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Abstract We present a new procedure for detecting multiple additiviiess in GARCH(1,1) models at un-
known dates. The outlier candidates are the observatiotis the largest standardized residual. First, a
likelihood-ratio based test determines the presence amdgiof an outlier. Next, a second test determines
the type of additive outlier (volatility or level). The tastre shown to be similar with respect to the GARCH
parameters. Their null distribution can be easily appr@tad from an extreme value distribution, so that
computation ofp-values does not require simulation.

The procedure outperforms alternative methods, espgeidlen it comes to determining the date of the
outlier. We apply the method to returns of the Dow Jones indsing monthly, weekly, and daily data. The
procedure is extended and applied to GARCH models with $tuiddistributed errors.
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Outlier Detection in GARCH Models

1 Introduction

Financial data typically show volatility clustering andsalled thick tails. The ARCH (Engle, 1982)
and GARCH (Bollerslev, 1986) models were designed to ceptioese features. However, when
estimating a GARCH model with normal errors, there are festly more outliers than expected.
Two approaches come readily to mind to address this issugg aglistribution with fatter tails, such
as the Student-distribution, or treating the outliers as being generatgzhgately, and using dummy
variables to remove them. Here we are concerned with ther,lathd discuss methods for outlier
detection in GARCH models.

The focus in this paper is on additive outliers, for which alkfollow the classification of Hotta
and Tsay (1998). They distinguish between additive owtliaat only affect the level, but leave the
variance unaffected, and those that also affect the conditivariance. We label the first type ‘ALO’,
and the second ‘AVO'. Like Hotta and Tsay (1998) and Fransesvan Dijk (2000), our approach
is inspired by Chen and Liu (1993), who discuss outlier d&iacn standard time-series models.
Our approach, however, is based on likelihood-ratio téstsead of Lagrange-multiplier tests, which
leads to much simpler procedures than either Hotta and €88} or Franses and van Dijk (2000).

The new procedure for outlier detection builds on work by ixloand Ooms (2000), which stud-
ies the impact of a dummy variable on the GARCH likelihoodtHat paper, we give the conditions
under which bimodality arises when adding a single-obsienvalummy variable to the mean equa-
tion of a GARCHY@, q) model. Interestingly, bimodality does not always hapern tends to be more
likely when there is an outlier. We also show there that agidire corresponding dummy with a lag
of one period in the variance equation solves the problemmbdality. The procedure developed
below is based upon this observation.

The organization of this paper is as follows. §& we review the two types of additive outliers
introduced by Hotta and Tsay (1998). We then propose a mestodel for additive outliers i3 and
use this as the basis for a new likelihood-based detectiotepure. Some examples to illustrate the
procedure are given ifd, with a more formal description i§6. The next two sections investigate
the size and power of the proposed procedure. Thé&B iwe apply the procedure to the Dow Jones
index, at monthly, weekly, and daily frequencies. §hwe extend the new procedure to GARCH-
and GARCH(2,2) models. Finallg10 concludes. Appendix B compares our procedure with those
proposed by Hotta and Tsay (1998) and Franses and van Dij}20



2 Additive outliers in GARCH models

The baseline GARCHY ¢) regression model with normally distributed errors is daefi@s:

Yt = {L’QC + Et, Et‘f-t—l ~ N(O, ht),

q p
1
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Fy is the filtration up to time. In practice,x; may only consist of the constant term. Surveys include
Bollerslev, Engle, and Nelson (1994), Shephard (1996),@odrieroux (1997). The log-likelihood

of (1) is given by:
T
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For a GARCH(1,1) model with < ; < 1, which is the main focus, we can write

hy = ag + 04151%_1 + Brhg—1,
as
t .
hi = o + a1 Zﬁ{_15§—j> 3)
j=1
giveneg andhg, wherea, = ao(1 — 84)/(1 — 31) + Bt ho.

2.1 Additive level outliers (ALO)

The GARCHY(1,1) model with an additive level outlier is defirees:

yr — i —ydy = &, | Fi—1 ~ N(0,hy), (4)

hy = ag+aie? |+ Prho1, t=1,...,T,
whered; equals one wheh = s and zero otherwise. In (4) the outlier does not influence dggéd
disturbances that enter the conditional variance. Thesimeaould be a market correction that does
not influence volatility, an institutional change, or everogue trade.

Model (4) is a standard GARCH model with a dummy variable gsassor. Although this data
generation process is well-defined, maximum likelihoodnestion is problematic because of the
potential for bimodality in the likelihood.

We assume that the start-up of the GARCH(1,1) process ddetepend on the parameters. The
score of the log-likelihood of model (4) is given by:
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with e, = y; — z;¢ — dyy. The first order condition (5) for the dummy coefficientan be expressed

as a function ot andh,, 1, hsia,.. . by, SiNCe

Oey 0e?

B Ohy
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andd; = 0fort # sandds, = 1. The score term foh,,1 can lead to multiple solutions for
v, depending on the GARCH parameters, /lanand oneg.o, hsi2,6513, hsis,.... This type of
bimodality often appears in volatile periods. Doornik andn@ (2000) show that, when this type
of bimodality in the log-likelihood occurs, the 'standareltimate ofy that sets the residual; to
zero,y = ys — a:’sf, corresponds to a local minimum of the log-likelihood, @&t of a maximum.
Inference based anstatistics in particular is compromised, motivating oacidion to use likelihood-
ratio based tests instead of Wald tests.

2.2 Additive volatility outliers (AVO)

The GARCH(1,1) model for an additive volatility outlier is:

yr — xiC —vdy = &, &lFi1 ~ N(0,hy),
e = vdi+e, (6)
hi = ao+oig? + ki, t=1,...,T,

whered; equals one wheh = s and zero otherwise as in (4). The log likelihood is now defimed
terms ofh; ande;, whereh; is affected by previous outliers.

To express:; in terms of the clean conditional variankgand a dynamic effect of the outlier, we
first substitute=;:

hi =ag +aiel |+ Bhi |+ ay (275,5_1 + 72) di_q. (7)

Then we find from (3):
hi =hy 4+ o171 (29es +97) I(t > s), ®)

wherel(t > s) equals one when > s, and zero otherwise. So the outlier has an impact on the
volatility that diminishes over time, assumipg < 1. In particular, wherz; = 0, both a negative and
a positive outlier increase volatility.

Maximum likelihood estimation (MLE) of the additive volktly outlier (AVO) model (6) is not
hampered by the multiple modes for The score of the log-likelihood of model (6) is given by:

00,(0) ~=T[er O 11 . 5 Ok
tZ:; 89 __tZ:; _*_+_ (h‘t_gt) 89 ) (9)

with e, =y, — 23¢ — dyy.

Because the volatility equation féf is in terms of;} and nots,, 9h; /0~y = 0, sincede; /0y = 0.
The only~ solving the first order condition for MLE leads &g = 0. Bimodality is not an issue, and
N =y — a:’sf, with varianceh. Detection of an outlier of type AVO simplifies to inspectitige
largest standardized residual. When an outlier is foundsirmam likelihood estimation of (6) is
required. This option is not readily available in most catrsoftware packages, but it would be a
simple extension.



