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Abstract

In this paper we provide an asymptotic analysis of generalised bipower measures of the
variation of price processes in financial economics. These measures encompass the usual
quadratic variation, power variation and bipower variations which have been highlighted in
recent years in financial econometrics. The analysis is carried out under some rather general
Brownian semimartingale assumptions, which allow for standard leverage effects.
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1 Introduction

In this paper we discuss the limiting theory for a novel, unifying class of non-parametric measures

of the variation of financial prices. The theory covers commonly used estimators of variation

such as realised volatility, but it also encompasses more recently suggested quantities like realised

power variation and realised bipower variation. We considerably strengthen existing results on

the latter two quantities, deepening our understanding and unifying their treatment. We will

outline the proofs of these theorems, referring for the very technical, detailed formal proofs of the

general results to a companion probability theory paper Barndorff-Nielsen, Graversen, Jacod,
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Podolskij, and Shephard (2005). Our emphasis is on exposition, explaining where the results

come from and how they sit within the econometrics literature.

Our theoretical development is motivated by the advent of complete records of quotes or

transaction prices for many financial assets. Although market microstructure effects (e.g. dis-

creteness of prices, bid/ask bounce, irregular trading etc.) mean that there is a mismatch

between asset pricing theory based on semimartingales and the data at very fine time intervals

it does suggest the desirability of establishing an asymptotic distribution theory for estimators

as we use more and more highly frequent observations. Papers which directly model the impact

of market frictions on realised volatility include Zhou (1996), Bandi and Russell (2003), Hansen

and Lunde (2006), Zhang, Mykland, and Aı̈t-Sahalia (2005), Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2004) and Zhang (2004). Related work in the probability literature on the impact

of noise on discretely observed diffusions can be found in Gloter and Jacod (2001a) and Gloter

and Jacod (2001b), while Delattre and Jacod (1997) report results on the impact of rounding

on sums of functions of discretely observed diffusions. In this paper we ignore these effects.

Let the d-dimensional vector of the log-prices of a set of assets follow the process

Y =
(

Y 1, ..., Y d
)′
.

At time t ≥ 0 we denote the log-prices as Yt. Our aim is to calculate measures of the variation

of the price process (e.g. realised volatility) over discrete time intervals (e.g. a day or a month).

Without loss of generality we can study the mathematics of this by simply looking at what

happens when we have n high frequency observations on the time interval t = 0 to t = 1 and

study our measures of variation as n→ ∞. In this case returns will be measured over intervals

of length n−1 as

∆n
i Y = Yi/n − Y(i−1)/n, i = 1, 2, ..., n, (1)

where n is a positive integer.

We will study the behaviour of the realised generalised bipower variation process

Y n(g, h)t =
1

n

bntc
∑

i=1

g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ), (2)

as n becomes large and where g and h are two given, matrix functions of dimensions d1 × d2

and d2 ×d3 respectively, whose elements have at most polynomial growth. Here bxc denotes the

largest integer less than or equal to x.

Although (2) looks initially rather odd, in fact most of the non-parametric volatility measures

used in financial econometrics fall within this class (a measure not included in this setup is

the range statistic studied in, for example, Parkinson (1980) and its realised version recently
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introduced by Christensen and Podolskij (2005) and Martens and van Dijk (2005)). Here we give

an extensive list of examples and link them to the existing literature. More detailed discussion

of the literature on the properties of these special cases will be given later.

Example 1 (a) Suppose g(y) =
(

yj
)2

and h(y) = 1, then (2) becomes

bntc
∑

i=1

(

∆n
i Y

j
)2
, j = 1, 2, ..., d,

which is called the realised quadratic variation process of Y j in econometrics, e.g. Jacod (1994),

Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen and Shep-

hard (2004a) and Mykland and Zhang (2006). The increments of this quantity, typically cal-

culated over a day or a week, are often called the realised variances in financial economics.

The importance of these increments have been highlighted by Andersen, Bollerslev, Diebold, and

Labys (2001) and Andersen, Bollerslev, and Diebold (2006) in the context of volatility measure-

ment and forecasting. See also the survey by Barndorff-Nielsen and Shephard (2005b). Realised

variance has a very long history in financial economics. It appears in, for example, Rosenberg

(1972), Officer (1973), Merton (1980), French, Schwert, and Stambaugh (1987), Schwert (1989)

and Schwert (1998).

(b) Suppose g(y) = yy′ and h(y) = I, then (2) becomes, after some simplification,

bntc
∑

i=1

(∆n
i Y ) (∆n

i Y )′ .

This is the realised covariation process. It has been studied by Jacod and Protter (1998),

Barndorff-Nielsen and Shephard (2004a) and Mykland and Zhang (2006). Andersen, Bollerslev,

Diebold, and Labys (2003) study the increments of this process to produce forecast distributions

for vectors of returns.

(c) Suppose g(y) =
∣

∣yj
∣

∣

r
for r > 0 and h(y) = 1, then (2) becomes

n−1+r/2

bntc
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r
, j = 1, 2, ..., d,

which is called the realised r-th order power variation. When r is an integer it has been studied

from a probabilistic viewpoint by Jacod (1994) while Barndorff-Nielsen and Shephard (2003) look

at the econometrics of the case where r > 0. Barndorff-Nielsen and Shephard (2004b) extend

this work to the case where there are jumps in Y , showing the statistic is robust to certain types

of jumps when r < 2. Aı̈t-Sahalia and Jacod (2005) have additional insights on that topic.

The increments of these types of high frequency volatility measures have been informally used
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in the financial econometrics literature for some time when r = 1, but until recently without a

strong understanding of their theoretical asymptotic properties. Examples of their use include

Schwert (1990), Andersen and Bollerslev (1998) and Andersen and Bollerslev (1997), while they

have also been informally discussed by Shiryaev (1999, pp. 349–350) and Maheswaran and Sims

(1993). Following the work by Barndorff-Nielsen and Shephard (2003), Ghysels, Santa-Clara,

and Valkanov (2004) and Forsberg and Ghysels (2004) have successfully used realised power

variation as an input into volatility forecasting competitions.

(d) Suppose g(y) =
∣

∣yj
∣

∣

r
and h(y) =

∣

∣yj
∣

∣

s
for r, s > 0, then (2) becomes

n−1+(r+s)/2

bntc
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r ∣
∣∆n

i+1Y
j
∣

∣

s
, j = 1, 2, ..., d,

which is called the realised r, s-th order bipower variation process. This measure of variation

was introduced by Barndorff-Nielsen and Shephard (2004b), while a more formal discussion of

its behaviour in the r = s = 1 case was developed by Barndorff-Nielsen and Shephard (2006).

These authors’ interest in this quantity was motivated by its virtue of being resistant to finite

activity jumps so long as max(r, s) < 2. Recently Barndorff-Nielsen, Shephard, and Winkel

(2004) and Woerner (2006) have studied how these results on jumps extend to infinite activity

processes, while Corradi and Distaso (2004) have used these statistics to test the specification of

parametric volatility models. Here we study these statistics in the case where there are no jumps.

(e) Suppose

g(y) =

(

∣

∣yj
∣

∣ 0

0
(

yj
)2

)

, h(y) =

(
∣

∣yj
∣

∣

1

)

.

Then (2) becomes,














bntc
∑

i=1

∣

∣∆n
i Y

j
∣

∣

∣

∣∆n
i+1Y

j
∣

∣

bntc
∑

i=1

(

∆n
i Y

j
)2















.

Barndorff-Nielsen and Shephard (2006) used the joint behaviour of the increments of these two

statistics to test for jumps in price processes. Huang and Tauchen (2005) have empirically

studied the finite sample properties of these types of jump tests. Andersen, Bollerslev, and

Diebold (2003) and Forsberg and Ghysels (2004) use bipower variation as an input into volatility

forecasting.

We will derive the probability limit of (2) under a general Brownian semimartingale, the

workhorse process of modern continuous time asset pricing theory. Only the case of realised

quadratic variation, where the limit is the usual quadratic variation QV (defined for general

semimartingales), has been previously studied under such wide conditions. Further, under some
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stronger but realistic conditions, we will derive a limiting distribution theory for (2), so extending

a number of results previously given in the literature on special cases of this framework.

The outline of this paper is as follows. Section 2 contains the main notation used in our

analysis. Section 3 gives a statement of a weak law of large numbers for these statistics and the

corresponding central limit theory is presented in Section 4. Extensions of the results to higher

order variations are briefly indicated in Sections 5 and 6. Section 7 concludes, while there is

an Appendix which provides an outline of the proofs of the results discussed in this paper. For

detailed, quite lengthy and highly technical formal proofs we refer to our companion probability

theory paper Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005).

2 Notation and models

We start with Y on some filtered probability space
(

Ω,F , (Ft)t≥0 , P
)

. In most of our analysis

we will assume that Y follows a d-dimensional Brownian semimartingale (written Y ∈ BSM).

It is given in the following statement.

Assumption (H): We have

Yt = Y0 +

∫ t

0
audu+

∫ t

0
σu−dWu, (3)

where W is a d′-dimensional standard Brownian motion (BM), a is a d-dimensional process

whose elements are predictable and has locally bounded sample paths, and the spot covolatility

d, d′-dimensional matrix σ has elements which have càdlàg sample paths.

Throughout we will write

Σt = σtσ
′
t, (4)

the spot covariance matrix. Typically Σt will be full rank, but we do not assume that here. We

will write Σjk
t to denote the j, k-th element of Σt and

σ2
j,t = Σjj

t .

Remark 1 Due to the fact that t 7→ σjk
t is càdlàg all powers of σjk

t are locally integrable with

respect to the Lebesgue measure. In particular then
∫ t
0 Σjj

u du <∞ for all t and j.

Remark 2 Both a and σ can have, for example, jumps, intraday seasonality and long-memory.

Remark 3 The stochastic volatility (e.g. Shephard (2005)) component of Y ,

∫ t

0
σu−dWu,
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is always a vector of local martingales each with continuous sample paths, as
∫ t
0 Σjj

u du < ∞
for all t and j. All continuous local martingales with absolutely continuous quadratic varia-

tion can be written in the form of a stochastic volatility process. This result, which is due to

Doob (1953), is discussed in, for example, Karatzas and Shreve (1991, p. 170–172). Using the

Dambis-Dubins-Schwartz Theorem, we know that the difference between the entire continuous

local martingale class and the SV class are the local martingales which have only continuous,

not absolutely continuous1, QV. The drift
∫ t
0 audu has elements which are absolutely continu-

ous. This assumption looks ad hoc, however if we impose a lack of arbitrage opportunities and

model the local martingale component as a SV process then this property must hold (Karatzas

and Shreve (1998, p. 3) and Andersen, Bollerslev, Diebold, and Labys (2003, p. 583)). Hence

(3) is a rather canonical model in the finance theory of continuous sample path processes.

