rewrite the �rst line of (18) as

Pt
@Ft
@Lt

�Wt
@Ct
@Lt

= Wt + �Lt

 
1� (1� q) tEt

"
�Lt+1
�Lt

#!
(19)

Notice that if there are no adjustment costs for labour, we have @Ct
@Ht

= @Ct
@Lt

= 0.

This implies, using the second line of (18), that �Lt = 0. In this case, (19) reduces

to the standard marginal productivity condition, as in (4). More generally, with

adjustment costs, (19) indicates that the marginal revenue product of labour is

equated with the wage plus an additional term which depends on the current

and expected future levels of the shadow value of inheriting a higher labour force

from the previous period. The �rst line of (18) further indicates that this shadow

value depends on the current productivity shock (At), which a¤ects the marginal

physical product of labour ( @Ft
@Lt
). Thus even if all �rms face a common wage rate

(Wt), idiosyncratic productivity shocks will generate variation across �rms in the

relevant shadow price of labour.

5Equivalently �Kt is the shadow value associated with the constraint (11).
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Similar observations apply to the optimal choice of the capital stock in the

presence of adjustment costs. Here we can rewrite the �rst line of (17) as

Pt
@Ft
@Kt

� PKt
@Gt
@Kt

= �Kt

 
1� (1� �) tEt

"
�Kt+1
�Kt

#!
(20)

With no adjustment costs for capital, we have �Kt = PKt and (20) reduces to the

standard marginal productivity condition, in which PKt
�
1� (1� �) tEt

h
PKt+1
PKt

i�
is the user cost of capital, with which the marginal revenue product is equated.6

With adjustment costs, the marginal revenue product of capital is equated with

a term that depends on current and expected future levels of the shadow value of

inheriting a higher capital stock. Again, using the �rst line of (17), this shadow

value depends on the current productivity shock, and thus varies across �rms

provided the productivity shocks are not completely common.

These �rst order conditions also indicate that the optimal levels of the inputs in

the presence of adjustment costs will depend on past as well as current productivity

shocks, and will therefore be persistent, even if the productivity shocks themselves

are serially uncorrelated. To illustrate this, we focus on the intertemporal opti-

mality condition for labour (18), and simplify by assuming adjustment costs to

have the form Ct(Ht; Lt) = cH2
t =2, so that (@Ct=@Ht) = cHt and (@Ct=@Lt) = 0.

Simplifying further by assuming all prices and the discount factor to be constant,

we can write the �rst line of (18) as

Ht =
1

c

�
P

W

@Ft
@Lt

� 1
�
+ (1� q) Et[Ht+1] (21)

Letting Ht+1 = Et[Ht+1] + "t+1, where "t+1 is the error made in forecasting Ht+1

using information available in period t, and solving for Ht+1 gives

Ht+1 =

�
1

(1� q) 

�
Ht �

�
1

c(1� q) 

��
P

W

@Ft
@Lt

� 1
�
+ "t+1 (22)

6Notice our timing assumption that this period�s investment contributes immediately to pro-
duction. Di¤erences between (19) and (20) re�ect the assumptions that labour is hired and
capital is owned by the �rm.
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Current hiring thus depends on past productivity shocks, both through past hiring

and through the previous period�s marginal product of labour, as well as on the

innovation to the productivity process in the current period, which is re�ected

here in the forecast error. We can also note that the persistence in hiring, and

hence in the level of employment, will depend inter alia on the adjustment cost

parameter c. This suggests that, at least provided capital and labour are subject

to di¤erent levels of adjustment costs, there will be variation in the capital-labour

ratio.