3 A nesting model for generalized additive outliers (GAO)

In this section we introduce a model for generalized adelitiutliers that nests both the additive level
and the additive volatility outlier models in GARCH processThe first step is to introduce a lagged
dummy variable in the conditional variance equation of tRRE&H(p, g) model:

B(L)hy = ag + a(L)e? + 7dy—y, t=1,...,T.

whered; is defined as before, such that ; equals one wheh = s + 1 and zero otherwise. The
parameter models the effect of an outlier on the conditivagbnce at time + 1. The polynomials in
the lag operatol., L¥z; = x;_j, are defined a8(L) = 1 - Y7 B;Lf, anda(L) = >>%_, oy Lt. We
assume that the roots 6fz) = 0 lie outside the unit circle, and thg(z) anda(z) have no common
roots to ensure identification of the individual GARCH paederns. Then:

e a(L) 4 T
=5 T B@) T B

For the model with an additive volatility outlier, extendi(6) to GARCH, ¢) processes:

di—1.

*

& = ’Ydt"i_Et,
BL)hi = ao+a(L)e?,

we find, again substituting; :

a0 aofl) 5 a(l)
"= a0 TR T B

In this equation for the AVO model, which extends (7), we $e the additional term multiplying
B(L)~td;_qisa(L)L™1(2ve,—1 +~?), while in the model with a lagged dummy in the volatility it is
T, wherer is estimated. The latter can therefore be interpreted asaswicted version of the AVO
model.

In the second step we add the ALO dummy variable to the meaatiequof the GARCH model.
For this step, we again refer to Doornik and Ooms (2000), winsvsthat, in a GARCHY, ¢) model
with a dummy in the mean equation and the same dummy laggegenma in the variance equa-
tion, the bimodality problem discussed §@.1 disappears as the first order condition fois sim-
plified. This motivates the adoption of the generalized @dgioutlier (GAO) model, which for the
GARCH(1,1) case is given by:

(2ver +47) dy. (10)

yr = x+ydy + ey,

! (11)
hy = ao+aigi g+ Brhi—1 + 7di1.

In this model, the dummy variable in the mean equationyfarets the corresponding residual to zero
when~ is estimated by maximum likelihoods; = 0. Moreover, (11) nests both the AVO and ALO
model, without the complexity that is created by the bimirgalf the log-likelihood.

We propose to take advantage of this easy estimation inHi@dl ratio tests for the presence of
additive outliers. In practice the timing of the outlier,is often unknown. In our outlier detection
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procedure we estimate a standard GARCH(1,1) model, usetfest standardized residual as the
outlier candidate, then perform a likelihood-ratio typsttefv = 7 = 0 in (11). This procedure is
simple enough that it can be carried out using standard GAR@tivare which allows for adding
separate explanatory variables in the mean equation ahd wariance equation, without the need for
additional programming. Of course, the asymptotic distidn of the likelihood ratio test statistic is
not the standarg? if the timing of the outlier is unknown. We have to take acdonirthe search for
the largest outlier and approximate the distribution as wald/do for an order statistic. An effective
approximation is derived if6.

If focus is only on detection of a single additive outliere thbove procedure is sufficient. It may,
however, be of interest to determine whether an outlier tgfmé ALO or AVO. The next section gives
some motivating examples before formalizing the procedure

4 Likelihood adjustment, outlier correction and outlier classification

To illustrate the properties of the likelihood-based @utklassification, it is necessary to be able to
evaluate the likelihoods of the different outlier modelsaafinction of outlier sizey, see Figure 1
below. This is also required when a detected outlier has tadeeunted for in the model. Both
likelihood adjustment and outlier extensions can be impiet@d by a simple data transformation,
which adjusts the data for the effect of the outlier.

Taking account of an additive level outlier (ALO) only invek adjusting the raw data prior to the
next estimation (i.e. replacing with y; —~d;). Taking account of an additive volatility outlier (AVO)
is slightly more complicated. The log-likelihood functiamolves both the unadjusted residuajs
that defineh; for ¢t = s + 1, and the adjusted residuadg, for ¢ = s. Implementing the AVO
adjustment therefore requires an extension to existing GlARode. We summarise the adjustments
needed to compute the modified log-likelihoods for the d#ffeé outlier models in Table 1. We call
these concentrated likelihoods, although the parametetseanodel other tham, only satisfy the
first order conditions for MLE at one value of

Table 1: Adjustments for concentrated likelihood compatat

in volatility in residuals notation
ALO e —~dy  &f —~dy Caio(+|7)
AVO oH ef —ydy Lavo(+|7Y)

ef = yr — x}¢, adjustments applied to log likelihood (2)

This adjustment avoids adding parameters of dummy vasaiolehe log-likelihood which are
difficult or impossible to estimate unrestrictedly.

In the first two motivating illustrations of our procedures wse subsets of the weekly and monthly
Dow Jones returns as discussed in more detajBinFor the weekly data we use 574 observations



covering the years 1982 to 1992. The monthly data has 420\atgms for the years 1965 to 1999.
In both cases, a standard GARCH(1,1) with an intercept ®nikan is estimated. Also in both cases,
the largest outlier is found for the first observation after Black Monday crash of 19 October 1987.
This is the outlier candidate. Using the corresponding dyraniabled; in the mean, and;_; in the
variance, the GAO model (11) is estimated next.

Table 2: Likelihood Ratio Testing for a generalized adéitbutlier (GAO) in Dow Jones returns

log-likelihood v T Es

Monthly data 1982-1992
Baseline model (1) —333.73 —  — —4.38
GAO model (11) —302.91  —4.39 0.08 0

Test statistic ang-value 61.7 [10719]

Weekly data 1965-1999

Baseline model (1) —861.89 — — —=9.01
GAO model (11) —843.32 —8.98 6.09 0
Test statistic ang-value  37.2 [1077]

The s subscript refers to October 1987.

Table 2 gives the maximised log-likelihoods of the baseB®RCH(1,1) model and the GAO
model. Thep-values of the likelihood ratio tests treat the timing of thelier as unknown, i.es is
considered as estimated from the data. They are based ortrramewalue approximation discussed
in §6 and Appendix A. In both data sets, the outlier candidatégisiy significant.
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Figure 1. Likelihood grids of GAO, ALO, AVO models for GARCH,(1) model of montly and weekly
Dow Jones returns, as a function-gfthe size of the October 1987 crash, see Table (1) for ALO and
AVO concentrated likelihood computation. Note: GAO and Aw@istinguishable for weekly data.



Given the presence of an outliertat s, we examine the outlier type. The decision on the type
of additive outlier is based 0fyio(:|Ygao) @Ndlavo(:|Vgao), as discussed in Table 1. Figure 1 shows the
concentrated likelihood grids as a function of the outlizes. The GAO model nests ALO and AVO,
so always has a higher likelihood. The GAO grid can be conupiten eitherlzo(-|y) or Lavol(-|y) by
adding the lagged dummy variable to the conditional vagagmuation and estimating conditional
on~. For the monthly data, ALO is very close to GAO: there is nmiigant difference using g% (1)
test. The likelihood of ALO is higher than AVO, and the fornmeodel is preferred. For the weekly
data, Figure 1 shows the ALO likelihood to be bimodal, unfike monthly case. Here, AVO and
GAQ are indistinguishable, so that the AVO model is preférre

The procedure to decide between ALO and AVO is based on thEhdods foryga, and therefore
ignores the two global modes of the ALO model in case of birfigddn practice it is possible that
both ALO and AVO are significantly worse than the GAO moddhaligh we have only encountered
this very rarely. One approach to such a finding would be tostdpe GARCH likelihood in a similar
manner as for ALO and AVO, so that a GAO correction can be iragos

We conclude this section with a note on initialisation of @&RCH likelihood. In our computa-
tions for the illustration of Figure 1 we conditioned on thstfiobservation to initialize the GARCH
recursion, so that the effective sample size is 419 and 55f&eotively. Then, the value of does
not influence the likelihood of the observations priot te s. In the remainder of the paper, we use
the sample mean ef for initialization of 4;, following the suggestion in Bollerslev (1986), which is
more commonly followed in practice.