3 Law of large numbers

To build a weak law of large numbers for Y n(g, h)t we need to make the pair (g, h) satisfy the

following assumption.

Assumption (K): All the elements of f on Rd are continuous with at most polynomial growth.

This amounts to there being suitable constants C > 0 and p ≥ 2 such that

x ∈ Rd ⇒ ‖f(x)‖ ≤ C(1 + ‖x‖p). (5)

We also need the following notation.

ρσ(g) = E {g(X)} , where X|σ ∼ N(0, σσ′),

and

ρσ(gh) = E {g(X)h(X)} ,

where the expectations are conditional on σ.

Example 2 (a) Let g(y) = yy′ and h(y) = I, then ρσ(g) = Σ and ρσ(h) = I.

(b) Suppose g(y) =
∣

∣yj
∣

∣

r
then ρσ(g) = µrσ

r
j , where σ2

j is the j, j-th element of Σ, µr = E(|u|r)
and u ∼ N(0, 1).

This setup is sufficient for the proof of Theorem 1.2 of Barndorff-Nielsen, Graversen, Jacod,

Podolskij, and Shephard (2005), which is restated here.

1An example of a continuous local martingale which has no SV representation is a time-change Brownian
motion where the time-change takes the form of the so-called “devil’s staircase,” which is continuous and non-
decreasing but not absolutely continuous (see, for example, Munroe (1953, Section 27)). This relates to the work
of, for example, Calvet and Fisher (2002) on multifractals.
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Theorem 1 Under (H) and assuming g and h satisfy (K) we have that

Y n(g, h)t
p→ Y (g, h)t :=

∫ t

0
ρσu

(g)ρσu
(h)du, (6)

where the convergence is also locally uniform in time.

The result is quite clean as it is requires no additional assumptions on Y and so is very close

to dealing with the whole class of financially coherent continuous sample path processes.

Theorem 1 covers a number of existing setups which are currently receiving a great deal of

attention as measures of variation in financial econometrics. Here we briefly discuss some of the

work which has studied the limiting behaviour of these objects.

Example 3 (Example 1(a) continued). Then g(y) =
(

yj
)2

and h(y) = 1, so (6) becomes

bntc
∑

i=1

(

∆n
i Y

j
)2 p→

∫ t

0
σ2

j,udu = [Y j]t,

the quadratic variation (QV) of Y j. This well known result in probability theory is behind much

of the modern work on realised volatility, which is compactly reviewed in Barndorff-Nielsen and

Shephard (2005b).

(Example 1(b) continued). As g(y) = yy ′ and h(y) = I, then

bntc
∑

i=1

(∆n
i Y ) (∆n

i Y )′
p→
∫ t

0
Σudu = [Y ]t,

the well known multivariate version of QV.

(Example 1(c) continued). As g(y) =
∣

∣yj
∣

∣

r
and h(y) = 1 so

n−1+r/2

bntc
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r p→ µr

∫ t

0
σr

j,udu.

This result is due to Jacod (1994) and Barndorff-Nielsen and Shephard (2003).

(Example 1(d) continued). As g(y) =
∣

∣yj
∣

∣

r
and h(y) =

∣

∣yj
∣

∣

s
for r, s > 0, so

n−1+(r+s)/2

bntc
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r ∣
∣∆n

i+1Y
j
∣

∣

s p→ µrµs

∫ t

0
σr+s

j,u du,

a result due to Barndorff-Nielsen and Shephard (2004b), who derived it under stronger conditions

than those used here.

(Example 1(e) continued). As

g(y) =

(

∣

∣yj
∣

∣ 0

0
(

yj
)2

)

, h(y) =

(
∣

∣yj
∣

∣

1

)

,
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so














bntc
∑

i=1

∣

∣∆n
i Y

j
∣

∣

∣

∣∆n
i+1Y

j
∣

∣

bntc
∑

i=1

(

∆n
i Y

j
)2















p→
(

µ2
1

1

)
∫ t

0
σ2

j,udu.

Barndorff-Nielsen and Shephard (2006) used this type of result to test for jumps as this particular

bipower variation is robust to jumps.

4 Central limit theorem

4.1 Further assumptions on the process

It is important to be able to quantify the difference between the estimator Y n(g, h) and Y (g, h).

In this subsection we do this by giving a central limit theorem for
√
n(Y n(g, h) − Y (g, h)). We

have to make some stronger assumptions both on the process Y and on the pair (g, h) in order

to derive this result.

We start with a variety of assumptions which strengthen (H) and (K) given in the previous

subsection.

Assumption (H1): We have (H) with

σt = σ0 +

∫ t

0
a∗udu+

∫ t

0
σ∗u−dWu +

∫ t

0
v∗u−dVu (7)

+

∫ t

0

∫

E
ϕ ◦ w(u−, x) (µ− ν) (du,dx) +

∫ t

0

∫

E
(w − ϕ ◦ w) (u−, x)µ (du,dx) .

Here a∗, σ∗, v∗ are adapted càdlàg arrays, with a∗ also being predictable and locally bounded.

V is a d′′-dimensional Brownian motion independent of W . µ is a Poisson measure on (0,∞)×E
independent of W and V , with intensity measure ν(dt,dx) = dt ⊗ F (dx) and F is a σ-finite

measure on the Polish space (E, E). ϕ is a continuous truncation function on Rdd′ (a function

with compact support, which coincide with the identity map on the neighbourhood of 0). Finally

w(ω, u, x) is a map Ω × [0,∞) × E into the space of d × d′arrays which is Fu⊗ E−measurable

in (ω, x) for all u and càdlàg in u, and such that for some sequences (Sk) of stopping times

increasing to +∞ we have

sup
ω∈Ω,u<Sk(ω)

‖w(ω, u, x)‖ ≤ ψk(x) where

∫

E

(

1 ∧ ψk(x)
2
)

F (dx) <∞.

Assumption (H2): Σ = σσ′ is everywhere invertible.

Remark 4 If there were no jumps in the volatility then it would be sufficient to employ

σt = σ0 +

∫ t

0
a∗udu+

∫ t

0
σ∗u−dWu +

∫ t

0
v∗u−dVu, (8)
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which is covered by (H1). The assumption (H1) is rather general from an econometric viewpoint

as it allows for flexible leverage effects, multifactor volatility effects, jumps, non-stationarities,

intraday effects, etc. Indeed we do not know of a continuous time volatility model used in

financial economics which is outside this class.

Assumption (H1) looks quite complicated and one might wonder if a simpler assumption

could have been used whose jumps enter through a stochastic integral with a Lévy integrator.

However, such a condition is somewhat unsatisfactory for that alternative class of processes is

not closed under squaring (further comment on this is given in Section 9.2). Hence we have

chosen to use Assumption (H1) for it can be applied equally to σ and Σ = σσ ′.

4.2 Further assumptions on g and h

In order to derive a central limit theorem we need to impose some regularity on g and h.

Assumption (K1): f is even (that is f(x) = f(−x) for x ∈ Rd) and continuously differentiable,

with derivatives having at most polynomial growth.

In order to handle some of the most interesting cases of bipower variation, where we are

mostly interested in taking low powers of absolute values of returns which may not be differen-

tiable at zero, we sometimes need to relax (K1). The resulting condition is quite technical and

is called (K2). It is discussed in the Appendix.

Assumption (K2): f is even and continuously differentiable on the complement B c of a closed

subset B ⊂ R
d and satisfies

||y|| ≤ 1 =⇒ |f(x+ y) − f(x)| ≤ C(1 + ||x||p)||y||r

for some constants C, p ≥ 0 and r ∈ (0, 1]. Moreover

a) If r = 1 then B has Lebesgue measure 0.

b) If r < 1 then B satisfies

for any positive definite d× d matrix C and
any N(0, C)-random vector U the distance d(U,B)
from U to B has a density ψC on R+, such that
supx∈R+,|C|+|C−1|≤AψC(x) <∞ for all A <∞,















(9)

and we have

x ∈ Bc, ‖y‖ ≤ 1
∧ d(x,B)

2
⇒







‖∇f(x)‖ ≤ C(1+‖x‖p)
d(x,B)1−r ,

‖∇f(x+ y) −∇f(x)‖ ≤ C(1+‖x‖p)‖y‖
d(x,B)2−r .

(10)

Remark 5 These conditions accommodate the case where f equals
∣

∣xj
∣

∣

r
: this function satisfies

(K1) when r > 1, and (K2) when r ∈ (0, 1] (with the same r of course). When B is a finite
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union of hyperplanes it satisfies (9). Also, observe that (K1) implies (K2) with r = 1 and

B = ∅. Assumption K1 will often be enough to cover many cases of functions with regularly

varying properties, as long as they are even, for regularly varying functions are bounded by

members of the polynomial at infinity class.

4.3 Main asymptotic result

Each of the following assumptions (J1) and (J2) are sufficient for the statement of Theorem 1.3

of Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) to hold.

Assumption (J1): We have (H1) and g and h satisfy (K1).

Assumption (J2): We have (H1), (H2) and g and h satisfy (K2).

Clearly J2 makes stronger assumptions about the volatility process and weaker assumptions

about the functions g and h, than assumption J1. It is J2 which will be used when analysing

the interesting low power versions of bipower variation.

The result of the Theorem is restated in the following.

Theorem 2 Assume at least one of (J1) and (J2) holds, then the process

√
n (Y n(g, h)t − Y (g, h)t)

converges in law stably towards a limiting process U(g, h) having the form

U(g, h)jk
t =

d1
∑

j′=1

d3
∑

k′=1

∫ t

0
α(σu, g, h)

jk,j′k′

dBj′,k′

u , (11)

where
d1
∑

l=1

d3
∑

m=1

α(σ, g, h)jk,lmα(σ, g, h)j′k′,lm = A(σ, g, h)jk,j′k′

,

and

A(σ, g, h)jk,j′k′

=

d2
∑

l=1

d2
∑

l′=1

{

ρσ

(

gjlgj′l′
)

ρσ

(

hlkhl′k′

)

+ ρσ

(

gjl
)

ρσ

(

hl′k′

)

ρσ

(

gj′l′hlk
)

+ρσ

(

gj′l′
)

ρσ

(

hlk
)

ρσ

(

gjlhl′k′

)

−3ρσ

(

gjl
)

ρσ

(

gj′l′
)

ρσ

(

hlk
)

ρσ

(

hl′k′

)}

.