To see this more intuitively, consider the �rm�s response to a large, permanent

increase in productivity, assuming that adjustment costs for capital are higher

than those for labour. Eventually the �rm will want to have higher levels of both

inputs, as in the case where inputs are �exible. However the capital stock will

adjust more slowly than employment, since adjusting the capital stock is relatively

expensive. This will generate a lower capital-labour ratio during the period after

the shock when signi�cant adjustments are occurring. Similarly, in response to a

large, temporary increase in productivity, both inputs will be temporarily higher,

but the adjustments (upward initially and downward subsequently) in capital will

be more muted. Again the capital-labour ratio will tend to be lower in the period

immediately after a positive productivity shock. Conversely, capital-labour ratios

will tend to be higher following (temporary or permanent) negative productivity

shocks, as in this case capital adjusts downwards more slowly. As a result, the

combination of productivity shocks with di¤erent levels of adjustment costs for

di¤erent inputs will generate variation both across �rms and over time in, for

example, the capital-labour ratio.

This variation will of course be endogenous, in that both capital and labour

and the capital-labour ratio will be correlated with the current productivity shock

in the error term of simple log linear production function speci�cations like (7).

However the presence of adjustment costs also makes the variation in these input

levels persistent, so that lagged levels of the inputs provide informative instru-
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ments. Following a temporary positive productivity shock, for example, the sub-

sequent downward adjustment of the capital stock occurs gradually to minimise

the present value of adjustment costs. The presence of adjustment costs thus gen-

erates not only variation but also predictable variation in capital, labour and the

capital-labour ratio, even if the productivity shocks themselves are serially uncor-

related. As a result, lagged levels of the inputs can be used to obtain valid and

informative instruments, and the production function parameters are identi�ed

using standard instrumental variables estimators.

This source of identi�cation is likely to be strengthened if the costs of adjust-

ment are themselves subject to stochastic variation. Stochastic adjustment costs

are a standard assumption in the Q model of investment (see Hayashi, 1982), and

have been considered more recently in the context of �xed adjustment cost levels

by, for example, Caballero, Engel and Haltiwanger (1995). With the combination

of (convex) adjustment costs and stochastic productivity shocks, input levels are

generally in the process of adjusting. Shocks to the level of adjustment costs that,

for example, make it relatively inexpensive for the �rm to adjust its capital stock

in the current period, will thus introduce an additional and relatively exogenous

source of variation into the capital-labour ratio. These exogenous adjustment cost

shocks are unlikely to be observed, and so cannot be used directly as instruments.

However their presence is expected to improve the properties of standard instru-

mental variables estimators of the production function parameters, using lagged

internal instruments, to the extent that they generate more (predictable) variation

in the relative levels of di¤erent inputs.

4 Simulation Evidence

The previous section suggests that, even without variation in input prices, the

parameters of a Cobb Douglas production function are identi�ed provided there

are adjustment costs for each of the inputs considered, and provided there is
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variation across �rms in the productivity shocks. In this section we illustrate this

using simulated data for a two-factor Cobb Douglas production function where

capital and labour inputs are each subject to quadratic costs of adjustment.

To generate the simulated data, each �rm chooses investment and hiring to

maximise its value in (10) subject to the constraints in (11) and (12). The pro-

duction function is

Yit = F (Kit; Lit) = eaitK�
itL

�
it

The prices of inputs and output are common to all �rms, constant over time, and

normalised to one. The productivity shocks ait are initially drawn from an iid

normal distribution with mean zero and variance �2a, so that the static log linear

production function that we estimate

yit = �kit + �lit + ait (23)

is correctly speci�ed.

4.1 Deterministic adjustment costs

The adjustment cost functions are initially speci�ed to be deterministic, with net

changes to the input levels subject to increasing marginal costs

G(Iit; Kit) =
g

2

�
Iit

Ki;t�1
� �

�2
Ki;t�1

C(Hit; Lit) =
c

2

�
Hit

Li;t�1
� q

�2
Li;t�1

The properties of the simulated input and output series depend on the parame-

ters (�; �; g; c; �; q;  ; �2a). We �x � = q = 0:1 and  = 1=1:1. For the simulations

reported in Table 1, we also �x � = 0:4; � = 0:5 and �2a = 0:017. Our main interest

is in the properties of instrumental variables estimators of � and � in (23), and

how these change as we vary the adjustment cost parameters g and c.