5 Detecting multiple outliers

The simplifying data adjustments and simplified likelihdmased tests are even more important when
one suspects that more than one additive outlier of unkngpe thay be present: in that case a
recursive detection procedure is required.

Based on the GAO model (11), we propose the following five grgedure to detect additive
outliers in a GARCH(1,1) model:

Step 1 Estimate the baseline GARCH model (1), i.e. without any dynwvariables, to obtain the
log-likelihood 7, and residualsy and volatilitiesh;.

Step 2 Find the largest standardized residual in absolute valuey |} /h;|. Denote this observa-
tion by ¢ = s. Estimate the GARCH GAO model (11) with dummy = I(t = s) in the
mean equation, angi_, in the variance equation (this can be done in most standdidzse
packages with GARCH estimation). This gives estimatestferadded parametefigaqs and
Tgaqs respectively, with Iog-likelihoo@aqs.

Step 3 If 2(@@3 — E,) < Cf then terminate: no new outlier is detected. Our approxonaof
the asymptotic distribution of this test under the null-bies of no outliers suggests that
Cr =~ 5.66 + 1.88log T at a significancev of 5%. The full approximation is given if6.
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Step 4 This step implements the AVO versus ALO selection, given dmeoutlier was detected:

(@) If Tgaqs < 0 then the outlier is of type ALO; else continue with step 4(b):

(b) Estimate the GARCH model with an ALO outlier correctiohfixed size7gaqs. The
model to be estimated correspond¥4g(:|7gaqs) from Table 1: it is a standard GARCH
model without additional dummy parameters, but with a ddpah variable that is cor-
rected for the outlier, se®t. This model give§a|0,s.

(c) Estimate the GARCH model with an AVO outlier correctiohfixed sizeygaqs. The
model islayo(-[7gaqs) from Table 1, seg4 for its implementation. This give?slvqs.

(d) If Zavas > faio.s the outlier is AVO, else it is ALO.

The procedure can be iterated until no further outlier iecketd. Because the outlier coefficients
have already been estimated at each step, we propose toeusingple data correction of Table 1
when an outlier is detected. This data adjustment proceakowls a proliferation of parameters in
the log-likelihood.

Step 4 is used to distinguish between the two types of ostlirrcase one is detected. It involves
two additional GARCH model estimations, which can be ifigid using estimates fery, «; and 5,
from step 1, i.e. the baseline model (1) without any outligzats. The same can be done in step 2, so
that the additional overhead of the three maximum likelthestimations is small.

Step 4(a) uses the fact that, becadise= 0 for AVO: 7 = a;v2. Imposinga; > 0 shows that a
negativer is incompatible with the AVO model, saving the effort of esiiting the model.

6 Controlling the size of the outlier detection procedure

We use extreme value theory, see e.g. Leadbetter, LindgrehRootzén (1983), and Monte Carlo
simulation to determine an appropriate null distribution the test in Step 3 of our outlier detection
procedure o§5. Assuming that the single outlier test statistics arepedelent foralk,s =1,...,T,
and also that the dummy variable leading to the largesstitats selected in Step 2, one can treat the
test statistic in Step 3,

My = ety LRFO(s) = ety 2(fgaqs — 1)
as the maximum of a random sample of sizdrom ax?(2) distribution. Monte Carlo results in
Appendix A show that the asymptoti¢ (2) approximation for a test for a single generalized additive
outlier at a known fixed time, denoted byl. R%49 (), works well forT = 500.

Extreme value theory describes conditions under whi¢h follows an extreme value limit-
ing distribution. These conditions do not require indemee of the underlying random variables
LR$49(s). In our case the limiting distribution is extreme value typend the mean of\/r is a
linear function oflog T" asT gets large. We use a response surface analysis of Monte €quémi-
ments that leads to a good approximation of the finite samiptellition of M. The computation
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of p-values and critical values only requires the knowledgeanh@e size€l” and does not require
further simulation. Here we present the formula and the rsaiulation results; more detail is in
Appendix A.

Steps 1-3 are simulated as describegbinnder the null hypothesis of no outlier. The Monte Carlo
usesN = 10000 replications of the baseline model (1), a constant in themmea= 1, ( = 1 and
a1 =0.1,6; =0.8,a0 = 1 — oy — 1. The sample sizes afe = 200(100)1200, 1500, 2000, 2500.
The restriction®) < a; + 31 < 1 andap > 0 are always imposed in the estimation procedure. The
results, shown in the first panel of Figure 2, indicate thatrifean of the test statistic increases with
the sample size, in proportion keg 7" asT — oo, as predicted by extreme value theory. The variance,
skewness and kurtosis are not very sensitive to the sangaesse the second panel of Figure 2. The
last panel shows that the critical values are approximagglydistant, i.e. the critical value function,
CV(a,T), is additively separable in two simple functions @fand7” and the distances between
critical values of 20% and 10% on the one hand and between 1@%% on the other hand, are
approximately equal. This is a characteristic of a Type teaxe value distribution.

141
12}
E O- T (log,,scale
10k | | | | | | | | ( 910 )
200 300 400 500 600 700 800 9001000 2000
i e |[-— sdev -5--5- skewness— - ex.kurtosig
3 :T——/r//l»\\o\ ; L ,
- \\\ B e o
2r T T &\34&“‘“‘9*~-~‘{>~~"*
po S i Fi— N N o DN = Stz et Brorr — g
200 300 400 500 600 700 800 9001000 2000
F 1%, 5%, 10%, 20% critical valups
20 ///
° /// //////
1 1 1 1 1 1 1 1 1 1
200 300 400 500 600 700 800 9001000 2000

Figure 2: Simulated moments (mean, standard deviationyrekes and excess kurtosis), and critical
values (1%, 5%, 10%, 20%) of the madxR$“¢ (s) statistic under the null hypothesis.

Combining the extreme value Type | limiting distributiondathe response surface analysis of
Monte Carlo experiments in Appendix A, we form the followiagproximation for the distribution of
the statistic)/r, which we denote by max. R$49(s):

x+1.283 — 1.88log T (1 + 12/7)
2.223 '

P(max, LR$49(s) < x) = exp {— exp [— (12)
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To check the accuracy of this approximation, we simulater#jection frequencies for various
parameter values under the null hypothesis. Table 3 listerttpirical size, showing that the procedure
works well enough for practical use. The table also illussdahat the approximation works well for a
range of GARCH parameters, indicating that the test is asytioplly similar with respect ta; and

fr.

Table 3: Size of (Max-)LR-test for single generalized agidibutlier at unknown time

o B4 T 20% 10% 5% 1%
06 0.2 500 0.184 0.091 0.046 0.013
04 0.2 500 0.189 0.093 0.045 0.012
0.2 04 500 0.191 0.094 0.048 0.011
0.2 0.6 500 0.194 0.094 0.048 0.009
0.05 0.9 500 0.204 0.108 0.056 0.015
0.1 0.8 250 0.191 0.102 0.055 0.012
0.1 0.8 500 0.191 0.097 0.049 0.013
0.1 0.8 1000 0.195 0.100 0.056 0.011
0.1 0.8 2500 0.199 0.097 0.050 0.012
ASE 0.006 0.005 0.003 0.002

Based onV = 4000 replications.
ASE Monte Carlo standard error of the rejection frequencies.