Furthermore, B is a standard Wiener process which is defined on an extension of
(

Ω,F , (Ft)t≥0 , P
)

and is independent of the σ–field F .

Remark 6 The concept and role of stable convergence may be unfamiliar to some readers and we

therefore add some words of explanation. In the simplest case of stable convergence of sequences
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of random variables, rather than processes, the concise mathematical definition is as follows.

Let Xn denote a sequence of random variables defined on a probability space (Ω,F , P ). Then

we say that Xn converges stably in law if there exists a probability measure µ on (Ω × R,F×B)

(where B denotes the Borel σ-algebra on R) such that for every bounded random variable Z on

(Ω,F , P ) and every bounded and continuous function g on R we have that, for n→ ∞,

E (Zg (Xn)) →
∫

Z (ω) g (x)µ (dω,dx) .

If Xn converges stably in law then, in particular, it converges in distribution (or in law or weak

convergence), the limiting law being µ (Ω, ·). Accordingly, one says that Xn converges stably to

some random variable X if there exists a probability measure µ as above such that X has law

µ (Ω, ·). This concept and its extension to stable convergence of processes is discussed in Jacod

and Shiryaev (2003, pp. 512-518). For earlier expositions, see Hall and Heyde (1980, pp. 56-58)

and Jacod (1997). An early use of this concept in econometrics was Phillips and Ouliaris (1990)

in their work on the limit distribution of cointegration tests.

However, this formalisation does not reveal the key nature of stable convergence which is

that Xn → X stably implies that for any random variable Z, the pair (Z,Xn) converges in law

to (Z,X). In the context the present paper consider the following simple example of the above

result. Let

Xn =
√
n





bntc
∑

i=1

(

∆n
i Y

j
)2 −

∫ t

0
σ2

j,udu





and

Z =

√

∫ t

0
σ4

j,udu.

Our focus is on Xn/
√
Z and our convergence in law stably implies that

√
n





bntc
∑

i=1

(

∆n
i Y

j
)2 −

∫ t

0
σ2

j,udu



 /

√

∫ t

0
σ4

j,udu
law→ N(0, 2). (12)

Without the convergence in law stably, (12) could not be deduced.

Corollary 1 Suppose d3 = 1, which is the situation looked at in Example 1(e). Then Y n(g, h)t

is a vector and so the limiting law of
√
n(Y n(g, h) − Y (g, h)) simplifies. It takes on the form of

U(g, h)j
t =

d1
∑

j′=1

∫ t

0
α(σu, g, h)

j,j′ dBj′
u , (13)

where
d1
∑

l=1

α(σ, g, h)j,lα(σ, g, h)j′ ,l = A(σ, g, h)j,j′ .

11



Here

A(σ, g, h)j,j′ =

d2
∑

l=1

d2
∑

l′=1

{

ρσ(gjlgj′l′)ρσ(hlhl′) + ρσ(gjl)ρσ(hl′)ρσ(gj′l′hl)

+ ρσ(gj′l′)ρσ(hl)ρσ(gjlhl′) − 3ρσ(gjl)ρσ(gj′l′)ρσ(hl)ρσ(hl′)
}

.

In particular, for a single point in time t,

√
n (Y n(g, h)t − Y (g, h)t)

L→MN

(

0,

∫ t

0
A(σu, g, h)du

)

,

where MN denotes a mixed Gaussian distribution and A(σ, g, h) denotes a matrix whose j, j ′-th

element is A(σ, g, h)j,j′ .

Remark 7 Suppose g(y) = I, then A becomes

A(σ, g, h)jk,j′k′

= ρσ(hjkhj′k′

) − ρσ(hjk)ρσ(hj′k′

).

Example 4 Suppose d1 = d2 = d3 = 1, then

U(g, h)t =

∫ t

0

√

A(Σu, g, h) dBu, (14)

where

A(σ, g, h) = ρσ(gg)ρσ(hh) + 2ρσ(g)ρσ(h)ρσ(gh) − 3 {ρσ(g)ρσ(h)}2 .

We consider two concrete examples of this setup.

(i) Power variation. Suppose g(y) =
∣

∣yj
∣

∣

r
and h(y) = 1 where r > 0, then ρσ(h) = 1,

ρσ(g) = ρσ(gh) = µrσ
r
j , ρσ(gg) = µ2rσ

2r
j .

This implies that

A(σ, g, h) = µ2rσ
2r
j + 2µ2

rσ
2r
j − 3µ2

rσ
2r
j

=
(

µ2r − µ2
r

)

σ2r
j

= vrσ
2r
j ,

where vr = Var(|u|r) and u ∼ N(0, 1). When r = 2, this yields a central limit theorem for the

realised quadratic variation process, with

U(g, h)t =

∫ t

0

√

2σ4
j,u dBu, (15)

a result which appears in Jacod (1994), Mykland and Zhang (2006) and, implicitly, Jacod and

Protter (1998), while the case of a single value of t appears in Barndorff-Nielsen and Shephard
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(2002). For the more general case of r > 0 Barndorff-Nielsen and Shephard (2003) derived,

under much stronger conditions, a central limit theorem for U(g, h)1. Their result ruled out

leverage effects, which are allowed under Theorem 2. The finite sample behaviour of this type of

limit theory is studied in, for example, Barndorff-Nielsen and Shephard (2005a), Goncalves and

Meddahi (2004) and Nielsen and Frederiksen (2005) in the absence of market frictions.

(ii) Bipower variation. Suppose g(y) =
∣

∣yj
∣

∣

r
and h(y) =

∣

∣yj
∣

∣

s
where r, s > 0, then

ρσ(g) = µrσ
r
j , ρσ(h) = µsσ

s
j, ρσ(gg) = µ2rσ

2r
j ,

ρσ(hh) = µ2sσ
2s
j , ρσ(gh) = µr+sσ

r+s
j .

This implies that

A(σ, g, h) = µ2rσ
2r
j µ2sσ

2s
j + 2µrσ

r
jµsσ

s
jµr+sσ

r+s
j − 3µ2

rσ
2r
j µ

2
sσ

2s
j

=
(

µ2rµ2s + 2µr+sµrµs − 3µ2
rµ

2
s

)

σ2r+2s
j .

In the r = s = 1 case Barndorff-Nielsen and Shephard (2006) derived, under much stronger

conditions, a central limit theorem for U(g, h)1. Their result ruled out leverage effects, which

are allowed under Theorem 2. In that special case, writing

ϑ =
π2

4
+ π − 5,

we have

U(g, h)t = µ2
1

∫ t

0

√

(2 + ϑ)σ4
j,u dBu.

In the case where r = ε, s = 2 − ε where 2 > ε > 0 then Y (g, h)t = µεµ2−ε

∫ t
0 σ

2
udu and

the statistic is asymptotically robust to finite activity jumps (Barndorff-Nielsen and Shephard

(2004b)). For arbitrarily small ε the error process U(g, h)t is close to (15), so this jump robust

process is basically as efficient as if there are no jumps in the process.

Example 5 Suppose g(y) = yy′, h = I. Then we have to calculate

A(σ, g, h)jk,j′k′

= ρσ(gjkgj′k′

) − ρσ(gjk)ρσ(gj′k′

).

However,

ρσ(gjk) = Σjk, ρσ(gjkgj′k′

) = ΣjkΣj′k′

+ Σjj′Σkk′

+ Σjk′

Σkj′,

so

A(σ, g, h)jk,j′k′

= ΣjkΣj′k′

+ Σjj′Σkk′

+ Σjk′

Σkj′ − ΣjkΣj′k′

= Σjj′Σkk′

+ Σjk′

Σkj′.

This is the result found in Barndorff-Nielsen and Shephard (2004a), but proved there under

stronger conditions. The result is, in fact, implicit in the work of Jacod and Protter (1998).

13



Example 6 Suppose d1 = d2 = 2, d3 = 1 and g is diagonal. Then

U(g, h)j
t =

2
∑

j′=1

∫ t

0
α(σu, g, h)

j,j′ dBj′

u , (16)

where
2
∑

l=1

α(σ, g, h)j,lα(σ, g, h)j′ ,l = A(σ, g, h)j,j′ .

Here

A(σ, g, h)j,j′ = ρσ(gjjgj′j′)ρσ(hjhj′) + ρσ(gjj)ρσ(hj′)ρσ(gj′j′hj)

+ρσ(gj′j′)ρσ(hj)ρσ(gjjhj′) − 3ρσ(gjj)ρσ(gj′j′)ρσ(hj)ρσ(hj′).

Example 7 Joint behaviour of realised QV and realised bipower variation. This sets

g(y) =

(
∣

∣yj
∣

∣ 0
0 1

)

, h(y) =

(

∣

∣yj
∣

∣

(

yj
)2

)

.

The implication is that

ρσ(g11) = ρσ(g22g11) = ρσ(g11g22) = µ1σj, ρσ(g22) = 1, ρσ(g11g11) = σ2
j , ρσ(g22g22) = 1,

ρσ(h1) = µ1σj, ρσ(h2) = ρσ(h1h1) = σ2
j , ρσ(h1h2) = ρσ(h2h1) = µ3σ

3
j , ρσ(h2h2) = 3σ4

j ,

ρσ(g11h1) = σ2
j , ρσ(g11h2) = µ3σ

3
j , ρσ(g22h1) = µ1σj, ρσ(g22h2) = σ2

j .

Thus

A(σ, g, h)1,1 = σ2
jσ

2
j + 2µ1σjµ1σjσ

2
j − 3µ1σjµ1σjµ1σjµ1σj

= σ4
j

(

1 + 2µ2
1 − 3µ4

1

)

= µ4
1(2 + ϑ)σ4

j ,

while

A(σ, g, h)2,2 = 3σ4
j + 2σ4

j − 3σ4
j = 2σ4

j ,

and

A(σ, g, h)1,2 = µ1σjµ3σ
3
j + µ1σjσ

2
jµ1σj + µ1σjµ3σ

3
j − 3µ1σjµ1σjσ

2
j

= 2σ4
j

(

µ1µ3 − µ2
1

)

= 2µ2
1σ

4
j .

This generalises the result given in Barndorff-Nielsen and Shephard (2006) to the leverage case.