Table 1 reports Monte Carlo results for four experiments using di¤erent values

of these adjustment cost parameters. In each case we generate data for a panel
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of 500 �rms and 10 time periods.7 The numerical solution method used to obtain

this simulated data is described in the appendix. This procedure is repeated 100

times using di¤erent draws of the productivity shocks. Table 1 reports the mean

and the standard deviation over these 100 replications for each of the estimated

coe¢ cients.

The reported two-stage least squares estimates use the �rst lags of both inputs

and output (ki;t�1; li;t�1 and yi;t�1) as instruments.8 Very similar estimates were

obtained using further lags of the series as additional instruments. As well as these

instrumental variables estimates of � and �, we also report OLS estimates of the

autoregressive coe¢ cients in simple AR(2) speci�cations for kit and lit

kit = �K1 ki;t�1 + �K2 ki;t�2 + vKit

lit = �L1 li;t�1 + �L2 li;t�2 + vLit

and OLS estimates of the coe¢ cients in simple speci�cations that relate the natural

logarithms of the input levels chosen in the presence of adjustment costs to the

corresponding levels that would have been chosen in the absence of adjustment

costs

kit = aK + bKk�it + "Kit

lit = aL + bLl�it + "Lit

where k�it and l
�
it are calculated using the true parameter values and productivity

shocks using (5) and (6) respectively. The former illustrate the serial correlation

in the optimally chosen inputs that (in Table 1) results solely from the presence

of adjustment costs. The latter indicate how closely the actual inputs track the

levels that would be chosen in the absence of adjustment costs, which provides

a more intuitive indication of the size of the adjustment cost parameters that

7In fact we generate data for 110 periods and discard the �rst 100 observations, to minimise
any impact of the starting values. Almost identical results are obtained using a start up period
of 200 observations.

8For a given set of instruments, two-stage least squares provides an asymptotically e¢ cient
Generalised Method of Moments estimator in this context with iid errors.
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we consider.9 We also report the simple correlation coe¢ cient between kit and lit;

recall that the identi�cation problem when both inputs are perfectly �exible results

from this correlation being one. Finally, for comparison, we also report estimates

of the coe¢ cient � on the labour input obtained using a simple control function

estimator. Speci�cally we use OLS to estimate the augmented speci�cation

yit = �lit + �1iit + �2i
2
it + �3kit + �4k

2
it + �5iitkit + �it (24)

where iit = Iit=Ki;t�1 is the rate of investment. Here we follow the suggestion of

Olley and Pakes (1996) to proxy for the unobserved productivity shock using a

�exible function of investment and capital, exploiting the fact that current invest-

ment decisions are also in�uenced by these shocks. Given our timing assumptions

and the presence of adjustment costs, these additional terms are not expected to

control fully for the correlation between lit and ait, but it is nevertheless interesting

to consider how this approach fares in a case where the controls are mis-speci�ed.

Column (i) of Table 1 reports the results for a baseline case in which we set

g = 1 and c = 0:2. Adjustment costs for capital are thus �ve times greater than

adjustment costs for labour. The resulting capital and labour series are both

serially correlated, with the capital series displaying more persistence. Conversely

the level of employment is more responsive to the current productivity shock.10

The two inputs are highly but not perfectly correlated with each other, indicating

that there is variation in the capital-labour ratio. Given these properties, it is

not surprising that lagged inputs provide valid and informative instruments for

the current input levels included in (23), and the reported two-stage least squares

coe¢ cients estimate the true production function parameters quite well using this

simulated dataset.
9Note that, as g and c approach zero, so aK and aL approach zero and bK and bL approach

one.
10Although neither series is highly responsive to the (serially uncorrelated) productivity shocks.