7 Power of the outlier detection procedure

Next, we investigate the performance of our procedure iaaliely additive outliers, in selecting the
type of additive outlier, and in determining the timing oéthdditive outlier. To investigate the power
of the proposed test procedure by Monte Carlo, we séleet 250, and have the DGP of type AVO
as in (6) as well as of type ALO as in (4).The DGP parameters are set@as= 1 — oy — [31,
with v = —3,—4, —5. The outlier enters near the middle of the sample= 7'/2. The results are
presented in Table 4.

The first column in Table 4 gives the GARCH design paramefine.next four columns give the
rejection frequencies atf@s significance level. The results fer= 0 correspond to the size of the
test, confirming a level close @%. The remainder shows that the proposed procedure hasstdisf
power to detect the outlier, regardless of the type of autlieis also remarkably good at detecting
the date (i.e. the location) of the outlier, which, of counsean important aspect of any detection
procedure. Our procedure is also successful in detecting the type dieauthere is no particular

S0 we do not forcey to enter the DGP with the same sign as the drawn residual.
The percentages for correct date and type are conditionaétattion of an outlier.
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Table 4: Size and power of outlier detection test for a gdizexh additive outlier in a GARCH(1,1)
model

Rejection frequencies Correct date Correct type
o, y=0 -3 -4 =5 -4 =5 -4 -5
Outlier of type AVO atT'/2
0.1,0.8 0.054 0.23 0.53 0.84 96% 99% 77% 81%
0.3,05 0.050 0.20 0.53 0.83 96% 99% 76% 81%
0.5,0.3 0.048 0.20 0.52 0.83 96% 99% 76% 80%

Outlier of type ALO at7'/2
0.1,0.8 0.054 0.28 0.60 0.84 97% 99% 73% 75%
0.3,0.5 0.050 0.40 0.71 o0.87 98% 99% 82% 84%
0.5,0.3 0.048 0.55 0.79 0.89 98% 99% 84% 85%
Based orb% nominal rejection frequencies fo¥ = 4 000 andT = 250.

Correct date % with the correct date when an outlier was detected.
Correct type % with the correct outlier type when an outlier was detected

Table 5: Samples for Dow Jones returns

frequency index at no. of observations scale
daily close of trade 29269 276
weekly  midweek (or nearest day before) 5422 51
monthly end of month 1264 12

bias towards AVO or ALO, when an outlier is detected.

While the AVO results seem independent of the GARCH pararsetiee power of ALO appears
to increase a&; increases. The likely explanation is that this correspdadslarger volatility effect
when left unmodelled, see equation (8) above. Overall, topgsed outlier detection procedure
works very well, even at this small sample size where GARCHie®can be somewhat harder to
estimate. Essentially the same results were obtained famale size of 500.

8 Multiple outlier applications for Dow Jones returns

As an application of the new outlier-detection procedurecamssider the returns on the Dow Jones
Industrial Average indeX,using monthly, weekly, and daily data for the period 1896, y\28, to
2001, December 5. Table 5 provides some details.

%The Dow Jones index data are available from www.djindewes.c
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The return data are formed by taking the first difference efldgarithms and then annualized.
These returns were multiplied by the scale factor given iid&, selected as the integer which made
the annualized average return for the daily and weekly metas close as possible to the average for
the monthly data.

Visual inspection of the daily returns shows the largespdndl914, followed closely by 1987. In
1914, the exchange was closed for four and a half monthsafisipthe outbreak of World War 1. So
there is a long period of missing data in 1914 (during thaitogergrey trading continued outside the
exchange). The year 1929 is characterized by boom and bllstyéd by a period of long decline,
and is historically the period with the highest volatilit@actober 1987 saw the largest one-day drop
in the index, but it took less than two years to reach the paskclevels again. The last sharp fall
followed the 11 September 2001 terrorist attacks on Wastimgnd New York, which is indicated as
an outlier in the daily data.

Table 6: Detected outliers in GARCH(1,1) model for monthhdaveekly Dow Jones returns 1896-
2001.

date size p-outlier p-AVO p-ALO type
monthly returns12A log y;"
1987/10 —4.39  0.083 7<0 0.79 ALO
1914/12 —3.58 0.00012 0.478 0.112 AVO
1940/05 —-3.11 0.00022 7T<0 0.241 ALO
1937/09 —2.37  0.028 0.122  0.001 AVO
2001/09 0.129 —
weekly returns51A log y;”
1914/12/16 —16.75 0 0.042 0.244 ALO
1940/05/15 —7.05 0 1 0 AVO
1899/12/13 —-7.14  0.083 0.206  0.026 AVO
1987/10/21 —-8.95  0.053 0.287  0.010 AVO
1926/03/03 —4.84 0.00015 1 0.002 AVO
1898/05/11 7.61 0.00020 0.030 0.960 ALO
1994/03/30 —3.39 0.00075 0.120  0.536 ALO
1998/09/02 0.070 —

p-outlier is for testing no outlier against a GAO at an unknalste.

p-ALO is for testing ALO against GAO, conditional on a knowrtleer date.
p-AVO is for testing AVO against GAO, conditional on a knowrtleer date.
Notation:0.045 = 0.00005

We apply our outlier detection procedure recursively: fietiect the largest outlier, then adjust for
this as discussed i#, next, detect and adjust for the subsequent outlier, notihore are found. This
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approach is along the lines of Chen and Liu (1993), and tbhezefusceptible to the same criticism
that estimates of the other model parameters, in partieylaare contaminated by the presence of
an outlier. Robust estimation of GARCH models is possiblg,rather costly and difficult to imple-
ment, see Sakata and White (1998) and therefore not yettateaThe problem can be mitigated by
applying a Student-error distribution, se§9.2 below.

The top half of Table 6 lists the results when applying thecpdure to the monthly data. The
column labelledp-outlier gives thep-value of the test for a generalized additive outlier, baged
the extreme value approximation. Detected are the 198h,cths start of the two world wars in
Western Europe, as well as September 1937 (when the indgpetioby17%). The order in the
table follows the order in which the outliers were detected] we also include the first outlier with a
p-value> 5%. The column labelleg-AVO reports thep-value for thex?(1) likelihood-ratio test of
the AVO restriction within the GAO model. Similarly, the rtecolumn has the test outcome for the
ALO restriction. Note that AVO is rejected without furthessting, wher < 0, according to Step 4a
of the procedure. In December 1914, when the stock markeeresa, both ALO and AVO are not
significantly different from GAO. However, the likelihood AVO is higher than ALO, so the former
is selected.

The second part of Table 6 gives the results for the weeklg. ddte see more AVO outliers, as
expected. At different frequencies, the pattern of owuligill also be different: a brief crash or rally
within a month can be hidden by only looking at the end-of-thaata. The world wars are now the
largest outliers, and World War 1l is detected as an AVO. Atbe 13% fall in the second week of
December 1899 is detected before the 1987 crash. Excepiefdingl outlier in 1994, the ALO versus
AVO decision is clear-cut.