In particular we have that

(

U(g, h)1t
U(g, h)2t

)

=









µ2
1

∫ t

0

√

2σ4
udB1

u + µ2
1

∫ t

0

√

ϑσ4
udB2

u
∫ t

0

√

2σ4
udB1

u.









14



5 Multipower variation

A natural extension of generalised bipower variation is to generalised multipower variation

Y n(g)t =
1

n

bntc
∑

i=1







I∧(i+1)
∏

i′=1

gi′(
√
n ∆n

i−i′+1Y )







,

where a∧b denotes the minimum of a and b. This measure of variation, for the gi′ being absolute

powers, was introduced by Barndorff-Nielsen and Shephard (2006).

We will be interested in studying the properties of Y n(g)t for given functions {gi} with the

following properties.

Assumption (K∗): All the {gi} are continuous with at most polynomial growth.

The previous results suggests that if Y is a Brownian semimartingale and Assumption (K∗)

holds then

Y n(g)t
p→ Y (g)t :=

∫ t

0

I
∏

i=0

ρσu
(gi)du.

See Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) for more details.

Example 8 (a) Suppose I = 4 and gi(y) =
∣

∣yj
∣

∣, then ρσ(gi) = µ1σj so

Y (g)t = µ4
1

∫ t

0
σ4

j,udu,

a scaled version of integrated quarticity.

(b) Suppose I = 3 and gi(y) =
∣

∣yj
∣

∣

4/3
, then

ρσ(gi) = µ4/3σ
4/3
j

so

Y (g)t = µ3
4/3

∫ t

0
σ4

j,udu.

Example 9 Of some importance is the generic case where gi(y) =
∣

∣yj
∣

∣

2/I
, which implies

Y (g)t = µI
2/I

∫ t

0
σ2

j,udu.

Thus this class provides an interesting alternative to realised variance as an estimator of in-

tegrated variance. Of course it is important to know a central limit theory for these types of

quantities. Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005) show that

when (H1) and (H2) hold then

√
n [Y n(g)t − Y (g)t] →

∫ t

0

√

ω2
Iσ

4
j,u dBu,
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where

ω2
I = Var

(

I
∏

i=1

|ui|2/I

)

+ 2

I−1
∑

j=1

Cov

(

I
∏

i=1

|ui|2/I ,

I
∏

i=1

|ui−j |2/I

)

,

with ui ∼ NID(0, 1). Thus the asymptotic variance is again a scaled version of integrated

quarticity. Clearly ω2
1 = 2, while recalling that µ1 =

√

2/π,

ω2
2 = Var(|u1| |u2|) + 2Cov(|u1| |u2| , |u2| |u3|)

= 1 + 2µ2
1 − 3µ4

1,

and

ω2
3 = Var((|u1| |u2| |u3|)2/3) + 2Cov((|u1| |u2| |u3|)2/3 , (|u2| |u3| |u4|)2/3)

+2Cov((|u1| |u2| |u3|)2/3 , (|u3| |u4| |u5|)2/3)

=
(

µ3
4/3 − µ6

2/3

)

+ 2
(

µ2
4/3µ

2
2/3 − µ6

2/3

)

+ 2
(

µ4/3µ
4
2/3 − µ6

2/3

)

.

6 Sums of realised generalised bipower

The law of large numbers and the central limit theorem also hold for linear combinations of

processes like Y (g) above.

Example 10 Let ζn
i the d× d matrix whose (k, l) entry is

∑d−1
j=0 ∆n

i+jY
k∆n

i+jY
l. Then

Zn
t =

nd−1

d!

[nt]
∑

i=1

det(ζn
i )

is a linear combinations of processes Y n(g) for functions gl being of the form gl(y) = yjyk. It

is proved in Jacod, Lejay, and Talay (2005) that under (H)

Zn
t

p→ Zt :=

∫ t

0
det(σuσ

′
u)du,

whereas under (H1) and (H2) the associated CLT is the following convergence in law:

√
n(Zn

t − Zt) →
∫ t

0

√

Γ(σu) dBu,

where Γ(σ) denotes the covariance of the variable det(ζ)/d!, and ζ is a d×d matrix whose (k, l)

entry is
∑d−1

j=0 U
k
j U

l
j and the Uj’s are i.i.d. centered Gaussian vectors with covariance σσ ′.

This kind of result may be used for testing whether the rank of the diffusion coefficient is

everywhere smaller than d. In that case one could use a model with a d′ < d for the dimension

of the driving Wiener process W .
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7 Conclusion

This paper provides some rather general limit results for realised generalised bipower variation.

In the case of power variation and bipower variation the results are proved under much weaker

assumptions than those which have previously appeared in the literature. In particular the no-

leverage assumption is removed, which is important in the application of these results to stock

data.

There are a number of open questions. It is rather unclear how econometricians might exploit

the generality of the g and h functions to learn about interesting features of the variation of

price processes. It would be interesting to know what properties g and h must possess in order

for these statistics to be robust to finite activity and infinite activity jumps.

It would be attractive to extend the analysis to allow g and h to depend upon the entire

path of Y , not just returns, and to depend upon n. This would allow, respectively, the theory to

additionally cover the realised range process studied by Christensen and Podolskij (2005) and

the truncated estimator studied by Mancini (2004) and more recently by Aı̈t-Sahalia and Jacod

(2005).

A challenging extension is to construct a version of realised generalised bipower variation

which is robust to market frictions. Following the work on the realised volatility there are two

strategies which may be able to help: the kernel based approach, studied in detailed by Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2004), and the subsampling approach of Zhang, Myk-

land, and Aı̈t-Sahalia (2005) and Zhang (2004). In the realised volatility case these methods

are basically equivalent, however it is perhaps the case that the subsampling method is easier

to extend to the non-quadratic case. Further insights into the choice of n may be possible using

mean square error based optimal sampling developed by Bandi and Russell (2003) and Hansen

and Lunde (2006) for realised variance.
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9 Techniques for the Proof of Theorem 2

9.1 Notational conventions

Below we give a fairly detailed account of the basic techniques in the proof of Theorem 2, in the

one-dimensional case and under some relatively minor simplifying assumptions. Throughout we

set h = 1 for the main difficulty in the proof is being able to deal with the generality in the

g function. Once that has been mastered the extension to the bipower measure is not a large

obstacle. We refer the reader to Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard

(2005) for readers who wish to see the more general case. The outline of this section is as follows.

First we introduce our basic notation, while in subsection 9.2 we set out the model and review

the assumptions we use. In subsection 9.3 we state the theorem we will prove and outline the

steps in the proof. Subsections 9.5, 9.6 and 9.7 give the proofs of the successive steps.

All processes mentioned in the following are defined on a given filtered probability space

(Ω,F , (Ft), P ). We shall in general use standard notation and conventions. For instance, given

a process (Zt) we write 4n
i Z := Z i

n
− Z i−1

n

, i, n ≥ 1.

All results will be proved using convergence ‘stably in law’ of sequences of càdlàg processes,

which is a slightly stronger notion than convergence in law (cf. Remark 6 above). For this we

shall use the notation

(Zn
t ) → (Zt),

where (Zn
t ) and (Zt) are given càdlàg processes. Furthermore we shall write

(Zn
t )

P→ 0 meaning sup
0≤s≤t

|Zn
s | → 0 in probability for all t ≥ 0,

(Zn
t )

P→ (Zt) meaning (Zn
t − Zt)

P→ 0.

Often

Zn
t =

[nt]
∑

i=1

an
i for all t ≥ 0,

where the an
i ’s are F i−1

n
-measurable. Recall here that given càdlàg processes (Zn

t ), (Y n
t ) and

(Zt) we have

(Zn
t ) → (Zt) if (Zn

t − Y n
t )

P→ 0 and (Y n
t ) → (Zt).

Moreover, for h : R → R Borel measurable of at most polynomial growth we note that

x 7→ ρx(h) is locally bounded and continuous if h is continuous at 0.

In what follows many arguments will consist of a series of estimates of terms indexed by i, n

and t. In these estimates we shall denote by C a finite constant which may vary from place to
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place. Its value will depend on the constants and quantities appearing in the assumptions of the

model but it is always independent of i, n and t.

9.2 Model and basic assumptions

Throughout the following (Wt) denotes a ((Ft), P )-Wiener process and (σt) a given càdlàg (Ft)-

adapted process. Define the local martingale

Yt :=

∫ t

0
σs− dWs t ≥ 0.

We have deleted the drift of the (Yt) process as taking care of it is a simple technical task, while

its presence increase the clutter of the notation. Our aim is to study the asymptotic behaviour

of the processes

{(Y n
t (g)) |n ≥ 1 }

where

Y n
t (g) =

1

n

[nt]
∑

i=1

g(
√
n4n

i Y ), t ≥ 0, n ≥ 1.

Here g : R → R is a given continuous function of at most polynomial growth. We are especially

interested in g’s of the form x 7→ |x|r (r > 0) but we shall keep the general notation since

nothing is gained in simplicity by assuming that g is of power form. Throughout the following

we shall assume that g furthermore satisfies the following.

Assumption (Ka): g is an even function and continuously differentiable in B c where B ⊆ R

is a closed Lebesgue null-set and ∃ M, p ≥ 1 such that

|g(x+ y) − g(x)| ≤M(1 + |x|p + |y|p) · |y| ,

for all x, y ∈ R.

Remark 8 The assumption (Ka) implies, in particular, that if x ∈ B c then

|g′(x)| ≤M(1 + |x|p).

Observe that only power functions corresponding to r ≥ 1 do satisfy (Ka). The remaining case

0 < r < 1 requires special arguments which will be omitted here (for details see Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2005)).

In order to prove the CLT-theorem we need some additional structure on the volatility

process (σt). A natural set of assumptions would be the following.

Assumption (H0): (σt) can be written as

σt = σ0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s− dWs +

∫ t

0
v∗s− dZs
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where (Zt) is a ((Ft), P )-Lévy process independent of (Wt) and (σ∗t ) and (v∗t ) are adapted càdlàg

processes and (a∗t ) a predictable locally bounded process.

However, in modelling volatility it is often more natural to define (σ2
t ) as being of the above

form, i.e.

σ2
t = σ2

0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s− dWs +

∫ t

0
v∗s− dZs.

Now this does not in general imply that (σt) has the same form; therefore we shall replace (H0)

by the more general structure given by the following assumption.