A shock that would produce 20% increases in both labour and capital in the absence of adjust-
ment costs here produces an increase in employment of just over 1% and an increase in the
capital stock of less than 1

2%.
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Columns (ii), (iii) and (iv) illustrate three cases where identi�cation of the

production function parameters becomes much weaker. In column (ii), both the

adjustment cost parameters are twenty times smaller than they are in column

(i). Thus although adjustment costs are higher for capital than for labour, they

are now very low for both. The resulting input series are less persistent and

more responsive to the current productivity shocks. As a result, they are also

much more highly correlated with each other. This property is inherited by the

predicted values after projecting on the lagged instruments, and the two-stage

least squares estimates of the production function parameters are therefore much

more imprecise in this case. The basic problem is that when adjustment costs for

both inputs are too low, we are too close to the outcome with perfectly �exible

inputs, in which capital and labour are perfectly collinear and identi�cation fails.

In column (iii), both the adjustment cost parameters are ten times higher than

they are in column (i). The input series are much more persistent, with the capital

series in particular being close to having a unit root. They are also much less

responsive to the current productivity shocks. The basic problem here is that there

is now very little variation at all in the optimal input levels; adjusting the capital

stock, in particular, is now so expensive that the �rms undertake very limited

adjustments. Again the result is to make the instrumental variables estimates of

the production function parameters, particularly that on capital, much less precise.

In column (iv) the levels of the two adjustment cost parameters are neither too

low nor too high, but now they are more similar to each other, with adjustment

costs for capital only 50% higher than adjustment costs for labour. This makes

the time series properties of the two inputs, and their responses to current pro-

ductivity shocks, much more similar. In this case the two inputs are again found

to be highly collinear, and the instrumental variables estimates of the production

function parameters are very imprecise.

We note that, in all four cases, the inclusion of additional investment and

capital terms in the augmented speci�cation (24) does not control fully for the
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correlation between current employment and the current productivity shock. This

is not surprising in the presence of adjustment costs for both inputs, in which case

there is no function of investment and capital that can be inverted to control for

the productivity shock.

Table 2 considers a more general design in which the productivity shocks are

serially correlated. Speci�cally we now have

ait = �ai;t�1 + uit

where the innovations uit are iid normal with mean zero and variance 0:017. For

� 6= 0, the serially correlated error term in (23) implies that lagged levels of

the inputs (and output) are no longer valid instruments. For example, li;t�1 is

in�uenced by the realisation of ui;t�1, which is clearly correlated with ait. In this

case, two-stage least squares estimates of � and � obtained using lagged inputs as

instruments in (23) are seriously biased.11

Consistent estimates can in principle be obtained by estimating the serial cor-

relation coe¢ cient � jointly with the production function parameters � and �. We

can quasi-di¤erence (23) to obtain

(yit � �yi;t�1) = �(kit � �ki;t�1) + �(lit � �li;t�1) + uit (25)

in which the error term is again serially uncorrelated and orthogonal to lagged

levels of both the inputs and output. The instrumental variables estimates re-

ported in Table 2 are non-linear two-stage least squares estimates, obtained using

ki;t�1; li;t�1 and yi;t�1 as instruments in (25).

Column (i) reports results using the same adjustment cost parameters as in

column (i) of Table 1, with � set at 0:3. Although the instrumental variables pro-

cedure yields reasonable estimates of �, the estimates of the production function

11For example, in the experiment reported in column (i) of Table 2, the linear 2SLS estimates
of � in the static production function speci�cation (23) have a mean (standard deviation) of
�0:42 (:046), and the corresponding estimates of � are 1:33 (:035).
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parameters are now very imprecise. Columns (ii)-(iv) report similarly disappoint-

ing results for the other con�gurations of adjustment cost parameters considered

in Table 1.

The main problem here appears to be that there is insu¢ cient information

to estimate the three parameters jointly, rather than the e¤ect of the serially

correlated productivity shocks on the properties of the inputs. To illustrate this,

we generated the production data with g = 1; c = 0:2 and � = 0, as in column (i)

of Table 1, but we attempted to estimate � jointly with the production function

parameters � and �, as we do in Table 2. In this case we obtained means (standard

deviations) of the non-linear instrumental variables estimates of � and � of 0:413