In Table 7 we list the dates of outliers for the daily modelt tiis time in chronological order.
There are more than five times as many observations as in thihipoata set, but also five times as
many outliers. The procedure is found to be acceptably faghe daily data, taking less than half
an hour for nearly30 000 observations (on a 800 Mhz Pentium Ill notebook; this inekithe first
estimation).

The results in this section assume that the underlying medehussian GARCH(1,1), possibly
contaminated with outliers. Outliers only exist with refece to a model, and using the wrong model
could lead to the detection of too many outliers. Especifdlythe daily data, it may be that the
GARCH model with student-distributed errors, which is readily available in standsoftware, is a
better description. This is explored in the next section.

9 Extensions to other models

9.1 GARCH(2,2) models

In the GARCHYp, ¢) case, the lag polynomial(L) in (10) hasy terms instead of one. The equivalent
extension to the equation fay in the GAO model (11) would be to add the dummy variable witisla
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Table 7: Detected outliers using the new procedure in GARCH (model for daily Dow Jones re-
turns: 276 A log ¢

date type p-outlier date typep-outlier date typep-outlier
1899/12/08 AVO 0.043  1924/02/15 AVO 0.0037 1950/06/26 AVO 0.046
1901/05/08 AVO 0.0008 1925/11/10 AVO 0.0015 1955/09/26 AVO 0
1901/09/07 AVO 0.0208 1927/10/08 AVO 0.0325 1962/05/28 AVO 0.0039
1904/12/07 AVO 0.045  1929/10/28 AVO 0.0002  1982/08/17 AVO 0.0055
1907/03/14 AVO 0.0005 1933/03/15 ALO 0.048  1986/09/11 ALO 0.0033
1913/01/20 ALO 0.0¢6 ~ 1934/07/26 ALO 0.0067 1987/10/19 AVO 0
1914/07/28 ALO 0.045  1939/09/05 ALO 0.0031 1989/10/13 AVO 0
1914/07/30 AVO 0.043  1940/05/13 AVO 0.0¢63  1991/01/17 ALO 0.0158
1914/12/12 ALO 0 1943/04/09 ALO 0.0004 1991/11/15 AVO 0.0¢3
1916/12/12 AVO 0.0012  1946/09/03 AVO 0.0034  1997/10/27 AVO 0.042
1917/02/01 ALO 0.061  1948/11/03 AVO 0.048  2000/04/14 ALO 0.0156
2001/09/17 AVO 0.0002

1to ¢ as the variance equation is affected by a level outliegfperiods. As a simple alternative we
do not extend the GAO model with extra lags of the dummy véeialmstead, we just apply the same
procedure as for GARCHY(1), introducing only one dummy variable in the variance eiqumaand
leaving the approximation to the distribution of the teatistic in Step 3 unchanged. We evaluate our
test procedure by Monte Carlo for 16 different GARCH(2,2edgenerating processes both with and
without additive outliers. The results in Table 8 show tlnet $ize and power are very close to that in
the GARCHY(, 1) case. However, the procedure detects more additive lextéis in Step 4, which
could be caused by the omission of the additional lagged desjyogether and the rule 4a thak 0
corresponds to an ALO.

9.2 GARCH-t models and effects of outlier correction on GARCH parameteresti-
mates

A GARCH model with Student-distributed errors, as proposed by Bollerslev (1987), ikedyl al-
ternative for a GARCH model with additive volatility outtie Appendix A discusses the adjustments
that we made to the extreme value approximation when incatipg the standardizet{r’) distribu-
tion. As the form of the limiting extreme value distributi®@nonstandard in this case and depends
on the unknowrv, our approximation does not work as well as in the GaussiadeinoTable 9
presents some results for the test. As expected, the acttli@rs have to be considerably larger to be
distinguished from the thick tail of the Studettt) distribution.
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Table 8: Size and power of the test for a generalized additider at unknown time ina GARCH(2,2)
model

Rejection frequencies Correct date Correct type
a1, a9 B, (o vy=0 -3 —4 =5 —4 -5 —4 -5
Outlier of type AVO atT'/2
0.1,0.1;0.1,0.6 0.076 0.21 0.48 0.77 93% 98% 74% T77%
0.1,0.1;—-0.1,0.8 0.061 0.16 041 0.74 94% 99% 60% 64%

Outlier of type ALO atT’/2
0.1,0.1;0.1,0.6 0.076 0.34 0.63 0.84 96% 98% 82% 82%
0.1,0.1;-0.1,0.8 0.061 0.32 0.63 0.85 97% 99% 85% 86%

5% nominal rejection frequencies fof = 2000, T = 500.

Correct date, type% correct when an outlier was detected.

Table 9: Size and power of the test for a single generalizelitieel outlier at unknown time in a
GARCH(1,1)#(6) model,a; = 0.1, 5, = 0.8

Rejection frequencies Correct date Correct type
=0 -5 -8 —-10 -15 -8 —10 -—15 -8 —10 -15
Outlier of type AVO atT'/2
0.043 0.04 0.08 0.22 0.74 92% 98% 99% 77% 84% 96%
Outlier of type ALO atT/2
0.043 0.05 0.26 048 0.84 91% 96% 99% 90% 95% 96%
Based orb% nominal rejection frequencies fo¥ = 2000 and7 = 1 000.

Correct date, type% correct when an outlier was detected.

Empirical application to the Dow Jones industrial averaigelex supports the closeness of the
Gaussian GARCH(1,1) model with generalized additive etdland the GARCH(1,1)model. Ta-
ble 10 shows that at the monthly and weekly level, the two risosieem to be close substitutes, with
the outlier model weakly preferred on AIC, where we treatdhte and type of the outlier as known
and count the sizes of the outliers as extra parameters ttipea¢ed. At the daily level, the GARCH-
t is preferred, yielding a higher log-likelihood and lower@\han the model with outliers. Both the
outlier extension and the introduction oflistributed errors significantly affect the estimates for t
GARCH parameters in the weekly and daily dafa; anda; increase,@l decreases. The ’robust’
estimation of the mean return using the Student-errordfiigntly increasesg (the intercept) as the
predominantly negative returns receive a lower weight. rAilgir effect was observed by Sakata and
White (1998) for daily S&P 500 returns (1987/8-1991/8) whieey applied robust high breakdown
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estimators for the GARCH(1,1) model. The outlier corrattanes not have a significant impact on
the estimated mean return as the percentage of outliersyisrell.

Table 10: Estimated GARCH(1,1) coefficients for Dow Jonésrre at various frequencies

GARCH(1,1) with outliers GARCH]1,1)-t(v) with outliers
Monthly data: 12A log y;"

¢ 0.068 (0.015) 0.078 (0.015) 0.095 (0.015)
Qg 0.014 (0.0040) 0.013 (0.0038) 0.017 (0.0056)
aq 0.114 (0.019) 0.095 (0.017) 0.102 (0.022)
51 0.862 (0.021) 0.870 (0.021) 0.861 (0.027)
ag 0.582 0.377 0.459
v 5.357
outliers 0 4 0
log-lik —1189.0 —1121.4 —1133.8
AIC 1.889 1.782 1.803

Weekly data: 51A log y;*

¢ 0.100 (0.013) 0.089 (0.013) 0.111 (0.013) 0.110 (0.013)
o 0.063 (0.0077) 0.023 (0.0039) 0.027 (0.0057)  0.025 (0.0052)
aq 0.149 (0.012) 0.095 (0.0078) 0.091 (0.011) 0.091 (0.010)
G1 0.820 (0.013) 0.888 (0.0084) 0.892 (0.012) 0.894 (0.011)
Qg 2.036 1.437 1.644 1.645
v 7.151 7.808
outliers 0 7 0 2
log-lik —8372.4 —8120.2 —8162.0 —8128.3
AlC 3.090 3.000 3.013 3.000

Daily data: 276A log y{!