Assumption (H1): (σt) can be written, for t ≥ 0, as

σt = σ0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s− dWs +

∫ t

0
v∗s− dVs

+

∫ t

0

∫

E
q ◦ φ(s−, x) (µ− ν)(dsdx)

+

∫ t

0

∫

E
{φ(s−, x) − q ◦ φ(s−, x)} µ(dsdx).

Here (a∗t ), (σ∗
t ) and (v∗t ) are as in (H0) and (Vt) is another ((Ft), P )-Wiener process independent

of (Wt) while q is a continuous truncation function on R, i.e. a function with compact support

coinciding with the identity on a neighbourhood of 0. Further µ is a Poisson random measure

on (0,∞) × E independent of (Wt) and (Vt) with intensity measure ν(dsdx) = ds⊗ F (dx), F

being a σ-finite measure on a measurable space (E, E) and

(ω, s, x) 7→ φ(ω, s, x)

is a map from Ω× [ 0,∞) ×E into R which is Fs ⊗E measurable in (ω, x) for all s and càdlàg

in s, satisfying furthermore that for some sequence of stopping times (Sk) increasing to +∞ we

have for all k ≥ 1
∫

E

{

1 ∧ ψk(x)
2
}

F (dx) <∞,

where

ψk(x) = sup
ω∈Ω, s<Sk(ω)

|φ(ω, s, x)|.

Remark 9 (H1) is weaker than (H0), and if (σ2
t ) satisfies (H1) then so does (σt).

Finally we shall also assume a non-degeneracy in the model.

Assumption (H2): (σt) satisfies 0 < σ2
t (ω) for all (t, ω).

According to general stochastic analysis theory it is known that to prove convergence in

law of a sequence (Zn
t ) of càdlàg processes it suffices to prove the convergence of each of the
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stopped processes (Zn
Tk∧t) for at least one sequence of stopping times (Tk) increasing to +∞.

Applying this together with standard localisation techniques (for details see Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2005)), we may assume that the following more

restrictive assumptions are satisfied.

Assumption (H1a): (σt) can be written as

σt = σ0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s− dWs +

∫ t

0
v∗s− dVs +

∫ t

0

∫

E
φ(s−, x)(µ− ν)(dsdx) t ≥ 0.

Here (a∗t ), (σ∗
t ) and (v∗t ) are real valued uniformly bounded càdlàg (Ft)-adapted processes; (Vt) is

another ((Ft), P )-Wiener process independent of (Wt). Further µ is a Poisson random measure

on (0,∞) × E independent of (Wt) and (Vt) with intensity measure ν(dsdx) = ds⊗ F (dx), F

being a σ-finite measure on a measurable space (E, E) and

(ω, s, x) 7→ φ(ω, s, x)

is a map from Ω× [ 0,∞) ×E into R which is Fs ⊗E measurable in (ω, x) for all s and càdlàg

in s, satisfying furthermore

ψ(x) = sup
ω∈Ω, s≥0

|φ(ω, s, x)| ≤M <∞ and

∫

ψ(x)2 F (dx) <∞.

Likewise, by a localisation argument, we may assume

Assumption (H2a): (σt) satisfies a < σ2
t (ω) < b for all (t, ω) for some a, b ∈ (0,∞).

Observe that under the more restricted assumptions (Yt) is a continuous martingale having

moments of all orders and (σt) is represented as a sum of three square integrable martingales

plus a continuous process of bounded variation. Furthermore, the increments of the increas-

ing processes corresponding to the three martingales and of the bounded variation process are

dominated by a constant times 4t, implying in particular that

E
[

|σv − σu|2
]

≤ C (v − u), for all 0 ≤ u < v. (17)

We use Υ(x) as a shorthand for ρx(g). Observe that the assumptions on g imply that

x 7→ Υ(x) is differentiable with a bounded derivative on any bounded interval not including 0;

in particular (see (H2a))

|Υ(x) − Υ(y) − Υ′(y) · (x− y) | ≤ Ψ(|x− y|) · |x− y|, x2, y2 ∈ (a, b), (18)

where Ψ : R+ → R+ is continuous, increasing and Ψ(0) = 0.
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9.3 Main result

As already mentioned, our aim is to show the following special version of the general CLT-result

given as Theorem 2.

Theorem 3 Under assumptions (Ka), (H1a) and (H2a), there exists a Wiener process (Bt)

defined on some extension of (Ω,F , (Ft), P ) and independent of F such that





√
n





1

n

[nt]
∑

i=1

g(
√
n4n

i Y ) −
∫ t

0
ρσu

(g) du







→
∫ t

0

√

ρσu−
(g2) − ρσu−

(g)2 dBu, (19)

where B is a Brownian motion independent of the process Y and the convergence is (stably) in

law.

The first step is to rewrite the left hand side of (19) as follows

√
n





1

n

[nt]
∑

i=1

g(
√
n4n

i Y ) −
∫ t

0
ρσu

(g)du





=
1√
n

[nt]
∑

i=1

{

g(
√
n4n

i Y ) − E
[

g(4n
i Y ) | F i−1

n

]}

+
√
n





1

n

[nt]
∑

i=1

E
[

g(4n
i Y ) | F i−1

n

]

−
∫ t

0
ρσu

(g)du



 .

It is rather straightforward to show that the first term of the right hand side satisfies

1√
n

[nt]
∑

i=1

{

g(
√
n4n

i Y ) − E
[

g(4n
i Y ) | F i−1

n

]}

→
∫ t

0

√

ρσu
(g2) − ρσu

(g)2dBu.

Hence what remains is to verify that uniformly

√
n





1

n

[nt]
∑

i=1

E
[

g(4n
i Y ) | F i−1

n

]

−
∫ t

0
ρσu

(g)du





p→ 0. (20)

We have

√
n





1

n

[nt]
∑

i=1

E
[

g(4n
i Y ) | F i−1

n

]

−
∫ t

0
ρσu

(g)du





=
1√
n

[nt]
∑

i=1

E
[

g(4n
i Y ) | F i−1

n

]

−√
n

[nt]
∑

i=1

∫ i/n

(i−1)/n
ρσu

(g)du

+
√
n





[nt]
∑

i=1

∫ i/n

(i−1)/n
ρσu

(g)du−
∫ t

0
ρσu

(g)du



 (21)

22



where, uniformly

√
n







[nt]
∑

i=1

∫ i/n

(i−1)/n
ρσu

(g)du−
∫ t

0
ρσu

(g)du







p→ 0.

The first term on the right hand side of (21) is now split into the difference of

1√
n

[nt]
∑

i=1

{

E
[

g(4n
i Y ) | F i−1

n

]

− ρ i−1

n

}

(22)

where

ρ i−1

n

= ρσ i−1
n

(g) = E
[

g
(

σ i−1

n

4n
i W

)

| F i−1

n

]

and

√
n

[nt]
∑

i=1

∫ i/n

(i−1)/n

{

ρσu
(g)du− ρ i−1

n

}

du. (23)

It is rather easy to show that (22) tends to 0 in probability uniformly in t. The challenge is thus

to show the same result holds for (23).

To handle (23) one splits the individual terms in the sum into

√
n Υ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

(

σu − σ i−1

n

)

du (24)

plus
√
n

∫ i/n

(i−1)/n

{

Υ(σu) − Υ
(

σ i−1

n

)

− Υ′
(

σ i−1

n

)

·
(

σu − σ i−1

n

)}

du, (25)

where Υ(x) is a shorthand for ρx(g) and Υ′(x) denotes the derivative with respect to x. That

(25) tends to 0 may be shown via splitting it into two terms, each of which tends to 0 as is

verified by a sequence of inequalities, using in particular Doob’s inequality. To prove that (24)

converges to 0, again one splits, this time into three terms, using the differentiability of g in

the relevant regions and the mean value theorem for differentiable functions. The first two of

these terms can be handled by relatively simple means, the third poses the most difficult part

of the whole proof and is treated via splitting it into seven parts. It is at this stage that the

assumption that g be even comes into play and is crucial.

9.4 Details of the proof

Introducing the notation

Ut(g) =

∫ t

0

√

ρσu−
(g2) − ρσu−

(g)2 dBu t ≥ 0

we may reexpress (19) as

(√
n

(

Y n
t (g) −

∫ t

0
σu(g) du

))

→ (Ut(g)). (26)
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To prove this, introduce the set of variables {βn
i | i, n ≥ 1} given by

βn
i =

√
n · σ i−1

n

· 4n
i W, i, n ≥ 1.

The βn
i ’s should be seen as approximations to

√
n4n

i Y . In fact, since

√
n4n

i Y − βn
i =

√
n

∫ i/n

(i−1)/n
(σs − σ i−1

n
) dWs

and (σt) is uniformly bounded, a straightforward application of (17) and the Burkholder-Davis-

Gundy-inequalities (e.g. Revuz and Yor (1999, pp. 160-171)) gives for every p > 0 the following

simple estimates.

E
[

|√n4n
i Y − βn

i |p | F i−1

n

]

≤ Cp

np∧1
(27)

and

E
[

|√n4n
i Y |p + |βn

i |p | F i−1

n

]

≤ Cp (28)

for all i, n ≥ 1. Observe furthermore that

E
[

g(βn
i ) | F i−1

n

]

= ρσ i−1
n

(g), for all i, n ≥ 1.

Introduce for convenience, for each t > 0 and n ≥ 1, the shorthand notation

Un
t (g) =

1√
n

[nt]
∑

i=1

{

g(
√
n4n

i Y ) − E
[

g(
√
n4n

i Y ) | F i−1

n

]}

and

Ũn
t (g) =

1√
n

[nt]
∑

i=1

{

g(βn
i ) − ρσ i−1

n

(g)

}

=
1√
n

[nt]
∑

i=1

{

g(βn
i ) − E

[

g(βn
i ) | F i−1

n

]}

.

The asymptotic behaviour of (Ũn
t (g)) is well known. More precisely under the the given assump-

tions ( in fact much less is needed ) we have

(Un
t (g)) → (Ut(g)).

This result is a rather straightforward consequence of Jacod and Shiryaev (2003, Theorem

IX.7.28). Thus, if (Un
t (g) − Ũn

t (g))
P→ 0 we may deduce the following result.

Theorem 4 Let (Bt) and (Ut(g)) be as above. Then

(Ũn
t (g)) → (Ut(g)).
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Proof of Theorem 4.

As pointed out just above it is enough to prove that

(Un
t (g) − Ũn

t (g))
P→ 0.

But for t ≥ 0 and n ≥ 1

Un
t (g) − Ũn

t (g) =

[nt]
∑

i=1

(

ξn
i − E

[

ξn
i | F i−1

n

])

where

ξn
i =

1√
n

{

g(
√
n4n

i Y ) − g(βn
i )
}

, i, n ≥ 1.