(0:250) and 0:480 (0:228) respectively.12 Comparison with the results in column

(i) of Table 1 shows that the standard deviations of the estimated production

function parameters are approximately doubled when we estimate � as in Table

2, rather than imposing the correct value of zero as in Table 1.13

4.2 Stochastic adjustment costs

In Tables 3 and 4 we introduce stochastic shocks to the adjustment costs for

capital, and we allow these adjustment cost shocks to themselves be serially cor-

related.14 The adjustment cost function for capital used here is

G(Iit; Kit) =
g

2

�
Iit

Ki;t�1
� � � !it

�2
Ki;t�1 (26)

!it = �!i;t�1 + �it

12In this case, the mean estimate of � was zero to three decimal places, with a standard
deviation of 0:038.
13Conversely we can estimate the production function parameters quite well with serially

correlated productivity shocks, if we impose the correct value of �. For example, imposing
� = 0:3 and estimating � and � using (linear) 2SLS in (25) yields estimates of 0:39 (:11) and
0:50 (:09) with the adjustment cost parameters used in column (i) of Table 2.
14Our speci�cation is common in the literature on the Q model of investment. See, for example,

Blundell et al. (1992).
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Thus, if the �rm is adjusting its capital stock upwards, a positive value of !it

reduces the cost of additional investment in the current period.15 The innovations

�it are iid normal with mean zero and variance 0:02, independent of the produc-

tivity shocks, and we set the serial correlation parameter for these adjustment cost

shocks to � = 0:3.

Table 3 reports results for static production functions (23), in which the pro-

ductivity shocks (ait) are serially uncorrelated and this is correctly imposed on the

econometric speci�cations (as in Table 1). Column (i) of Table 3 uses the same

adjustment cost parameters (g and c) as in column (i) of Table 1, so that the only

di¤erence between these two cases is the presence of stochastic adjustment costs

for capital in the design of Table 3. As expected, this results in a considerable

improvement in the precision of the linear two-stage least squares estimates of

the production function parameters. Interestingly, the standard deviation of the

estimated coe¢ cient on labour is halved relative to that in Table 1, although we

have only introduced stochastic adjustment costs for capital. The improvement in

the precision with which we estimate the coe¢ cient on capital is even greater.16

Column (ii) of Table 3 shows that identi�cation again becomes much weaker in

the case where the adjustment cost parameters (g and c) are very low. The intu-

ition for this result is quite clear: if the level of adjustment costs is su¢ ciently low,

the presence of stochastic shocks to these adjustment costs is relatively unimpor-

tant, and we remain very close to the case with frictionless adjustment in which

these parameters are not identi�ed. Columns (iii) and (iv) however show that,

with stochastic adjustment cost shocks, the properties of the instrumental vari-

ables estimates of the production function parameters are much less sensitive to

the presence of adjustment cost levels that are either �too high�or �too similar�.

15Alternatively one could think of introducing stochastic variation in the depreciation rate (or
the quit rate), although this would also have to be accounted for in the equation(s) of motion
for the input(s).
16Broadly similar results for this static production function speci�cation were obtained in an

experiment in which we introduced serially uncorrelated adjustment cost shocks (i.e. setting
� = 0).

18



The intuition for the latter result is that stochastic shocks to the adjustment costs

for capital are generating variation in the capital-labour ratio that is not present in

the corresponding design in Table 1.17 The intuition for the former result comes

from observing that variation in the capital-labour ratio due to the exogenous

adjustment cost shocks becomes more important, relative to the endogenous pro-

ductivity shocks, as the level of adjustment costs increases.18 Indeed the precision

of the IV estimates is better here than in column (i). We can also note that the

biases found for simple OLS estimates of the production function parameters are

much smaller here than in our other designs, and that, as a result, the bias in the

control function estimate of the coe¢ cient on labour is also much smaller.