¢ 0.120 (0.012) 0.124 (0.012) 0.145 (0.011)
0 0.105 (0.0070)  0.069 (0.0052)  0.082 (0.0085)
o 0.094 (0.0032)  0.072 (0.0026)  0.080 (0.0041)
51 0.896 (0.0052) 0.918 (0.0027) 0.912 (0.0043)
ag 10.69 6.727 10.09
v 5.670
outliers 0 34 0
log-lik —67539.8 —66715.8 —66476.7
AlIC 4.616 4.559 4.543

afy = ap/(1 —a; — B1). Standard errors in parentheses.
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For each frequency we also applied the GARC#blitlier test to the GARCH-models. Only for
the weekly data were outliers detected: ALO when the mada@pened after World War |, and AVO
at the start of World War Il. These are the same two leadinlippsifound in the normal GARCH(1,1)
model. However, in terms of AIC the GARCHmodel with outliers is not an improvement over the
normal GARCH(1,1) model with outliers. The effect of the lmrs detection on the estimatedis
small. For the monthly data, the closest candidate outli¢he GARCH¢ model was October 1987,
with ap-value 0f0.052. In daily data, the closest candidate was September 26, ¥8%58&h was also
the first one found in the GARCH(1,1) model, but now witlvalue of0.10 rather than zero.

10 Conclusion

We introduced a new detection procedure for additive astiie GARCH models. This procedure has
several advantages over existing procedures:

e It is simple to implement and contains a convenient proedorcomputep-values for tests,
without the need for simulation.

¢ ltis likelihood-based and associated tests are asymaligtgimilar with respect to the GARCH
parametersy; and/;.

e Simple nested tests distinguish between Additive Leveli@stand Additive Volatility Out-
liers.

e The procedure can be extended to other types of GARCH modeitsas EGARCH, etc.

Our applications on monthly, weekly and daily Dow Jonesrretishow that the test procedure also
works well in practice. We compare estimates of our outli@dal with a GARCH¢ model, also
possibly affected by outliers. The GARCHmnodel without outliers is to be preferred over the normal
GARCH with outliers for the daily Dow Jones returns.

Other practical aspects of the procedure could be examimdthough the in-sample fit of a
GARCH-+ and normal-GARCH with outliers for the monthly Dow Jonesiras may be quite simi-
lar, the forecasted volatility will be quite different. Itay be that the former is preferred in practice,
for example for value-at-risk estimations. Conclusiorggarding leverage effects in the form of asym-
metric volatility could be also different: the outlier det®n, for the data considered, predominantly
removes negative shocks.

The proposed method could become a useful addition to thkittad empirical volatility mod-
ellers. The first-step outlier test can serve as a mis-spatdn test for the model. Next, the iterated
procedure can be used as a robustification of the model (aathnmtany outliers suggesting that the
model is inadequate). Finally, the detected outliers camptement value-at-risk estimations: in large
samples, the distribution of outliers is informative ireifs otherwise the estimates may require their
absence.
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A Approximating the distribution of the max ,LR$49(s) test

This appendix describes the details of the experimentsrigad the approximation for the mak R%4€ (s)

test in the normal case describeds®. We also present adjustments to the approximation for dse of
Studentt errors, that we discuss §9. In order to simplify the presentation we denétB8“4° (s) by X, and
max, L R$4C (s) by M.

The single likelihood-ratio test for a Generalized Additi@utlier at a known time = s, denoted by
LRE49(s), involves two parameters that are well identified under thg giving the test statistic an asymptotic
x2(2) = exp(1/2) distribution. The effectiveness of this asymptotic apfmeation for a sample size of 500 is
illustrated below.

As we effectively doT" such tests we wish to approximate the distribution of the imam: My =
max(Xy, ..., Xr). Assuming independently and identically distribut&d the cumulative distribution func-
tion Fy, of My is given by

T
Fup (@) = {Fx (@)} = {1-e7#7}
Using
1 1, _1,
?logFMT(x) = log (1 —e 2 ) ~—e 2
whenz is large, gives

—2logT
vt 1) <228

such that for larger and largeT’, M1 has a Type | extreme value limiting distribution. Our appnaations
are based on this distribution type. Leadbetter, Lindgagw, Rootzén (1983, Chapters 1,3) show that Type |
extreme value (or Gumbel-) limiting distributions apply chumore generally. Th&, need not be exponential
and independent, although these are the cases where thptatigitheory works well, also in moderately sized
samples.

In general, when

Farp (z) = exp {_ exp (-“" _baT) } : (13)

the expectation and variance 8fy are given byE[Mr] = my = ap + 0b, whered = 0.577216, and
V[Mr] = b*7%/6, see e.g. Mood, Graybill, and Boes (1974, Appendix B). Ealtvalues at significance level
« can therefore be computed as

C% = —blog(—log(1 — a)) + ar. (14)

Although theX, are not independently distributed in our case, we can usextieme value distribution
(13) as the limiting distribution. Th& ; are not fat tailed and they are short memory under the nubthgsis of
no outliers, so the required distributional mixing coratiis for a Type | extreme value distribution are met, see
Leadbetter, Lindgren, and Rootzén (1983, Ch. 3). The gétieeory allows the variance of the approximating
distribution, and therefork to depend off". This does not apply to our statistic.

Simulating the distribution of\/1 for increasing sample sizés, as reported ir§6, we observe that the
simulated standard deviatiol[I¥]'/2, of the test statistic is close to constant. Its asymptailoeis2.851

with standard errod.008, found from a regression on a constdhit,! and7—2. This results irb = 2.223.
After some experimentation, we found that the means fromMbete Carlo experiment if6, depicted as

14 observations in the upper panel of Fig. 2, are very weltiilesd by the following regression:

14

3 )

mr, = 1.880log(T}) + 22.7 log(T;)/T;,  i=1,...
(0.0013) (1.2)

where heteroscedasticity consistent standard errors E}@® given in parentheses. The residual normality
test of this regression insignificant, but there is signiftdaeteroscedasticity. The intercept is insignificant. The
resulting response surface forr, b as a function of sample siZ@is:

ar mrp —0b =~ 1.88logT(1+12/T) — 1.283,

b~ 2.993. (15)

Figure 3 shows how well the approximation (14), (15) workewlpplied to a selection of critical values.
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Because the number of Monte Carlo experiments is quite béghawe a large number of draws from the
(hypothesized) extreme value distribution. This in tueeds to accurate estimates of the mean and standard
deviation, for which we adopted the method of moments tordetes the parameters of the limiting distribution.
We could instead have used the disaggregated data alonméseof, e.g., Tsay, 20037.5.2.1, to directly
estimatear andbr. This would give very similar outcomes for the resultingticel values, but with better
estimates of the overall parameter uncertainty in the agpration at varying levels of .

Abraham and Yatawara (1988) (AY88) use a similar extremaevapproximation for the maximum of a
sequence of?(2) distributed LM tests for time series model outliers. Theydbfit equations for the moments
of the extreme value distribution, but instead adjust thiécaf value approximation (14), with fixetl= 2 and
derive a constant term in the critical value equatiog(6), using Monte Carlo Simulations.