Thus we have to prove




[nt]
∑

i=1

{

ξn
i − E

[

ξn
i | F i−1

n

]}





P→ 0.

But, as the left hand side of this relation is a sum of martingale differences, this is implied by

Doob’s inequality (e.g. Revuz and Yor (1999, pp. 54-55)) if for all t > 0

[nt]
∑

i=1

E[(ξn
i )2] = E





[nt]
∑

i=1

E[(ξn
i )2 | F i−1

n
]



→ 0 as n→ ∞.

Fix t > 0. Using the Cauchy-Schwarz, Burkholder-Davis-Gundy and Jensen inequalities we have

for all i, n ≥ 1.

E
[

(ξn
i )2 | F i−1

n

]

=
1

n
E
[

{

g(
√
n4n

i Y ) − βn
i + βn

i − g(βn
i )
}2 | F i−1

n

]

≤ C

n
E
[

(1 + |√n4n
i Y |p + |βn

i |p)2 · (
√
n4n

i Y − βn
i )2 | F i−1

n

]

≤ C

n

√

E
[

(1 + |√n4n
i Y |2p + |βn

i |2p) | F i−1

n

]

·
√

E
[

(
√
n4n

i Y − βn
i )4 | F i−1

n

]

≤ C

√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)

dWu

)4

| F i−1

n





≤ C

√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2

| F i−1

n



.
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Thus

[nt]
∑

i=1

E
[

(ξn
i )2
]

≤ C

[nt]
∑

i=1

E







√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2

|F i−1

n











≤ C

[nt]
∑

i=1

√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2




≤ C [nt]
1

[nt]

[nt]
∑

i=1

√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2




≤ C [nt]

√

√

√

√

√

1

[nt]

[nt]
∑

i=1

E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2




≤ C
√

[nt]

√

√

√

√

[nt]
∑

i=1

E

[

(

1

n

∫ i

i−1

(

σ v
nn

− − σ i−1

n

)2
dv

)2
]

≤ C

√

√

√

√

[nt]
∑

i=1

1

n
E

[(
∫ i

i−1

(

σ v
nn

− − σ i−1

n

)4
dv

)]

≤ C

√

√

√

√

[nt]
∑

i=1

E

[(
∫ i

i−1

(

σu− − σ i−1

n

)4
du

)]

≤ C

√

√

√

√

[nt]
∑

i=1

E

[(
∫ i

i−1

(

σu− − σ i−1

n

)2
du

)]

.

as n→ ∞, by Lebesgue’s Theorem and the boundedness of (σ t).

�

To prove the convergence (26) it suffices, using Theorem 4 above, to prove that

(

Un
t (g) −√

n

{

Y n
t (g) −

∫ t

0
ρσu

(g) du

})

P→ 0.

But as

Un
t (g) −√

nY n
t (g) = − 1√

n

[nt]
∑

i=1

E
[

g(
√
n4n

i Y ) | F i−1

n

]

and, as is easily seen,





√
n

∫ t

0
ρσu

(g) du−
[nt]
∑

i=1

√
n

∫ i/n

(i−1)/n
ρσu

(g) du





P→ 0,

the job is to prove that
[nt]
∑

i=1

ηn
i

P→ 0 for all t > 0,
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where for i, n ≥ 1

ηn
i =

1√
n

E
[

g(
√
n4n

i Y ) | F i−1

n

]

−√
n

∫ i/n

(i−1)/n
ρσu

(g) du.

Fix t > 0 and write, for all i, n ≥ 1,

ηn
i = η(1)n

i + η(2)n
i ,

where

η(1)n
i =

1√
n

{

E
[

g(
√
n4n

i Y ) | F i−1

n

]

− ρσ i−1
n

(g)

}

(29)

and

η(2)n
i =

√
n

∫ i/n

(i−1)/n

{

ρσu
(g) − ρσ i−1

n

(g)

}

du. (30)

We will now separately prove

η(1)n =

[nt]
∑

i=1

η(1)n
i

P→ 0 (31)

and

η(2)n =

[nt]
∑

i=1

η(2)n
i

P→ 0. (32)

9.5 Some auxiliary estimates

In order to show (31) and (32) we need some refinements of the estimate (17) above. To state

these we split up (
√
n4n

i Y − βn
i ) into several terms. By definition

√
n4n

i Y − βn
i =

√
n

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)

dWu

for all i, n ≥ 1. Writing

En = {x ∈ E | |Ψ(x)| > 1/
√
n }

the difference σu − σ i−1

n
equals

∫ u

(i−1)/n
a∗s ds+

∫ u

(i−1)/n
σ∗s− dWs +

∫ u

(i−1)/n
v∗s− dVs +

∫ u

(i−1)/n

∫

E
φ(s−, x) (µ− ν)(dsdx)

=

5
∑

j=1

ξ(j)n
i (u),
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for i, n ≥ 1 and u ≥ (i− 1)/n where

ξ(1)n
i (u) =

∫ u

(i−1)/n
a∗s ds+

∫ u

(i−1)/n

(

σ∗s− − σ∗i−1

n

)

dWs +

∫ u

(i−1)/n

(

v∗s− − v∗i−1

n

)

dVs

ξ(2)n
i (u) = σ∗

i−1

n

(

Wu −W i−1

n

)

+ v∗i−1

n

(

Vu − V i−1

n

)

ξ(3)n
i (u) =

∫ u

(i−1)/n

∫

Ec
n

φ(s−, x) (µ− ν)(dsdx)

ξ(4)n
i (u) =

∫ u

(i−1)/n

∫

En

{

φ(s−, x) − φ

(

i− 1

n
, x

)}

(µ− ν)(dsdx)

ξ(5)n
i (u) =

∫ u

(i−1)/n

∫

En

φ

(

i− 1

n
, x

)

(µ− ν)(dsdx).

That is, for i, n ≥ 1,

√
n4n

i Y − βn
i =

5
∑

j=1

ξ(j)n
i , (33)

where

ξ(j)n
i =

√
n

∫ i/n

(i−1)/n
ξ(j)n

i (u−) dWu, for j = 1, 2, 3, 4, 5.

The specific form of the variables implies, using Burkholder-Davis-Gundy inequalities, that for

every q ≥ 2 we have

E[ |ξ(j)n
i |q ] ≤ Cq n

q/2 E





(

∫ i/n

(i−1)/n
ξ(j)n

i (u)2 du

)q/2




≤ n

∫ i/n

(i−1)/n
E[ |ξ(j)n

i (u)|q ] du

≤ sup
(i−1)/n≤u≤i/n

E[ |ξ(j)n
i (u)|q ],

for all i, n ≥ 1 and all j. These terms will now be estimated. This is done in the following series

of lemmas where i and n are arbitrary and we use the notation

dn
i =

∫ i/n

(i−1)/n
E

[

(

σ∗s− − σ∗i−1

n

)2
+
(

v∗s− − v∗i−1

n

)2
+

∫

E

{

φ(s−, x) − φ

(

i− 1

n
, x

)}2

F (dx)

]

ds.

Lemma 1

E[ (ξ(1)n
i )2] ≤ C1 · (1/n2 + dn

i ).

Lemma 2

E[ (ξ(2)n
i )2] ≤ C2/n.

Lemma 3

E[ (ξ(3)n
i )2] ≤ C3 ϕ(1/

√
n)/n,

where

ϕ(ε) =

∫

{ |Ψ|≤ε }
Ψ(x)2 F (dx).
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Lemma 4

E[ (ξ(4)n
i )2] ≤ C4 d

n
i .

Lemma 5

E[ (ξ(5)n
i )2] ≤ C5/n.

The proofs of these five Lemmas rely on straightforward martingale inequalities.

Observe that Lebesgue’s Theorem ensures, since the processes involved are assumed càdlàg

and uniformly bounded, that as n→ ∞

[nt]
∑

i=1

dn
i → 0 for all t > 0.

Taken together these statements imply the following result.

Corollary 2 For all t > 0 as n→ ∞

[nt]
∑

i=1

{

E[ (ξ(1)n
i )2] + E[ (ξ(3)n

i )2] + E[ (ξ(4)n
i )2]

}

) → 0.

Below we shall invoke this Corollary as well as Lemmas 2 and 5.

9.6 Proof of η(2)n P→ 0

Recall we wish to show that

η(2)n =

[nt]
∑

i=1

η(2)n
i

P→ 0. (34)

From now on let t > 0 be fixed. We split the η(2)n
i ’s according to

η(2)n
i = η′(2)ni + η′′(2)ni , i, n ≥ 1,

where, writing Υ(x) for ρx(g),

η′(2)ni =
√
n Υ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

(

σu − σ i−1

n

)

du

and

η′′(2)ni =
√
n

∫ i/n

(i−1)/n

{

Υ(σu) − Υ
(

σ i−1

n

)

− Υ′
(

σ i−1

n

)

·
(

σu − σ i−1

n

)}

du.

With this notation we shall prove (34) by showing

[nt]
∑

i=1

η′(2)ni
P→ 0
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and
[nt]
∑

i=1

η′′(2)ni
P→ 0.

Inserting the description of (σt) (see (H1a)) we may write

η′(2)ni = η′(2, 1)n
i + η′(2, 2)n

i ,

where for all i, n ≥ 1

η′(2, 1)n
i =

√
n Υ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n
a∗s ds

)

du

and

η′(2, 2)n
i =

√
n Υ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

[

∫ u

(i−1)/n
σ∗s− dWs +

∫ u

(i−1)/n
v∗s− dVs

+

∫

E
φ(s−, x) (µ− ν)(dsdx)

]

du.

By (H2a) and (18) and the uniform boundedness of (a∗t ) we have

|η′(2, 1)n
i | ≤ C

√
n

∫ i/n

(i−1)/n
{u− (i− 1)/n} du ≤ C/n3/2

for all i, n ≥ 1 and thus
[nt]
∑

i=1

η′(2, 1)n
i

P→ 0.

Since

(Wt), (Vt) and

(
∫ t

0

∫

E
φ(s−, x)(µ− ν)(dsdx)

)

are all martingales we have

E
[

η′(2, 2)n
i | F i−1

n

]

= 0 for all i, n ≥ 1.

By Doob’s inequality it is therefore feasible to estimate

[nt]
∑

i=1

E[ (η′(2, 2)n
i )2].