Table 4 reports results for the dynamic production function speci�cation (25),

in which the productivity shocks (ait) are serially correlated and the autoregres-

sive parameter (�) is estimated jointly with the parameters of the Cobb Douglas

production function (as in Table 2). Column (i) of Table 4 again uses our baseline

adjustment cost parameters, as in column (i) of Table 2, so that these cases di¤er

only due to the presence of stochastic adjustment costs for capital in Table 4. For

this dynamic speci�cation, the improvement attributable to (serially correlated)

adjustment cost shocks is much greater than was the case for the static speci�ca-

tion. The non-linear two-stage least squares estimates of all three parameters now

have negligible biases, and their standard deviations are dramatically reduced. In

contrast to the �ndings of Table 2, the introduction of these stochastic adjustment

costs results in su¢ cient information to estimate these parameters jointly, with

reasonable precision.19 As expected, this does not hold when the levels of the

17Hence we would not expect the same �nding if there were adjustment cost shocks for both
inputs that were highly correlated with each other.
18Note from (26) that, in the limit as g ! 1, all the variation in investment rates would be

driven by the exogenous adjustment cost shocks. In this experiment, the R2 for the regression
of kit on k�it is almost zero, indicating that the capital input here responds very little to the
productivity shocks.
19We note that this was not found to be the case in experiments with serially uncorrelated

adjustment cost shocks, in which the improvements relative to the deterministic case were found
to be much more modest.
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adjustment costs are �too low�, as illustrated in column (ii) of Table 4. However,

as for the static speci�cation reported in Table 3, we �nd that with stochastic

adjustment cost shocks, the properties of these instrumental variables estimates

of the production function parameters are robust to adjustment cost levels that

are similar for the two inputs considered (column (iv)), and actually improve as

we consider higher levels of adjustment costs (column (iii).

5 Conclusions

The parameters of Cobb Douglas production functions are not identi�ed when

inputs are perfectly �exible and chosen optimally, and input prices are common

to all �rms. This paper has shown that the presence of adjustment costs for

all inputs considered allows Cobb Douglas production function parameters to be

identi�ed, even in the absence of variation in input prices. When adjustment

costs are deterministic, this source of identi�cation is shown to be quite fragile,

and can become weak if the levels of adjustment costs for di¤erent inputs are too

low, too high or too similar. The properties of instrumental variables estimators

of the production function parameters are shown to improve considerably when

there is exogenous stochastic variation across �rms in the level of adjustment costs,

particularly when these adjustment cost shocks are serially correlated. In this case

we show that quite complex stochastic speci�cations of the production function

may be identi�ed, even when input prices are common to all �rms.
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Table 1. Static Production Functions; Deterministic Adjustment Costs

(i) (ii) (iii) (iv)

N = 500 � = 0:4 g = 1 g = 0:05 g = 10 g = 0:6
T = 10 � = 0:5 c = 0:2 c = 0:01 c = 2 c = 0:4

Instrumental � 0.390 0.411 0.363 0.401
Variables (.126) (.482) (.343) (.420)

� 0.506 0.488 0.505 0.494
(.098) (.526) (.240) (.394)

Control � -0.353 0.114 -1.358 -0.404
Function (.001) (.004) (.002) (.001)

AR(2) �K1 1.001 0.505 1.069 0.903
Capital (.015) (.016) (.017) (.016)

�K2 -0.098 -0.012 -0.084 -0.028
(.016) (.014) (.018) (.017)

AR(2) �L1 0.671 0.365 0.880 0.817
Labour (.014) (.016) (.015) (.016)

�L2 0.067 0.035 0.031 0.021
(.016) (.014) (.015) (.017)

Target aK 2.634 1.934 2.683 2.614
Capital (.002) (.007) (.001) (.002)

bK 0.021 0.282 0.002 0.028
(.001) (.003) (2e-04) (.001)

Target aL 2.750 1.859 2.889 2.807
Labour (.003) (.007) (.001) (.002)

bL 0.056 0.362 0.008 0.036
(.001) (.002) (3e-04) (.001)

Corr(kit; lit) 0.918 0.991 0.878 0.995

Means (standard deviations) of estimated coe¢ cients in 100 replications
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Table 2. Dynamic Production Functions; Deterministic Adjustment Costs

(i) (ii) (iii) (iv)
N = 500 � = 0:4 g = 1 g = 0:05 g = 10 g = 0:6
T = 10 � = 0:5 c = 0:2 c = 0:01 c = 2 c = 0:4