(AY'88) : CF = —2log(—log(1 — @) + 21og(T") + log(#) (16)

with 7" the number of (dependent) outlier tests. They estimateck@arsal indexd = 0.8. The termlog(0)
corrects the critical values for the dependence of the tatistics, see Leadbetter, Lindgren, and Rootzén (1983,
p.67) for a formal definitiond = 1 for (asymptotically) independent statistics. Abraham #athwara (1988)
also note that applying the test with estimated parameterthé time series model, rather than using known
parameters markedly decreases the empirical criticabgdior the test. A similar effect may explain that the
coefficient oflog(7T') is lower than two in our approximation formula (15). The dfieation (16) would work
badly in our case.

i 1%, 5%, 10%, 20% simulated critical values
22.5(1 -+ 1%, 5%, 10%, 20% fitted critical values

20.0-—
17.5-

15.0-

125t G- T (log,,scale

200 300 400 500 600 700 800 9001000 2000
Figure 3: Simulated and fitted critical values (1%, 5%, 1008o20f the maxL R$4(s) test statistic
under the null hypothesis.

Next, we turn to the case with a Studererror term. We first note that/; of a sample of(v)-distributed
variables has a type Il extreme value (Fréchet) limitirgjrithution:

Frrp(x) = exp {—x*”} , a7

wherev, the tail index, determines the shape of the distributiolne A-th moments of\/1 are now given by
E[ME] = I'(1 — k/6), wherel is the gamma function. In this caseequals the degrees of freedom of the
Student distribution, see Mood, Graybill, and Boes (1$645.3, example 12).

As the LRG4© test involves the test for a single outlier in a GARGHaodel, one may perhaps expect
that the type Il behaviour also applies here. It may also bettie type | approximation is still reasonable for
common values of .

In order to investigate this issue we compare the distoimstof thel R4 (s) test for a fixeds in the cases
of normal errors and Studentrrors using simulation. Figure 4 presents QQ plots of thrukition results for
the design given if§6 for ' = 500 and N = 10000, testing for an outlier at the middle of the sample= T'/2.
The solid line in Figure 4 makes clear that the distributionthe L R“4© test for an outlier at a known point
in a GARCH model with normal errors is indeed closetd?2).

Note that for Student(6) errors, the distribution of. R“4€ is considerably more spread towards the right
tail. At first sight, this may indicate that a type | extreméueadistribution does not apply here. However,
if we simulate the critical values of the makR$4€ (s) test under Studenterrors, the distribution of the
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Figure 4: QQ plot against g2(2) reference distribution of the LR(2) test for an outlier ir tmiddle
of the sample: normal GARCH(1,1) (solid line) versus GARGH-L) with ¢(6) errors. T = 500,
N = 10000.
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Figure 5: Simulated moments (mean, standard deviationth@fmaxLR$4C(s) statistic in a
GARCH-(rv)(1,1) under the null hypothesis, for= 4,5, 6,9, 13 andoco (normal).

test shifts withy, but the distance between critical values at 5% and 10% atvdeke 10% and 20% for a
specificv remain very close, as in Figure 2. Figure 6 presents sintlilat@ical values for Student-errors.

The differences in critical values for a type 1l extreme eadlistribution are determined Iy log(1 — a)]’l/”
which should not lead to an equal spacing between 5% and 10d%G#% and 20% critical values. This is an
indication that that the type Il approximation would not wavell here.

Instead of using a type Il approximation, we adapt the typereene value approximation under normal
errors to the Studeniw) case by allowingn, andb to depend ow. Based on GARCH(1,1)¢v) Monte Carlo
simulations forr = 4,5, 6, 9, 13, the following adjustments can be used to approximate tteilolitions for the
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outlier test in the GARCH(1,1)¢~) model:

~
~
~
~

mp + 11071 + O.25mTV_1/2,

b+ 12072,

(18)

with mr andb given in (15). We did not allow to depend off", although the simulations show the variance to
be somewhat u-shaped feranging fromd to 6. The response surface for the mean fits remarkably well. The
approximation to the critical values is satisfactory, sepife 6, except when = 4, and to a lesser extent for

v=>5atl%.

225 -
F +—+~ 20% simulated critical valufs tH[-—~ 10% simulated critical valuTs
r|-e-o fitted [ e-a fitted
I 22.5- =

20.0-

L e 20.0-
17,55 5"
e 4 17.51
15.0F &=
i I I I L I 1 I I L I
200 300 40050 1000 2000 200 300 40 1000 2000
[ ~—+ 5% simulated critical vaIuTs JH—H 1% simulated critical vaIuTs T

25.0;—543' fitted 30.07 -8-& fitted

2250 o o
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= L ! e ! [ L !
200 300 400 1000 2000 200 300 400 1000 2000

Figure 6: Simulated and fitted critical values (1%, 5%, 10962 of the test statistic for GAO in

GARCH-t(v) under the null hypothesis.
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B Alternative outlier detection procedures for GARCH(1,1) models

We discuss to alternative approaches. Hotta and Tsay (128I8x procedure based on LM tests. Franses and
van Dijk (2000) suggested a procedure based on regressions.

B.1 Additive volatility outliers
Hotta and Tsay (1998) propose an LM test on the largest stdizéal residual:
=2

€t

This is approximately distributed as the maximum of a randample of siz&” — 2 from ax?(1) distribution.

B.2 Additive level outliers
Hotta and Tsay (1998) propose an LM test for the ALO case:

. 2
9 ~ T Fi—(t+D7—2 (7 =0
LMALO — e oF {1 Atk i AR, (hﬂ 53’)}

1<t<T ht 1+ 2&%/}23 Z.;‘]:thl B%[ji(ﬁrl)]?lj_z

t < J < T is a truncation parameter that is introduced to avoid ‘swiagip The distribution of LM-©
depends on the choice df and the true values ef; and,, requiring simulation for every test. Finally, they
suggest, when both L#° and LMY° are significant, to adopt the one with the most significant@alThe
p-values of LM*-° can only be obtained by simulation, which can hinder thesiegibetween outlier types:
if the AVO test has a very smaltvalue, many replications are required to decide whetreAIhO test has an
even smallep-value or not. Moreover, there is no guarantee that the datelioutliers for both tests occur at
the same observation.

Franses and van Dijk (2000) suggest the following proceftumdetecting additive level outliers in GARCH(1,1)
models. Using the ‘variance innovationg’ = £? — h; andu; = ;2 — h} they rewrite (8) as (so this is under
the impact of a neglected outlier):

uy = (;S{I(t =s)— oqﬂf_s_ll(t > 8)} + ug,

where¢ = 2ve, + +2 is the direct impact of the outlier on the sequence of vaganaovations. Thep
parameter is estimated by regressioriipf= £;2 — hf on { I(t = s) — algf_s_lf(t > s)}, wherea and 3
are obtained in the baseline GARCH(1,1) model. From thig suéve fory:

if 82— ¢ <0,
~ 1/2 ~
5o={ @ (a2-0) " e -d>0ands >0,
~ 1/2 ~
s+(e2-0)"  ifer-dzoandz <o,

The largesfy; exceeding a certain critical value is used to remove theesdtbm the data. An approximation
for the critical value is offered for certain significancedés. If an outlier is found, aty say, the procedure
is repeated for; — 4, I(t = to) until no further outliers are detected. This procedure ¢did combined
with LM”Y© along the lines suggested by Hotta and Tsay (1998) (i.ectimiethe outcome with the smallest
p-value). In both cases, the assumption is that the outlief the same sign as the observed residual. In
addition, Franses and van Dijk (2000) select the smalldatiea (in absolute value). Although this provides
a unique choice for, their regression method for the variance innovationsnofteggests the existence of
multiple solutions fory, even when these are not indicated by the log-likelihooa, 84y., the left hand side
likelihood grid in Figure 1.