Inserting again the description of (σt) we find, applying simple inequalities, in particular Jensen’s,
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that

(η′(2, 2)n
i )2

≤ C n

(

∫ i/n

(i−1)/n

{

∫ u

(i−1)/n
σ∗s− dWs

}

du

)2

+ C n

(

∫ i/n

(i−1)/n

{

∫ u

(i−1)/n
v∗s− dVs

}

du

)2

+C n

(

∫ i/n

(i−1)/n

∫ u

(i−1)/n

{
∫

E
φ(s−, x) (µ− ν)(dsdx)

}

du

)2

≤ C

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n
σ∗s− dWs

)2

du+ C

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n
v∗s− dVs

)2

du

+C

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n

∫

E
φ(s−, x) (µ− ν)(dsdx)

)2

du.

The properties of the Wiener integrals and the uniform boundedness of (σ∗
t ) and (v∗t ) ensure

that

E





(

∫ u

(i−1)/n
σ∗s− dWs

)2

| F i−1

n



 ≤ C ·
(

u− i− 1

n

)

and likewise

E





(

∫ u

(i−1)/n
v∗s− dVs

)2

| F i−1

n



 ≤ C ·
(

u− i− 1

n

)

for all i, n ≥ 1. Likewise for the Poisson part we have

E





(

∫ u

(i−1)/n

∫

E
φ(s−, x) (µ− ν)(dsdx)

)2

| F i−1

n





≤ C

∫ u

(i−1)/n

∫

E
E[φ2(s, x) | F i−1

n

]F (dx) ds

yielding a similar bound. Putting all this together we have for all i, n ≥ 1

E[ (η′(2, 2)n
i )2 | F i−1

n

] ≤ C

∫ i/n

(i−1)/n
(u− (i− 1)/n) du

≤ C/n2.

Thus as n→ ∞ so
[nt]
∑

i=1

E[ (η′(2, 2)n
i )2] → 0.

and since

E
[

η′(2, 2)n
i | F i−1

n

]

= 0 for all i, n ≥ 1

we deduce from Doob’s inequality that

[nt]
∑

i=1

η′(2, 2)n
i

P→ 0

31



proving altogether
[nt]
∑

i=1

η′(2)ni
P→ 0.

Applying once more (H2a) and (18) we have for every ε > 0 and every i, n that

|η′′(2)ni | ≤ √
n

∫ i/n

(i−1)/n
Ψ
(∣

∣

∣
σu − σ i−1

n

∣

∣

∣

)

·
∣

∣

∣
σu − σ i−1

n

∣

∣

∣
du

≤ √
nΨ(ε)

∫ i/n

(i−1)/n

∣

∣

∣σu − σ i−1

n

∣

∣

∣ du+
√
nΨ(2

√
b)/ε

∫ i/n

(i−1)/n

∣

∣

∣σu − σ i−1

n

∣

∣

∣

2
du.

Thus from (17) and its consequence

E
[∣

∣

∣
σu − σ i−1

n

∣

∣

∣

]

≤ C/
√
n

we get
[nt]
∑

i=1

E[ |η′′(2)ni | ] ≤ CtΨ(ε) +
C Ψ(b)√

n ε

for all n and all ε. Letting here first n→ ∞ and then ε→ 0 we may conclude that as n→ ∞

[nt]
∑

i=1

E[ |η′′(2)ni | ] → 0

implying the convergence
[nt]
∑

i=1

η(2)n
i

P→ 0.

Thus ending the proof of (32).

�

9.7 Proof of η(1)n P→ 0

Recall we are to show that

η(1)n =

[nt]
∑

i=1

η(1)n
i

P→ 0. (35)

Let still t > 0 be fixed. Recall that

η(1)n
i =

1√
n

{

E
[

g(
√
n4n

i Y ) | F i−1

n

]

− ρσ i−1
n

(g)

}

=
1√
n

E
[

g(
√
n4n

i Y ) − g(βn
i ) | F i−1

n

]

.

Introduce the notation (recall the assumption (K2))

An
i = { |√n4n

i Y − βn
i | > d(βn

i , B)/2 }.
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Since B is a Lebesgue null set and βn
i is absolutely continuous, g′(βn

i ) is defined a.s. and, by

assumption, g is differentiable on the interval joining 4n
i Y (ω) and βn

i (ω) for all ω ∈ Anc
i . Thus,

using the Mean Value Theorem, we may for all i, n ≥ 1 write

g(
√
n4n

i Y ) − g(βn
i )

=
{

g(
√
n4n

i Y ) − g(βn
i )
}

· 1An
i

+g′(βn
i ) · (√n4n

i Y − βn
i ) · 1An c

i

+
{

g′(αn
i ) − g′(βn

i )
}

· (√n4n
i Y − βn

i ) · 1An c
i

=
√
n {δ(1)n

i + δ(2)n
i + δ(3)n

i } ,

where αn
i are random points lying in between

√
n4n

i Y and βn
i , i.e.

√
n4n

i Y ∧ βn
i ≤ αn

i ≤ √
n4n

i Y ∨ βn
i ,

and
δ(1)n

i = [ {g(√n4n
i Y ) − g(βn

i )} − g′(βn
i ) · (√n4n

i Y − βn
i ) ] · 1An

i
/
√
n

δ(2)n
i = {g′(αn

i ) − g′(βn
i )} · (√n4n

i Y − βn
i ) · 1An c

i
/
√
n

δ(3)n
i = g′(βn

i ) · (√n4n
i Y − βn

i )/
√
n.

Thus it suffices to prove

[nt]
∑

i=1

E
[

δ(k)n
i | F i−1

n

]

P→ 0, k = 1, 2, 3.

Consider the case k = 1. Using (Ka) and the fact that βn
i is absolutely continuous we have

a.s.

|g(√n4n
i Y ) − g(βn

i )|

≤ M(1 + |√n4n
i Y − βn

i |p + |βn
i |p) · |

√
n4n

i Y − βn
i |

≤ (2p + 1)M(1 + |√n4n
i Y |p + |βn

i |p) · |
√
n4n

i Y − βn
i |,

and

| g′(βn
i ) · (√n4n

i Y − βn
i ) | ≤M(1 + |βn

i |p) · |
√
n4n

i Y − βn
i |.

By Cauchy-Schwarz’s inequality E[ |δ(1)n
i | ] is therefore for all i, n ≥ 1 less than

C · E[ 1 + |√n4n
i Y |3p + |βn

i |3p]1/3 · E[ (
√
n4n

i Y − βn
i )2/n ]1/2 · P (An

i )1/6

implying for fixed t, by means of (20), that

E[





[nt]
∑

i=1

| δ(1)n
i |



 ≤ C · sup
i≥1

P (An
i )1/6

[nt]
∑

i=1

E[ (4n
i Y − βn

i )2/n ]1/2

≤ C · sup
i≥1

P (An
i )1/6

[nt]
∑

i=1

1/n

≤ Ct · sup
i≥1

P (An
i )1/6.
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For all i, n ≥ 1 we have for every ε > 0

P (An
i ) ≤ P (An

i ∩ {d(βn
i , B) ≤ ε}) + P (An

i ∩ {d(βn
i , B) > ε})

≤ P (d(βn
i , B) ≤ ε) + P (|√n4n

i Y − βn
i | > ε/2)

≤ P (d(βn
i , B) ≤ ε) +

4

ε2
· E[ (

√
n4n

i Y − βn
i )2]

≤ P (d(βn
i , B) ≤ ε) +

C

n ε2
.

But (H2a) implies that the densities of βn
i are pointwise dominated by a Lebesgue integrable

function ha,b providing, for all i, n ≥ 1, the estimate

P (An
i ) ≤

∫

{x | d(x,B)≤ε}
ha,b dλ1 +

C

n ε2
(36)

= αε +
C

n ε2
.

Observe limε→0 αε = 0. Taking now in (36) sup over i and then letting first n → ∞ and then

ε ↓ 0 we get

lim
n

sup
i≥1

P (An
i ) = 0

proving that

E





[nt]
∑

i=1

| δ(1)n
i |



 → 0

and thus
[nt]
∑

i=1

E
[

δ(1)n
i | F i−1

n

]

P→ 0.

Consider next the case k = 2. As assumed in (Ka), g is continuously differentiable outside

of B. Thus for each A > 1 and ε > 0 there exists a function GA, ε : (0, 1) → R+ such that for

given 0 < ε′ < ε/2

∣

∣g′(x+ y) − g′(x)
∣

∣ ≤ GA, ε(ε
′) for all |x| ≤ A, |y| ≤ ε′ < ε < d(x,B).

Observe that limε′↓0GA, ε(ε
′) = 0 for all A and ε. Fix A > 1 and ε ∈ (0, 1). For all i, n ≥ 1 we

have

|g′(αn
i ) − g′(βn

i )| · 1An c
i

= |g′(αn
i ) − g′(βn

i )| · 1An c
i

(1{|αn
i |+|βn

i |>A} + 1{|αn
i |+|βn

i |≤A})

≤ |g′(αn
i ) − g′(βn

i )| · |α
n
i | + |βn

i |
A

+ |g′(αn
i ) − g′(βn

i )| · 1An c
i ∩{|αn

i |+|βn
i |≤A}

≤ C

A
· (1 + |αn

i |p + |βn
i |p)2 + |g′(αn

i ) − g′(βn
i )| · 1An c

i ∩{|αn
i |+|βn

i |≤A}

≤ C

A
· (1 + |√n4n

i Y |2p + |βn
i |2p) + |g′(αn

i ) − g′(βn
i )| · 1An c

i ∩{|αn
i |+|βn

i |≤A}.
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Now writing

1 = 1{d(βn
i ,B)≤ε} + 1{d(βn

i ,B)>ε}

= 1{d(βn
i ,B)≤ε}

+1{d(βn
i ,B)>ε} ∩{|αn

i −βn
i |≤ε′}

+1{d(βn
i ,B)>ε} ∩{|αn

i −βn
i |>ε′}

for all 0 < ε′ < ε/2 we have

1An c
i ∩{|αn

i |+|βn
i |≤A} ≤ 1{d(βn

i ,B)≤ε}∩An c
i ∩{|αn

i |+|βn
i |≤A}

+1An c
i ∩{|αn

i |+|βn
i |≤A}∩ {d(βn

i ,B)>ε}∩{|αn
i −βn

i |≤ε′}

+1An c
i ∩{|αn

i |+|βn
i |≤A}∩ {d(βn

i ,B)>ε} ·
|αn

i − βn
i |

ε′
.