� = 0:3

Instrumental � 0.636 -0.114 0.413 0.979
Variables (.586) (.200) (.293) (1.85)

� 0.218 1.045 0.496 -0.099
(.657) (.249) (.251) (1.89)

� 0.332 0.202 0.302 0.319
(.096) (.214) (.022) (.081)

Control � -0.077 0.163 -0.804 -0.171
Function (.001) (.003) (.001) (.001)

AR(2) �K1 1.272 0.802 1.373 1.194
Capital (.016) (.016) (.014) (.015)

�K2 -0.348 -0.157 -0.384 -0.287
(.015) (.016) (.014) (.015)

AR(2) �L1 0.965 0.675 1.176 1.113
Labour (.016) (.016) (.013) (.015)

�L2 -0.139 -0.083 -0.235 -0.227
(.016) (.015) (.014) (.016)

Target aK 2.584 1.648 2.675 2.541
Capital (.005) (.010) (.001) (.005)

bK 0.039 0.386 0.004 0.051
(.002) (.004) (5e-04) (.002)

Target aL 2.663 1.574 2.867 2.718
Labour (.006) (.010) (.002) (.005)

bL 0.086 0.458 0.014 0.062
(.002) (.004) (.001) (.002)

Corr(kit; lit) 0.942 0.994 0.895 0.996

Means (standard deviations) of estimated coe¢ cients in 100 replications

23



Table 3. Static Production Functions; Stochastic Adjustment Costs

(i) (ii) (iii) (iv)
N = 500 � = 0:4 g = 1 g = 0:05 g = 10 g = 0:6
T = 10 � = 0:5 c = 0:2 c = 0:01 c = 2 c = 0:4

� = 0:3

Instrumental � 0.400 0.367 0.400 0.400
Variables (.032) (.268) (.009) (.030)

� 0.500 0.537 0.500 0.499
(.042) (.296) (.013) (.045)

Control � 1.873 1.084 .568 1.995
Function (.015) (.002) (.013) (.025)

AR(2) �K1 1.130 0.515 1.252 1.039
Capital (.013) (.016) (.017) (.016)

�K2 -0.229 -0.018 -0.269 -0.178
(.014) (.016) (.017) (.016)

AR(2) �L1 0.996 0.372 1.759 1.061
Labour (.015) (.016) (.011) (.017)

�L2 -0.090 0.031 -0.763 -0.153
(.016) (.016) (.011) (.016)

Target aK 2.632 1.924 2.676 2.571
Capital (.010) (.007) (.030) (.007)

bK 0.021 0.282 0.002 0.028
(.004) (.003) (.011) (.003)

Target aL 2.748 1.848 2.881 2.761
Labour (.007) (.007) (.022) (.005)

bL 0.056 0.363 0.008 0.036
(.002) (.002) (.007) (.002)

Corr(kit; lit) 0.935 0.989 0.957 0.906

Means (standard deviations) of estimated coe¢ cients in 100 replications
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Table 4. Dynamic Production Functions; Stochastic Adjustment Costs

(i) (ii) (iii) (iv)
N = 500 � = 0:4 g = 1 g = 0:05 g = 10 g = 0:6
T = 10 � = 0:5 c = 0:2 c = 0:01 c = 2 c = 0:4

� = 0:3
� = 0:3

Instrumental � 0.410 0.021 0.399 0.404
Variables (.072) (.553) (.013) (.043)

� 0.488 0.900 0.501 0.499
(.093) (.645) (.021) (.058)

� 0.304 0.281 0.301 0.299
(.032) (.172) (.016) (.018)

Control � 1.519 1.040 0.630 1.639
Function (.008) (.002) (.019) (.017)

AR(2) �K1 1.150 0.801 1.254 1.085
Capital (.016) (.015) (.014) (.015)

�K2 -0.247 -0.159 -0.271 -0.211
(.015) (.017) (.014) (.016)

AR(2) �L1 1.122 0.677 1.741 1.202
Labour (.016) (.015) (.010) (.014)