Both the LM based approach and the regression procedureativer complex, and suffer from non-
similarity with respect to the GARCH parameters, so that sewlations are needed to compuytealues
in each empirical application.
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B.3 Simulation comparison

Next, we contrast our procedure to these alternative msthdenoted FD for the regression procedure of
Franses and van Dijk (2000), and HT for the LM test based aggtrof Hotta and Tsay (1998). The results are
in Table 11* The main findings are that FD, although not designed to test¥@, it will have some power
againstit; FD has lower power than HT when the outlier is pEHALO, probably because HT actually uses two
tests (a more appropriate comparison would be witlLdonly). HT and our procedure have similar power,
but the latter is much better at dating the outlier. Surpghi, HT is worse at dating for the larger outliers as
the LM tests lose their optimal power properties for distalteérnatives. In addition, our procedure is more
successful in classifying the outlier.

Table 11: Size and power of outlier detection tests for alsingtlier in a GARCH(1,1) model

Rejection frequencies Correct date Correct type
Otl,ﬂl Y= 0 —4 -5 —4 -5 —4 -5
Outlier of type AVO atT'/2
HT 0.1,0.8 0.047 055 0.84 97% 96% 50% 39%
HT 0.3,05 0.044 054 0.85 82% 75% 54% 48%
HT 0.5,0.3 0.045 0.54 0.85 70% 66% 60% 56%

Outlier of type ALO atT/2
FD 0.1,0.8 0.050 0.45 0.73 91% 97%
FD 0.3,05 0.042 0.30 0.55 82% 91%
FD 0.5,0.3 0.075 0.27 0.50 72% 85%
HT 0.1,0.8 0.047 0.58 0.82 97% 96% 75% 80%
HT 0.3,05 0.044 0.69 0.85 88% 78% 75% 81%
HT 05,03 0.045 0.76 0.86 72% 56% 60% 75%

HT is LM approach of Hotta and Tsay (1998); FD is regressiothoe of
Franses and van Dijk (2000). For further notes: see Table 4.

B.4 Application Comparison for the Dow Jones returns

Table 12 lists the results when applying the three procesdiaréhe monthly Dow Jones returns. The order in
the table is that in which the outliers were detected, andlseiaclude the first outlier with g-value> 5%.

The procedure of Hotta and Tsay (1998) finds the same ou#liemur method, with two additional ones.
Note that Hotta and Tsay (1998) use simulation to determimelues for the ALO test. For large outliers,
the result is g-value of zero, because it would be too time consuming to fowliate values (we usé00
replications and/ = 3). In our implementation, ALO is selected over AVO in thatsition.

Franses and van Dijk (2000)’s procedure only detects ALO¢lwis less of a problem with monthly data,
nonetheless giving quite different results. This method th@ only to detect a positive outlier in the monthly
data: August 1932 saw a large upswing in the index. The sitteedfrst detected outlier is rather different from
the other methods, as the multiple solutionfosuggested by their regression for the variance innovatahs
not arise in the other methods.

This could also explain the subsequent differences in ttectien path. For the weekly and daily results we
exclude this method, because it would need to be combinddamitAVO detection (adding LRX® is simple,
but does require simulation to determjmn@alues). The consequence of only correcting for ALO in tleekty
returns is that about twice as many outliers are found, aftese to each other. This illustrates the advantages
of implementing volatility outliers.

4To compute the rejection frequency, we used the extreme approximation (12) for our procedure. For HT we used
simulation based o000 replications and/ = 3. For FD we use the given critical value approximation, extbat we
replacex. with max(3, x.). This is not a good solution, though, e.g. whers= 0.6 and3 = 0.2, we would use the value
3, but simulations find a size @)% in that case.
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Table 12: Detected outliers in GARCH(1,1) model for montblyw Jones returnst2A log y;™

new procedure
date type  size p-outlier p-ALO
1987/10 ALO —4.38 0.083 0.795
1914/12 ALO -3.58 0.00012 0.112
1940/05 ALO -—-3.11 0.00018 0.251
1937/09 AVO -—2.37 0.036 0.002

2001/09 — 0.139
Hotta and Tsay (1998)
date  type size p-LMAO  p L MAO
1987/10 ALO —4.38 0.0-4 0
1914/12 ALO -3.58 0.045 0

1940/05 ALO -3.11 0.008 0.002
1899/12 ALO -2.49  0.039* 0.025
1937/09 AVO —-2.38  0.0457 0.046*
1990/08 ALO —-1.79  0.052* 0.043
2001/09 — 0.053 0.069**
Franses and van Dijk (2000)
date type  size
1987/10 ALO -—-3.78
1932/08 ALO +3.44
1940/05 ALO -2.54
1914/12 ALO -—-2.76

p-ALO is for testing ALO, when an outlier is detected.
* at date of subsequent outlier candid&dteat 1907/3.
Notation:0.045 = 0.00005

Table 13 gives the results for the weekly data. Four out ofstinen outliers that are found by both our
procedure and HT are now of a different type. The HT procedetects two more outliers albeit gtvalues
that are not very low.

The application comparison shows two clear benefits of owrprecedure: it is a nested procedure, avoid-
ing the need to have to compgrevalues of two separate tests, possibly at different ddteis. also easy to
computep-values at the second stage, allowing for better classificat ALO and AVO.

The new procedure is found to be considerably faster on the diata, taking less than half an hour for
nearly30 000 observations (on a 800 Mhz Pentium Il notebook; this inekuthe first estimation). HT takes two
and a half hours, requiring simulation, and FD more thanséairs. FD requires nearB 000 regressions
for each test, but there is scope for implementing this méfieently.
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Table 13: Detected outliers in GARCH(1,1) model for weeklgwbJones returnsil A log y;”

new procedure

date type p-outlier  p-ALO size
1914/12/16 ALO 0 0.244 —16.75
1940/05/15 AVO 0 0 —7.05
1899/12/13 AVO  0.0s3 0.026 —7.14
1987/10/21 AVO  0.053 0.010 —8.95
1926/03/03 AVO 0.00015 0.002 —4.84
1898/05/11 ALO 0.00020 0.960 7.61
1994/03/30 ALO 0.00075 0.536 -3.39
1998/09/02 — 0.070

Hotta and Tsay (1998)

date type p-LMAC  pLMALO size
1914/12/16 AVO 0 0** —16.75
1940/05/15 AVO 0 0 —7.05
1899/12/13 ALO  0.093 0 —7.14
1987/10/21 ALO  0.0¢5 0 —8.95
1898/05/11 ALO  0.043* 0 7.61
1994/03/30 ALO  0.043* 0 —3.39
1926/03/03 ALO  0.042 0 —4.84
1998/09/02 ALO 0.030 0.018 —4.73
1929/10/30 AVO  0.043 0.061* —8.67
1927/10/19 — 0.115 0.059

* at subsequent outlier candidate.
** at previous observation:; 1914/7/29.
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