Combining this with the fact that

|g′(αn
i ) − g′(βn

i )| ≤ C(1 + |αn
i |p + |βn

i |p)

≤ CAp

on An c
i ∩ {|αn

i | + |βn
i | ≤ A} we obtain that

|g′(αn
i ) − g′(βn

i )| · 1An c
i ∩{|αn

i |+|βn
i |≤A}

≤ CAp ·
(

1{d(βn
i ,B)≤ε} +

|αn
i − βn

i |
ε′

)

+GA, ε(ε
′)

≤ CAp · (1{d(βn
i ,B)≤ε} +

|√n4n
i Y − βn

i |
ε′

) +GA, ε(ε
′).

Putting this together means that

√
n |δ(2)n

i | = |g′(αn
i ) − g′(βn

i )| · |√n4n
i Y − βn

i | · 1An c
i

≤
{

C

A
· (1 + |√n4n

i Y |2p + |βn
i |2p) +GA, ε(ε

′)

}

· |√n4n
i Y − βn

i |

+CAp ·
(

1{d(βn
i ,B)≤ε} · |

√
n4n

i Y − βn
i | +

|√n4n
i Y − βn

i |2
ε′

)

.

Exploiting here the inequalities (20) and (21) we obtain, for all A > 1 and 0 < 2ε ′ < ε < 1 and

all i, n ≥ 1, using Hölder’s inequality, the following estimate

E[ |δ(2)n
i | ] ≤ C

(

1

An
+
GA, ε(ε

′)

n
+
Ap √αε

n
+

Ap

ε′ n3/2

)

implying for all n ≥ 1 and t ≥ 0 that

[nt]
∑

i=1

E[ |δ(2)n
i | ] ≤ Ct

(

1

A
+GA, ε(ε

′) +Ap √αε +
Ap

ε′ n1/2

)

.
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Choosing in this estimate first A sufficiently big, then ε small (recall that limε→0 αε = 0 ) and

finally ε′ small, exploiting that limε′↓0GA, ε(ε
′) = 0 for all A and ε, we may conclude that

lim
n

[nt]
∑

i=1

E [ |δ(2)n
i | ] = 0

and thus
[nt]
∑

i=1

E
[

δ(2)n
i | F i−1

n

]

P→ 0.

So what remains to be proved is the convergence

[nt]
∑

i=1

E
[

δ(3)n
i | F i−1

n

]

P→ 0.

As introduced in (33)

√
n4n

i Y − βn
i =

5
∑

j=1

ξ(j)n
i = ψ(1)n

i + ψ(2)n
i

for all i, n ≥ 1 where

ψ(1)n
i = ξ(1)n

i + ξ(3)n
i + ξ(4)n

i ,

ψ(2)n
i = ξ(2)n

i + ξ(5)n
i ,

and as

δ(3)n
i = g′(βn

i ) · (ψ(1)n
i + ψ(2)n

i )/
√
n

it suffices to prove





[nt]
∑

i=1

E
[

g′(βn
i ) · ψ(k)n

i | F i−1

n

]

/
√
n





P→ 0, k = 1, 2.

The case k = 1 is handled by proving

1√
n

[nt]
∑

i=1

E[ |g′(βn
i ) · ξ(j)n

i | ] → 0, j = 1, 3, 4. (37)

Using Jensen’s inequality it is easily seen that for j = 1, 3, 4

1√
n

[nt]
∑

i=1

E[ |g′(βn
i ) · ξ(j)n

i | ] ≤ C t ·

√

√

√

√

1

n

[nt]
∑

i=1

E[ g′(βn
i )2] ·

√

√

√

√

[nt]
∑

i=1

E[ (ξ(j)n
i )2]

and so using (28)

1√
n

[nt]
∑

i=1

E[ |g′(βn
i ) · ξ(j)n

i | ] ≤ C t ·

√

√

√

√

[nt]
∑

i=1

E[ (ξ(j)n
i )2]
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since almost surely

|g′(βn
i )| ≤ C (1 + |βn

i |p)

for all i, n ≥ 1. From here, (37) is an immediate consequence of Lemmas 1, 3 and 4.

The remaining case k = 2 is different. The definition of ψ(2)n
i implies, using basic stochastic

calculus, that ψ(2)n
i /

√
n, for all i, n ≥ 1, may be written as

∫ i/n

(i−1)/n

{

σ′i−1

n

(

Wu −W i−1

n

)

+M(n, i)u

}

dWu

= σ′i−1

n

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dWu

+4n
i M(n, i) · 4n

i W

+

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dM(n, i)u,

where (M(n, i)t) is the martingale defined by M(n, i)t ≡ 0 for t ≤ (i− 1)/n and

M(n, i)t = v∗i−1

n

(

Vt − V i−1

n

)

+

∫ t

(i−1)/n

∫

En

φ

(

i− 1

n
, x

)

(µ− ν)(dsdx)

otherwise. Thus for fixed i, n ≥ 1

E
[

g′(βn
i ) · ψ(2)n

i | F i−1

n

]

/
√
n

is a linear combination of the following three terms

E

[

g′(βn
i ) · σ′i−1

n

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dWu | F i−1

n

]

,

E
[

g′(βn
i ) · 4n

i M(n, i) · 4n
i W | F i−1

n

]

and

E[ g′(βn
i ) ·

∫ i/n

(i−1)/n
Wu dM(n, i)u | F i−1

n

].

But these three terms are all equal to 0 as seen by the following arguments.

The conditional distribution of

(

Wt −W i−1

n

)

t≥ i−1

n

|F i−1

n

is clearly not affected by a change of sign. Thus since g being assumed even and g ′ therefore

odd we have

E

[

g′(βn
i )

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dWu | F i−1

n

]

= 0

implying the vanishing of the first term.
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Secondly, by assumption,
(

Wt −W i−1

n

)

t≥ i−1

n

and (M(n, i)t)t≥ i−1

n
are independent given

F i−1

n

. Therefore, denoting by F 0
i,n the σ-field generated by

(

Wt −W i−1

n

)

i−1

n
≤t≤i/n

and F i−1

n

,

the martingale property of (M(n, i)t) ensures that

E[ g′(βn
i ) · 4n

i M(n, i) · 4n
i W | F 0

i,n ] = 0

and

E[

[

g′(βn
i ) ·

∫ i/n

(i−1)/n
Wu dM(n, i)u | F 0

i,n

]

= 0.

Using this the vanishing of

E
[

g′(βn
i ) · 4n

i M(n, i) · 4n
i W | F i−1

n

]

and

E

[

g′(βn
i ) ·

∫ i/n

(i−1)/n
Wu dM(n, i)u | F i−1

n

]

is easily obtained by successive conditioning.

The proof of (31) is hereby completed.

�
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Jacod, J. and P. Protter (1998). Asymptotic error distributions for the Euler method for

stochastic differential equations. Annals of Probability 26, 267–307.

Jacod, J. and A. N. Shiryaev (2003). Limit Theorems for Stochastic Processes (2 ed.). Springer-

Verlag: Berlin.

Karatzas, I. and S. E. Shreve (1991). Brownian Motion and Stochastic Calculus (2 ed.),

Volume 113 of Graduate Texts in Mathematics. Berlin: Springer–Verlag.

Karatzas, I. and S. E. Shreve (1998). Methods of Mathematical Finance. New York: Springer–

Verlag.

Maheswaran, S. and C. A. Sims (1993). Empirical implications of arbitrage-free asset markets.

In P. C. B. Phillips (Ed.), Models, Methods and Applications of Econometrics, pp. 301–316.

Basil Blackwell.

Mancini, C. (2004). Estimation of the characteristics of jump of a general Poisson-diffusion

process. Scandinavian Actuarial Journal 1, 42–52.

Martens, M. and D. van Dijk (2005). Measuring volatility with the realized range. Unpublished

paper: Econometric Institute, Erasmus University, Rotterdam.

Merton, R. C. (1980). On estimating the expected return on the market: An exploratory

investigation. Journal of Financial Economics 8, 323–361.

Munroe, M. E. (1953). Introduction to Measure and Integration. Cambridge, MA: Addison-

Wesley Publishing Company, Inc.

Mykland, P. A. and L. Zhang (2006). ANOVA for diffusions. Annals of Statistics 33. Forth-

coming.

41



Nielsen, M. O. and P. H. Frederiksen (2005). Finite sample accuracy of integrated volatility

estimators. Unpublished paper, Department of Economics, Cornell University.

Officer, R. R. (1973). The variability of the market factor of the New York stock exchange.

Journal of Business 46, 434–453.

Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of

return. Journal of Business 53, 61–66.

Phillips, P. C. B. and S. Ouliaris (1990). Asymptotic properties of residual based tests for

cointegration. Econometrica 58, 165–193.

Revuz, D. and M. Yor (1999). Continuous Martingales and Brownian motion (3 ed.). Heidel-

berg: Springer-Verlag.

Rosenberg, B. (1972). The behaviour of random variables with nonstationary variance and

the distribution of security prices. Working paper 11, Graduate School of Business Ad-

ministration, University of California, Berkeley. Reprinted in Shephard (2005).

Schwert, G. W. (1989). Why does stock market volatility change over time? Journal of

Finance 44, 1115–1153.

Schwert, G. W. (1990). Indexes of U.S. stock prices from 1802 to 1987. Journal of Business 63,

399–426.

Schwert, G. W. (1998). Stock market volatility: Ten years after the crash. Brookings-Wharton

Papers on Financial Services 1, 65–114.

Shephard, N. (2005). Stochastic Volatility: Selected Readings. Oxford: Oxford University

Press.

Shiryaev, A. N. (1999). Essentials of Stochastic Finance: Facts, Models and Theory. Singa-

pore: World Scientific.

Woerner, J. (2006). Power and multipower variation: inference for high frequency data. In

A. N. Shiryaev, M. do Rosario Grossihno, P. Oliviera, and M. Esquivel (Eds.), Proceed-

ings of the International Conference on Stochastic Finance 2004. Berlin: Springer Verlag.

Forthcoming.

Zhang, L. (2004). Efficient estimation of stochastic volatility using noisy observations: a multi-

scale approach. Unpublished paper: Department of Statistics, Carnegie Mellon University.

Zhang, L., P. A. Mykland, and Y. Aı̈t-Sahalia (2005). A tale of two time scales: determining

integrated volatility with noisy high-frequency data. Journal of the American Statistical

Association. Forthcoming.

42



Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of

Business and Economic Statistics 14, 45–52.

43