�L2 -0.226 -0.087 -0.744 -0.295
(.017) (.018) (.010) (.014)

Target aK 2.574 1.620 2.667 2.503
Capital (.013) (.011) (.035) (.011)

bK 0.042 0.396 0.005 0.053
(.005) (.004) (.013) (.004)

Target aL 2.649 1.547 2.858 2.677
Labour (.010) (.011) (.026) (.008)

bL 0.090 0.467 0.016 0.065
(.003) (.004) (.009) (.003)

Corr(kit; lit) 0.916 0.994 0.957 0.907

Means (standard deviations) of estimated coe¢ cients in 100 replications
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Appendix: A Sketch of the Solution Method Used to Generate

the Simulated Production Data

The �rm chooses inputs and output to maximise the present value of current

and expected future net revenues:

V (Kt�1; Lt�1; at�1) = max
Kt;Lt

PtFt(Kt; Lt)� PKt It � PKt Gt(It; Kt)

�WtLt �WtCt(Ht; Lt) +  tEt[V (Kt; Lt; at)]:

This is the Bellman equation. Our task is to �nd the solution fK�
t ; L

�
tg, which will

depend on the parameters of the model and the state variables fKt�1; Lt�1; at�1g.

To do this we use numerical dynamic programming techniques. We describe this

approach brie�y here.

Begin by rewriting the Bellman equation in more compact form as

V (Kt�1; Lt�1; at�1) = max
Kt;Lt

� (Kt; Lt; at) +  tEt[V (Kt; Lt; at)]: (27)

While the pro�t function � (Kt; Lt; at) is known from the parameterisation of the

model, we have to obtain Et[V (Kt; Lt; at)] using numerical methods. To do this

we use value function iteration, which is a slow but robust method. See Chapter

12 of Judd (1998) for a rigorous discussion of numerical dynamic programming, in-

cluding details on value iteration. Very informally, the principles of value function

iteration are as follows:

1. Start with a guess for the true value function V (x), where x = fK;L; ag:

Call this guess V 1 (x). Use it on the right-hand side of the Bellman equation

(27), and �nd the optimal choice rule u = fK�; L�g: We take as our �rst

guess V (x) = 0; and so the solution at this stage will be equivalent to that

of the static pro�t maximisation problem maxKt;Lt � (Kt; Lt; at) :

2. Update the guess for the true value function using the solution obtained in

the previous step, u (x). Call this updated guess V 2 (x) : Check if V 2 (x) =
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V 1 (x). If true, you will have converged to the true function and so iteration

can stop; if not go to step 3.

3. For j = 3; 4; :::, use V j�1 (x) on the right-hand side of the Bellman equation

and calculate the optimal choice rule u = fK�; L�g. Update the guess of the

value function, V j (x) : Check if V j (x) = V j�1 (x). If true, you will have

converged to the true function and so iteration can stop; if not, j = j + 1

and repeat step 3.

While straightforward in principle, the mechanics of this method are compli-

cated for two reasons: �rst, while discretisation of the state space is a necessity in

numerical dynamic programming, we need to allow for the fact that we are dealing

with continuously distributed variables (capital and labour); second, we need to

calculate the expected value of the �rm in the next period.

We deal with the �rst problem by following the approach adopted by Fafchamps

and Pender (1997). Speci�cally, we discretise the state space in such a way as to

set the chosen values equal to the optimal nodes of a Chebyshev polynomial. We

then interpolate between nodes using the Chebyshev iterative formula. We do this

in Rq+ space where q is equal to the number of state variables. We use 6
q nodes in

all simulations reported in the paper. For details on the Chebyshev approximation

approach, see Chapter 6 of Judd (1998).

We deal with the second problem by numerical integratation, using a Gauss-

Hermite quadrature. This involves evaluating V (�; at) at a �nite number of values

of at and summing the results using a set of weights. The weights and the positions

of the nodes are determined by the Gauss-Hermite quadrature. We use three nodes

throughout. For details on numerical integration, see Chapter 7 of Judd (1998).
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